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OPTIMAL CAPITAL ACCUMULATION IN 

      AN OPEN ECONOMY

 HIROAKI OSANA

I. INTRODUCTION

 The optimal pattern of international capital movements has been investigated 
by P. K. Bardhan [1] and K. Hamada [2, 3], while the optimal pattern of inter-
national trade associated with the international capital movements has not explicit-
ly been characterized by them. On the other hand, the optimal pattern of capital 
accumulation with international trade has been investigated by H . E. Ryder [5] 
under the assumption of the absence of international capital movements . The 
purpose of the present paper is to characterize the optimal capital accumulation 
in an open economy which faces both an international capital market and an 
international commodity market. For this purpose , we shall consider a two-
commodity two-factor model. In the model without international capital move-
ments, the range of admissible trade policies is narrow since one commodity must 
be exported if the other commodity is to be imported; while, in our model, both 
commodities may be imported or exported simultaneously and hence the range of 
admissible trade policies is wider than in Ryder's model. Therefore the properties 
of optimal trade policy are of particular interest in the present paper . 

 The conditions will be obtained for the boundedness of feasible paths , the 
optimality of feasible paths, the uniqueness of optimal path , the existence of an 
optimal balanced growth path, and the convergence of the optimal path to an 
optimal balanced growth path.

II. THE MODEL

 We shall be concerned with an economy which faces a perfectly competitive 
international commodity market; and hence, it will be assumed that the inter-
national terms of trade are exogenously given to the economy. This assumption 
may be justified if the economy considered is small relative to the international 
commodity market") . For the sake of simplicity , we further assume that the terms 
of trade are kept constant over time. On the other hand , the economy will be 
assumed to face an imperfectly competitive capital market . This imperfection 
would not necessarily be incompatible with the relative smallness of the economy; 
for, because of risks involved in foreign investment , international capital markets

 (1) The relationships between international capital movements and international terms of 
trade are important problems to be investigated. But we do not treat them in the present paper . 
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16 HIROAKI OSANA

are more likely to be imperfect than commodity markets. 
 We suppose that there are two homogeneous commodities, the first good being 

a pure consumption good and the second available for both consumption and 
investment. Furthermore, both commodities are assumed to be produced with 
two homogeneous  factors: capital and labour. We shall use the notation: 

  K(t) = the capital stock in the economy at time t, 
KK(t) = the capital employed in sector i at time t, (1 = 1, 2), 

   L(t) = the labour force in the economy at time t, 
Li(t) = the labour employed in sector i at time t, (i = 1, 2), 
YY(t) = the production of sector i at time t, (i = 1, 2), 
Ci(t) = the consumption of goods i at time t, (1 = 1, 2), 

   Z(t) = gross investment at time t, 
   A(t) = the capital invested abroad at time t, measured in terms of the second 

         goods, 
    p = the international price of the first good in terms of the second goods, 

         a constant, 

   p(t) = the international rate of interest at time t, 
    hl = the rate of growth of the labour force, a constant, 
    n2 = the rate of depreciation of capital stock, a constant. 

 The production function Fz(KK, Li) is assumed to be homogeneous of degree 
one in Kz and Li; hence, we can define the function fa(Kj/Lti) = Fa(KK/La, 1) for 
each i = 1, 2. In the present paper, we shall consider the following system: 

Kl(t) -f- K2(t) = K(t), 
LA(t) + L2(t) = L(t), 
YY(t) = La(t)fz(KK(t)/Lti(t)), (i = 1, 2), 
L(t) = n1L(t), 
K(t) = Z(t) — n2K(t), 
A(t) = p(t)A(t) -{- pY1(t) -f- Y2(t) — pCi(t) — C2(t) — Z(t), 

      p(t) = r(A(t)/L(t));(2) 
or in terms of per-capita quantitities, 

kl(t)4(t) + k2(t)12(t) = k(t) ,(1) 

   11(t) + 12(t) = 1 ,(2) 

    k(t) = z(t) — (hl + n2)k(t) ,(3) 

a(t) = g(a(t)) — n1a(t) + pl1(t)fi(kl(t)) + 12(t)f2(k2(t)) 
       — pd(t) — c2(t) — z(t) ,(4) 

where

 (2) The last equation represents the behaviour of the rest of the world, that is, its demand 
for (or supply of) capital. The assumption that the international rate of interest depends upon 

the per capita asset is borrowed from K. Hamada [3].
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 kl(t) = Kl(t)/Li(t), k(t) = K(t)/L(t), lti(t) = Li(t)/L(t), z(t) = Z(t)/L(t) , 

    a(t) = A(t)/L(t), cl(t) = Ci(t)/L(t), g(a(t)) = a(t)r(a(t)), (i = 1, 2) . 

Throughout the present paper, we make 

 Assumption 1. fi(0) = 0, fi'(0) = co, fi'(00) = 0, and fi"(kl) < 0 for 
kl > 0, (i = 1, 2); 

 Assumption 2. g"(a) < 0 for all a. 
The meanings of Assumption 1 and equations (1) through (3) are obvious. Eq 
tion (4) is the identity of the balance of international payments, the term cl

17
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The meanings of Assumption 1 and equations (1) through (3) are obvious. Equa-
tion 
representing the balance on capital account and the right-hand side plus n1a the 
balance on current account. Assumption 2 means that the marginal revenue of 
foreign investment is nonincreasing in the per capita asset invested abroad.(3' 

 If the system (1) through (4) is to be economically meaningful, all the quan-
tities except for a(t) must be nonnegative: 

    k(t) >_ 0, kl(t) ? 0, ll(t) >_ 0, z(t) >_ 0, cl(t)> 0, (i = 1, 2) . (5) 

It will be assumed furthermore that the deficit of current account cannot exceed 
a certain proportion of the national income : for a given m > 1, 

pd(t) + c2(t) + z(t) < m{pll(t)fi(kl(t)) + 12(t)f2(k2(t)) + g(a(t))} • (6) 

Finally, the initial stocks of domestic capital and capital invested abroad are 
historically given : 

k(0) = kc, a(0) = ac.(7) 

The path {(k(t), a(t), kl(t), k2(t), 11(t), 12(t), z(t), cl(t), c2(t)) : t > 01 is said to 
be feasible if (1) through (7) hold for all t > 0.

                 III. BOUNDEDNESS OF FEASIBLE PATHS 

 In this section, it will be shown that k(t) and a(t) are bounded for any feasible 

path, so that, by (5) and (6), any feasible path itself is also bounded. To this end, 
let us first consider the problem of maximizing the domestic product 

x = pllfi(kl) + l2f2(k2)

subject to (1) and (2). 
 We note that, by Assumption 1, the functions 

 (3) At this stage, we do not rule out the case where the international rate of interest is con-
stant so that the economy is confronted with a perfectly competitive capital market. As will 
be seen later, even if the rate of interest is constant over a finite interval of a, the boundedness of 
feasible paths can be shown and the sufficient conditions for optimality can be obtained. Further-
more, even if the rate of interest is constant over an finite interval of positive a, it can be shown 
that there is an optimal balanced growth path.
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   wt(kl) =f(k)—kl, kl(w) = wti 1(w), and q(w) —f2,(k2(0)))                               )) 
                                    fi(1( 

are well-defined and satisfy 

 (o'(kl)  > 0 for all kl > 0, wt(0) = 0, wt(00) = 00 , 
k'(w) > 0 for all co > 0, kl(0) = 0, kl(00) = co , 

q'((o)  __  k2(w) — kl(w)  
          q(w) (kl(w) + w)(k2(w) + co) •

%(w2)

4"(w2)

k(wt)

k(col)

0

p

 w

Fig. 1

Let

              p = sup q(w) and p = inf q(w) . 

In the present paper, we shall consider the case where the terms of trade, p, falls i
nto the open interval }p, p[(4). Then we can define a nonempty set 

S2 (p) = {co: p = q(w)} . 

 (4) Otherwise, the domestic production will be always specialized completely to one com-
modity, so that the choice of an optimal policy on production will reduce to a trivial problem..
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Further, define 

      k(w) =  min (kl(w), k2(w)) and k(w) = max (kl((0), k2((0)) • 

Then we can state and prove the following two lemmas. 

   LEMMA 1. If wt E Q(p), w2 E Q(p), and co, < w2, then k((01) < k((02) . 

  Proof By hypothesis, p = q((.01) = q((02). Hence there is an Cu such that wt _< 
cl) < w2 and q'(("0") = 0, i.e., kl(6) = k2(6). Since kl(w) > 0 for all w > 0, 
it follows that k(wt) = max (kl(wt), k2(wt)) S kl(w) = k2(6) < min (kl((02), 
k2(w2)) = k((02). But at least one of the above two inequalities must hold strictly, 
since wt < w or w < w2. 

   LEMMA 2. Suppose that wt E SQ(p), w2 E 12(p), and w 0 Q(P) for any co E 
lwli w2[. Then either (i) [k(wt), k(w2)] = [kl(wt), kl(w2)] or (il) [k((01), k(w2)] = 
[k2((01), k2((02)]• 

  Proof. By definition, either k(a)i) = kl(wt) or k(wt) = k2(wt). Suppose the 
former. Then kl(oh) > k2((01). If the strict inequality holds, q'(wt) < 0 and 
so q(w) < q(wt) for any w which is greater than but arbitrarily close to wt. Since 
w S2(p) for any w E }wt, w2[ by hypothesis and q is continuous, this implies 

q'(w2) > 0, so that k2((02) >_ kl((02). Hence k(w2) = kl((02). That is, kl(wt) > 
k2(wt) implies k(w2) — kl(w2); hence case (i) holds. If kl(col) = k2((01) then trivial-
ly either (i) or (il). Therefore if k(wt) = kl(wt) then either (i) or (il). The proof 
for the case k(wt) = k2(wt) is similar. 

  We are now in a position to prove 

   THEOREM 1.Suppose that wt E Q(p), w2 E S2(p), and co 0 S2(p) for any co E 
]wt, w2[. Suppose further that k(wt) < k < k(w2). If [k(wt), k((02)] = [kl(cvl), 
kl(w2)] then kl = k and ll = 1, while if [k(wt), k((02)] = [k2((01), k2((02)] then 
k2=k and 12=1. 

 Proof We prove the first statement. The proof of the second statement is 
symmetric. Since f2(kl(wt)) < f2(k2((01)) (kl((01) — k2((01))f2 (k2((01)) = (wt+ 
kl(wt))f2 (k2(wt)) = pfi(kl(wt)) and similarly f2(kl((02)) < pfi(kl((02)), it must be 
that f2(k) < pfl(k) for all k E [k(wt), k((02)]. (See Figure 2.) Since k E [k(wt), 
k(w2)] by hypothesis, if kl = k2 then kl = k and the maximization of x implies 
ll = I. If kl # k2, we have the following three cases: (a) kl = k, (b) k2 = k, 
and (c) kl # k k2. In case (a), l2k2 = 12k. Hence if 12 > 0 then kl = k2, 
reducing to the case treated above, while if 12 = 0 then 11= 1 so that kl = k. 
In case (b), llkl = Ilk. If 11 = 0 then 12 = 1 so that x = f2(k); but since f2(k) < 

pf1(k) this cannot be optimal. Thus ll > 0 and hence kl= k2, reducing again to 
the case treated above. Therefore kl = k and ll = 1 for all cases except for (c). 

 In what follows, it will be shown that case (c) is impossible. Since kl # k2 
we may write 

         x =k              1f2(k2)+ ka_k pf1(kl)
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Hence the maximization of x implies that 

 (kl — k)(f2(k2) — pfi(kl) — (k2 — kl)f2 (k2)) S 0 with equality if k2 > 0 , 

 (k — k2)(f2(k2) — pfi(kl) — p(k2 — kl)fi (kl)) < 0 with equality if kl > 0 . 

If k2 = 0 then kl > 0 so that fl(kl) — kl fi (kl) = 0. But the last equality can 
hold only if kl = 0. This is a contradiction. Hence k2 > 0. Similarly kl > 0. 
On the other hand, since kl # k and k2 # k, it follows that 

      f2 (k2) = Pfi (kl) andf~ik2)— k2fi (kl)—lc, .

(»

 CO., wt 0 k2(w) 

     Fig. 2

/(.)) kl(co2) kz((w2)
k

This implies that there is an w such that w E 12(p) and kl = kl(t) and k2 = k2(th). 
But, by hypothesis, w 0 ]wt, (02[. If ch = col then either kl(wt) < k < k2(wt) 
or k2(wt) < k < kl(wt). The former contradicts the hypothesis k(wt) = kl(wt), 
while the latter contradicts the hypothesis k(wt) < k < k(co2). Thus, 6 wt. 
Similarly c"o * w2. Therefore either w < col or w > w2. If cl) < wt, then, by 
Lemma 1, k(th) < k(wt) < k and hence k2 = k2(th) < k and kl = kl(t) < k. 
But this is impossible. Similarly the case w > w2 cannot occur. Hence case (c) 
is impossible. 

 Similarly, we can prove the following two theorems. 

   THEOREM 2. Suppose that col E SZ(p) and co 0 12(p) for any co < wt, and 
 that k < k(wt). Then k(wt) = kl(wt) implies kl = k and 11= 1, while k(wt) = 

k2(wt) implies k2 = k and 12 = 1. 
   THEOREM 3. Suppose that col E 12(p) and co 0 12(p) for any co > co„ and 

  that k > k(wt). Then k(wt) = kl(wt) implies kl = k and 11 = 1, while k(wt) = 
k2(wt) implies k2 = k and 12 = 1. 

  Next, we shall prove
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  THEOREM 4. If w E  S2(p) and k(w) < k < k(w), then kl = kl(w) and k2 = 
 k2(w). 

 Proof If kl = k2 then x = pllfl(k) + l2f2(k) < max (pf1(k), f2(k)). If kl k2 
we have the following three cases : (a) kl = k, (b) k2 = k, and (c) kl # k = k2. 
In the first two cases, we have again x S max (pfl(k), f2(k)). In case (c), kl = 
kl(w) and k2 = k2(w). Hence x = (k — k2((0)).f2 (k2(w)) +f2(k2(w)) = p((k — 
kl(w))fi (kl(w)) -+- fl(kl(w))) > max (P.fl(k), f2(k)) for all k E ]k(w), k(w)[. Hence 
the maximization of x requires that kl = kl(w) and k2 = k2(w). 

 By Theorems 1 through 4, the optimal production policy (kl, k2, 11, 12) which 
maximizes x is determined as a function of k, provided 12(p) is a finite (or coun-
table) set. If 12(p) is not countable, it is sufficient for the determination of optimal 
production policy to note the following obvious fact. 

   THEOREM 5. Suppose that [wt, w2] C 12(p) and k(wt) < k < k(w2). Then 
 (i) either kl = k or k2 = k; (il) if kl k then 4 = 1 while if k2 # k then 11 = 1, 

 (iii) x = pf1(k) = f2(k). 
 Let w(k) be the value of w, if any, such that w E 9(p) and k(w) < k < k(w). 

Then w(k) assumes a constant value on an interval of the domain. By Theorems 
1 through 5, the maximum value of x can be written as 

 f(k) = max (Pf1(k), f2(k), 12' (k2(w(k)))k-~f2(k2(w(k))) — k2(w(k))f2`(k2(w(k)))) • 

Evidently f and f' are continuous. Furthermore, by Assumption 1, f is concave 
in k and satisfies f'(0) = 00, f'(00) = 0, and f(0) = 0.(5' 

 We can now prove the central result of this section that k(t) and a(t) are bounded 
for any feasible path. 

   THEOREM 6. If g'(— 00) > 0 and g'(00) < hl, then k(t) and a(t) are bounded 
 for any feasible path. 

  Proof It suffices to consider the following two cases: Case I. g'(a) = 0 
for some finite a and Case II. g'(a) > 0 for all a. 

  Case I. Let g = g(a) where g'(a) = 0. Then, by the concavity of g, g(a) < g 
for all a. Note that k = z — (hl + n2)k < m(f(k) g(a)) — (hl + n2)k < mf(k) 
— (hl -+- n2)k + mg. Let cl(k) = mf(k) — (hl n2)k. Then we can easily see 

01(00) = — 00. Hence there is a k' such that 0 < k' < co and abl(k) + mg < 0 
for all k > k'. This proves the boundedness of k, in view of the nonnegativity 
of k. 

  On the other hand, a < g(a) — nla -+- f(k), where k = max (kc, k'). Let 02(a) = 
g(a) — n1a. Since g'(00) < hl by hypothesis, it follows that 02(00) = — 00. 
Thus a is bounded from above. Furthermore, a > g(a) — n1a — m(g(a) -{--
f(k)) = (1 — m)g(a) — n1a — mf(k). Let 3(a) = (1 — m)g(a) — n1a. Since 

  (5) So far as there is an interval of k where the specialization of domestic production is 
incomplete, the function fcannot be strictly concave. This fact will make the subsequent analysis 
rather complicated.



22 HIROAKI OSANA 

g'(— 00) > 0 by hypothesis, 03(— 00) < 0, so that from the convexity of 03 we 
get 03(— 00) = 00. Hence a is bounded from below, completing the proof for 
Case I. 

  Case II. Let mg(04(k)) + mf(k) — (hl + n2)k = 0. Since g'(a) > 0 for all a 
it follows that a < 04(k) implies k < 0. Further, define f(¢b(a)) + g(a) — n1a = 
0. Then k < 05(a) implies a < 0. Let us note that 

Mk) _ (hi + n2 — mf'(k))/mg'(04(k)) , 

04'(k) = — (f"(k) + g"(954(k))(954(k))2)/g'(04(k)) , 

cg(a) _ (hl — g'(a))/f'(95b(a)) , 

Ob'(a) = — (g"(a) +f"(05(a))(es(a))2)/f'(ea(a)) 
Let mf(k) = (hl + n2)k and 0 < k < co. Then 04(0) _ 04(k) = 0 and c4(k) > 
0. Since ¢"(k) > 0, i.e., 04 is convex in k, it must be that 04(k) > (k — W4(k) 
for all k > 0. On the other hand, let a and a be such that g(a) = n1a, g(a) = /ha, 
and a<a. Then clearly a>0 and ob(a)>0. Since 02(00) = — co, it follows 
that 95b(a) = co for some a < 00. Hence f'(ab(a)) = 0 and 0 < g'(a) < hi, so 
that c6(a) = co. In view of the fact that 08 is convex in a, we can find a unique 
(k, a) such that a = 04(k), k = 05(a), 0 < k < 00, and a > a. 

 Define 

Bl = {(k, a) : a > 04(k), k > max (0, 05(a))} 
        B2 = {(k, a): a —>— 04(k), 0 < k < max (0, ab(a))} 

        B3 = {(k, a): a < 04(k), k > max (0, 08(a))} , 

B4 = {(k, a) : a «4(k), 0 < k < max (0, CVO} • 

We now note that the economy can at most accumulate its domestic capital and 
foreign asset subject to 

            k = mf(k) — (hl + n2)k + mg(a) , 

            a = f(k) + g(a) — n1a 

But any solution to this system of differential equations either converges to (k, (1) 
or approaches some point (0, a) such that a < 0. This establishes the boundedness 
of (k, a) from above. (See Figure 3.) 

 Now let k be an upper bound of feasible k. Then a > 03(a) — mf(k). But 
as was seen in the proof for Case I, 0 (— co) = 00 and hence a is bounded from 
below. This completes the proof for Case II. 

 In order to guarantee the boundedness of feasible paths, we shall make 

 Assumption 3. g'(— 00) > 0 and g'(00) < hl.
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a

 a

 Cl

0  1

Fig. 3

IV. STATEMENT OF OPTIMIZATION PROBLEM

 In what follows, we shall consider the problem of maximizing the social welfare 
functional 

 U(cl(t), c2(t))e atdt, o > 0 

subject to the constraints (1) through (7). As for the instantaneous welfare func-
tion U, we make 

 Assumption 4. Ut(0, c2) = 00, U2(cl, 0) = 00, Ut(cl, c2) > 0, U2(cl, c2) > 0, 
Ult(cl, c2) < 0, U22(cl, c2) < 0, and Ult(cl, c2)U22(cl, c2) — Ut (cl, c2) > 0 for all 
cl > 0 and c2 > 0. 
By the first two properties of U, only the case where each commodity is indispen-
sable to consumption will be dealt with. This serves for simplifying the subse-

quent analysis; for it enables us to define a well-behaved indirect utility function 
which is strictly concave in consumption expenditure, as will be seen later.
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                   V. INSTANTANEOUS MAXIMIZATION 

  In order to solve the optimization problem posed above, we utilize the maximum 

principle of Pontryagin and his associates [4]. Define the Hamiltonian 

     H =  U(cl, c2) + qt(z — (hl + n2)k) 

          + q2(g(a) — n1a + p11 fl(kl) + 12 f2(k2) — pd — c2 — z) . 

Since H is maximized with respect to c2 at every point of time along optimal 

paths, U2(cl, c2) = q2 holds, provided the constraint (6) is ineffective. For the time 
being, let us assume that rim q2(t) > 0 for the optimal path which will be consi-

dered(6). As will be seen in the next section, the optimality requires 12 = (3 + 
hl — g'(a))q2 + (q2 — U2(cl, c2))mg'(a), so that q2 is always positive. Thus the 
domestic product x must be maximized with respect to kl, k2, 11, and 12, if H is to 
be maximized with respect to them. Therefore, Theorems 1 through 5 still state 
the necessary conditions for optimality. Then the Hamiltonian reduces to 

  H = U(cl, c2) + qt(z — (nl-I- n2)k) + q2(g(a) — n1a +f(k) — pct — c2 — z) . 

Furthermore, the constraint (6) becomes 

pd + c2 + z < y(k, a) ,(6') 

where y(k, a) = m(f(k) + g(a)). Define the Lagrangean 

G=H+A(y(k,a)—pct—c2—z)+ pz. 

Then the maximization of H with respect to cl, c2 and z immediately implies 

   THEOREM 7. (i) Ut(cl, c2) = pU2(cl, c2), (il) U2(cl, c2) — qt = 0, with 
 equality if z > 0, (iii) U2(cl, c2) — q2 = A ? 0, with equality if pd + c2 + z < 

 y(k, a). 
 Let c = pd + c2. Then from (i) of Theorem 7 we may regard cl and c2 as the 

functions of c. Thus, write cl = cl(c), c2 = c2(c), and u(c) = U(cl(c), c2(c)). 
Then we can prove 

   LEMMA 3. Suppose that Ut(cl, c2) U22(cl, c2) — U2(cl, c2) U12(cl, c2) < 0 and 
U2(cl, c2) Ult(cl, c2) — Ut(cl, c2) U12(cl, c2) < 0 for all cl > 0 and c2 > 0. Then 
u'(c) > 0 and u"(c) < 0 for all c > 0 and u'(0) = 00. 

 Proof Since u'(c) = U2(cl(c), c2(c)), evidently u'(c) > 0 for all c > 0 and u'(0) = 
co. On the other hand,

rTTT 
        u"(c) — U2 (UllU22 - U12 U12)  U

2(U2 Ult — Ut Ui2) + Ut(Ut U22 - U2 U12) 

The numerator is positive by the strict concavity of U. We must show that the 

 (6) It will be shown later that there is an optimal balanced growth path with positive q2. 
Hence our tentative assumption that rim q2(t) > 0 is superfluous so far as we consider the path 

t-.00 
converging to the balanced growth path.
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denominator is negative. It is clearly nonpositive by hypothesis. If it were 
zero, then  Ut  U22 — U2 U12 = 0 and U2 U,, — U, U12 = 0, so that Ult U22 = U12, 
contradicting the strict concavity of U. Hence the denominator is negative, which 

proves the lemma. 
 The assumption of Lemma 3 is equivalent to saying that both commodities 

are non-inferior goods; for 

dclU2( Ut U22 — U2Ul2)
dcU2( U2 Ult — Ut U12) + Ut(Ut U22 — U2 U12) 

dc2 __ U2(U2U~l— UlUl2)  d
cU2(U2Ull — UlUl2) -{- Ut(UlU22 — U2 U12) 

In the following, we shall assume the non-inferiority of both goods. 

 Assumption 5. Ut(cl, c2)U22(cl, c2)—U2(cl, c2)U12(cl, c2)<0 and U2(cl, c2)Ult(cl, 
c2) — Ut(cl, c2) U12(cl, c2) < 0 for all cl > 0 and c2 > 0. 
Then from Theorem 7 we immediately obtain 

   THEOREM 8. (i) u'(c) — qt = p > 0 with equality if z > 0, (il) u'(c) — q2 = 
.i > 0 with equality if c z < y(k, a). 

 We now divide the space of state variables and auxiliary variables into four 

phases: 

PI = {(k, a, qt, q2) : qt > u'(y(k, a)), qt > q2} 

PII = {(k, a, qt, q2); qt u'(y(k, a)), q2 < u'(y(k, a))} 

Pm = {(k, a, qt, q2) : qt = q2, q2 > u'(y(k, a))} , 

Piv = {(k, a, qt, q2) : qt < q2, q2 > u'(y(k, a))} . 

These four sets are clearly disjoint. To see that these exhaust the whole space, 
let us first consider the complement of PI. Then qt S u'(y(k, a)) or qt q2. 
This situation can be divided into the following three cases: (i) qt S u'(y(k, a)) 
and q2 < u'(y(k, a)), (il) qt < u'(y(k, a)) and q2 > u'(y(k, a)), and (iii) qt q2. 
The first one forms the set PH. The rest can be divided into (i) qt < u'(y(k, a)), 

q2 > u'(y(k, a)), (il) qt < q2, q2 > u'(y(k, a)), and (iii) qt = q2, q2 > u'(y(k, a)). 
The last one forms Pm and the first two Pig. Therefore the above partition is 
exhaustive. 
 We are now in a position to characterize the optimal consumption and domestic 
investment for each phase. 

   THEOREM 9. (i) qt = u'(c) and z = y(k, a) — c > 0 in PI; (il) c = y(k, a) 
and z = 0 in PII; (iii) qt = u'(c) and 0 < z < y(k, a) — c in PIII; (iv) q2 = u'(c) 
and z=oinPINT. 

 Proof. (i) 0 < p = u'(c) — qt < u' (c) — q2 = A, and so c z = y(k, a); 
while since 0 < p = u'(c) — qt < u'(c) — u'(y(k, a)), we have z > 0. (il) Let 
c < y(k, a). Then 0 < u'(y(k, a)) — q2 < u'(c) — q2 = A, and hence c -E- z =
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y(k, a), so that  z  > 0. Therefore 0 = u = u'(c) — qt > u'(y(k, a)) — qt. But 
this is a contradiction. Thus c = y(k, a) and hence z = 0. (iii) If c = y(k, a) 
then u'(c) — q2 = A < 0, a contradiction. Hence c < y(k, a). If A > 0 then 
z> 0, so that p = 0. But, since A _ p, this is a contradiction. Hence A _ p = 0 
and therefore qt= u'(c). (iv) Since 0 < A = u'(c) — q2 < u'(c) — qt = p, it follows 
that z = 0; while if c = y(k, a) then u'(c) — q2 < 0, a contradiction. There-
fore c < y(k, a) so that q2 = u'(c). This completes the proof of the theorem.

                VI. FUNDAMENTAL DYNAMIC EQUATIONS 

 For a feasible path to be optimal, the state variables and the auxiliary variables 

must satisfy the following differential equations. 

   THEOREM 10.

k=z—(hl+n2)k, 

          a=g
S(a)—nla-E-f(k)—c—z, 41= (V + hl + n2)gr — f'(k)q2 -{- (q2 — u'(c))Yr(k, a) , 

12 = (a -E- hi — g'(a))qa -I- (q2 — u'(c))y2(k, a) . 

 Proof. Equations (8) and (9) are obvious. If c -{- z < y(k, a), 

Hk = — (hl + n2)gr -E- ,f'(k)g2 

Ha = (g'(a) — hl)g2 . 

If c -}- z = y(k, a), then 

Hk = — (hl + n2)gr -{- f'(k)q2 - (q2 - u'(c))Yr(k, a) 

Ha = (g'(a) — hl)g2 — (q2 — u'(c))Y2(k, a) 

Since q 
fact that q2 = u'(c) if c -}- z < y(k, a).

then

(8) 

(9) 

(10) 

(11)

allow from the

VII. SUFFICIENCY AND UNIQUENESS

 Theorems 7 through 10 state the necessary conditions for optimality. In this 
section, we show that these, together with a transversality condition stated below, 
are also sufficient for optimality, and furthermore that the optimal path is unique 
if g is strictly concave. 

  THEOREM 11. If a feasible path {(k°(t), a°(t), cl(t), c$(t), z°(t), q2(t)): 
t�. 0) satisfies the conditions stated in Theorems 7 through 10 and the trans-

 versality condition               

rim q°°(t)e °t = 0 (j = 1, 2)(12)
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 then it is optimal. It is also unique, provided g is strictly concave. 

 Proof. Let {(k(t), a(t),  cl(t), c2(t), z(t)) : t >_ 0} be an arbitrary feasible path. 
Noticing the following relations due to the strict concavity of u and fa and the 

(strict) concavity of g:

u(c°) — u(c) > (co — c)u/(c°) 

f(k°) —f(k) > (k° — k)f'(k°); 

g(a°) — g(a) ? (a° — a)g'(a°) 

we can prove the series of inequalities: 

   {u(c°) — u(c)}e-Stdt 

o V{(c°

with strict inequality if c° # c;

with strict inequality if g is strictly 

concave and a° # a,

0) - (y(k°, a°) — y(k, a))u'(c°) 

+ (y(k°, a°) — y(k, a))u/(c°) — (z° — z)u/(c°)}e-Stdt 

   = {((C°+z° — y(k°, a°)) — (c+z — y(k, a)))(u'(c°) — o q2) 

+ y(k°, a°) — y(k, a))u'(c°) — (z° — z)u'(c°) 

       + ((Co + z° — y(k°, a°)) — (c + z — y(k, a)))q°}e-stdt 

       {(y(k°, a°) — y(k, a))(u'(c°) — qz) + (z — z°)(u'(c°) — q~) 

0 + (k + (hl + n2)k — k° — (hi + n2)k°)qt 

+ (g(a°) — nia° + f(k°) — a° — g(a) + nia — f(k) + (2)q2}e-atdt 

                      {(k°0/000/       {(k— k)yr(k, ac)(u(co) - q2) + (a— a)y2(k, ac)(u(co) — o q2) 

+ (k — k°)qt + (hl + n2)(k — k°)qt + (a — a°)q2 + hi(a — a°)0 

      ^(a° — a)g/(a°)q2 + (k° — k)f'(k°)q2}estdt 

     0000 =
a{(k—k)((00+hi+n2)gr—f(/ok)g2+(q2—u/(co))yr(kc,ac)-11) 

       + (a — a°)((o + hi — g'(a°))q°s + (q° — u'(c°))y2(k°, a°) — IZ)}e-at 

+ rim (k(t) — k°(t))gr(t)e at .+ rim (a(t) — a°(t))0(t)e-at = 0 , 
    t-.oot-.00 

where (q7, q2) is associated with the path to which the superscipt zero is attached . 
Let us note. that U(cl(c°), c2(c°)) = u(c°) and u(c) = U(cl(c), c2(c)) > U(cl, c2) 
for all c, cl, and c2 such that c = pct + c2. Thus the path with superscript zero is 
optimal. 
 Now suppose that g is strictly concave. If c°(t) # c(t) or a°(t) # a(t) for some 
t, then, by the piecewise continuity of feasible c and the continuity of feasible a, 
either c°(s) # c(s) for all s in a nondegenerate time interval including t or a°(s) # 
a(s) for all s in a nondegenerate time interval including t. Further, if c°1(t) # cl(t)
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or  c2(t) c2(t) then c°(t) * c(t). Thus, if at least one of cl(t) cl(t), c2(t) ~ 
c2(t), c°(t) � c(t), and a°(t) � a(t) holds for some t, then at least one of the first 
and third inequalities in the above series holds strictly by the strict concavity of 
u and g. 

 If k°(t) � k(t) for some t, then k°(s) k(s) for all s in a nondegenerate open 
time interval I including t. If f is strictly concave in a neighbourhood of k°(s) 
for some s E I, then the third inequality in the above series holds strictly. Then 
suppose that f is linear on the set {k: (Es)(s E I, k = k°(s))}. In order to show 
that at least one of inequalities holds strictly in the above series, it suffices to 
consider the case where c°(s) = c(s) and a°(s) = a(s) for all s E I. Then, for all 
s E I, z°(s) — z(s) = f(k°(s)) — f(k(s)) = (k°(s) — k(s))f'(k°(t)), so that k°(s) — 
k(s) _ (k°(s) — k(s))(f'(k°(t)) — n, — n2). If f'(k°(t)) = n, + n2 then k°(s) = k(s) 
for all s E I. But this is impossible since k°(s) — k(s) must tend to zero as s tends 
to ti or t2, where it 1, t2[ = I. Hence f'(k°(t)) n, + n2. If f'(k°(t)) > hl + n2 
then k°(s) > k(s) if and only if k°(s) > k(s). But this is again impossible since 
this implies rim (k°(s) — k(s)) * 0. Similarly we cannot have f'(k°(t)) < hl + n2 

s-+t2 

since it implies rim (k°(s) — k(s) * 0. Thus if c°(s) = c(s) and a°(s) = a(s) 
s-•ti 

for all s E I, then f cannot be linear on the set {k: (as)(s E I, k = k°(s))}. Hence 
if k°(t) * k(t) for some t, then we have at least one strict inequality in the above 
series of inequalities. Thus the uniqueness of the optimal path has been establi-
shed. 

 Remark 1. If the optimal path is unique, then the transversality condition (12) 
is necessary for optimality.

               VIII. OPTIMAL BALANCED GROWTH PATH 

 Before characterizing the dynamic behaviour of the optimal path with an 
arbitrary initial condition, we show the existence of an optimal balanced growth 

path. Let us first define v(k), w(k), and w,(k) by 

nlv(k) -}- (m — 1)(f(k) + g(v(k))) = 0 , 

     g(w(k)) — n,w(k) -{- f(k) — (n, + n2)k = 0 with w(k) < a' , 

     f(k) -f- g(w,(k)) = 0 , 

where g'(a') = n,. Then 

v'(k)— (1 — m)f'(k)(1 — m)(f"(k) + g"(v(k))(v'(k))2)         v„(k)=

w'(k) =

nlrt(m—De v(k)) 

hl+ n2 —f'(k)
w"(k)

                  

rit            V— 1)g(v(k)) 

f"(k) + g"(w(k))(w'(k))2

wt(k) = —

g'(w(k)) — hi 

f'(k)
g'(w,(k)) '

wi'(k) _ —

— 
n, — g'(w(k)) 

f"(k) -f- g"(wt(k))(w (k))2
g'(w,(k))
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   LEMMA 4. Suppose that 0  < g'(0) < co and g'(00) > hl/(1 — m). Then 
 there exists a unique k' > 0 such that mf(k') — (hl + n2)k' = — mg(a') and 

v(k) > w(k) for all k such that 0 < k < k', where a' = ((1 — m)/m)((hl + n2)/hl)k'. 

 Proof Let 01(k) = mf(k) — (hl + n2)k and 02(k) _ — mg{((1 — m)/m)((hi + 
n2)/hi)k}. Then Mo) = 01(k") = 0 for some k" > 0, MO) = 00, and 9V(k) < 0 
for all k > 0. On the other hand, 02(0) = 0, 0 < ¢40) < 00, and 02'(k) >_ 0 
for all k > 0. Hence there is a unique k' > 0 such that mf(k') — (hl + n2)k' = 
— mg(a'). But, since, as can be easily seen, mf(k) — (hl + n2)k = — mg{((1 — 
m)/m)((hl + n2)/hi)k} if and only if v(k) = w(k), it follows that v(k') = w(k') and 
v(k) * w(k) for all k > 0 such that k k'. 

 We now note that, by hypothesis, g'(00) > hl/(1 — m) and g is concave, so 
that hl + (m — 1)g'(a) > 0 for all a. Since g(0) = 0 this implies that n1a + (m 
— 1)g(a) > 0 for all a > 0; and hence v(k) < 0 for all k > 0. On the other 
hand, since g'(0) > 0 by hypothesis, n1a + (m — 1)g(a) < 0 for all a < 0; and 
therefore v(0) = 0. 

 Since g(v(k)) — g(wt(k)) = (hl/(1 — m))v(k) by definition, we have 

v(k) > wt(k) for all k > 0 and v(0) = wt(0) = 0 . (13) 

Furthermore, by definition, f(k) + g(w(k)) < 0 if and only if w(k) < — ((hl 
+ n2)/hl)k, and hence, 

        w(k) < wt(k) if and only if w(k) Z. — ((hl + n2)/hl)k . (14) 

Since w'(0) = — co, w(k) < — ((hl + n2)/hi)k for sufficiently small k > 0, and 
therefore, by (14), w(k) < wt(k) for sufficiently small k > 0. Since v'(0) = — co, 
it follows from (13) that w(k) < wt(k) < v(k) < — ((hl + n2)/hl)k for sufficiently 
small k > 0. This establishes that w(k) < v(k) for all k such that 0 < k < k'. 

  We are ready to state and prove the existence theorem of an optimal balanced 

growth path. 

   THEOREM 12. Suppose that g'(— 00) > o + hl, g'(0) > 0, g'(00) > hl/ 
 (1 — m), and that mf(k) — (hl + n2)k = — mg(b(k)) implies g'(b(k)) > a + hi, 
 where b(k) = ((1 — m)/m)((hl + n2)/hi)k. Then there exists an optimkl balanced 

  growth path. 

  Proof Since f'(0) = 00, f'(00) = 0, and g'(00) < o + hl < g'( — 00), the 
sets K* = {k: k > 0, f'(k) = o + hl + n2} and A* = {a: g'(a) = 6 + hl} are 
nonempty. It suffices to consider the following two cases: Case I. k E K*, 
a E A*, and a > v(k) for some (k, a); and Case II. k E K* and a E A* imply 
a < v(k). 

  Case I. Let k* E K*, a* E A*, and a* > v(k*). Then f'(k*) = S + hi 
+ n2 and g'(a*) = 6 + hl. Define c* = g(a*) — n1a* + f(k*) — (hl + n2)k*, 
z* = (hl + n2)k*, and qt = q2 = u'(c*). If we define k by f(k) = (hi + n2)k 
and 0 < k < 00, then clearly f'(k) <hl + n2 so that k* < k. Hence f(k*) 
— (hl + n2)k* > 0. If a* > 0 then g(a*) — n1a* ? (g'(a*) — hl)a* > 0 where
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the first inequality follows from the concavity of g. Thus if a*  > 0 then c* > 0. 
On the other hand, suppose a* < 0. Then g'(0) < co and hence, by Lemma 4, 
there is a unique, k' > 0 such that v(k') = w(k') and v(k) > w(k) for all k such 
that 0 < k < k'. There are two cases : k' > k* or k' < k*. If k' > k* then 
a* > v(k*) > w(k*). Since g'(a*) _ o + hl > hl, it follows that c* = g(a*) 
— n1a* + f(k*) — (hl + n2)k* > g(w(k*)) — niw(k*) + f(k*) — (hi + n2)k* = 0. 
Conversely, suppose k' < k*. If we define k' by f'(k') = hl + n2, then clearly 
k' < k* < k'. Since w'(k) < 0 for all k < k', we have a* > b(k') = w(k') 
> w(k*) and so c* > 0. Therefore c* > 0. The positivity of k*, z*, qt , and q2 
is obvious. Finally, since a* > v(k*), it follows that c* + z* = f(k*) + g(a*) 
— nla* f(k*) + g(a*) — niv(k*) =f(k*) + g(a*) + (m — 1)(f(k*) + g(v(k*)) < 

m(f(k*) + g(a*)). The last inequality is due to the fact that g'(v(k*)) >_ g'(a*) 
= o + hl > 0 and g is concave. Therefore (k*, a*, c*, z*, qt , 4) is an optimal 
balanced growth path in pill.

a

A*.

k

Fig. 4

Case II. Let us define s(k,  in) by 

m

g'(s(k, m)) =
3+hi

m-l a+hl+n2 f '(k) —
a + hl

M —1
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Then the mapping s is not necessarily single-valued. But it is upper semiconti-
nuous and the image set s(k,  m) is closed and connected. (See Figure 4 or 5.) It 
can be easily seen that, for any k' and k" such that k' < k", 

min s(k', m) < min s(k", m) and max s(k', m) < max s(k", m) , (15) 

provided such maxima and minima exist. 
 Let K = {k: f'(k) = o(o -I- hl + n2)/(m(o + hl))}. Since g'(00) > hl/(1 — m) 

by hypothesis, there is a k such that k < min K and rim min s(k, m) = co. 

                                                                         k-k-o On the other hand, clearly v(k) < 0. Let k* E K* and a* E A*. Then a* 
< v(k*) < 0 and a* E s(k*, m). Hence, the continuity of v, the upper semicon-
tinuity of s, and the connectedness of s(k, m) imply that there is a k** such that 
v(k**) E s(k**, m). Let a** = v(k**). Then

ea-, *) =

(m — 1)(f(k**) + g(a**)) + nla** = 0 

m o + hl
m-l hl+n2 J/(C ) —

o+hl

m-l'

a

A'

 /.

Fig. 5
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Further let  c** = g(a**) — nia** + f(k**) — (hl + ha)k**, z** = (hl + n2)k**, 

qt* = u'(c**), and q2 * _ (6 + hi + n2 — m f'(k**))qt */((1 — m)f(k**)). 
 Since s is nondecreasing in the sense of (15) and .v is decreasing, it must be that 

k* < k** and a* S a** < 0. Hence g'(a**) < t3 + hl. But if g'(a**) = a + hi 
then a** E A. Therefore f'(k**) = 3 + hi + n2 so that k** E K*. Since a** 
= v(k**), this contradicts the assumption of Case II. Thus g'(a**) < 8 + hl. 
On the other hand, a* < 0 implies g'(0) < co. Hence, by Lemma 4, there is a 
unique k' > 0 such that v(k') = w(k') and v(k) > w(k) for all k such that 0 < k 
< k'. Since g'(b(k')) > 6 + hl by hypothesis, v(k**) = a**>b(k') = v(k') = w(k'). 
Hence k** < k' by v'(k) < 0. Thus a** > w(k**), and so c** > 0. The posi-
tivity of k**, z**, and qt * is obvious. 

 Finallywe note thatni — g'(a))q2*** -**m'a* *Since    Y~+* *_ (qiq2)g()• 

g'(0) > 0, g'(a**) > 0. Furthermore, 3 + hl — g'(a**) > 0 as was seen above. 
Thus q2 * < 0 implies qt * < q:* . But this yields a contradiction since qt * 
= u'(c**) > 0. Hence q:* > 0 and therefore qt * > q:* . Thus (k**, a**, 
c**, z**, qt *, q2 *) is an optimal balanced growth path in PI. _ This completes 
the proof of the theorem. 

 Remark 2. The optimal balanced growth path with one asterisk is a path on 
which the marginal revenue of foreign investment (or the marginal cost of bor-
rowing) is equal to the net marginal product of domestic capital, while the path 
with two asterisks does not necessarily satisfy this condition. 

 In what follows, we shall show that if the function g is strictly concave then 
the optimal path with two asterisks can rarely satisfy the equality condition of 
the marginal revenue of foreign investment and the net marginal product of 
domestic capital. To this end, it is sufficient to prove 

   LEMMA 5. Suppose that g is strictly concave. Then 

    (i) si(k,m)>O for all k>O and m> 1, 
   (il) s2(k, m) < 0 if and only if f'(k) Z. a + hi + n2 , 

   (iii) s(k, mo) = h(k) for all k > 0 , 
   (iv) s(k, m) = h(k) if and only if f'(k) = S + hl + n2 for all m > 1 such 

       that m # mo 
 where mo = (6 + hi + n2)/n2 and g'(h(k)) = f'(k) — n2. 

 Proof. Since g is strictly concave, s is single-valued and furthermore 

      si(k, m) — m a +nil"(k)  
m — 1 6 + hi + n2 g"(s(k, m)) ' 

     52(k,yn)— 1  3+hi o+hi+n2—f'(k)  (
m — 1) 3+hl+n2 g"(s(k, m)) 

Hence (i) and (il) are obvious. Furthermore, by simple substitution, we get 
g'(s(k, mo)) = f'(k) — n2, which proves (iii). If f'(k) _ a + hl + n2, then clearly 
g'(s(k, m)) = f'(k) — n2, so that s(k, m) = h(k). Conversely, if s(k, m) = h(k)
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then  (a + hl + n2 - mn2)(o + hl + n2 — f'(k)) = 0. Since m # (a + hi + n2)/ 
n2, it must be that f'(k) _ a + hl + n2. Thus (iv) has been established. 

 The relation a = h(k) represents the equality of the marginal revenue of foreign 
investment and the net marginal product of domestic capital. Since a** = s(k**, 
m) and f'(k**) < a + hl T n2, it follows from (iv) of Lemma 5 that a** # h(k**) 
unless m = (a + hl + n2)/n2. But the last condition can seldom be satisfied(7'. 

 Another implications of the strict concavity of g may be summarized as the 
following two remarks.

 ?fl>9n0

Fig. 6

 Remark 3. If g strictly concave then the optimal balanced growth path with 
two asterisks is unique. 

 Remark 4. If g is strictly concave and if the domestic production is completely 
specialized to one of the two commodities, then the optimal balanced growth 

path is unique. 
 Remark 3 follows from the fact that s is single-valued and nondecreasing and 

v is decreasing. Remark 4 is due to the fact that f is strictly concave in the domain 
of k for which the specialization is complete.

(7) In particular, this condition cannot be satisfied if n2 = 0.
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              IX. DYNAMIC BEHAVIOUR OF OPTIMAL PATH 

 In this section, we shall be concerned with the dynamic behaviour of the unique 
optimal path strarting from an arbitrary initial condition. We strengthen Assump-
tions 2 and 3 for this purpose. 

 Assumption 2'. g"(a) < 0 for all a. 

 Assumption 3'. g'(—  00)  > o + hl, g'(0) > 0, g'(00) >_ hl/(1 — m), and if 
mf(k) — (hl -}- n2)k = — mg(b(k)) then g'(b(k)) > o + hl, where b(k) = ((1 — m)/ 
m)((hl + n2)/hl)k. 

 These are sufficient for guaranteeing both the uniqueness of optimal path and the 
existence of an optimal balanced growth path. 

 Let us consider first the case where an optimal balanced growth path lies in 
PIII. We begin by characterizing the path which stays in Pm . On such a path, 
the equality qt = q2 continues to hold, so that Il = 42. Hence, by (10), (11), 
and (iii) of Theorem 9, the relation a(t) = h(k(t)) must be satisfied for all t such 
that the path stays in Pm. From (8) and (9), 

  k = z — (hl + n2)k = g(h(k)) — nth(k) +1(k) — c — h'(k)k — (hl + n2)k , 

while, from (11) and (iii) of Theorem 9, 

u"(c)c = 42 = (o + hl — g'(h(k)))u'(c) = (a + hl + n2 — f'(k))u'(c) . 

Thus 

            k = G(k)(R(k) — c) ,(16) 

c = (a+hl + n2 — f'(k))u,(c),(17) 
where 

         1         G(k) = 
            ht(k)+ 1 

        R(k) = g(h(k)) — nth(k) + f(k) — (hl + n2)k 

On the other hand, 

     c + z = g(h(k)) — nth(k) + f(k) — h'(k)(z — (hl + n2)k) , 

so that 

 (c -}- z)(1 + h'(k)) = g(h(k)) — nth(k) + f(k) + (hl + n2)kh'(k) + ch'(k) . 

Hence by the constraint (6), 

              c < T(k) if h'(k) > 0 ,(18-1) 

            a > v(k) otherwise,(18-2) 

where
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 T(k)  = h'(k)------{(m  —  1  + mh'(k))(f(k) -f- g(h(k))) nth(k) — (n -I- n2)kh'(k)} . 

It should be noted that T is not defined for k such that k(w) < k < k(w) where 
w E SQ(p), since h'(k) = 0 for such k. 

 In order to characterize the path which stays in PIII, we must investigate the 
system of differential equations (16) and (17) with the constraint (18). Let us 
first examine the behaviour of the solutions of the system in the neighbourhood of 
the balanced growth path (k*, c*). Notice that a* is unique by the strict con-
cavity of g while k* is not necessarily unique. Thus define k* = max (v-l(a*), 
min K*), k* = max K*, c* = g(a*) — n1a* f(k*) — (11 n2)k*, and c* 
= g(a*) — n1a* + f(k*) — (hl + n2)k*, where K* is defined in the proof of Theo-
rem 12. We now prove 

   THEOREM 13. Suppose that there is a (k, a) such that k E K*, a E A*, and 
 a > v(k). Then there exists in the neighbourhood of the optimal balanced 

 growth paths a unique solution to the system (16) and (17) such that 
  (i) if v-l(a*) <k* and the initial k is smaller than k* then the solution converges 

     monotonically to (k*, c*), 

  (il) if the initial k lies in the closed interval L*, k*] then the solution remains 
     at the initial position, 

 (iii) if the initial k is greater than k* then the solution converges monotonically 
     to (k*, c*). 

 Proof Consider the Taylor expansion of the system in the neighbourhood of 
the balanced growth path (or one of balanced growth paths). The characteristic 
equation of the linear system 

     x2 — G(k*)R'(k*)x — G(k*)h'(k*)g"(h(k*))u'(c*)/u"(c*) = 0 

has different two real roots. Hence the convergence of any solution is always 
monotonic. If h'(k*) > 0 then the two roots have opposite signs, while if h'(k*) 
= 0 then one root is positive and the other vanishes. If v-l(a*) < k* then 
lirn h'(k) > 0. Thus the point (k*, c*) has the properties of a saddle point 

in so far as the convergence from below is concerned. Therefore there is a 
unique solution converging to (k*, c*) from below, which proves (i). The proof 
of (iii) is similar. If k* < k < k* then c = 0, so that we can find a stationary 
solution by putting c = R(k), completing the proof of (il). 

 Next, we shall examine the global properties of the solution to the system (16) 
and (17). Let c = E(k) denote the solution in Theorem 13. Define 

       k' = sup {k: k < k*, T(k) < E(k)} , 

       k" = inf K (if k is empty then k" = k) , 

        k = max (k', k") (if k' is not defined then k = k") ,
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 k  = inf {k: k > k*, T(k) < E(k)} , 

where 

K={k: 0<k<k, (Vx)(k<x<k.h'(x)>0)}, 

h(k) = v(k) . 

Then we can state 

   THEOREM 14. Suppose that f(k) -}- g(— ((hl -{- n2)/hl)k) = 0 implies g'(— 

 ((hl -}- n2)/hl)k) > f'(k) — n2 and that there is a (k, a) such that k E K*,a E 
 A*, and a > v(k). Then the solution (c, k) = (E(k), k) with k < k < k repre-

 sents the optimal path in PIII.

C

 0  k  ((+),) ((o 1) 

k=l;
I; (W.)) k(w2) = lc

I;

Fig. 7

 Proof It suffices to show that E(k) > 0 and (18) is satisfied for all k such that 
k < k < k. Let R(k) = 0, k < k*, h(k) = wt(k, and k > 0. We shall first 

show that k < k. Let f(kl) -}- g(— ((hl -E- n2)/hi)k') = 0 and kl > 0. Then 
by hypothesis g'(— ((hi n2)/hi)kl) > f'(kl) — n2 so that h(k') > - ((h+ n2)/ 
hl)k' = wt(kl). Since wt is decreasing and h is nondecreasing, it follows that 
k < k'. It can be easily seen, from the proof of Lemma 4, that wt(k) > w(k). 
Note that h(k) = w(k). Since h is nondecreasing and w'(k) < 0, we have k < k. 

 Now let us notice that 

   T(k) — R(k) =h'(h))1{(m — 1)(f(k)+g(h(k)))-I-nth(k)} . 
If T is defined and k > k then T(k) > R(k). On the other hand. E(k) < R(k)
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for all k such that k_<k<k*. As was shown above,_k<k and furthermore 
k <  k since  v(k)  > wt(k) for all k > 0 and h is nondecreasing. Hence k < k 
so that (18) is satisfied in the interval [k, k*]. Thus, by the definition of k and k, 
the condition (18) is satisfied in the whole interval [k, k]. 

 It remains to show that E(k) > 0 in the interval. Since E(k) > 0 for all 
k > k and k<k, it must be that E(k) > 0 for all k>k . If k">k then k>_k" 

  k so that E(k) > 0 for all k > k. On the other hand , suppose k" < kc$>. Since 
T(k) = {nth(k) — (hl ± n2)kh'(k)}/h'(k) < 0 and E(k) > 0 it must be that E(k) 
> T(k). But E(k) < R(k) = T(k). Hence there is a k' such that k < k' < k 
and E(k) >_ T(k) for all k such that k < k < k'. Thus k = k' >_ k, and hence 
E(k) > 0 for all k > k, completing the proof . 

  Since the optimal path is unique by Assumption 2' and Theorem 11 there is no 
optimal path which diverges from the path described in Theorems 13 and 14. We 
now turn to characterizing the pattern of transitions to this path from other 

paths. 

   LEMMA 6. If qt > q2 and qt < 12 then g'(a) < f'(k) , while if qt < q2 and 
qt > 6,2 then g'(a) > f'(k) — n2, i.e., a < h(k). 

 Proof. Since 4,-12 = (a -I- hl + n2)(gr— q2) + (g'(a) — f'(k) + n2)g2 -- (u'(c) 
— q2)m(g'(a) — f'(k)) , if qt >_ q2 and qt < 42 then either g'(a) < f'(k) — n2 or 
g'(a) < f'(k); hence g'(a) < f'(k). On the other hand, if qt < q2 and qt > 42 
then either g'(a) > f'(k) — n2 or g'(a) > f'(k); hence g'(a) > f'(k) — n2. 

   LEMMA 7. If qt= q2 and qt = q2 then f'(k) — n2 < g'(a) < f'(k) . 

 Proof Since 0 = qt — 42 = (g'(a) —f'(k) -f- n2)q2 -f- (u'(c) — g2)m(g'(a) —f'(k)) , i
t must be that g'(a) — f'(k) + n2 > 0 implies g'(a) < f'(k) while g'(a) — f'(k) 

  n2 < 0 implies g'(a) > f'(k). From the latter we get g'(a) > f'(k) — n2, and 
from the former g'(a) < f'(k); this completes the proof . 

   THEOREM 15. Suppose that all the assumptions of Theorem 14 are satisfied. 
 Then every optimal path which leads from the region {(k, a) : a> h(k)} to the 

 path represented by (k, a, c) = (k, h(k), E(k)) and k < k < k lies in pl just 
 before the transition time, with the exception that there may be a path in PH 
 which leads to the point (k, h(k), E(k)) if E(k) = y(k, h(k)). 

 Proof For any (k, a, qt, q2) E Pm there is a positive number e such that 

q2 - u'(y(k, a)) = e, while u'(y(k, a)) > q2 in PH. Hence the continuity of q2 
implies that no transition occurs from PII to Pm , unless s is arbitrarily small at 
the transition point. Therefore, all the transitions to Pm must be either from 
PI or from PINT unless in the exceptional case. But, by Lemma 6, if a > h(k) 
then qt > q2 or qt < 42. Suppose that 41 < 12. If 41 = q2 then qt# q2 by Lemma 
7. If qt < q2 then it must be that r > 12 in order to enter Put where qt = q2. 

 (8) Note that, in this case, T is defined for all k such that k" < k < k, and evidently, for k.
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But this is impossible since  41  < 42 by assumption; hence qt > q2. If 41 < 42 
then it is necessary that qt > q2 to enter P. Thus qt < 42 implies qt > q2. 
Therefore a > h(k) implies qt > q2. This shows that every path leading to Pm 
from the region such that a> h(k) must be in PI just before the transition time. 

   THEOREM 16. Suppose that n2 = 0 in addition to the assumptions of Theorem 
 15. Then every path which leads to the path represented by (k, a, c) = (k,h(k), 
 E(k)) and k < k < k from the region such that a < h(k) lies in PIV just before 

 the transition time, with the exception stated in Theorem 15(9'. 

 Proof Symmetrical to the proof of Theorem 15. 
 The preceding arguments were confined to the case where the region Pm has 

a balanced growth path. The rest of the present section will be devoted to charac-
terizing the unique optimal path converging to a unique balanced growth path in 
pl. We begin by considering the Taylor approximation of the System (8) through 

(11) in the neighbourhood of the balanced growth path. The characteristic equa-
tion of the linear system can be written as 

               x4 + alxs + a2x2 + asxl + a4 = 0 , 

where 

al= —25,
/S a2 = 62 - {hl + (1 — m)gr(a**)n2/(5 + hl)}2 

         — 6{hl + (1 — m)gr(a**)n2/(o + hl)} 

         — (a + hl + n2)(frt(k**)/fr(k**))(ur(c**)/urr(c**)) 

a3=5(U2—a2), 

      a4 = {m(o + hl)((m — 1)g/(a**) + hi) frt(k**) 

+ (m - 1)2(6 + hl + n2).fr(k**)grr(a**)}ur(c**)/urr(c**) 

   LEMMA 8. Suppose that k E K* and a E A* imply a < v(k). Then two of 
 the roots of the above characteristic equation have positive real parts. Further-

 more, if hl + (1 — m)n2 >_ 0 then the other two roots have negative real parts. 

 Proof Let xi, x2, x3, and x4 be the characteristic roots. Then 

xi+x2+x3+x4= —al> 0, 

xlx2 + xlxs + xlx4 + x2xs + x2x4 + xsx4 = a2, 

xlx2xs + xlx2x4 + xlxsx4 + x2xsx4 = - a3, 

xlx2xsx4 = a4 > 0 . 

It is sufficient to consider the following three cases : Case I. All roots are real, 

 (9) No specification is generally possible of the transitions from or to PH without further 
restrictions on the model.
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Case II. Two roots are real and the other two complex, and Case III . All roots 
are complex. 

 Case I. Since both the sum and product of the four roots are positive, either 
two roots are positive and the other two negative or all the four roots are positive. 
But, since  g'(a**) < o + hl, it follows that hl + (1 — m)g/(a**) n2/(3 -f- hl)> hl 

+ (1 — m)n2. Hence if hl + (1 — m)n2 > 0 then b2 > a2 so that a3 > 0. Thus 
not all roots are positive, which implies that two roots are positive and the other 
two negative. 

 Case II. Let xi and x2 be real roots and x3 and x4 complex roots . Then x3 
and x4 are conjugate. Let x3 = y3 -f - iz3 and x4 = y3 — iz3, where i is the ima-
ginary number. Then xi + x2 + 2y3 = — al > 0, and xlx2(y3 + zg) = a4 > 0. 
By the latter, xi and x2 have the same sign. Hence either xi > 0 and x2 > 0 or 

y3 > 0. On the other hand, if hl + (1 — m)n2 > 0 then 2xlx2ys + (xi + x2)(y3 
+ 4) = - a3 < 0 so that either xi < 0 and x2 < 0 or y3 < 0, completing the 
proof for Case II. 

 Case III. In this case, we may write all the roots as xi= yr -}- iz1, x2= yr 
- iz1, x3 = y2 + iz2, and x3 = y2 — iz2. Hence 2y1 2Y2 = — al > 0 and 
(yr + zi)2y2 -E- 2y1(y2 + 4) _ - a3 < 0. Thus either yr > 0 or y2 > 0. If 
hl + (1 — m)n2 > 0 then either yr < 0 or y2 < 0. This proves the lemma. 

   From this lemma, we immediately have 

   THEOREM 17. Suppose that k E K* and a E A* imply a < v(k), and that 
hl + (1 — m)n2 > 0. Then for any (k, a) in the neighbourhood of (k**, a**) 

 there exists a unique path in pl which passes through (k, a), converging to (k**, 
  a**). 

As for the transition to pl from other regions, we cannot say anything without 
further specifications of the model.

X. SUMMARY

 In the present paper, we have characterized the behaviour of optimal growth 

path in an economy which faces both an international (perfectly competitive) 
commodity market and an international (imperfectly competitive) capital market . 
Under the usual neoclassical assumptions on the production functions , we have 
first shown that feasible paths are bounded if the marginal cost of borrowing is 

positive for sufficiently large value of borrowing and the marginal revenue of 
foreign investment (lending) is less than the rate of growth of the labour force 
for sufficiently large value of foreign asset . Since these conditions are very mild , 
we can meaningfully consider the optimization problem with regard to our model . 
Secondly, we have obtained sufficient conditions for the existence of an optimal 
balanced growth path. The conditions obtained are such that: 

    (i) g'(—co) >8±hl,
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   (il)  g'(0) > 0 , 

   (iii) g'(00) > hi/(1 — m) 

   (iv) mf(k) — (hl -I- n2)k = — mg(b(k)) implies g'(b(k)) > o + hl, 

                 1 —m nl-~n2  
where b(k) =k 

m hi 

Condition (i) means that the marginal cost of borrowing for sufficiently large 
amount of borrowing is greater than the sum of the subjective rate of discount 
and the rate of growth of labour force. Conditions (il) and (iii) are satisfied if 
the marginal revenue of foreign investment is always nonnegative. Condition 

(iv) is rather complicated. A simple condition which implies (iv) is given by 
g'(0) > 3 + hl. But this is too strong to guarantee the existence of an optimal 
balanced growth path, since g'(0) > 3 + hi is sufficient as can be easily shown. 

 It should be noted that the balanced growth path is not necessarily a path 
which equates the marginal revenue of foreign investment to the net marginal 

product of domestic investment. But, since g'(a*) = 3 + hl where a* is the 
foreign asset per capita on the optimal balanced growth path which equates the 
marginal revenue of foreign investment to the net marginal product of domestic 
capital, it follows that a* < 0 if and only if g'(0) < 3 ± hl. That is, if the inter-
national rate of interest is relatively low, then the optimal path approaches the 
balanced growth path with positive debt (borrowing situation); on the other 
hand, if the rate of interest is relatively high, then the optimal path approaches 
the balanced growth path with positive asset (lending situation). The critical 
rate is given by r(0) = g'(0) = o + hl, that is, the sum of the subjective rate of 
discount and the rate of growth of labour force. This result coincides exactly 
with that by K. Hamada [3]. 

 Although we so far have not been assuming the strict concavity of function 

g for positive value of foreign asset, we can deduce the uniqueness and further 
properties of the optimal path by assuming the strict concavity of g on the domain. 
In what follows, let us focus our attention upon the case for which the optimal 
balanced growth path is such that the marginal revenue of foreign investment is 
equal to the net marginal product of domestic capital. Then we can find an 
optimal path tending to the optimal balanced growth path. By uniqueness, any 
optimal path tends to the balanced growth path. If the marginal revenue of 
foreign investment is smaller than the net marginal product of domestic capital, 
then the domestic absorption (i.e., consumption plus domestic investment) 
should be maintained at the maximum possible level by importing capital as much 
as possible. Conversely, if the marginal revenue of foreign investment is greater 
than the net marginal product of domestic capital, then the domestic investment 
should be minimized, i.e., the gross investment should be zero, provided the 
domestic capital stock does not depreciate. In the case with capital depreciation, 
the last statement is not necessarily true. These results are the same as those of



OPTIMAL CAPITAL ACCUMULATION IN AN OPEN ECONOMY 41

K. Hamada, so far as the complication caused by capital depreciation is neglected. 

 Thus, the optimal policy on the international capital movements is not affected 
by taking into account the international trade explicitly. Furthermore, the 

pattern of specialization in domestic production is not affected by the international 
capital movements; that is, it depends only upon the international terms of trade 
and the amount of capital stock. But, these independences would be merely the 
consequences of the simplifying assumption of constant terms of trade. Indeed, 
if we take into account the effects of the international capital movements on the 
terms of trade, we should have complicated results. 

 Finally, let us characterize the structure of optimal trade policy. If the domestic 

production is completely specialized to one commodity, then the other commodity 
not produced should be imported since both commodities are indispensable for 
consumption, while the direction of the trade of the produced commodity cannot 
be specified without further restrictions on the model. If the specialization of 
domestic production is incomplete, then we cannot tell about the trade policy. 
Although we can at most say these things about the trade policy in the general 
model above, we have more things to say if we are dealing with the usual  two-
sector model in which one commodity is for pure consumption and the other for 

pure investment. Let us regard the second goods as pure investment goods. 
It is clear that most of the results obtained remain unchanged by this modifica-
tion. 

  Consider first the region where the domestic production is completely specializ-
ed to the first goods, i.e., consumption goods. If the debt is relatively small (or 
the asset is relatively large), i.e., the marginal cost of borrowing is smaller than 
the net marginal product of domestic capital, then the amount of imports should 
be maximized, i.e., investment goods should be imported as much as possible. 
If the debt is relatively large, we cannot generally tell about the direction of trades. 
But in the absence of capital depreciation, investment goods should be neither 
exported nor imported, since both gross investment and domestic production of 
investment goods are zero. The direction of the trade of consumption goods 
cannot be specified without further restrictions. 

  Consider second the region where the domestic production is completely specia-
lized to the second goods, i.e., investment goods. Then clearly all of the cons'imp-
tion goods should be imported. If the debt is relatively small, then the direction 
of the trade of investment goods cannot be determined without further specifica-
tions of the model. But, if the balanced growth path lies in this region, some of 
the output of investment goods will be exported eventually. If the debt is rela-
tively large, we cannot generally specify the direction of the trade of investment 

goods. If. the capital stock does not depreciate, however, all of the output of 
investment goods should be exported since the domestic gross investment is 
zero. 

  In the region where the specialization of domestic production is incomplete,
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the direction of the trade of consumption goods is indeterminate in general . As 
for investment goods, we can only say that all the output of them should be export -
ed if the debt is relatively large and the capital stock does not depreciate . 

                                               Keio University
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