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BEST LINEAR UNBIASED PREDICTOR AND 

      THE PREDICTION ERROR

 CHIOHIKO MINOTANI

 This paper is concerned with the best linear unbiased predictor (BLUP) and 
the prediction error when the random vector y is predicted over several times. 

 As is well known the best linear predictor (BLP) for some prediction prob-
lem exists and is unique under some conditions. ([3], [11], [15]) 

  In section I the BLUP of a single equation and the simultaneous equations 
model is derived, and this BLUP is proved to satisfy the necessary and suffi-
cient condition of uniqueness as a predictor. 

 If the conditions that the ordinary least square's estimator 49 of 13 is BLUE 
hold over the prediction periods, then the predictor X fig is BLUP but the 

predictor X f13 is not BLUP even if the conditions that the generalized least. 
square's estimator 1 is BLUE hold over the prediction periods, where Xi is a 

p x G matrix of independent variables in the prediction periods. 
 A single prediction from a reduced form equations is treated in [7] but in. 

section II we don't treat a single prediction but prediction in several periods 
and prediction interval is derived. 

 This paper refers to an extension of [4] and [7].

I

1. The Prediction Problem and Predictor: A Reviewm 

 Let y8( — 00 < s < 00) be G-variates random vector. The prediction problem . 
is to know the probabilistic structure of the G x 1 vector y8 and predict the 
G x 1 vector of future values of yv (v E TO from the G x 1 vector of observed . 
values yt (t E To), where To and Tl represent observation periods and prediction . 

periods respectively. Then the problem is to find the predictor yv of yv (v E 
Tl) according to some criterion (ordinary the criterion of minimum mean. 
square error is adopted). 

 Now let H be the linear space spanned by random vector y8 for all s and it. 
is assumed that y8 has finite second-order moment. The inner product of u 
and v is defined by the relation 

              (u, v) = E(u'v)(1-4 
and the norm of u is 

Ilull = (u, u)1/2 = [E(u'u)]1/2 , (1-2> 

where u, v E H and E(u) = E(v) = 0 .

(1) This review is mainly owing to [15].
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 Let Hl be the linear subspace of H spanned by  sit (t E To). If Er„, A;n'YT-r 
which is the linear combination of the observed value yt (t E To), exists and 

  can be written as 

tv = rim E A;n)YT—r,(1-3) 
n--ooo r=0 

and yv — yY = zv is orthogonal to the space Hl; that is, the condition 

E(zvu) = 0 for any u E Hl(1-4) 

is satisfied, then y is the projection of y„ on the space Hl, where A;.n) is the 
G x G matrix which element is constant and T represents the length of the 
observation period. Then Si„ can be uniquely represented as the sum of two 
vectors 

Yid = 3'v + zY ,(1-5) 

where y is in Hl, while z, is orthogonal to Hl (Projection Theorem). Further, 
for any Sit E Hl, that is, any linear function St of the observed value yt (t E 
To), the following inequality holds 

E[(YY — 3')'(Y. — S:)] > E[(Yv — 3'v)'(y, — $y)] (1-6) 

with equality holding when yy = yy. 
 The equation (1-6) can be easily shown. Since (Sit — Si„) E Hl, it is or-

thogonal to (y, — tv). Then 

= E{[3% — 3' — ($ — yv)]'[y,, — 3'v — (3'v — yv)]] 
= E[(Y., — yv)'(Y., — SA + E[($ — 3'v)'(3'v — Sc)] 
> E[(Yv — 3'v)'(y, — SO] 

And hence if we take the Sc which satisfies the condition of (1-3) and (1-4) 
as the predictor of yv, then it minimizes the mean square of prediction errors, 
that is, it is the best linear predictor. Now, further E(y„ — yy) = 0, then the 
predictor ~v is the best linear unbiased predictor (BLUP). 

 We have shown that the predictor Si', which satisfies two conditions (1-3) 
and (1-4) posses a smaller mean square forecast error than any linear predic-
tors, the linearity property indicating here that the predictors are linear func-
tion of yt (t E To). 

 Next we shall show that if we consider any measurable functions of yt by 
relaxing the restrictions of the linearity, then E(yv I yt), that is, the conditional 
expectation of sit, (v E Tr) given yt (t E To) or regression function is the best 

predictor of the class of any measurable functions, where the existence of 
E(yy yt) is assumed. Let any measurable function be 

                     Sl~v = Sk(Yt, t E To)
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and the conditional expectation of  yy given yt be 

av = E(yv I yt, t E To, v E Tl) ,(1-7) 
where

`1 (yt) 

_ l G.(yt)

 

tETo, vETf

and 
-

y~v-

                yv= • , vETf 

YGv _ 
then O, = E(y ,1 yt) stands for 

1Yt)-

     ck _• 

                           _OGvJ _E( vGv I Yt)_ 

[Proof ] 
  Let El be the expectation of yt (t E To). Since 

E[(Yv — ~v)(S~y — 95,)]  = El{E[(Y„ — fikY(0 — 9 v)1 yt, t E To, v E TA} 
                  = {E[(y — or,) I Y„ t E To, v E Tl]}'{El(SY — O )} 

=0, 

then 

ERL — (Yv — = E[(y , — .Y (Y — 95Y)} + E[(Sbv — 5z Y(Sb — ~v)] 

[(yv — — O )](1-8) 

and hence the mean square prediction error becomes minimum when av = qSY. 

 We didn't specify the probability distribution of y8 until now, but if y8 is 
distributed according to G-variates normal distribution, the best linear pre-
dictor which satisfies two conditions (1-3) and (1-4) is the best predictor 
among the class of any preditors. For y , — y is not correlated to any vector 
u E Hl and under the assumption of normality the lack of correlation is 
equivalent to the statistical independency, so any measurable functions of the 
observed value yt, that is, av = sb(yt), are indepent of y„ — t. Therefore 
the relation 

E[(YY — Sb )'(Yy — S& )] > E(Yv — 3'.Y(Yv — S* )] (1-9) 

is easily verified. Eventually if y8 is distributed according to normal distri-
bution, then the linear predictor of yt (t E To) becomes the best one of the 
class of any other predictors represented as the function of yt (t E To).
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2. Linear Regression Function as a Predictor 

 We know that the regression function  0 is the best predictor and the linear 
regression function is the best predictor if  y$ is distributed according to normal 
distribution. This linear regression function has the following properties as 
well as the minimum mean square error predictor. 

(1) Unbiased predictor 
E(O —y)=0, vETf. 

This is obvious from the definition of the regression function 0. 

(2) Predictor having makimum correlation 
 Let civ be any predictor for yi1 and ~iv be a regression function. Then 

I P(Yio p(Yiv, Y ) i = 1, ..., G , (1-10) 

where p(u, v) stands for the simple correlation coefficient between u and v.(2)

3. BLUP of a Single Equation 

 We shall now get the best linear unbiased predictor (BLUP) in the case of 
the single equation, that is, G = 1. 

 The single equation regression model may be written as 

y=X19+u,(1-11) 

where y is column vector of T observations on the dependent variable, X a 
T x k matrix of nonstochastic or fixed values taken by the k independent 
variables (k < T ), i a k x 1 column vector of k unknown regression coeffi-
cients, and u a Tx 1 vector of disturbances. We shall assume 

E(u) = 0 , 
               E(uu') = SZ , rank 12 = T,(1-12) 

                 rank X = k . 

 We further assume that the forecast is made over the p prediction periods 
and we have a set of values available for the independent variables for the 

prediction periods, say X f, (where Xi is a p x k matrix) then the true value 
of y, say y f (where y f is a p x 1 vector), in this prediction periods, can be 
represented as 

yf=XfI -f-uf, (1-13) 

where u f is a p x 1 vector of disturbances in the prediction periods. We 
shall assume 

E(uf) = 0, 
E(ufu') = B ,(1-14) 
E(u f up = 12  .

(2) [12].
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 Let the linear unbiased predictor of  y  f be a y f, that is, 

3'f =Ay 

where A is a p X T matrix of constants. 
of yf, that is, E(y f - y f) = 0, we have 

E(3'f) = E(Ay) 

_ AXlg 

=Xllg 

=E(yf) 

if and only if 
AX=XI. 

 Let 

zf=yf—yf=(Xi—AX)P+Ut-Au, 

represent a p x 1 column vector of the prediction errors. 

Var (zf)=S2f- BA' — AB' +ADA'.

(1-15)

           unbiased predictor

Then,

(1-16)

(1-17)

(1-18)
 The problem to seek the BLUP of y f becomes to find A such that tr [Var (z f)] 

is minimized subject to condition AX = XI, where tr [Var (z f)] represents the 
trace of Var (z f). The minimization problem can be solved by the Lagrangian 
method, that is, the problem may be described as the minimization of 

             S = tr [Var (z f)] — tr [A(AX — Xi)] , (1-19) 

where A is a k x p matrix of Lagrangian multipliers. Differentiating (1-19) 
with respect to A and A and setting equal to zero we obtain 

                A = BD-l -I- A'X' S2-l •(1-20) 

If we postmultiply (1-20) by X we find 

              A' = X f(X'Q-lX)-1 — BD-lX(X'Q-lX)-1. (1-21) 

Substituting (1-21) in (1-20), we have 

      A = BS2-l -}- X f(X'S2-lX)-lXPQ-l - BSZ-lX(X'S2 1X)-lX'Q-l . (1-22) 
Thus the BLUP is 

3'f=Ay
= X f(X'D-lX)-lXl2-ly + 132-1[y - X(Xl2-lX)-lXl2-ly]

(1-23)
Now the expression (X1Q.-1X)-lX'D-ly = 13, say, is an Aitken's generalized least
squares estimator of j9, we may therefore rewrite (1-23) as 

yf =Xfft-i-BSD-l(y—X19). 

 We shall give some examples of the BLUP (1-24) .

(1-24)
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Case 1. 
 If 

 E(wt  wt+8) = 0 for all t E To U Tl and s# 0 E To U T f, 

that is, a = a2!, B = 0, then 
                                                             /N~ 

                           yfX./ 

is the BLUP of yr, where is the ordinary least equates estimator of 19. 

Case 2. 
 If 

wt=put-l+s„ IPI < 1 

E(e) = 0 , 

                       QE (s = 0) 
                E(et et+8) =

0 (s # 0) 

then

S2-l _
 1  

(1 — P2)a2

 B=Q 

                                                                                                  • 

                                                                                                  • 

                                                                                                  • 

so 
-0 •••0 p 

0 ... 0 p2 
BIZ-l = . 

                                    _0•••opp 

therefore 

                         N 

                 f = X f~ + (P P2 • • • 

becomes the BLUP of y f, where fir is the resid 

period. 

 We shall now show that the BLUP ST/  given 
tions (1-3) and (1-4).

 1 -p 0 ••• 

—P 1 P2 —p .. . 

 0 —p 1+p2••• 

     • 0 0 0 ••• 

0 0 0 ••• 

-
pT p•           T-l..p- 

        -h  pT1 pT .••p2 

                        • pp _

 1

0 

0 

0 

   • 

 +  p2 

-p

 0 

 0 

 0 

_p

 pa ... pp)'u 

T Et residual of the last observational 

given by (1-24) satisfies the condi-
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 The condition (1-3) is obviously satisfied since  y  f = Ay. We have now 

yf — yf =XI(19-19)-I-uf—BSZ-lu 
and 

Xi(j9 — = —Xi(X'SQ-lX)-'X'S-lu , 

u=y—Xf3= Mu , 

where M = [I — X(X'l2-'X)-'Xl2-l], hence 

E(uu') = DM' , 

E(ufu') = BM' , 

E(uu')= DM' . 
Thus 

EMT f — y f)v,] = —X f(X,Q-lX)-'X,S2l2-lM' + BM' — Bl2-lQM 

                  = —X f(X'D-lX)-lX'M' 

=0, 

since MX = 0. Therefore the relation 

Yv — yv 1 121, 122, • . . , u7, 

holds for all v E T  (v = 1, 2, ... , p). Thus we have shown that the con-
dition (1-4) is also satisfied. 

 So far we have made no assumptions about the probability distribution of 
the disturbance term. If the disturbance is distributed according to normal 
distribution, then the BLUP (1-24) is the best predictor of the class of any 
measurable functions of yt, that is, the minimum variance unbiased predictor, 
as we have shown in section II-l. This property can also be shown by the 
following way. 

 Let the conditional experctation of y f (f E T f) given yt (t E To) be R(yf, 6), 
that is, 

R(Yf, 0) = E(y f I y) ,(1-25) 

where 0 is the vector of parameters and y = yt (t E To). If R(y f, 0) can be 
decomposed as 

R(yf, 0) = T(y) + E(0) ,(1-26) 

where T(y) is the function depending solely on the vector y and not on 0 and 

e(0) is the function of 6, then 

ab*(Y) = T(y) + H(y)(1-27) 

is the minimum variance unbiased predictor of yf, where H(y) is the minimum 
variance unbiased estimator of e(0).(3) By assumption, since y is normally 
distributed 

E(Yf I y) = E(y f) + Cav (yr, y) • [Var (y)]-1[Y — E(y)1 ,

(3) [14].
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where  cov(y  f, y) represents the covariance between y f and y. Now we substitute 

E(y f) = X fig , 

Cav (y f, y) = E(u f u') = B , 

                Var (y) = Sa , 

y—E(y)=u, 

in the above equation we have 

R(y f, 0) = X fig -}- lsS2-'u 

                      = BD-ly -}- (Xi — Bl2-lX)19 

= T(y) + e(4) , 

where T(y) = BSQ-'y and e'(0) = (X f — Bl2-'X)19 since B and 2 are assumed 
to be known and only fi is the parameters. Let the minimum variance unbiased 
                        ti 

estimator of /3 be 13. Now p is given by the Aitken's generalized least squares 
method, then 

                                            N 0*(y) = B2-ly-}-(Xi — BD-lX)73 
                   = X fJ9 ~- Bl2-l(y — Xll4) 

Thus q5*(y) coincide with the relation (1-24).

4. The BLUP of the Simultaneous Equations Systems 

 The BLUP of the single equation model which we have obtained can be easily 
extended to the simultaneous equations systems. The simultaneous equations 
systems can be written as 

Y=HX+V,(1-28) 

where Y represents a G x T matrix of jointly dependent variables, H a G x K 
matrix of unknown coefficients, X a K x Tnonstochastic matrix of independent 
variables and rank X = K < T, and V a G x T matrix of disturbance terms. 

 It is assumed that a nonstochastic matrix of the independent variables in the 

prediction period, say, Xi (where Xi is a K x P matrix) is known and the rela-
tion represented by (1-28) is also satisfied in the prediction period between Xi 
and the true value of Y, say Yr (where Yr is a G x P matrix), where P represents 
the length of the prediction periods. Then the true value of Y can be written as 

Yf=IIXf±vi,(1-29) 

where V f is a G X P matrix of the disturbance terms in the prediction period. 
It is further assumed that

E(V) = 0 , 

E(V'V) = Sa , 

E(V'Vf) = B.

rank 2 = T , (1-30)
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 Let the BLUP of  Yf be Y f. Then 

E(Yf .... Yr)=oaXA=Xi(1-31) 

and our problem is to minimize 

            S = tr [Var (Zr)] — tr [A(XA — X f)] , (1-32) 

where Zr is a G x P matrix of the prediction errors and A is a P x K matrix 
of Lagrangian multiplies. Solving

as 
 aA 

as 
aA

—2B + 2l2A — X'll' = 0 ,

(XA — X f)' = 0 ,

we obtain 
           A = 12—'B + S2-lX'(Xl2-lX')-1(X f — Xf2-lB) .(1-33) 

Then the BLUP of Yfis 

       if = Yf2-lX,(-1X/)-1Xf+ (Y — YQ-lX'(XSd-lX')-1X)l2-'B 
  fix, \J      =  ± (Y — II X)S2-lB ,(1-34) 

                         / where 11= YSZ-'X'(XS2-lX')-1. 
 The relation 

                      Ni
(f)] E[(Y —1IX)'(Y f — = 0 

can be easily demonstrated, then we find that 

yfi — '.f.i 1 vi, ... , v7, for all i = 1, ... , P , 

where yr„ yfi and vi are the i-th column vector (G x 1) in Yr, i( f and Y — 11 X 
respectively.
 The equations (1-28) can be interpreted as the reduced form equations in 

which X consists of exogeneous variables only and include no lagged endo-

geneous variables since X is assumed to be nonstochastic matrix. Thus the 
BLUP of Yf in the simultaneous equatios systems of which the reduced form 
equations are (1-28) is given by (1-34). 

 We shall examine the following special case. A G x T matrix of disturb-
ance terms is 

                         V = (vi, v2, ... , VT) , 

where vi a G x 1 column vector and it is assumed that 

E(vi) = 0 , 

            or#j 
        E(viv;)_,for all i, j = 1, ..., T T. (1-35) 

                     i=j 

lv = {Qu.y} ,
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This assumption allows for contemporaneous correlation among the disturb-
ances but not for non-contemporaneous correlation among the disturbances. 
Then we have 

                       E(V'V) =  ar2I , 

E(V'V f) = 0 , 

where c2 = E Glaai,and hence 

11 = YX'(XX')-1 = 11 , 

therefore 

                 Y f = fix/ = YX'(XX')-1X1 

is the BLUP of Y f.

II. THE DISTRIBUTION OF THE PREDICTION ERROR

1. A Single Equation 

  We shall begin by analyzing the prediction error of the single equation. The 
true value of y for the prediction periods can be written as 

yf = X fl + Ut 

and we have shown in (1-24) that the BLUP of y f is given by 

                                                    _ 

                       =Xffl+BSa-lu, 

where u = y — Xj9 and the assumptions (1-12) and (1-14) are satisfied. Let 
a p x 1 vector of the prediction errors be z f. Then z f can be written as 

                                 N 

            zf=yf-s'f=Xi(jg-jg)-}-uf—BD-lfi, (2-1) 

so the cause of the prediction error is 

 (1) the estimation error of the parameters vector /3 
 (2) the value of the disturbance term u f 

since B and 2 are assumed to be known. It is further assumed that XI, a 

p x k matrix of the independent variables, is available. Let the covariance 
matrix of z f be Z f then we have 

f=E(zfzf) 
    = X fS-lX f — X fS-lX'Q-lB' — B2-lXS-lX f -f- 12f — BlD-lMB' , (2-2) 

where S = X'l2-lX, M = I — XS-lX'2-l. 
 We shall give the distribution of the prediction error and the prediction in-

terval in the simple case where the following assumptions for the disturbance 
are made, 

Sa=a2IT, Dl=c2I,, B=0,(2-3)
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that is,                           'a2  s=0 
                      E(utut-8) _ 

,0 s 0 
for all t, s E To U T f. Then the BLUP ST,  becomes 

Yf=Xfft 
and the prediction error z f becomes 

zf=Xi(1—i)+uf, 

where j9 = (X'X)-lX'y, so we obtain 

f = a2[I, + Xi(X'X)-1Xf] = a2G .(2-4) 

We know from (2-4) that If is the sum of the covariance matrix of y f, 
a2X f(X'X)-1X f, and the covariance matrix of u f, a2Ip, where the suffix T or p 
of I, or Ip represents the order of the identity matrix .I. Let the unbiased 
estimator of a2 be 6-2, then 

±f = 62G(2-5) 

becomes the unbiased estimator of I I. If u is normally distributed, then 

z f -r N(0, a2G)(2-6) 

and for any non-zero p x 1 vector a 

a'z f N(0, a2a'Ga) ,(2-7) 

hence 
a'z f(a2a'Ga)-li2 -., N(0, 1) . (2-8) 

 We know further that 

 (1) (T — k)a2/a2 x2(T — k), 
 (2) 19 is independent of 6.2, 

 (3) of is independent of u and hence u f is independent of 62, therefore zf 
is independent of B f. Thus we obtain 

a'zf[°'2a'Ga]-1'2 t(T —k) .(2-9) 

 Let to be the critecal point of the t distribution with T — k degrees of free-
dom, where a is the level of the significance. We have then the probability 
statement 

P{(a'z f[Q2a'Ga]-1121 S t} >_ 1 — a ., (2-10) 

hence from (2-10) the joint confidence interval of a'yf for all a at the a level 
of significance can be obtained as 

P{a'yf E [a'yf ± Q(a'Ga)l'2ta]} > 1 — a . (2-11) 

If, in paticular, a is a p x 1 vector with unit in the i-th element and zeros
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everywhere else, then from  (2-11) the confidence interval for y
fi can be 

obtained as 

P{yfi E [.l'fi ± 6(1 + Xfi(X'X)-'/i.fi)1,2ta]} > 1 — a , (2-12) 

where yfi and yfi represent the i-th element in the p x 1 vector y f and Sr/ 
                                                     respectively and Xfi the i-th row vector (1 x k) in the p x k matrix X f. 

 Let zfi be the i-th element in the p x 1 vector z f and 61(i, i) be the i-th 
diagonal element in 2'f. Then from (2-9) we obtain 

                 z fi[CC f(i, 0]-1zf i F(1, T — k) . (2-13) 

Rewriting (2-9) as (2-13) we shall know in next section that the prediction 
interval for the simultaneous equations systems is the generalization of (2-13).

2. The Simultaneous Equations Systems 

 The result of the previous section can be extended to the simultaneous 
equations systems. The model can be written as 

Y=HX+V,(2-14) 

where Y represents a G x T matrix of jointly dependent variable, X a K x T 
nonstochastic matric of independent variables and rank X = K < T, H a 
G x K matrix of unknown coefficients and G T — K, and V a G x T matrix 
of disturbance terms. 

 Let 
V=(vi,v2,...,VT) 

and the G x 1 vector yr is assumed normally distributed with a null expectation 
vector and covariance matrix I. This assumption permits contemporanous 
correlation among the disturbances, but no autocorrelation, that is, the same 
as the assumption (1-35). We now write this assumption as 

V — N(0, , 

then the joint probability density function of Y can be written as 

  J(Y)GTl2Tl2exp{1 2'(yr —HXi)/1-1(yti — //Xi)r 
  (2i)IGI) 

          22iaTl2T~2 

               exp-2tr 2-1(Y — IIX)(Y — HX)'} , (2-15)        () 

where yr (G x 1) represents the i-th column vector of Y and Xi (K x 1) the 
i-th column vector of X. 

 Under the assumption that the structure 

S=S(11,I')



   BEST LINEAR UNBIASED PREDICTOR AND THE PREDICTION ERROR 61 

is unchanged for all t  E  To U Tl, the future value Y f (G x P) of Y can be 

given as 
Y f = HXI + V f ,(2-16) 

where P, X f (G x P) and V f (G x P) are the same as in the relation (1-28). 
The assumption (1-35) is satisfied for each column vector of V,, that is, 

                 '0 i � j 
             Ev.v')=.             faf'— X

i = j ' i, j E Tl , t E To, (2-17) 

E(v fivt) = 0 , 

hence, as proved in I-4, the BLUP of Y f is given as 

Yf=IIXf,(2-18) 

where II = YX'(XX')-1. 
  Let the prediction error be a G x P matrix Zr, that is, 

       Zf=Yf ...Xi=(II —II)Xi+vi=vi—VX'(XX')-1Xf,(2-19) 

then a G x 1 column vector zfi of Zf can be written as 

                                             (2-20)

where vfi (G x 1) and xfi (K x 1) denote the column vector 
respectively. 

 If we put 
X'(XX')-'xfi = Al , i = 1, ... , P , 

then Al is a T x 1 column vector and we shall write Al as 
-

al 

Al = : . 

                                       al                                               T 

Thus z fi can be rewritten as 

zfi = vfi — VAi, 

therefore 

Coy(zfi, zf;) = E(zfizf;) 
              T l(Tl~                 = {(vfi — E atvt/(vil—t atvt/} t=It=1 

T 

                 = 3ii Z + E [dial E(vt vi)] 
t=1 

_O Z+A'AlE 

                       = pi, + xfi(XX')-lxfi}` 

Lil(i .j)

                        1) denote the column vector of V f and XI

(2-21)

(2-22)
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where  3i, denotes the Kronecker delta. Hence we know that a G x 1 vector 
z fa is normally distributed with an expectation zero and with a variance-
cavariance matrix E f(;,i), and further z is and z1; (i # j) are not independently 
distributed. From (2-22) the variance-covariance matrix of Zr can be easily 
obtained, that is, 

Var(Zr) = E(ZlZf) 

              tp 

                               zfbzfl i=1 

P 

_ E .[1 + xfa(XX')-lxfti]E 
i=1 

                   = [P + tr X f (XX')-1X f]E 

           = (P + q)E , (2-23) 

where q =tr Xi (XX')-1Xf. ^
 If E is the unbiased estimator of E, then E is obtained as 

E =(Y—IIX)(Y—IIX)'/(T—K), 

therefore the unbiased estimator of Var (Zr) is given by 

(P + q)E . 

3. The Prediction Interval for the Simultaneous Equations System 

 We shall now get the prediction interval. From (2-24) we have 

(T—K)E=(Y—IIX)(Y—IIX)'=VMV',

(2-24)

(2-25)

(2-26)

where M = I — X'(XX')-1X and M is an idempotent matrix of rank T — K. 
Thus there exists a T x T orthogonal matrix P such that 

                  P'lVlP = IT—K 01 

                                                                                                                         . 

                  0 0 

 If V is transformed to W by 

           W = VP ,(2-27) 

then 
                                                 T—K

             (T — K)E = WP'MPW' = E wawa , 
a=1 

where wa (G x 1) is a column vector of W (G x T). If we write 

P={pi;} 

and pi is to be the i-th column vector of P, then from (2-27) we have 

T wa = VP„ = E ptia v i . 
d=1

(2-28)

(2-29)



   BEST LINEAR UNBIASED PREDICTOR AND THE PREDICTION ERROR 63 

 Hence 

 E(wa)  =  0, a = 1, ...,T—K, 

Cav (wa, wp) = E(waw'p) 

                     EC\i=lriaViI(EPjpVj/,J 
                    ET T n                              El'~iia!'jpE(vivj) 

i=1 j=1 

T T 

~innS t EpiaPipsij E 
i=1j=1 

                                          n                         = E PiaPipE 
i=1 

= 3ap E , (2-30) 

where bap denotes the Kronecker delta, therefore wa and wp are independently 
distributed as a normal variables with an expectation zero and a varance-
covariance matrix E. Thus if we write 

                 ua = (1 + ga)li2wa ,(2-31) 

where q = Xfa(XX')-1X fa, then a G x 1 vector ua is distributed according to 

N(0, (1 + gag) = N(0, El(a,a)) (2-32) 

and ua and up (a # (3) are independent. We have further 
T—K 

          (T — K)(1 + q)E = (T —K)El(a.a) = E uaua (2-33) 
a=1 

and hence (T — K)El(a,a) is distributed according to Wishart distribution. 
This is denoted by 

              (T — K)El(a,a) ̂̂  W(G, T — K, El(a,a)) • (2-34) 
 We shall next show that z fa and (T — K)El(a,a) are independent. We have 

z fa = v fa + (11 — II )X fa = via — VQX fa ,(2-35) 

where Q = X'(XX')-1 and 

             (T — K)El(a,a) = (T — K)(1 ga)VM[V' . 
Since VQ = LET T—k+1 wiP: and wt is distributed according to N(0, E) inde-
pendently of wj (1 # j), then VQ and VMV' are independent. Further since 
VMV' = E T= K wa wa and wa is normally distributed, then the relation 

E(wpV f a) = Epip E(VjV fa) = 0 , (2-36) 

means that VMV' and V fa are independent. Thus the independency between
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 z  fa and (T — K)E f(a,a) has been proved. As above proved the 
relations are satisfied. 

  (1) Zia — N(0_, 2if(a,a))' 
 (2) (T — K)2'                f(a,a) W(G, T — K, f(a,a))' 

  (3) z fa is independent of E f(a,a). 

From (2-37) we have 

= zfa[(T — K)El(a ,a)]-lzfa • (T — K — G 1)/G 
           = ZfaZf(a,a)Zia(T — K — G -{- 1)/G(T — K) 

~F(G,T—K—G+ 1), a= 1, ...,P. 

If we put G = 1 in (2-38) we obtain (2-13). 

4. Joint Confidence Interval for a'y fi 

Let Fa(G,T—K—G-{-
the a significance level and 
Wd shall denote this point by Fa. Then from (2-38) we have the  
statement 

          Pz.EzT — K — G-^-1<Fa}>1—a.              i+i(il)izG(T — K) — 

This relation can be rewritten as 

P{z fi f(i,i) z fi < mFa} > Fa , 

where m = G(T — K)/(T — K — G 1). 
 Let a be a G x 1 any non-zero vector, then (2-40) is equivalent to 

                 P~BZfizfia < mFa• > 1 — a. 
                        a'E f(i,i) a 

Let y fi and k fi be the i-th column vector in Yf and Y  respectively. 

(2-41) we have 

              pi)I<(mFa)l'2r> 1— a 
                  (a2'i(i,i)a)lJ 

and hence the joint confidence interval for a'y fi can be obtained as 

P{a y fi E $ y fi ± (mFa • a f (i,i) a)1/2} 
for all a. Let y f~ and yip be the i-th element in aGx 1 vector yip 
respectively and 

i-l i i+1 

                 a = (0, 0, ... , 0 , 1, 0 , ... , 0) , 

then we have 

a'Ef ( ,Q) a = 6ii(1 Xffi(XX')-1X ff) ,

following

(2-37)

(2-38)

1) be the upper significance point corresponding to 
                    with G and T—K—G± 1 degrees of freedom. 

                   by Fa. Then from (2-38) we have the obability

(2-39)

(2-40)

(2-41)

en from



BEST LINEAR UNBIASED PREDICTOR AND THE PREDICTION ERROR  65

therefore from (2-42) the confidence interval for yip can be obtained as 

Ply!" E yip ± [6'ati(1 + X f p(XX')-lXfp)mFallI2} > 1 — a , 

where denotes the (i, i) element in I. If G — 1 then m = 1 and (2-43) is 
equal to (2-12).

M. CONCLUSIONS

 The matrix X of independent variables is assumed to be nonstochastic in 
our analysis. This assumption means that X does not include the lagged 
endogeneous variables, so it is very simple assumption as econometric model. 
Hence the important problem still remains that the analysis of the prediction 
errors have to be extended to the model which include the lagged endogeneous 
variables as the independent variables. 

 The variance and covariance matrix of the prediction errors in the case of 
deriving the reduced form parameters from consistently estimated structural 

parameters is given in [5] and using the asymptotic distribution of the predic-
tion errors the prediction interval have been derived in [8]. This paper does 
not refer to such a case. The problem still remains in this respect.

Keio University
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