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ON THE OPTIMAL GROWTH OF THE TWO 

         SECTOR ECONOMY*

JOHN Z. DRABICKI AND AKIRA TAKAYAMA

A. INTRODUCTION

 The purpose of this paper is to investigate the optimal growth program for a 
two-sector economy under a non-linear objective function. As in the usual 
two-sector model, there are two industries—capital good (X) and consumption 

good (Y)— in the economy, each of which uses two factors of production, 
labor (L) and capital (K). It is assumed, as in the usual two-sector model, 
that the capital good is completely malleable and shiftable between the 
industries. 
 The optimal growth problem for such a two-sector economy is  discussed in 

the literature quite extensively.' Srinivasan [20] and Uzawa [24]2 considered 
this problem under a linear objective function: the economy is to maximize 
the discounted stream of per capita consumption.3 While Srinivasan solved 
the problem for the case when the consumption good industry is always more 
capital intensive than the capital good industry, Uzawa dispensed with this 
assumption while assuming a lower bound on per capita consumption.4 Un-
fortunately, however, Uzawa's study contains a serious mistake which was 

pointed out by Haque [12]: Uzawa misspecified the direction of motion of the 
demand and supply price of capital which, subsequently, lead to an incorrect 
construction of the optimal path. In his paper, Haque first solved the problem 
considered by Srinivasan without assuming any capital intensity condition, 
and then, likewise, solved the problem considered by Uzawa. Thus, Haque

 * This paper is a reproduction of paper No . 383 under the same title in the Krannert Insti-
tute Papers, Purdue University, January 1973. Prior to that, it was circulated privately in the 

fall of 1972 to Professors Ken-ichi Inada, Hukukane Nikaido, and Murray C. Kemp. The 
writing of the paper was motivated, in part, by Drabicki's discovery of some serious mistakes 
in Hadley and Kemp [11]  in the spring of 1972 which was followed by our correspondences 

with Professor Kemp. He and Sheng Cheng Hu provided us with some useful comments. 
 1 Several authors have also considered the optimal growth problem for a two-sector econo -

my in which capital is not shiftable between the two sectors. See, for example, Kurz [16], 
Base [4], Chakravarty [8], Dasgupta [9], Johansen [15], Ryder [18], and Hadley and Kemp [11]. 

 2 For an exposition , see, Shell [19] and Intriligator [14]. 
3 In this paper , the economy will maximize the discounted stream of the utility of per capita 

consumption. 
4 That is , Uzawa [24] separately considered the two cases lc-x(0)) > ky(w) and ky(w) > kx(co) 

for all w > 0, where k;, is the capital: labor ratio in sector i, i = X, Y, and co is the wage: rental 
ratio, and then inferred, without demonstrating it, that his analysis for these two polar cases 

could be applied to deal with cases of factor intensity reversals. 

                        1



2 J. Z.  DRABICKl AND A. TAKAYAMA

solved the problem in full generality for the case of the linear objective 
function. 

 The two-sector optimal growth problem under a non-linear objective func-
tion was considered by Cass [6].5 He, as Srinivasan, focused his attention 
to the case in which the consumption good industry is always more capital 
intensitive than the capital good industry.6 But this seems to be a quite 
"unintuitive" assumption, and neither Cass nor Srinivasan give any economic 
justification for assuming it. On the contrary, the opposite assumption may 
be more palatable to some. In any case, a more comprehensive study which 
considers both of the two extreme cases was attempted by Hadley and Kemp 
[11],  but it unfortunately contains some serious mistakes.' 

 Thus the problems for the case in which the capital good industry is more 
capital intensive has yet to be solved. In addition, the assumption of no fac-
tor intensity reversals, which no one has yet confronted in the non-linear 
case, has to be dispensed with. It seems as if the assumption of no factor 
intensity reversals is rather restrictive and unrealistic as such reversals can 
and do occur.9 Hence, the purpose of this paper is to solve the two-sector 
optimal growth problem without any capital intensity condition. Thus, we 
consider not only extreme cases where one industry is always more capital 
intensive than the other, but will allow for any number of factor intensity 
reversals. What is more, we do not confine ourselves to the usual factor 
intensity reversals which entail identical capital intensities in both industries 
for some isolated value of the wage : rental ratio; we allow for identical capital 
intensities for intervals of the wage : rental ratio. We may consider the latter 
to be a degenerate version of capital intensity reversals. We thus allow for 
all factor intensity situations that can possibly exist. 

 The plan of the paper is as follows. First, after a brief description of the 
model, the problem will be solved simultaneously for the two polar cases. 
This not only leads to the solution of the above-mentioned unsolved case, 
but also provides us with a framework to view these polar cases in a proper 

perspective, leading to the more general case of factor intensity reversals. 
In solving the problem a simple geometric construction is utilized and, as it

b Uzawa [25] considered the case in which utility was derived from consuming both a 
"pure" consumption good as well as another good which could be used for either consumption 

or investment purposes. 
  6 An outline of Cass [6] can be seen in Foley, Shell, and Sidrauski [10]. 

7 These will be pointed out from time to time in the course of the paper. 
  8 Under a non-linear objective function. 

9 For example, as is well known, if both industries have production functions of the CES 
type with constant but different elasticities of factor substitution then a unique factor intensity 
reversal can always occur. See, Takayama [21], page 83.



ON THE OPTIMAL GROWTH OF THE TWO SECTOR ECONOMY 3

may be of use elsewhere, it is described in the Appendix to this  paper.10 Then, 

with a few simple modifications, the analysis of these two cases will be utilized 

to study the behavior of two-sector economies which experience any number 

of factor intensity reversals in production. It will be shown that the intensity 

assumption is not relevant in terms of producing different solution paths. We 

will demonstrate that the optimal paths of economies which do not experience 

factor intensity reversals and the optimal paths of economies which do, are 

all of the same general nature. That is, capital intensity does not matter.

B. THE MODEL AND PRELIMINARY CONDITIONSIl

  If Kx(t) and Lx(t), respectively, are allowed to represent the amounts of 
capital and labor employed in the capital good sector at time t, the rate at 
which the capital good is produced is determined by the production relation-
ship X(t) = F[Kx(t), Lx(t)]; similarly, Y(t) = G[KK(t), Ly(t)]. Lettingl2 x = X/L, 

y = Y/L, kl = Kl/Li and ll = Li/L for i = X, Y, if both production functions 
exhibit constant returns to scale with positive but diminishing marginal pro-
ducts for both factor inputs, then 

             x = lx f(kx) , where f(kx) = F(kx, 1) 

             y = ly g(ky) , where g(ky) = G(ky, 1) 

with 

 (1)f(kx) > 0 , f'(kx) > 0 , f"(kx) < 0 for all kx > 0 g(k
y) > 0 , g'(ky) > 0 , g"(ky) < 0 for all ky > 0 . 

The following well-known conditions are also imposed, 

rim f(kx) = 0 , rim f(kx) = 00 , rim f'(kx) = 00 , rim f(kx) = 0 
 (2) kx-.okx-.00 kx-.okx-+00 

rim g(ky) = 0 ,rim g(ky) = 00 , rim g'(k) = 00 , rim g'(ky) = 0 . 
k-.0k-.ook-.ok~-*00 

 For each of the inputs, the combined employment in the two sectors cannot 

exceed the amount supplied. Thus 

kxlx+kyly<k 

lx + ly 1

10 Also, some of the details of our analysis are carried out in the Appendix so that readers 
interested solely in the major results will not have to be troubled with them in the paper itself. 

 11 Needless to say, some of the information in this section is well known. However, it is 
included to keep the paper sufficiently self-contained. 

 12 For convenience, the dependence of the time dependent variables on time will no longer 
be noted.
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where k  = K/L is the aggregate capital : labor ratio.13 The supply of labor is 

given exogenously and grows at a positive and constant exponential rate n. 
If the rate of change in the capital stock is given by the amount of capital 
being produced less depreciation, thenl4 

k=x-2k 
where 

(3) '1=n+p>0 

and ti is a constant and positive depreciation factor. 
 At any point in time, social welfare is given by the utility of per capita 

consumption U(y). The utility function exhibits positive but diminishing 
marginal utility,

 (4) 

as well as" 

 (5)

U'(y) > 0 ,

rim U'(y) 

y-o

U"(y) < 0 for all y > 0

Given the above technological 

to choose the time path 

counted stream of the utility of per capita consumption over an infinite plan-

ning horizon. 

 Thus, the problem can be stated as follows: choose the time path of 

kx, ky, x, y so as to maximize"

(6)

= 00 (or alternatively, rim U(y) = —00) . 

lological and resource constraints, the government wants 
Lth of resource allocations that will maximize the dis-

                                   y~0

J l: U(y)e-" di

subject of the constraints 

 (7) k=x - Ak, k(0) = kc 

 (8)x = lx f(kx) 

 (9)y = ly g(ky) 

 (10) kx lx ky ly < k 

 (11) lx-}-ly<1 

  (12) lx>_0, ly>0, kx>0, ky>0, x>0, y>o.

 13 These conditions are obtained by dividing the resource constraints Kx + Ky < K and 

Lx + Ly < L and noting the previous definitions. 
 14 Logarithmic differentiation of k = K/L yields k/k = K/K — L/L or k = K/L - (L/L)k. 

Substituting K = X — pK and L = nL into the preceding expression gives k = x — 2k. 
 15 This means that the marginal utility of zero consumption if infinite, or, alternatively, 

the utility derived from consuming nothing is negative infinity. These assumptions will serve 
the same purpose of guaranteeing that the consumption good will always be produced. 

 16 Here 3 denotes the rate of discount, which is assumed to be a positive constant.
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 Introducing the multipliers  g(t), lx(t), ly(t), P(t), and w(t), define the 
Lagrangian function L as 

(13) L = U(y)e-" + g[x — 2k] -I- jx[lxf(kx) — x] -I- fv[ly g(ku) — y] 
           + r[k — kx lx — ky ly] -{- w[ 1 — lx — ly] . 

Then, the solution to the above problem together with the corresponding 
bounded multipliers must satisfy the following Euler-Lagrange-Hamiltonian 
conditions where q = geot, px = A eat, and so on 

 (14) lc=x — .ik 

(15) q=(2+3)q—r 
and 

 (16) q—Px<0,x[q px]=0 

 (17) U'(y) — p, < 0 , y[U'(y) — Pu] = 0 

 (18) Px lx f'(kx) — rlx < 0 , kx[Px lx f'(kx) — rlx] = 0 

 (19) p, ll, g'(ky) — nu < 0 , ky[ py 1, g'(ky) — rly] = 0 

 (20) Pxf(kx) — rkx — w < 0 , lx[Pxf(kx) — rkx — w] = 0 

 (21) pyf(ky)—rky—w<0,l [pyf(ky)—rky—w]=0 

 (22) r > 0 , r[k — kx lx — ky ly] = 0 

 (23) w > 0 ,w[1 — lx — l„] = 0 
as well as the constraints (8)-(12) plus the initial condition k(0) = kc. 

 From assumption (5) and condition (17) we have 

(24)y > 0 . 
That is, the consumption good will always be produced. Noting this, from 
(17) we obtain 

(25)U'(y) = Pu 
which, in turn, utilizing (4) yields 

(26)p > 0 . 
Combining (24) with (8), (1), and (2), obtains 

 (27)tu>0, ku>0 
which implies that (19) and (21) hold with equality. In particular, from (19) 

 (28)pyg'(ky) = r 
which together with (1), (26), and (27) gives 

(29)r > 0 .
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Utilizing (29), condition (22) implies 

 (30) kx  lx  +  ky  ly  =  k 

which states that capital is always fully employed. Interpreting the multi-

plier r as the rental rate on capital, the above conditions state that all of the 
capital available will be employed if the rental rate is positive. A similar 
result can be obtained for the labor market when the multiplier w is inter-

preted as the wage rate. That is, (27) with (21) and (28) yields 

 (31)py[g(ky) — ky g'(k)} = w . 

As is well known, g(ky) — ky g'(ky) is the marginal product, of labor in the 
consumption good industry and is positive for all k > 0. Noting this, (26), 

(27), and (31) give 

(32)w > 0 

which, conbined with (23), yieldsli 

(33) lx-f-l=1 

which states that labor will be fully employed when its wage rate is positive. 
 It should be noted here that the full employment of both factors, etc., ob-

tained above were derived from the fact that the consumption good is always 

produced. However, the same is not true for the capital good. Thus, two 
cases must be distinguished: (i) incomplete specialization, and (il) complete 
specialization in the production of Y. Each case will be considered, in turn.

(i) Incomplete specialization: y > 0, x > 0 
 Production of the capital good implies 

(34)q = px 

from (16). Also, from (8), (1) and (2) 

(35)lx>0, kx>0 

which makes (18) and (20) hold with equality. Recalling (28) and (31), from 

(18), (20), and (35) we obtain that under incomplete specialization 

 (36)px.f'(kx) = pyg'(k&) = r 

 (37) px[f(kx) — kx f'(kx)} = pv[g(kv) — ky g'(k)] = w . 

But, these conditions are nothing more than the well-known marginal pro-
ductivity rule that determines allocative efficiency between the two sectors 

 17 As opposed to Cass [6] and Hadley and Kemp [11], who a priori assumed the full employ-
ment of both inputs, here the full employment conditions, (30) and (33), are derived from the 
maximization.
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for inputs in a competitive economy. That is, interpreting the multiplies  px 
and ps,, respectively, as the supply price of the capital good and the supply 

price of the consumption good, (36) states that the value of the marginal 
product of capital in both sectors must equal the rental rate. Similarly, 
condition (37) states that the value of the marginal product of labor in both 
sectors must equal the wage rate. Also, (36) implies px > 0. 

 Setting w = w/r, which can be interpreted as the wage : rental ratio, divi-
sion of (37) by (36) gives the well-known static allocation rule

(38)

Since

(39) 

= f(kx)
f'(kx)

— k x =
g(k„)

do) 

dkx

from (38) and 
in terms of w,

(40)

g'(k„)
— k

y .

_ —  f(kx)f"(kx) > 0 do) = _  g(ky)g„(ky) > 0 
[f'(kx)]2 dky [g'(ky)]2 

condition (38) can be inverted to yield kx and ky uni

kx = kx(w) dkx 

do) 

dkx, 

ow

>0

>0.

query

k„ = kv(w)

Introducing p = px/py, which can be interpreted as the price of capital in 
terms of the consumption good, from (36) and (40),18 

 (41)p(w) = g'[kv(w)]  f'[k
x(w)] 

Logarithmic differentiation of (41) yields 

 (42) 1  op(w) =  1  —  1  0 as ky(w) z kx(w) . p(w) ow k
x(w) ky(w) -~ w 

Hence, regardless of what industry is more capital intensive, p and w are 
uniquely related. Thus, from (40)-(42), it follows that kx and k are uniquely 
determined by p,19 

 (43) kx = kx(p) , k = ky(p) 

with 

 (44)dkx 0 anddk~o as kkx . 
  pp

 18 Note that p > 0 for w > 0. 
 19 Here we do not allow for factor intensity reversals for when they do occur condition (43) 

is no longer true. This can be seen from conditions (40)-(42).
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 Equations (30) and (33) can be solved to yield 

               ku-kl k  — kx   (45)l
xk

y — kz'&=                                        ky — kx 

Combining (43) with (8), (9), and the above, we have 

 (46)x = x(p, k) = kY(P)k f [kx(P)]            kk                      v(P)x(P) 

 (47)y = y(P, k)=—k — kx(P)k
y(P) — kx(P)g[k~(P)]

where" 

 (48)ax>0,ay<0 
     PP 

 (49)ax —aka anday<0 as k&>kx .    akak 

From (46) and (47), x and y are uniquely determined in terms of p and k, 
while (48) states that if the relative price of capital rises, the production of 
capital will increase and the production of the consumption good will de-
crease. Condition (49), on the other hand, states that if the capital : labor 
endowment ratio increases, the output of the capital intensive good will in-
crease while the output of the labor intensive good will decrease. The well-
known Rybczynski's theorem is a special case of this as it assumes that one 
of the inputs is fixed. 

 In summary, p and k determine x and y uniquely. Given p, kx and ky are 
determined by (43). These values, together with the given k, when substituted 
into (46) and (47) yield x and y, respectively. Since p and w are uniquely 
related, the determination of kx and ky can be illustrated by the well-known 
Samuelson-Harrod diagram2l in Figures 1 and 2 for some p = p. 

 Finally, it is noted that for a given p, if k [kx, k&] when ky > kx or k o 

[kV, kx] when kx > k&, then from (45) the non-negativity of lx or ly will be

 20 To obtain (48) straightforward differentiation of (46) and (47) and rearrangement of terms 

yields        ax
ap(ky----------lkx) ((icy — k)[(f — kxf')+kyf']dpx+(k —kx)fdpv) 

    ay ---------dk 

ap (kylkx) ((kx—k)[(9—kvg')+kxg']dpy+(k—kv)gdpx) 
the sign of which is determined from (44). Similarly, we have 

ax _  f ay—  g  
ak ky — kx ' ak ky — kx • 

 21 See, for example, Takayama [21], especially footnote 11 on page 78. That both kx and 
kb pass through the origin follows from (2) and (38).
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 kx' kv

172

Icy 

0

p

 p 

 Fig.  1. Harrod-Samuelson 

   Diagram: kx > ky

co  W

Fig. 2. Harrod-Samuelson 

    Diagram: kl, > kx

kx, kl,

k

Pmin (k)

Pmax (k)

 p 

Fig. 3.  pin  in and pmax: kx > kl,

kx, ky

k

w 0 

pmin (k)

pmax (k) t 

p

 w

Fig. 4.  pmin and pmax: ky > kx

violated. Thus, for the above relationships to hold, for a given k it must be 
that p e [pmin(k), pmax(k)] where the determination of pmin(k) and pmax(k) is 
illustrated in Figures 3 and 4. Note that from Figures 3 and 4, it follows 
easily that 

 (50)dpdk(k)>0 as ky kx . 
This will be of use later.

(il) Complete specialization in Y: y > 0, x = 0 
 Since x = lx f(kx), x = 0 can be attained when (a) lx = kx = 0, (b) lx = 0, 

kx > 0, or (c) lx > 0, kx = 0. However, we wish to show that (c) cannot hold 
in the present optimal growth problem. If lx > 0, then from (9) and (33) 

y = ly g(ky) < g(ky), which means that the value of the integral (6) will be
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smaller than it would be if  lx = 0. Since x = 0, the lower level of consump-
tion is not being compensated for by an increase in the capital stock which 
could lead to increased consumption at a future time.22 Thus, we must have 

(51)lx = 0 

which from (33) means that 

(52)1, = 1 . 

Utilizing the two previous equations, from (30) 

(53) ky=k. 

Lastly, from (9), (52), and (53) 

(54) y = g(k) . 

It should be noted that conditions (52) and (53) merely state that when the 
capital good is not produced, the entire supplies of labor and capital are allo-
cated to the production of the consumption good.

C. THE REGIONS OF INCOMPLETE AND COMPLETE SPECIALIZATION

 In the subsequent sections, we will study the dynamic behavior of the 
optimal path by using the phase diagram technique to examine the behavior 
of the multiplier q and the aggregate capital : labor ratio k on the q-k plane, 

(q will be plotted on the vertical axis and k on the horizontal axis). Although, 
in the present model, the consumption good will always be produced, it is 

possible for the output of the capital good to be zero. Therefore, we have to 
distinguish two regions, the region in which both commodities are produced 

(incomplete specialization) and the region in which only the consumption 
good is produced (complete specialization). In this section, a we determine 
these two regions as well as the locus which separates them (such a locus will 
be termed the boundary curve). 

 In the region of incomplete specalization, from (25) and (34), we have 

                   q = U'[y(p, k)]p 

which combined with Figures 3 and 4 and condition (54) implies that the 
boundary curve separating the regions of incomplete and complete speciali-
zation is defined by 

 (55)q = U'[g(k)}Pmin(k) = q(k)

 22 If y = lyg(ky) < g(ky) and x = 0, then the economy is foregoing some of the consumption 
that it could have while not accumulating any capital which could in cease consumption in 
the future. Clearly, such a policy cannot be optimal.
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Along the boundary curve, production is specialized in Y. But for a fixed k, 
increasing p above  pmin(k) will move us into the area of incomplete speciali-
zation since by (48) it will induce the production of the capital good. Since 
in the region of incomplete specialization aq/ap > 0," this region must lie 
above the boundary curve. 

 Similarly, for a fixed k, decreasing p below pmin(k) will result in the con-
tinued specialization in Y. But here, from (16), (25), and (54) we have 

                  q < U'[g(k)]p 

which implies that decreases in p will eventually decrease q. Thus the region 
of complete specialization lies below the boundary curve. 

 To determine the shape of the boundary curve, which will be labeled B, 
we calculate its slope 

 (56) dq = U'^[9'(k)]9''(k)Pm,n(k) + U,[9(k)] dpmin(k) . 
dk Bdk 

From (1), (4), (50), and (56), it follows that 

dq <oifkx>k
y             dk B 

 (57) dq 
is of indeterminate sign if ky > k. . 

           dk B 

Moreover, (1), (4), (55) and Figures 3 and 4 imply that along the boundary 
curve 

 (58)q(k) > 0 for k > 0 .

Q

             Complete"' / 
                       specialization 

 B 

 0 

              Fig. 5. Regions and Boundary Curve B: kx > ky 

23 This is obtained from q = U[y(p , k)]p. See, equation (65) and footnote 27.
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 q

                       / i~// 

                       Complete 
                        specialization  

o----------------------------------------------------------------- k 
                Fig. 6. Regions and Boundary Curve B: k,, > kw 

Lastly 

 (59)rim q(k) = 00 if kx > k~ 
                                           k-.0 

from (2), (5), and (55).The above results may be seen in Figures 5 and 6. 

                       D. THE q = 0 CURVE 

(i) Incomplete specialization 
 Under incomplete specialization, from (15), (34), and (36) 

 (60)4 = q[A + 3 — f '(kx)] 

Hence 4 = 0 if and only if 

 (61)f '(kx) = A + o 

which is satisfied by some unique kx ,24 which, in turn, is satisfied by a unique 

p* by (43) and (44).25 Therefore, q = 0 if and only if p = p*. But from (25), 
(34), and (47) 

 (62)q = U'[y(p, k)]p = q(p, k) 

from which it follows that when q = 0 

 (63)q = UP[y(p*, k)]p* . 

Defferentiating the above and utilizing (4) and (49), the slope of the 4 = 0 

 24 The existence and uniqueness of kx are guaranteed by assumption (2). 
 25 Recall that since the consumption good is always produced, p < p.a. always. Needless 

to say, p* < pmax.
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curve can be calculated  as2° 

 (64) dq = U" ay p* 0 as ky kx . dk Q=o ak 

That is, the slope of the q = 0 curve is negative (positive) if ky > kx (kx > ks). 
Now from (62), conditions (4), (48), and (49) imply2i 

 (65)aq> 0,ak> 0 as ky<kx 
             P which means that (62) can be inverted to give 

 (66)P = P(q, k) ,ap > 0 ,ape as ky kx . aq ak 

Thus, from (66) and (43), equation (60) can be rewritten as 

 (67) q = q{(A + a) — f'[kx(P(q, k))]} = 4(q, k) 

which utilizing (1), (49), and (66) yields 

 (68)ag= — q f'^dkx ap> 0           akdp aq 

This means that 4 > 0 (q < 0) to the right (left) of the g = 0 curve. 

(il) Complete specialization in Y 
  When production is specialized in the consumption good, from (15), (25), 

(28), and (54) we have 

 (69) g = q(A + a) — U'[g(k)]g'(k) = 4(q, k) 

from which it follows that 4 = 0 if and only if 

 (70)q = U'[g(k)]g'(k)  2+a 

Utilizing the above expression as well as (1) and (4), we calculate slope of the 

4 = 0 curve to be 

=(71)                  dpU"(g')2+U'g" < 0 . 
             dk q=o 2+3 

  26 Hadley and Kemp [11] set the sign of this expression as negative for both cases which is 
incorrect. Also they failed to investigate the behavior of q in the area of complete speciali-
zation in Y. Cass [6], of course, dealt only with the case ky > kx. 

  27 Differentiation of (62) gives 

                  aq =pU,,ay+U'aq=pU^aY 
ap akakak 

 the sign of which is determined from (4), (48), and (49).
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That is, the slope of the 4 = 0 curve is negative in the region of complete 
specialization. What is more, by comparing (56) and (71), it can be shown 
that at the point of intersection of the boundary curve B with the 4 = 0 curve, 
the slope of the boundary curve B is greater than the slope of the 4 = 0 curve. 
We also obtain the following limiting result from (2), (4), (5), and (70): along 
the 4 = 0 curve 

(72) rim  q  =  0  . 
k— co 

Finally from (69) 

 (73)ag=2+3>0 

                   q

k
0  k

ykx 

  Fig. 7. q = 0 Curve and Boundary Curve B: kx > kl,

q

'--------------------------------------------------------------------------k 
 kk* 

  Fig. 8.  4 = 0 Curve and Boundary Curve B: ky > kx
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which implies that  q  > 0 (4 < 0) above (below) the 4 = 0 curve. Utilizing 
the results of this section of the paper, the behavior of q can be summarized 
in Figures 7 and 8.28

                       E. THE k = 0 CURVE 

 The behavior of the dynamic equation k = x - Ak is investigated in this 
section of the paper. Clearly, k = 0 if and only if 

(74) x=Ak. 

Hence x > 0 as long as k >. 0. Since y > 0, the k = 0 curve lies in the region 
of incomplete specialization.29 Therefore, utilizing (46), k = 0 if 

(75) .x(p, k) = Ak 

Since we want to determine the shape of the k = 0 curve in the q — k plane, 
from (66) and (75) we have 

 (76)x[ p(q, k), k] = Ak 

which upon being differentiated yields" 

 (77)dq_ pU„ay_ax/ak —~t[pU"ay +r.      dk k=o ak axaLa            /PP 

The sign of (77) is generally indeterminate as can be seen from (4), (48), 

(49), and (A7). However, some information can be obtained. Noting that 
the intersection of the k = 0 and q = 0 curves must occur in the region of 
incomplete specialization, at their point of intersection we havesl 

(78) dq dqas k > k             dk k=o dk 9=ox 

Condition (78) simply states that when k > kx, at their point of intersection 
the slope of the k = 0 curve is greater than the slope of the 4 = 0 curve. 

 28 We note here that the depicted kx and k: will be later shown to correspond, respectively, 
to the balanced growth values of kx and ky given by q = k = 0. The interested reader is 
referred to Section B' of the Appendix for a detailed discussion of the range of the q = 0 
curve. 

29 Thus the k = 0 curve will lie above the boundary curve B . See Section C' of the Ap-

pendix for additional results. 
3° Hadley and Kemp [11] calculated this expression incorrectly; this led to further errors . 

 31 This result can be seen as follows. From (64) and (77) at q = k = 0 we have 

                dq _ dq _  ax/ak — 2  mu„ ay + U' dk k=o dk I a=o ax/ap L ap 
from which condition (78) is obtained by noting (4), (48), and (A7).
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And, when  kx > kl, the slope of the 4 = 0 curve is greater than the slope of 
the k = 0 curve at their intersection point. In both cases, this guarantees the 
uniqueness of the point determined by 4 = k = 0. 

 The above result, (78), can be strengthened, in fact, when kx > ky. It can 
be shown that (77) can be written as 

  igdq =2U'— A)— U' (ax_A  ()
dk k=op(f)ax/ap\akJ 

From (61) we obtain that if 4 = 0, then 

f'—.1=a>0. 
Noting this as well as (4), (48), and (A7) of Section C' of the Appendix, 
equation (79) states that at 4 = k = 0 

 (80)dq < 0 if kx > ky . dk k=o 

That is, if the capital good industry is more capital intensive than the con-
sumption good industry, the slope of the k = 0 curve at its point of intersec-
tion with the 4 = 0 curve is negative. 

 Defining the maximum sustainable capital : labor ratio k by 

(81)f(k) _ Ak 
from (5), (62), and (75) and Figures A.1, A.2, A.7, and A.8 we can obtain 
the following limiting results" 

 (82)liin qlk=o = 00 
k-jc 

 (83)rim qt k=o = 00 if kx > ky . 
k-4o 

 We also note that since k is defined by f(k) _ Ak and kx by f'(kk) = A + a," 
it follows from (1) that 

(84)kx < k 

always. Thus, it is obvious that 

 (85)k: < k when kx > ky . 

However, when ky > kx, while the relation k: > kx must necessarily hold, 
in this case no a priori relationship between k: and k can be determined.

 32 That is , k is that value of k which would produce k = 0 if all of the inputs were allocated 
to the production of capital. Needless to say, by (24) this will never occur. 

33 Recall equations (61) and (81) .
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That  iss4 

 (86)k: k when k > k . 

 Lastly, from (46) and (66), equation (7) can be written 

 (87) k = x[ p(q, k), k] — Rk = k(q, k) . 

Thus from (48), (66), and (87) 

(88)ak=ax ap aq ap aq

ECONOMY 17

q

Fig. 9. k = 0 Curve and Boundary Curve B:  kx > k,

4

 v k 

           Fig. 10. k = 0 Curve and Boundary Curve B: ky > kx 

34 This possibility was not pointed out by either Cass [6] or Hadley and Kemp [11].
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Hence, in the area of incomplete  specialization,35 the area above the boundary 
curve B, k < 0 below the k - 0 curve and k > 0 above the k = 0 curve. 
However, when production is specialized in Y, the area on and below the 
boundary curve B, from (7) we have k - -Ak < 0. Hence k < 0 for all 

points lying below the k - 0 curve. The above results can be seen in Figures 
9 and 10.

F. THE DYNAMIC PATH

 Utilizing the information of the previous sections the dynamic behavior of 
the economy can be described by the phase diagrams of Figures 11 and 12. 
Observe that there are three types of feasible paths: 

Type a: k(t) -› 0 

Type (3: k(t)-›k 

                   Type r: k(t) -› k* . 

Observe that the type r path is the only path which satisfies the following 
right-end point conditions6 

 (89)lith e-atq(t) = 0 
t ~W

           k;k*kx  k 

                      Fig. 11. Dynamic Path:  kz < k, 

35 Recall that the k = 0 curve lies in the region of incomplete specialization. 
 36 That such conditions are necessary for optimality is not established for a general class 

of optimal growth problems. (See, for example, Arrow and Kurz [2], page 46.) However, it 
is known that such a condition is necessary for the present class of problems. See, Cass [6], 
Hague [12], and also Arrow and Kurz [2], for example.
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 q

 k* ky 

Fig. 12. Dynamic Path:  kt, > kx

or by explicitly requiring rim k(t) > 0, 

(89)' rim e-atq(t) >_ 0 and rim e-atq(t)k(t) — 0 . 
t-.00 t— 

                                 We now show that the type r path is indeed optimal. Let x, y, and so on, 
be the values of the variables and the multipliers along the type r path and 
let x°, y°, and so on, be the value of the corresponding variables along any 
feasible path starting from the same initial value of k(0). Then consider the 
following utility differencesi 

 (90)D =  U(y)e-" di —  U(Y°)e-at di . 
    00 

In order to show that D >_ 0, which establishes the optimality of the type r 

path, first obtain the following inequality using (7)-(11), (30), and (33),38 

 (91) D > e-"{U(y) — U(y°)+[x — Ak — k - (x0 - Ak° — k°)] 

0 + px[lxf(kx) — x — (lxf(k°) — x°)] 

+ Py[lyg(ky) — Y — (lyg(k,) — Y°)}

37 Obviously this statement is meaningless unless the integrals in (90) converge. Since it 
can be easily seen that the type r path converges, we ignore all feasible paths whose discounted 
utility sums J diverge to — 00. That is, we focus our attention to those feasible paths whose 
value of J is bounded from below. Hence it remains to be shown that the value of Jis bounded 
from above along any feasible path. As can easily be seen from Figures 11 and 12, if k(0) 
k, then k(t) < if for all t >_ 0 so that y < f(k). Therefore U(y) <_ U[ f(k)] and J is bounded 
from above. Similarly, if k < k(0) < 00 then k(t) < k(0) for all t >_ 0 so that y < f(k(0)). 
Thus U(y) < U[ f(k(0))] and J is bounded from above. 

 38 We may note that this inequality becomes an equality if lx += 1 and no , + l°yk°° = kc.
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- }-r[k — i kx—lk—(k°-1(21,kz—100°k°)] 
-E-w[l —l-l „—(1 —l°-1°°)}}di. 

Substituting (18)-(21), (28), and (31) into (91) yields 

 (92) D > ° e-di{U(y) — U(y°) — U'(y)(y — y°) + (q2 — r)(k° — k) 

+ q(k° — k)} di . 

By the concavity of U 

U(y) — U(y°) — U'(y)(y - y°) > 0 

so that, utilizing (15), the RHS of (92) is greater than or equal to 

 (93) °e-"{(q —aq)(k° — k)+q(k° — k)} di = e-atp(t)[k°(t) — k(t)]I o. 

But along the type r path 

rim e-8tq(t) = 0 
t~~ 

so that the value of expressinon (93) is zero. Thus D > 0 so that the type r 

path is clearly an optimal path. 
  The saddle-like nature of the solution can be confirmed by linearizing the 

two dynamic equations (67) and (87) around the point (k*, q*) and calculating 
the eigenvalues of the coefficient matrix 

ak ak 
                      ak aq 

aq aq 
ak aq 

which are equal to 
                                  a _ (a2 — 4b)1!2  (94)2

1, ~2 2 

where 

 (95)a-akaq 

                        q 

 (96)b=ak aq-ak aq ak aq aq ak 

all evaluated at (k*, q*), From (67) and (87) 

ak  ax ap( _ 2) 
                   apak aakak 

aq —„ dkx ap 
                aq—qfdp aq
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which substituted with (68) and (88) into (96) yields 

 (97) b  =  —  q  f dkx apax2)                  daCak                    pq 

From (1), (44), (66), (97), and (A7), we have

(98) b<0

regardless of the capital intensity condition. Thus from (94) and (98) the 
eigenvalues Al and A2 are real and of opposite signs, and hence (k*, q*) is 
indeed a saddle point. 

 We can thus assert the following:

Given an arbitrary initial value k(0), there exists a unique q(0) through which 

passes a unique optimal path which approaches the balanced growth path 
(k*, q*) monotonically, regardless of whether kx(w) > ku(w) or ky(co) > kx(w) 
for all w > 0,39

 Finally, as a point of interest, it should be pointed out that from Figures 
11 and 12 it can be seen that in both cases blocked intervals can occur along 
the optimal path. By blocked intervals we mean segments of the k-axis for 
which investment, that is, production of the capital good, is equal to zero." 
Therefore incomplete specialization is not ruled out along the optimal path 
in either of the two cases, as blocked intervals occur when k(0) is sufficiently 
large.

G. THE CASE OF FACTOR INTENSITY REVERSALS

 Our analysis for the two polar cases, together with the results for the case 
of kx(co) = ky(w), can be adapted to obtain the optimal growth path for two-
sector economies which experience any number or kinds of factor intensity 
reversals. Here we explain briefly how such a general solution is obtained 
and state our final conclusions while illustrating some possible cases in Figures 
13 thru 16. The details of our analysis as well as an exposition of the case 
kx(w) = k?(w) can be found in Section D' of the Appendix. 

 The solution of the general case is obtained by using the results obtained 
for the polar cases for those regions of k where they apply. Even when factor 
intensity reversals occur, for a given value of k, only one intensity condition 
holds. For example, for the case illustrated in Figure 13, k/(w) > kx(w) for

39 Since at (k*, q*) we have p = p*, it is clear that the kx and k: of Figures 7 and 8 are 
indeed those values, respectively, of kx and ky which exist when the economy is at (k*, q*). 
See, the discussion in the Appendix. 

49 See, Arrow and Kurz [2].
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all values of k in the interval (0,  kt). Similarly, k„(co) = kx(w) for all 
k E [kt, k2] and kx(w) > Mw) for all k > k8. Thus, the k-axis is first par-
titioned on the basis of whether k kx, and then the corresponding polar 
result is "applied” to each such interval. Again using Figure 13 as an example, 
since k2,(w) > kx(w) in the interval (0, kt), the shape of the boundary curve B 
is indeterminate in that region [recall condition (57)]. For k E [kt, k8] we have 
kx(w) = ky(w) so that the slope of the boundary curve B becomes negative, 
by condition (Ag) of the Appendix, in that interval. That is why abrupt 
changes in the shape of the boundary curve B are seen at k = kt in Figures 
13 thru 16. Finally, for k > k8 the condition kx(w) > ky(w) holds so that the

av

 It: k* k*y kt k$ k 

Fig. 13. Dynamic Path: Degenerate Reversal Case

kx, kv

k
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boundary curve continues to have a negative slope by condition (57). The 
shape of the k = 0 curve is determined analogously, as is the shape of the 

 q = 0 curve. However, in the case of the 4 = 0 curve, an additional factor 
complicates the analysis: the shape of the curve depends on whether  ky C kx 
for the value of k at which f'(k) = + 3. This complication as well as other 
considerations are discussed in the Appendix. 

 As is suggested by Figures 13 thru 16, regardless of the number of factor 
intensity reversals that may occur, the optimal path for the two-sector econo-
my is of the same general nature. As can be seen, factor intensity reversals 

produce kinks in and affect the slopes of the boundary curve B, and so on.

U

w*

0

 

1  
1 
 1

kx, kv

Fig. 14.

 k*  kxkrk 

Dynamic Path: Case of One Reversal

k



24 J.  Z. DRABICKI AND A. TAKAYAMA

However, the general form of the optimal path is not affected. We thus 
conclude the following: 

   Regardless of the number or kinds of factor intensity reversals that may or 
   may not occur, for each interval value k(0) there exists a unique optimal path 

   which approaches (k*, q*) monotonically. 

But this is the result that was obtained for the two previous polar cases.4' 
That is to say that capital intensity reversals have no effect on the nature of

0)

co*

Fig. 15.

 k* k k8k 

Dynamic Path: Degenrate Reversal Case

k

kx, kv

41 Note that this is also the result that is obtained in the usual one-sector optimal growth 

model. See, Cass [7], for example.
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 co

 co*

0 1 
1 
1

Fig. 16.

 k* k~  I0r 

Dynamic Path: Case of One Reversal

kx, kv

k

the optimal growth path. Hence we conclude that for the two-sector optimal 

growth problem, capital intensity does not matter. 

                          University of Arizona, Purdue University
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APPENDIX

 A'. THE GEOMETRIC CONSTRUCTION 

 In this Appendix we shall derive certain important results used in the text 
by constructing a simple diagram. This diagram will facilitate the clear 
understanding of these results.' The construction of this diagram is based on 
well-known results for the two-sector economy. 

 As is well known, for a given k2 

P < Pm,n(k) x = 0 , y = g(k)

Pmin(k) < P < max(k)

x = x(p, k) =
  - k

 Y =  Y(p, k) =

ky - kx 

k - kx

f(kx)

ky - kx
g(k)

                             where  kx = kx(p), ky = ky(p) 

Pmax(k) < p . X = f(k) , y = 0 . 

Thus, for a given p, say p = p*, we have 

 (Al)p* < Pm=n(k) . x = 0 , y = g(k)

(A2) Pmin(k) < P* < Pma.(k) .

==k*— x x(p*, k)k*
—kkx f (kz ) 

             k _ k* 
Y = Y(P*, k) = k* —k*g(k*) 

        Ux 

     where kx = kx(p*), k: 

= f(k) , y = 0 . 

1 in Figures A.1 and A.2. We 
k_.. as the two cases are similar

                              where  kx = kx(p*), ky = ky(p*) 

 (A3)Pmax(k) < p* x = f(k) , y = 0 • 

The above results can be summarized in Figures A.1 and A.2. We will only 
explain Figure A.1, the case of kx > ky, as the two cases are similar. 

 Observe that the top graph of Figure A.1 is noting more than the 
Samuelson-Harrod diagram. As illustrated, given p = p*, kw and ky are 
uniquely determined as kx and k& , respectively. Clearly for all k such that 
0 < k < k:, we have p* c pmin(k). Hence from (Al) 

 (A4) x(p*, k) = 0 , y(p*, k) = g(k) for 0 < k < k: . 

That is, for p = p*, if 0 < k < k& , the capital good will not be produced, 
i.e., x = 0, and hence all resources will be utilized in the production of the 

 1 It appears that some of the major errors in Hadley and Kemp [11] can be attributed to 
their incorrect version of this diagram. See, for example, their Figure 6.5 (b), page 346, which 
makes their subsequent figure and analysis incorrect. 

 2 Here we assume away any factor intensity reversals.
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consumption good, i.e., y = g(k). Similarly, for all k such that k: 
we have pmin(k) < p* < pmax(k) so that (A2) applies. Thus

                   k—           x(
p*, k)_k** —kk*  

(As)Yx 
y(p* , k) = k — kx  

                     k*—k* 
            yx 

Observe that x(p*, k) and y(p*, k) 
functions of k, respectively, for k:

f(kx )

g(k:)

for  k: <k<kx  .

<k<ky,

k) are linear increasing and linear decreasing 
k: < k < k:.3 Finally, if kz < k, pmag(k) <

0)

p  kx, km

x

0 ky kx

Fig. A.1. Determination of  x(p*, k) and y(p*, k): kx > ky

3 Recall condition (49) and footnote 20 of the text .
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 ~f(k) 

x(p*, k)•

kx, kv

0

p

  V 

//

2y(p*, k)

(

g(k)

k

k

Fig. A.2.

0 kxk* 

Determination of x(p*, k) and y(p*, k): k,, > kx

p*, so that from (A3) 

 (A6) x(p*, k) = f(k) , y(p*, k) = 0 for kx < k . 

The above results (A4)-(A6) are seen in the bottom graphs of Figures A.1 
and A.2. The functions x(p*, k) and y(p*, k) are illustrated by the heavy 
lines, and the per-capita production functions f and g are illustrated by the 
thin broken lines in Figures A.1 and A.2. 

 Clearly, both x(p*, k) and y(p*, k) depend upon the chosen fixed value of 

p*. If a different fixed value of p is chosen different curves will be obtained. 
In particular, if we choose some p, such that p > p*, we will obtain the results 
depicted in Figures A.3 and A.4. We illustrate the results for the capital good
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0

Fig. A.3. A Change in p:  kz > kl,

k

 0

Fig. A.4. A Change in p:  ky > kx

k

industry but the other case 
and A.4 illustrate axial) > 0 
specialization.

follows analogously. Observe that Figures A.3 

, that is, condition (48), for the case of incomplete

B'. LOCATION OF 4 = 0 CURVE 

 Utilizing the preceding discussion, the location of the 4 = 0 curve can be 
determined. Recall that under incomplete specialization 4 = 0 if and only if 

f'[kx(p*)] = A + a. The determination of this p* is illustrated in Figures A.5 
and A.6. Once p* is determined, the values of k for which incomplete and 
complete specialization occurs are likewise determined. As can be seen from 
Figures A.5 and A.6, if kx > ky then in the region of incomplete specialization 
the 4 = 0 curve is defined only for values of k in the interval (kt , k:). For
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p

Fig. A.5.

 U k`
y

Determination of p*, kx and k

kx, kv

f(k)

k

*. 
~.kx>ky

p

Fig. A.6.

 p* 0 I 
I 
slope = %-F a

I
kx, Icy

a
  z & 

Determination of  p*, kx and k:: ky

k k

> kx

values of k greater than or equal to k, the 4 = 0 curve lies in the region of 
complete specialization (see Section D). And for values of k less than k, the 

4 = 0 curve is not defined. Analogous results hold for the case ky > kz. 
 Lastly, from Figures A.5 and A.6 and condition (4), (5) and (63), we ob-

serve that along the 4 = 0 curve' 

limq= 00. 
                                                     k-,kz

4 This result was overlooked by both Cass [6] and Hadleya no Kemp [11], and thus led Cass 
to specify the balanced growth value kl (kx in our notation) somewhat incorrectly. See, his 
Figure 1, page 34.



32 J. Z. DRABICKI AND A. TAKAYAMA

Utilizing the above information and that of Section D of the text, 

of q is illustrated in Figures 7 and 8 of the text.

the behavior

 C. LOCATION OF k = 0 CURVE

 In this section, with the use of our geometric construction, we determine 
a few results which we use in the analysis of the k = 0 curve in Section E of 

the text. Recall that k = 0 if and only if x = Ak. The solution of this equ-
ation may be illustrated graphically as in Figures A.7 and A.8. Excluding 
the origin and noting that production will never be specialized in the produc-
tion of the capital good, we can see from Figures A.7 and A.8 that there is

  x(p3, k) 

Fig. A.7. Graphical Solution of  x(p,  k) = Ak: kx > ky

k

Fig. A.8. Graphical Solution of  x(p,  k) = Ak: ky > kx

k
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always incomplete specialization along the k = 0  curve.' Thus along the 
k = 0 curve, x(p, k) = Ak. The determination of (p, k) pairs which satisfy 
this condition is illustrated in Figures A.7 and A.8 for several arbitrary fixed 
values of p. Thus we can easily see that 

 (A7) ak—2< 0 as k,<k 

along the k = 0 curve. Condition (A7) is utilized extensively in the text.

D'. FACTOR INTENSITY REVERSALS CASE: SOME RESULTS

  The general solution, in which any factor intensity relationship is allowed, 
is obtained by utilizing the two polar results as well as the results for the polar 
case kx(w) = ky(w). Therefore, before turning to the general solution, we will 
discuss the behavior of the boundary curve B, the 4 = 0 curve, and the k = 0 
curve for the case kx(w) = k&(w), whether for some isolated value of co (the 
usual factor intensity reversal) or for some intervals of w's (the degenerate 

factor intensity reversal). 
 When kx(w) = ky(w), from (42) we know that op/ow = 0 from which it can 

be deduced that 

 (A8) dpdk(k) = 0 when k=ky •

From the above, as well as (1), (4), and (56), we have 

        dq   (Ag) 
dk BU" [g(k)]g'(k)pin,n(k) < 0 when kx = ky .

That is, when kx = ky the slope of the boundary curve B is negative. 
 The analysis of the 4 = 0 curve must be modified only for the case of in-

complete specialization when k = k. In particular, since kx = ky = k, from 

(61) 4 = 0 if and only if 

(A10)ft(k) = A + 8 . 

The above is solved by a unique positive value of k, say k*, and it is clear 
that the 4 = 0 curve is a vertical line with k-th coordinate equal to k* in the 
region of incomplete specialization. With this exception, all of the other 
results concerning 4 obtained in Section D hold. 

 In the case of the k = 0 curve, it can be shown that in the interior of the

6 Thus the k = 0 curve lies in the area of incomplete specialization , above the boundary 
curve B.
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co) = k&(w), we have 

dot = p2U^(f' — A) . 
dk k=o

Thus, in the interiors of intervals for which kx(w) = ky(w), 

(Al2)dq 0 ask k 
                      dk g=o 

where k is defined by 

 (A13)f'(k) _ .l . 

Thus, the slope of the k = 0 curve is positive (respectively zero, negative) 
when k is greater than (respectively equal to, less than) the value k. With 
this exception, the results concerning lc derived in Section E hold. Finally, 
we note that the results that we have shown in this section for the case 
kx((o) = ky(w) are identical to those obtained in the usual one-sector optimal 

growth model.' But this should not be surprising for when capital intensities 
are equal, the two industries are somewhat "identical." We now turn to the 

general solution. 
 When factor intensity reversals occur, an added complication enters our 

analysis due to the fact that p is no longer uniquely related to co. Thus 
depending on the number of reversals that do occur, there will be several 
values of p which will solve f'[kx(p)] = A + 3. However this relationship 
can be rewritten as f'[kx(w)] = .l ± 3 which will always be solved by a unique 
value of co, which will, in turn, give a unique p. Also, even though factor 
intensity reversals occur, for a given value of k, only one factor intensity 
relation holds and hence in that region the relationship between p and co is 
unique. We note that the above is not jure when kx(w) = ky((o) since then 
op/ow = 0; however in such a case the lack of a unique relationship between 

p and co causes no difficulties, as the shape of the boundary curve B, and so 
on, can be determined as these results do not depend upon the relationship 
between p and co. 

 In any case, the optimal path for cases in which factor intensity reversals 
occur can be obtained by simply "piecing" together the results for the two 

polar cases together with results for the case kx = k7, for the corresponding 
values of k for which they do apply. The procedure can be seen in Figure 
A.9 where one possible case is illustrated. However it should be noted that 
similar results can be obtained for cases in which any number of factor 
intensity reversals occur. 

 6 See, Cass [7].
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Fig. A.9. Determing Dynamic Path under Factor Intensity Reversal

  After the k-axis is partitioned into intervals on the basis of whether  k k, 
the corresponding polar result is applied to each such interval. For example, 
in Figure A.9 for k E (0, k,.) we have k„(w) > kx(w), and hence in that interval 
the shape of the boundary curve B is indeterminate from condition (57). 
Similarly, for k > k,., either kx(w) = ku(w) or kx(w) > ku(w) so that the bound-
ary curve B has a negative slope. We do similarly to construct tlc Ic = 0 
curve. The general shape of the q = 0 curve, however, depends on what the 
capital intensity condition is for the value of k at which f'(k) = .i + 5. For 
example, if for that value of k, ky(w) > kx(w), as is the case in Figure A.9, 
then the 4 = 0 curve will have the general shape of the q = 0 curve for the
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polar case  ky >  k. That is, in such a case, in the area of incomplete speciali-
zation the q = 0 curve is defined for values of k in the interval (k:, k:), and 
for values of k such that k > k: in the area of complete specialization. 
Similar results hold when kx(w) > ky(w) for the value of k which solves 
f'(k) = A + 6. Lastly we note that if f'(k) = 2 + 8 holds at a point of factor 
intensity reversal, the q = 0 curve will be of the general shape of the 4 = 0 
curve in the usual one-sector optimal growth model.7 The analysis of the 
optimal path in cases of factor intensity reversals is found in Section G of 
the text.

7 See, Cass [7].


