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MULTICOLLINEARITY AND THE EXACT DISTRIBUTION 
  OF THE LEAST SQUARES ESTIMATORS IN THE 

              ERROR MODELS

KAZUHIKO MATSUNO

I. INTRODUCTION

 The multicollinearity problem is one of the classical problems of econometric 
methods. Multicollinearity effects on the Least Squares Estimator (LS), however, 
have hardly ever been discussed with a precise stochastic specification. 

 When the multicollinearity problem of the classical fixed variable regression 
model is discussed, we speak of a singularity of moment matrices. And stochastic 
characteristics of the moment matrices do not appear. For the multicollinearity 
problem of the error in variables model we speak of effects of observational errors 
which hide nuisance intercorrelations between explanatory variables. And it is 
warned that one might have nonsensical regression estimates. 

 This paper discusses a sampling distribution aspect of the LS in relation to the 
multicollinearity problem. In particular, the exact sampling distribution of the 
LS is obtained in the context of the error in variables models where multicollin-
earity is present. And some properties of the distribution are examined. 

 A breakthrough leading to the present analysis was established when Anderson 
and Girshick [1] presented probability density functions of the noncentral Wishart 
distribution and Tintner [9] noted significances of the distribution for econometric 
models. The noncentral Wishart distribution, however, became well known when 
it was utilized to obtain the sampling distributions of the econometric estimators 
in the simultaneous equations models. 

 The sampling distribution analysis of the simultaneous-equation models ap-

plies to the error in variables models. For a similarity exists between the 
stochastic natures of the simultaneous equations model and the error in variables 
models. Richardson and Wu [8] along this line present the sampling distributions 
of the LS and the Grouping Method Estimators of the error in variables model with 
two variables included. But  there is no multicollinearity problem in the two 
variable model. The problem occures in models with three variables or more. 

 It is thought that sampling distribution problem becomes complicated when 
the error in variables model includes more than three variables. Presence of 
multicollinearity, however, simplifies the matter. For, in some cases, the sampl-
ing distribution problem can be reduced to that of the two variable model by the 
presence of multicollinearity, even if the model includes more than three variables. 

 Section II discusses specifications of the error-in-variables model and multi-
collinearity. And Section III presents our error models and the sampling distri-
bution problems. Section IV provides a general statistical theory and our major 
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54 KAZUHIKO MATSUNO

interest is in its special case. In Section V, the results of the statistical theory are 

applied to the problems of Section III. Another application is given in Section VI. 

And this has a specific meaning in an econometric analysis.

II. ERROR IN VARIABLES MODELS AND MULTICOLLINEARITY

 There have been two types of stochastic specification in the studies of the 
error in variables models. One type of specification is that the observations 
subject to economic interrelationships and measurement errors are distributed as 
normal with a constant mean value through observation periods. With a stocha-
stic independence assumption this leads to the central Wishart distribution of the 
moment matrix of the observations. 

 The other one is that the observations are distributed as normal with varying mean 
values through observation periods. The moment matrix is then shown to be  dis-
tributed as the noncentral Wishart distribution. This is a generalized form of the 
previous type in a statistical sense. 

 The moment matrix A of the noncentral Wishart distribution model consists of 
systematic variations A' and random variations A" additively, i.e., A = A' ± A". 
Whereas the moment matrix of the central Wishart distribution model consists 
only of random variations A" .  Therefore, when Farrar and Glauber [2] provide 
methods for detecting multicollinearity based on the central Wishart distribution, 
the multicollinearity refers to a singularity of A" or to a singularity of a covariance 
matrix of measurement error vectors, a population counterpart of A" .  But we 
understand that multicollinearity refers to presence of simultaneous relationships 
between systematic parts of economic variables. Therefore reference should be 
made to a singularity of the systematic variatition A' rather than a singularity of 
the random variation A" for detecting multicollinearity, see Tintner [9]. 

 In Marschack's terminology, [6], the central Wishart distribution model is 
self-contained and the noncentral Wishart distribution model is sectional Our 
model will be a sectional model with the A' of rank unity.

III. MODELS

 Our error in variables models admit multicollinearity and shock disturbances, 
see Tintner [9] and Haavelmo [3]. 

 The relationship between the true (latent) variables kt, 

 (3.1) el.t = — jo + R2e2t + ... + PKeK + tit , t = 1, ..., T 

is estimated by the LS. Here the 13k are unknown parameters and T is a smaple 
size. The wt are interpreted as shock disturbances. 

 The observations xkt of the true variables are subject to the measurement 
errors ekt,
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 -  x
i, -cit - _ Eli 

(3.2)x. t e., + s. t • 
-XKt-eKt- -6Kt -

The equations (3.1) and (3.2) constitute a simple shock and error model. 

 Let 1=[1 ••• 1] = [1 x T], M=I—l(l'l)-ll', X' =[x., ••• x•T] 

and 
           AllA,2lxllxT-l 

(3.3) A= ------ 
             A2,A22T-l x 1: T-l x T—------1 

          l(l =X'MX = E (x.t2,x. t)(x. t2,x. t) 
then we have, for the LS b' = [b2 • • • bK] of P' = [/32 • • • PK] , 

 (3.4)b = A*2 A21 • 
 It is assumed that R "subsidiary" relationships exist between the ekt, 

a,o-al2 • • • a1K e2twlt - (3.5)+ . ... . • _ [ 
                 aRo- _aR2 • • aRK--eKtwRt-

where the w,.t are shock disturbances. And the ekt are said to be multicollinear. 
The occurence of multicollinearity might be accidental in the sense that the equa-
tions (3.5) hold only during the observation periods. Otherwise, the equations 

(3.5) describe inherent ecnomic relationships ruling the explanatory variables. And 
they are possibly unknown to an economist whose interest is in (3.1)'. 

 The Ekt are near multicollinear since the equations (3.1) and (3.5) are stochastic. 
The ekt are exact multicollinear when the shocks are empty. 

 A small value of R corresponds to large variations, in terms of degrees of free-
dom, of the eke. The analysis is confined to the cases of R= K — 2. Therefore, 
the model is sectional but close to self contained cases. One "exogenous" variable, 
say eKt, and the equations system (3.1) and (3.5) determine the systematic varia-
tions of the observations and the moment matrix. 

 The sampling distribution problems are based on the stochastic assumptions : 
ekt are fixed in repeated samples, 

         ut0 6uu 0 0 

 (3.6)w.t ed N 0 0 Eww 0 , 
s.t -0 _ 0 o 27                                                   EE_/ 
utu8 

w., and w.8 are independent, 

s.is.8 

1 If one thinks that an objective of his investigation is the equations system (3.5) as well as 
(3.1), then methods of treating (3.1) and (3.5) simultaneously must be devised. We consider (3.5) 
as relationships reflecting different dimensions of an economy from that of (3.1).
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where  w't  = [wit • • • wK-2t] . 
 Simple calculations give the recuced form

(3.7) x. t =['[1 
IreKt —ars°+1           a.o 0

=irEKt + Ita T U•t9

- 
wt -1 r I w. ti 

_ E.t

where

(3.8)

[
r—[

r=

In view of (3.6),

(3.9)

  

l-wt 

Ir , no=—oI'ISo, u.t  =1 I' Iw.t         a.00 
                                                                                  -E•t-

            a12 • • • alx-l a1K 
— D-la .K. 

  ID=•...•, a.x= 
aK-2K • • • aK-2K-l- ax-2K 

131 0 ) 
 D-'\C

o 
the distributions of the x. t are 

x.t N(greKt + no, Q) , t = 1, ... , T , 

x. t and x.3 are independent,

where 

 auu-I- '(01)Eww(D'-io)9~~(01)2ww(D'-io) 
(3.10) =ll-I--E„ .2) 

            (~)~'ww(D'_10)~(.13-)Eww(D'-io) 
 It is shown that the distribution of the moment matrix A is the non-central 

linear Wishart distribution with the sigma matrix 9, the mean sigma matrix 
2re'Meir', g' = [Al • • • $KT], and T — 1 degrees of freedom. This is written as 

 (3.11) A '' W(A, 9, K, T — 1, p(ne'M&)) , 

where K denotes dimensions of the random matrix A and p(rr~'Mee) = 1. 
 The noncentral Wishart distributions give probability laws of moment matrices 

of independent normal vectors which have a constant covariance matrix and vary-
ing mean vectors during observation periods. In particular, the noncentral linear 
Wishart distributions are suitable when the varying mean vectors lie on a one dimen-

 2 This is due to the block diagonality of the covariance matrix of the  wt, w.t and e.g. The 

block diagonality is due partly to simplicity of the representation and partly to understanding 

that the wt, w.t and e.g are of different nature.
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sional hyperplane of the mean vectors space. And this is our case by presence 

of multicollinearity. 

 Thus the problem is to derive the distributions of the random matrix  A22A2l 

provided that the distribution of [111 /la] is given by (3.11). 

                                  A2l22 

                       IV. STATISTICAL THEORYs 

 The distribution of 0* = A22A2l is obtained under the assumption that 

 (4.1)A W(A, 9, )2y', p, n, 1) , 
where 

All Al2l rxr:rxs 
      A=_ ..... : ..... , p=r-}-s, 

               A21 A22 sxr:sxs 

II*'= )11=[1 xi:1 xs]. 
-5

11 S12 rxr:rxs 
 Consider an upper triangular matrix S =_ .....: .....such 

                              0 S22sxr:sxs 
that 

 (4.2)
nn/~S'S = Q-l .                   9

11S`12r x r: r x s 
Partitioning as SI =_ ..... : ..... , we have 

                921 g22SXr: SXS 

                                              1 

                                 SllSll = J`11.2, 

(4.3)SllSllll42l(221— 

     nn/nnnnnS2l2,522 =,G22 where-ll.2 =911 —Ql2QQ2l• By the transformation 

 (4.4)A = S-lBS'-l , 
we have 

 (4.5)B .' W(B, I, )771 p, n, 1) , 
where 

 (4.6) =[71;• 7]=)7*5u=[rli~s'il-I-~Ia'Sl2:ig'S22]. 
And the probability density function (pdl) of the B is, from Anderson and Girshick 

[1], 
e(-1/2)V'Ve(-1/2)trB I Bl(1/2)(n-p-l) 00(2'B~)j   (4

.7) W(B,I,il ',p, n, 1) =
77_~~IT+ ---------------------------------------El                        2(1/2)phr(1/4)p(p-l)pill(n—Z)io22hi!r(.-1-+J)                  =

\2 

n>p. 

3 Except for a few minor alterations this part is a reproduction of a section in the author's 

paper [7], where the sampling distribution of the simultaneous equations estimators is studied.
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 Let 

(4.8) 0 = B22lB2l 

         Bil B12 rxr:rxs 
where B = _ ..... : ..... , then we have 

          B22 B22 s x r: s x s 

 (4.9)O=S‘i-l(0*+Si2Sul)S11. 

The pdl fl(0) of 0 is first obtained, then it is transformed into the pdff2(0*) of 
0* by the relation 

 (4.10) f2(0*) = J(0: 0*)fl(s l[0* + Sl2Su 1]Sl'l) • 

It is shown that the Jacobian of the transformation (4.9) is 

 (4.11) J(0: 0*) = I D22 it/21 Dlr.2 I-8/2 

 The B is transformed into 0 and Q, 

Bil = Q + 6'B226 , 

(4.12)B21 = B22o 
J(Bil, B21. 6, Q)= I B22 Ir • 

Then we have the pdl of (6, Q, B22) , 

  (4.13) f3(O, Q, B22) = Cl Q I (n-p-l)/2e(-1/2)trQIB22I (n-p-l/2) Fie(-1/2)tr2'B22F' 

xco(~IiQ)Il-l-iI 'FB22F"/)'  
22,jir(2 +j) 

where 

      F = [0 I] and c = e(-1/2),l'//2(1/'2) phr(1/4)p(p-l)lllL(n - 11. 
            z=12/J 

 After the binomial expanison, the pdl of (6, Q) may be written as 

 (4.14) f4(0, Q)=C I Q I(n-p-l)/2e(-1/2)trQr 1  (~iQ2igl                               30 22Jr(2+ )31+22=j Jr.12. 

                     X 1 e(-1/2)trFB22F' I B22 I (n-p-l/2)-Fr(i'FB22Fo2dB22 • 
B22>0 

And it can be shown that the integral equals to 

 (4.15) 077(F' F)-1.F'o2 F'FI-(n+r)/2{2(n+r/2)+12p(n +2 -1-./2)}

x 12(n+r)/2r(n2r`}8+1.18—
 Et  n  +  r  — 

         2

I,n+r 2/
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Substituting (4.15) into the integral of (4.14), the pdl of  0 may be written as 

 (4.16) fl(0) = c2((n+r)/2)s7r(1/4)s(s-l) II r(------------2)F'Fl 

           11,(nr222                         2----- .+j2)            X~22sT(-ll~--------------j~;1+I-;il •J2 ~("/F(F~-F~). 

        2 X Q (1/2)trQ I Q I (n-p-l)/2(2lQil)51(IQ 
                      Q>0 

Evaluating the integral of the same type as the previous one and changing the 

method of summing the series, we have 

             = /e(-1/2)'7'~ 11 r(n + r — iZllT'/n — S — 11  fi(—nr2  (4.17)~)— 2=lit` 2 111 + O0' I (+ )/

         xEE 
             r(11-------s + i)(1-21)$ r(n------r2+j/  

                      i, r 
ti=o ;=o(n+i+1 

                 2jj. 

X [—_(e' +?2)(I+00')-1(€+ )22)]• 
 If the mean sigma matrix satisfies the condition )71 = 0 then 

 (4.18).fl(4 I '/ 1 = 0) = fl(— 0 I ,71 = 0) 

that is, the pdffl is symmetric about the origin. 
 Consider the pdl (4.17) with r = 1, therefore 0 = 0 = [02 • • • 02,]' and 

a scalar. After some calculations by making use of relations 

(4.19) 1/±  oo'I= l + 0'0, 

the pdl of 0 is written as 

 (4.20) f6(0) = c' E ~(i) E 0(i,j)[21_(71— lIse)2l'(1 +'0)—(n+1)/2 z=0 j=0 2 2(1 + 0'0)                            J 

where c', w(i) and 95(i, j) may be correctly identified with reference to (4.17) 
iterations of the binomial expansion we have 

                      )(.)lc(.l  (4.21)te= c' Eco(i) E E~(i,j+k)(j21               ) 
             X(2j) !(— 721)Zly~a2...ylPea2 . • • 0;,,'  

                      /1±..+//2=2jI
l!• . j                       .~!(1 +real(n+1/2)+;           6u

2/l

Ira/2)ta :r(fl-

                       is(11

i) 

Y Tr(

By
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 To obtain the moment E(0112 • • • Opp) of order h2 + • • • + hp we must calculate 

faooo6'242+12...ehP+:2 (4.22)...` -~ (1 + ~ 00)(+1/2)+;dO2...dep 
12, •••,tp=0, 1, •••,2j 

11=2j—(12-1-••.+tp)=0, 1, ...,2j 

j=0,1,2,.... 

The transformation to polar coordinates shows that the integral (4.22) equals to 

r~ xt~+ • +hy+t~+ +ty+p-a 

 (4.23) J o (1 + x2)(" "2)+;----------------------ox 

multiplied by the beta functions. The integrand in (4.23) is at most of order 1/x 
raised to (n — p + 3) — (h2 + • • • + hp) + 11 power, 11> 0. And the integral 
(4.23) exists if and only if (n — p + 3) — (h2 + • • • +hp) + 4> 1. 

 The integral (4.23) for all 11> 0 must exist for the moment E(et 2 • • • Op') to 
exist. Thus we have 

  (4.24) E(012•••tip)<00, ifandonlyif n—p+2>h2+•••+hp, 
that is, the moments exist up to order n — p + 1. 

 In view of (4.18), if r= 1, n > p and •!1 = 0 then the pdffi(0) is symmetric about 
the origin and the first order moments exist. And we have 

—02 

 (4.25)E =0, if n>p,ij1=0. O
p 

 The transformation (4.10) is a matter of matrix calculations. To write out 
12(9*) we need some definitions: 

        q'(27* e*) _ [7?2 22 l-F i " — 722 "D22 221)011 2\0* — 22l22lY] , 
 (4.26) P02*, O*) = (~I i I — Oa'Q Q21)Qu 2(77i — , Qa2 Q21) , 

Q(O*, 0*) = [Q + (8* — Qal Q21)Qu 2(0* — D-2-.2(2901 . 
After some rearrangements by noting (4.3), we obtain the pdl of 0*, 

e(-1/2) 2*FE-4* II r(n +r—t )Tilt(  n—2Js—i)
(4.27)12(0*)*)_$=12=1

x

7r(l/2)r8 ITar n —21 
           l=12 

X I (2221—h/2 I SGll.2 1-8/2 I Q(O*, 0*) I-(n+r)/2 

r(' 2 S + i)(2P(i*, 72*))f7(n+r
J

x [--'@i
j! r(11- +i+il 

*, 0*)Q-l(0*, 0*)q01*, 0*)]
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 From observations of (4.27) or from (4.18), (4.6) and (4.9), it follows that if 
 )2 ='Dasl22i then the pdff2(0*) is symmetric about the coordinates 0* = 

'225621, 
nn//~~y~y~/~n\//~~//~~721"nnn\  (4.28)f2(SG22l,22l~'~*I'/1,=•/2'Q22Q2l)= f2(Q-Q2l — ©*I=•/2Qa2SQ2l) • 

 Consider cases with r = 1, 9* = 0* _ [0: • • .of]' and a scalar S11. Then (4.9) 
becomes 

(4.29)0*=00+ , 

where -0
22 0 - 

                       =SlllS22= 

 (4.30)-0p2... Opp_ - - 

                 0—SS'-l=,yG22=                 y'—12112221 

Op 

Therefore, if (4.25) holds or if n > p and )1 = 0 (or )21.` = is lQ22 Q21), then the pdl 
f2(0*) is symmetric, (4.28), and the first order moments of 0* exist. Consequently, 

               -0*-

                   2 

  (4.31) E = Qg Q21, if n > p and or = 222',G22'y`21 • 0
* 

p 

 The moment of the marginal distribution of, say, 0: is the next problem. From 

(4.29), the h th moment of 0: is written as 

 (4.32)E(or) = E(02202 - 02)h • 

Therefore the existence condition of E(0:9 is equivalent to that of E(o'2g. Since 
the reasoning applies interchangeably to every 08 , we conclude that 

 (4.33) E(09 h) < co , if and only if n — p + 2 > h , 

i.e., the marginal distribution of 08 has finite moments up to order n — p + 1. 
 The pdl f2(0*) is a noncentral (linear) generalization of the multivariate dis-

tribution of regression coefficients, see Kshirsagar [5], and a multivariate generali-
zation of Richardson-Wu distribution [8].

       V. SAMPLING DISTRIBUTIONS OF THE LEAST SQUARES ESTIMATORS 

 The results of Section IV are applied to the sampling distribution problem of 
the LS under influences of measurement errors and multicollinearity. 

 When the covariance matrix S2, (3.10), of the observations is an identity matrix 
the pdl of the LS b is given by (4.17) with parameters r = 1, p = K, n = T — 1, 

(T > K + 1)4j and 

4 The analysis is confined to cases with T Z K + 1 . When T G K, the LS does not exist with 

probability one. It exists when T =K and another method of analysis is needed for such a case.
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 (5.1) 77' = [)71' 7721 = g'Me[r'Q r'] • 

The pdl of b with Q = I is written as 

              r(T------2 1) exp (— 21 + 
 (5.2) f7(bif2=I)= T —K-

  r(
  2 

T—K

x L L---------------------------------- z ;i! r(T21 + i + j)i! 

                       J 

               x ['M r'(I + ,9b')(i + bb')-1(b j3' + I)il. 
 The result (4.24) shows that the LS has finite moments up to order T — K pro-

vided 9 = I, 

 (5.3) E(ba 2 • • • bKK I fl = I) < 00 , if and only if T — K+ 1 > h2 + • • • + hic . 

Particularly, it is seen that the first order moments exist 

 (5.4)E(bk 19 = I) < 00 , 

when T > K + 1. 
 Furthermore, from (4.25), it is seen that 

             -b
a-
 (5.5) E i 9 = I = 0 , if e'Mer'js = 0 and T > K + 1 . 

           bio 

The condition e'Melg'r = 0 is satisfied when one of the following conditions is 
satisfied, 

E'Me = 0 

(5.6) p = 0 

                     P'r = P — [P2. • • Ng-l]D-la.g = 0 

The first one is said to be a "central condition" since this reduces our noncentral 
Wishart distribution to the central one. The second one is said to be a "null condi-
tion" since it specifies a null hypothesis. It is noted that e'Mer',3 is a systematic 
variation part of the dependent variable xi t. 

 We turn to non-identity 9 cases. The pdl of the LS for general cases is given 
by (4.27). With definitions; 

V(x, y) = (x — Qs1 Q21)Qii 2(Y — Qas 921)' , (5
.7)0(

x, Y) _ (Q+ (x, Y)) , 

it is written as

2

~l I\  2  11 +. b'b)T"2 
-~- iy're'-----------lr'RISI'(+.1
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(5.8) .f8(b) =

 

I  Q22 I-(T-l)/21 Q11.2I-(K-l)/2f \
T-  1

21

7(1/2) (K-l) f(,T —K+ 1 
///1\    1\\1\ 

x exp—ewe rv(Q, P)r 

    r(  T —2K + i)( 21

T—K 

 2

100, b) I-T/2

                  lat                             ,Mr'(~,3)r)I(2 -T-J)                                                                                  
           X2;            zi!f,iT2l+i+J) J! 

X -------- 

           [''r,b)0-1(b, b)0(b,13)112 , 
where the parameters r and S2 are given by (3.8) and (3.10). 

 It is shown from (4.33) that the marginal distribution of the bk has finite mo-
ments up to order T — K, 

 (5.9) E(bk) < 00 , if and only if T — K + 1 > h . 

 Finally, it follows from (4.31) and (3.10) that 

 (5.10)E(b) = (G + .'1111)-'(GR + EH') , 
                      if 'Mer'(3 = e'Mer'(G + EIllI)-1(G13 + Ell I) , 

where 

       G = D-'E D'-l 0 and      [0 0] 
         EII 

/IIIlxll x K — 1               ~III/II II LK-lxl . K-lxK-l 
Therefore, if ewe = 0 (the central Wishart distribution case) then the LS is an 
unbiased estimator of (G + 21111)-'(G(3 + EH). Or it follows that 

 (5.11)E(b) = 13 , if 13 = • 

But this unbiasedness is exceptional. Even if the unbiasedness appears in unusual 
cases, we may as well understand that the LS is an estimate of-'IIHEllI,not of (3.

VI. ANOTHER EXAMPLE

 It may be appropriate to consider a more specific example for application of the 
statistical theory in Section IV. The example is the LS estimation of the tangency 
condition equation which appears in the theory of consumers' behavior. 

 The model employes a utility indicator, 

 (6.1)I = (al + gr)pl(a2 + q2)~2 ,
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where qt and q2 denote quantities of two goods consumed, say, food and non-food 
consumptions. The  al, a2, /31 and Pa are parameters. We obtain the structural 
equations system, the balance equation and the tangency condition, 

         1 lTell —to 0 llPl+rel  (6.2)Ll —pJLe2J LT, TacoJp[ a J' 
                             Y-

where pl, Pa and y stand for the prices of the goods and the total expenditure, 

respectively, the el and e2 are expenditures on the goods and u is a shock. The 

new parameters are given by 

(6.3)a~=[P 7'1 — L ,,— al,,a~]. 
The structural system (6.2) is a shock model with respect to the theoretical variables. 

 The reduced form of (6.2) is 

 6.4Fell+u/(3+1  ()re 2]Lr2JPaL— u/P +1] 
-Y 

where 

(6.5)II=lira]P+IL—r' 1]. 
 It is assumed that linear relationships exist between the exogenous variables, 

          p-Pi (6.6) L::d:::i:]L]P3 =-D:d66div] 
-Y -Y -

or 

                    pi 

 (6.7)Pa =Ll]Y+Lot]Lw2]' 
_y 

where wt and w2 are shocks and 3 = — D-Id. The p', Pa, y are near multicollinear, 
or exact multicolli near with empty wt, w2. Substituting (6.7) into (6.4), we get 

(6.8) re2JLl]Y+L-l/p~-l]u+Il[''i[ :J• 
                                                 The time series budget data EH, E3t, pl 1 P2t, Yt of the theoretical variables 

cit, eat, Pit, Pat, yt are assumed to be subject to additive measurement errors,

(6.9)

 Eli 

E2 

pit 

P2t 

Yt

cit 

 eat 

Pit 

P2t 

Yt

+

 Sit 

E2t 

€3t 

64t 

6bt

 t=  1,  •••,T.
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Various sources of measurement error as well as error of index number or of ag-

gregation are included in the additive measurement errors. So the specification 
(6.9) may be a great simplification. 

 The stochastic data generating mechanism is summarized as

(6.10)

 El 

E2 

Pit 

P2t 

Yt

- Ll,ILI]Yt -F
 1/19 + 1 

 --  1//i + 1

0

) 11(Do-' 

(D 0- 1 ) 

 wt 

Wit 

W2t 

Eli 

eat

Under the stochastic assumptions, 

 Yt are fixed in repeated samples,

(6.11)

 tit 

Wit 

W2t 

Eli 

EU 
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W2t 

Eli 

  • Eat

 ,-,N

and

 0-- 

0 

0 

0 

0 

us 

W18 

W28 

€18

 Cull 

0 0

0 

~ww 

0

0 

0 

~E E

are independent,

it follows that

(6.12)

where

 Eit 

E2t 

Pit 

P2t 

Eit 

E2t 

pit 

P2t

NN

\bl

 au. + r'or

E„ 

andE28 
pl.8 

-P28

(6.13)

 )-yg

[— 11 — 111

12) ,

are  independent  ,

0 + 1)2 
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(P + 1)
[1 — 1]

Cll------- —1~0+1)
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III I

II II 

III II
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the last term being  a covariance matrix of  elf, • • •, e4t with a scalar En, and 0 = 

D-l2';~wD-~• 

Let A be a moment matrix of Ell, E2t, pit, P2t about the origin,

           All Al2llxl:1x3 T' 
(6.14) A== ............_E             A

21 A22 3x1:3x3 t=1 

then we have, for the LS a' = [b, cl, c2] of [p, ti, 12], 

(6.15) a=Ai2A2l• 

Furthermore, it is shown that 

 (6.16) A^, W(A,S2,iIiI',4,T, 1), 

where 

          [H('i -p + r'o/(3+ 1 
 (6.17) i2-p l tp 1 7.lslP + 1 , 

         5 - - 3

 Eli 

E2t 

Pit 

P2t

 [EltE2tPltP2t}

t2 = EYt •

Therefore the results of Section IV apply to the sampling distribution of the LS a. 
 The pdl of a is given by (4.17), when Q = I and T > 4, with parameters replaced 

by (6.17) and r = 1,p=4,n=T,0=a. 
 It is shown from (4.24) that the moments of a exist up to order T — 3, 

 (6.18) E(bh •cl•ciIQ=I)<00, if and only if T-2>h+i+j, 

and from (4.25) that 
-b 

 (6.19) E cl SI = I = 0 , if ,u((3 + r'o) = 0 , T > 4 . 
_ C2 

 For non-indentity Q cases, the pdl of a is given by (4.27) with parameters Q and 
77* replaced by (6.13) and (6.17) respectively and r = 1, p = 4, n = T, 0 = a. 

 It is seen from (4.33) that the moments of each marginal distribution of a exist 
up to order T — 3, for instance, 

 (6.20) E(bh) < 00 , if and only if T — 2 > h . 

  It is also seen from (4.31) that 

  (6.21) E(a) = (GI + G2 +.'1111)-1(gr + g2 + Ell I) , 
  if T > 4 and

~+ ,u(N + r'a  ) = u[1---71---13-,o'](Gt+ G2+~II II)-1(gr+g2+GII I) 
~+1p-}"1
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where 

 GI  = tau.u./(i3+1)2 01          L 00' 

G2 = [----i'il+ l]o[— r/p +11], 
 (6.22)I 

gr =[—0.un.10+ 01 

 0 

              g2= r'/p+10             LIlp +Ir. 
The "if" condition of (6.21) is complicated but (6.21) is expressed in another form 
after some calculations, 

 (6.23)E(a) = a,if a = EIIiiLGII I— (0/13+ 1)1 , T > 4 . 
This tells us that the LS cannot, in general, be expected as an unbiased estimate .

VII. CONCLUDING REMARKS

 In this article we obtained the exact sampling distribution of the LS in the error-

in-variables models effected by multicollinearity. Some properties of the sampling 

distribution were presented. The function form of the distribution and the ex-

istence condition of moments for the two variable model appeared again in a 

multivariate fashion. 

 The model admits both of measurement errors and multicollinearity. It appears 

that the effects of the measurement errors dominate those of multicollinearity . 
And marginal effects of multicollinearity will be identified when the sampling 

distribution is obtained in non-multicollinearity situations.

Keio University
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