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RECURSIVE LINEAR PROGRAMS

PETER E. KENNEDY and RICHARD H. DAY*

ABSTRACT

 This paper summarizes the theory relating to recursive linear programming 

models, a branch of applied mathematical programming that is not well known 

outside the discipline of economics. The applications of recursive linear pro-

gramming models are discussed, in addition to the existence and character of their 
solutions. The paper also attempts to extend their  domain of application to more 

traditional areas of mathematical programming by demonstrating their implicit 

use in certain decomposition and non-linear programming algorithms.
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I. INTRODUCTION

 A recursive linear programming (RLP) model belongs to a mathematical system 
whose members consist of a sequence of linear programming problems in which 
one or more of the coefficients of each problem depend on the solution vectors of 

preceding problems in the sequence. Their explicit use has been confined to the 
construction of various economic theories and to the development of empirical 
models of economic behavior. This paper reviews and summarizes the theory 
concerning the existence and character of solutions for RLP models, and attempts 
to extend their domain of application by demonstrating their implicit use in cer-
tain decomposition and non-linear programming algorithms .

II. THE GENERAL MODEL

 Let x, z e Em, c e Ek and let B e Ekxm be a k x m matrix, where Em is a real 
m-dimensional Euclidean vector space. Define w = (z, B, c) e Em+kxm+k. Con-
sider a set of dual linear programming problems parametric on a set W C Em+kxm+k

 * The authors are
, respectively, Associate Professor of Economics at Simon Fraser University 

and Professor of Economics at the University of Wisconsin.
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2 PETER E. KENNEDY and RICHARD H. DAY

(1)

(2)

 7r*(w)=maxx[z'xIBx<c,x>0]

p* (w) = mink [c'y I B'y ? z, y ? 0]

for w e W. 
 The set of feasible decision vectors satisfying the constraints of (1) and (2), the 

primal and dual feasible regions respectively, are denoted

lx(B,c)= {xi Bx c,x>0} 

and 

Ty(B,z)={yI B'y?z,y?0}. 

The set of primal and dual optimal solutions' to (1) and (2) vary parametrically 
with the coefficient vector w = (z, B, c). In what follows interest is not focussed 
on parametric programming in general, but rather on dual programs defined for 
sequences of coefficients wt = (zt, Bt, ct), and hence with sequences lx(Bt, ct), 
ty(Bt, zt), and sequences of optimal solution vectors.2 

 A sequence of problems denoted by (1) and (2), with appropriate time subscripts, 
can represent the sequence of choice problems of a single decision-maker, a set 
of decision-makers, or an organization in which the vector xi represents activity. 
levels and the vector y t imputed marginal values of resources based on the coef-
ficients of w at period t. If B is block diagonal, then the solution vectors may 
represent the choices of a set of independent decision-makers each of whom 
corresponds to a particular block of B. (Day and Kennedy [6]). If in a collec-
tion of decision-makers each possesses the same B matrix and if the z and c vectors 
for each lie on the same rays in Em and Ek respectively, then x and c can represent 
the sum of the individual x and c vectors. (Day [4]). If B is block triangular or 

possesses other special structures, (1)—(2) can be used to represent the choice 
problem of a complex organization with a hierarchy of interdependent decision-
makers. Block triangularity of B can also be interpreted as a situation in which 

 1 The solutions of (1) and (2) are in general not unique. In much of the theory that follows such 
uniqueness is necessary. To achieve this uniqueness a selection operator is applied to the set of 
optimal solutions of each 1.p. problem, selecting one from among the several solutions in the solu-
tion set. An example of such a selection operator is the "conservative" selection operator: choose 
from among the current solutions the one closest to the previous period's selected solution. 

  2 Recursive and dynamic programming are in some respects similar but are certainly not iden-
tical. A dynamic programming problem, say, to maximize an objective function in time period 
six, can be rewritten as a recursive programming problem in which the decision vector is a schedule 
of present and future decisions and in which the objective function grants positive payoffs only 
to results anticipated in time period six. But in general RLP models are very myopic in nature 
(as are many economic agents), utilizing an objective function granting positive payoffs to only 
results anticiptated in the immediate time period. To use such a structure to generate a path to 
an optimal position in period six would be courting disaster. As should be obvious, the result-
ing time path may even be anti-optimal, let alone non-optimal. The value of recursive programm-
ing in this context rests on a theoretical or empirical rationalization that this type of model 
captures actual behaviour more adequately than does a dynamic programming structure.



RECURSIVE LINEAR PROGRAMS 3

the decision vector  xi is composed of a sequence of subvectors each representing 
a set of choices for a specific anticipated time period . (Dorfman, Samuelson 
and So low [8]). Becausethese various possibilities depend on the structure of 
B only they can be combined so that (1) — (2) can represent the choice problem 
of a collection of some independent and some interdependent decision-makers 
each of whom is scheduling an imminent and a sequence of anticipated future 
actions. Hence (1) — (2) can be used to represent the joint strategy of "persons" 
in a game setting that arises in modelling decentralized economic behavior. An 
alternative interpretation that focusses on numerical application instead of eco-
nomic behavior is that each vector in the sequence {wt} represents the parameters 
of an 1.p. problem that linearly approximates in the t th iteration the constraints 
and payoff function of a non-linear programming problem . Both economic and 
numerical examples are discussed later in the paper . 

 There remains one major ingredient of RLP models that must be discussed, 
the feedback operator. The feedback operator , denoted by Q, consists of m -F- k 
x m -}- k functions each determining the current value of an element of z, B, or c. T
ogether, they determine the current w. They map the previous a solution vectors 

of (1) and (2), along with a vector of exogenous variables, into new values of the 
parameters defining (1) and (2). 
Thus

wt — (xi_1 ..., xi_0, Yt-i, . . . , Yt Pt) 

where asterisks denote solution values (vectors) and Pt denotes a vector of ex-
geneous variables. The special case of primal (dual) feedback occurs if the SI 
does not involve any of the yt i(xi 1). 

  The feedback functions establish a recursive dependence of the parameters of 
a given problem in the sequence (1) — (2) and the primal and dual solution vector 
of a immediately preceding dual problems in the sequence. In models of eco-
nomic behavior such functions may define (i) the dependence of current capital 
stocks on past investment decisions (assuming a finite life for all capital stocks); 
(il) behavioral constraints that represent frictional forces (learning new techniques) 
and decision rules about the maximum adjustment of capacity toward some fore-
casted desired capacity levels; (iii) forecasting equations for payoff coefficients 
and in some cases sales constraints; (iv) financial constraints that depend on past 
borrowing and debt repayment activities; (v) temporary equilibrium marketing con-
ditions that connect past payoffs and available current supplies of inputs from 
"external" sectors to production and input utilization levels of the "internal" 
sector being modelled. 

 When (1) — (2) is a model of economic behavior then the vectors Bt, zt, ct are 
thought of as states or information vectors and the L.P. model leading to the 
sequence (1)—(2) augmented by a selection operator represents the decision strategy 
which associates with each information state (Be, zt, ct) a particular choice xi , 
)1. The feedback operator then represents the way the environment (as defined
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by the model builder) and the forecasts assumed to be used by the decision-makers 
interact with the past choices of the decision unit or units. The feedback func-
tions could be thought of as the strategy played by nature. 

 If (1) — (2) is defined by a non-linear programming (NLP) algorithm, then the 
feedback functions represent the current linear approximation to the constraint 
set or objective function of the non-linear problem as a function of the solution 
to the preceding approximates. The RLP model as a whole becomes a kind of 
Newton-like iterative process used to solve a static, nonlinear problem.

                    III. EXISTENCE OF SOLUTIONS 

 An RLP model of whatever type can be solved recursively, given the initial 
conditions of the previous a solution vectors and the current vector of exogeneous 
variables. Using these initial conditions the current period's w, say  wt for t = 1, 
can be found using the feedback function; wt defines the first period's l.p. problem. 
Solving this l.p. problem and then applying a selection operator generates unique 
solution vectors. This solution, plus new values for the exogenous variables, 
along with the previous a — 1 solutions and a — 1 values for the vector of ex-
ogeneous variables, allow w2 to be computed using the feedback function. The 
second period's l.p. problem can then be solved. Continuing in this way, a 
sequence of solution vectors can be generated, such a sequence being called a 
solution to the RLP system. 

  Clearly a solution of an RLP system will exist only if the feedback mechanism 
t is such as to generate wt e W for all t (i.e., so that l x and f',y are non-empty). 
Such a system is said to be viable with respect to the initial conditions. Systems 
that are not viable can be represented by a sequence of solution vectors lasting only 
a finite number of periods. Such systems should not be considered to be of little 
interest. Although they are not of great interest from the mathematical point 
of view, they do have some relevance in the study of economic systems which pos-
sess structures that eventually lead to in feasibility. Frequently in history econo-
mies "break-down" and must be restructured by creating new economic institu-
tions or modified "rules of the game". This is more often the case in micro-
economic modelling, when the possibility of bankruptcy is common. 

  Two special kinds of solutions to RLP systems are of particular interest, static-
 nary states and compact orbits. A stationary state is a solution in which the 

 same decision is made in each time period. A compact orbit solution is one in 
which the decisions made in every time period belong to a specific subset of 

 decisions (a zone of behaviour which, once entered, will not be left). A stationary 
 state is thus a special case of a compact orbit in which the subset of decisions 
 contains only one decision. 

  Existence of a stationary state solution for an RLP system can be shown by 
 means of the general theory developed in Day and Kennedy [6]3. An RLP system 

8 For a specific discussion of the proof in the context of RLP systems see Kennedy [13].
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can be structured as a special case of their RDS (recursive decision system) and 
an existence proof can be derived in a similar fashion, involving fewer assumptions 
than those needed for the more general RDS case. In particular, for the existence 
of a stationary state, an RLP system must satisfy the following assumptions4. 

 a) the system must be viable; 
 b) solution vectors must be  boundeds; 

 c) the feedback operator must be continuous, with no exogeneous feedback 
 d) the selection operator must be "conservative" (see fn. 1). 

The existence of compact orbits requires the same assumptions; in more general 
recursive decision systems the assumptions required for existence of compact 
orbits are slightly weaker than those required for existence of stationary states.

IV. PHASE THEORY

 As might seem obvious, RLP's are of primary use in the analysis of dynamic 

(as opposed to stationary state) problems. In empirical work using this technique 
(for example Day [3], Day et al. [5], Day and Nelson [7], and Heidehues [111), the 
main objective has been to capture empirically the dynamic behaviour of the 
decision-maker (for example, a firm) over time. The great power of this approach 
in explaining dynamic behaviour lies in the extraordinarily rich variety of dynamic 
time paths capable of being generated by an RLP model. This may be seen more 
clearly by examining the phenomenon of phases. 

 Utilizing the familiar theoretical results of Goldman and Tucker [10] concern-
ing equated constraints and linear programming', it can easily be shown that a 
solution to an RLP system must satisfy a sequence of equated constraints. If each 
system of equated constraints in this sequence is non-singular, the solution is 
said to be extreme (i.e., not simply a linear combination of two or more distinct 
solutions). The system of equated constraints at time t consists of those con-
straints that are "tight" (or equated) when solving the eh period's 1.p. problem. 
The particular constraints that are "tight" in period t clearly need not be the same 
as the constraints that were "tight" in the preceding period. If over time the set 
of equated constraints does not change (the parameter values of the constraints 
may change, however), the system is said to be "in phase". The system is said 
to "switch phases" whenever the set of equated constraints changes. The number 
of possible phases is thus the number of possible different sets of equated con-
straints. This is the number of possible partitionings of B into square non-singular 
sub-matrices. 

 A system in phase with an extreme solution can be represented by a familar 

4 The implications of these assumptions are discussed in Day and Kennedy [6]. 
   Conditions under which assumptions a) and b) are satisfied in RLP systems are discussed 

at some length in Kennedy [13]. These assumptions are the most important assumptions in the 
sense that they are not typical in analyses of this genre. 

 6 This theory of equated constraints was first used by Shapely and Snow [19] in connection with 

game theory.
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system of simultaneous  a-order difference equations : 

xi (t) = [Bn(c)]-'cl(a) 

4(0 = 0 

.4(0 = [B;1(6)]-1z,(a) 

y:(t)=0 

where Bli(a) is the square non-singular sub-matrix of B corresponding to the 
equated constraints. The c argument represents the fact that each element of 
Bil is a function of the preceding Q values of x* and y*. cl(o) is the part of the c 
vector corresponding to the equated constraints, each element of which is also a 
frunction of the preceding 6 values of x* and y*. z(o) is defined in a similar fashion. 

 The different types of dynamic paths capable of being generated by such a 
system have been extensively examined in the difference equation literature. The 
source of the rich variety of possible dyanmic paths characterizing an RLP system 
lies in the possibility of switching phases at any time. Switching phases means 
that the underlying base of equated constraints changes, i.e., we move to a new 
"corner" of the feasible region. This obviously permits the system to jump at will 
to completely different types of dynamic paths, a flexibility which allows it to cap-
ture, as empirical studies have shown, sudden changes in the behaviour of a firm, 
say a decision to invest heavily in a certain type of equipment. 

 From the comments above it is clear that there is a finite number of phases. 
Thus if the RLP system does not settle down into a single phase, it will move from 

phase to phase, at times returning to phases it had been in earlier. In fact it is 
easy to see that phase "cycles" could be generated, involving a periodic movement 
amongst several phases. For a more complete description of these and other inter-
esting dynamic patterns that can be generated by RLP's, as well as the develop-
ment of several economic illustrations, the reader is referred to Tinney [20]. The 
theory of these dynamic systems as far as stability is concerned is still a relatively 
open field. Tinney [20] has generated stability argments for some special cases, 
and the last sections of this paper show how some stability arguments in the 
literature can be re-interpreted as RLP stability arguments for special cases, but 
beyond that very few conclusions have been drawn concerning general RLP sta-
bility. Certainly if a system is in phase, the stability problem can be solved by a 
straightforward application of difference equation theory. It is the phase switch-
ing which creates problems for the stability analysis—perhaps the price paid for 
gaining such a rich source of dynamic time paths.

V. NONLINEAR PROGRAMMING ALGORITHMS

 RLP structures can be used to simulate an algorithm for the solution of certain 

types of static non-linear programming problems. The methods of feasible 

directions and of set approximation yield examples of such applications of RLP's. 

Two examples are presented below.
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a) Conditional Gradient Method 
 A special case of  the  conditional gradient method, based on Frank and Wolfe [9], 

is illustrated first. Consider the problem of maximizing a concave function f(x) 
where x, an m-dimensional vector, is constrained by the linear relations Bx <c, 
x>0. 
 To begin the algorithm an initial basic feasible vector, xi , say, must be found. 

Let qt be an alternative feasible vector where for the purposes of initiating the 
algorithm qt = xi . The LP problem 

                max [zx2] s.t. Bx2 < c, x2 > 0 

is now solved, where za = afgl, the vector partial evaluated at qt. This, in essence, 
maximizes a linearization of f (i.e., its gradient) at the point qt. The solution to 
this LP is xa . 

 The fee back mechanism is structured as follows. Let S be arbitrarily chosen such 
that 

                — (xi — gt_i),a2fr(xi — qt_i) < S > 0 

for all r on the segment gt_1xt . Compute 

                  = min {afgt_1(xi — .7,4)1 s, 1} 
and set qt = qt .1 -I- p(xi — qt_1) 
Thus zt+1 = afgt and the conditional gradient method can be represented by the 
sequence of programming problems 

                max [ztxt] s.t. Bxt < c, xi > 0 . 

The technical details of this alogorithm are explained in Frank and Wolfe [9], as 
are convergence proofs demonstrating that in fact this RLP system converges on 
the solution of the non-linear programming problem. In the quadratic case, an 
algorithm is constructed for which it is demonstrated that the RLP system actually 
reaches the desired solution.? 

b) The Cutting Plane Method 
 The cutting plane method, based on Kelley [12], is an example of the more 

general category of set approximation methods. Here the problem is to maximize 
a linear function z' x over a compact convex set R = {x G(x) < 0} of dimension 
m, where G(x) is a continuous convex function defined in the m-dimensional com-

pact polyhedral convex set S = {x I Bx < c} Thus R C S, and we assume R to 
be non-empty. 

 The RLP problem may be set up as 

                max [z'xt] s.t. Btxt < ct, xi > 0 

with a feedback of adding a new (additional) constraint to the present constraints 
of the form aGxyxt+l < aGGIxt — G(xi ). 

   Proof of convergence of an algorithm implies the existence of a stationary state, as well as the 

existence of a compact orbit.
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This is simply an extreme support to the graph of G(x) at  xi (the tangent hyper-

plane to G at xi if G(x) is "smooth"). 
 The essence of this is that a polyhedral set S is constructed to contain R and 

then the objective is maximized over S. The feedback then "cuts down" the size 
of S to more closely approximate R and the process is repeated. Although one 
might argue that this system is not an RLP since additional constraints are being 
added in each period (rather than simply changing the parameters of old con-
straints), they are in fact theoretically equivalent since the original problem could 
have been constructed with extra inoperative constraints which were altered one 
by one for each iteration. 

 Proofs for the convergence of this algorithm and technical details for the con-
ditions under which it is operative are given in Kelley [12].

VI. DECOMPOSITION PROCESSES

 An additional application of RLP's is to the solution of a large and cumbersome 
linear programming problem via some type of decomposition technique. In this 
approach the original problem is partitioned into a group of sub-problems which 
are then individually solved. The solution of these sub-problems will not neces-
sarily yield the optimal over-all solution, so a feedback is instigated to adjust these 
sub-problems and the process is repeated. The basic theory and some examples 
of this type of approach are given in Dantzig and Wolfe [2], Rosen [16], Rosen [17], 

and Rosen and Ornea [18]. 
 Because the feedback mechanisms in the aforementioned articles are somewhat 

artificial, we have chosen to use as an example of this type of technique the two-
level ecnomic planning idea suggested by Kornai and Liptak [14]. Here a very 
large linear programming problem of central planning is solved by decomposing 
the overall problem into sub-problems to be solved by mutually independent sectors. 
These sectors are co-ordinated by the central planning bureau by having the latter 
allocate resources to the sectors and having the sectors report back their shadow 

prices. 
 Consider the overall central planning problem with its corresponding dual: 

                max [z'x] s.t. Bx < c, x > 0 

min [c'y] s.t. B'y > z, y > 0 

Now let this problem be partitioned into n sub-problems as follows : 

                 max [zxi] s.t. Bixi < cl. xi > 0 

for i = 1, ..., n with El=1 cl = c and where

-x
i 

B = [B1i ... , B,J, x = , and 

x,a

zl_ 

z= 

Zn—
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The corresponding n dual problems may be written as 

 min [ciyi] s.t. Biyi > z1, yr > 0 

where yr is of the same dimension as y. 
_ cl__yr-If

 we writeC = and Y = , 

_en_-Yn-

the central planning bureau can be regarded as attempting to allocate resources 

(choosing a C) such that the sectors when they independently solve their own 
problems will generate the overall optimal solution. At the same time the indi-
vidual sectors, looking now at their dual problems, are interested in minimizing 
their cost of production (by choosing yrs and thus a Y), keeping in mind that feed-
ing back to the central planner a yr too low will cause a cutback in the resources 
made available to them, and a yr too high could cause them to operate at a loss if 
the central planner decided to charge them that price for their resources. 

 It is shown in Kornai and Liptak [14] that such a "two-level" planning problem 
can be represented by a polyhedral game in which the overall optimum can be 
written as 

max c miny [C' Y] 

and furthermore can be solved using the fictitious play method developed in Brown 

[1] and Robinson [15]. This fictitious play can be couched in an RLP format and 
formalized in one of two ways—either as a two-level RLP in which there are two 
distinct optimization operations and two feedbacks within a single iteration of the 
RLP, or as an artificially constructed "combined" RLP in which both the central 

planner and the sectors make their decisions simultaneously. In each case there 
are several (to be explicit, n -}- .1) decision makers, rather than a single decision 
maker. 
 To be more explicit, the system can be written as a two-level RLP as follows : 

maxc(t) [Y(t)'C(t)] s.t. C(t) E Co 

where Co is the set of non-negative C(t) that not only satisfy E n=1 cl(t) = c but 

permit feasible operation of each of the sectors (i.e., gives enough resources to each 
sector so that they are able to meet their production quotas, etc.). The first 
feedback is given by 

             C(t) =t1C(t — 1) t C„(t) . 
Then at the second level we have 

mind [cl(t)'yr(t)] s.t. B, yr(t) ? zi, yr(t) > 0 

for all i. The second feedback is given by 

               Y(t-{-1) =
t-lY(t)-}-ill Y*(t) .



10 PETER E. KENNEDY and RICHARD H. DAY

 Thus each "player" of the game is operating by choosing a strategy on the 
assumption that his opponent's future actions will resemble the past—in fact he 

plays the strategy which is optimal in terms of his total experience with his oppo-
nent, assigning equal weights to his opponent's previous actions. For further 
comments on the economic applications and implications of such a structure in 
the context of central planning, see Kornai and Liptak [14]; for a proof that this 
"ficticious" game process converges to the optimal overall solution

, see Robinson 
[15].

Simon Fraser University, University of Wisconsin
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