慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	NECESSARY AND SUFFICIENT CONDITIONS FOR SIMPLE MAJORITY DECISION
Sub Title	
Author	長名，寛明（OSANA，HIROAKI）
Publisher	Keio Economic Society，Keio University
Publication year	1970
Jtitle	Keio economic studies Vol．7，No．2（1970．），p．1－7
JaLC DOI	
Abstract	
Notes	
Genre	Journal Article
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝AA00260492－19700002－0 001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

NECESSARY AND SUFFICIENT CONDITIONS FOR SIMPLE MAJORITY DECISION

by Hiroaki Osana

1. INTRODUCTION

In his book [1], K. J. Arrow has presented a set of necessary conditions for the rule of simple majority decision defined for an arbitrary number of alternatives, while K. O. May [5] has presented a set of necessary and sufficient conditions for the rule of simple majority decision for two alternatives. The purpose of this paper is to present a set of necessary and sufficient conditions for the simple majority decision defined by Arrow. With some restrictions on the properties of the domain of group decision function, it will be shown that the simple majority decision is equivalent to the set of the following five axioms: decisiveness, neutrality, equality, binary choice, and monotonicity; each of the preceding terms will be defined precisely below.

2. STATEMENT OF THE PROBLEM

We shall consider a society with the set X of all conceivable alternatives and the set V of all individuals of the society; the latter set may be regarded as a finite set of natural numbers, i.e., $V=\{1,2, \ldots, n\}$. Each individual i is supposed to have his preference relation R_{i}, which is assumed to be a binary relation on X, i.e., a set of ordered pairs. If he prefers an alternative x to an alternative y or is indifferent between them, then we write $(x, y) \in R_{i}$. Hence, $(x, y) \notin R_{i}$ means that i prefers y strictly to x; and $(x, y) \in R_{i}$ and $(y, x) \in R_{i}$ mean that i is indifferent between x and y. Usually, R_{i} is assumed to be a total preordering in X; i.e., it is assumed to belong to the set

$$
\begin{aligned}
T(X)= & \left\{Q:(x)(y)\left((x, y) \in X^{2} \rightarrow((x, y) \in Q \text { or }(y, x) \in Q)\right),\right. \\
& \left.(x)(y)(z)\left(\left((x, y, z) \in X^{3},(x, y) \in Q,(y, z) \in Q\right) \rightarrow(x, z) \in Q\right)\right\},
\end{aligned}
$$

where X^{m} denotes the m-fold Cartesian product of set X. In this paper, however, we are not concerned with transitivity; thus it will be assumed that R_{i} belongs to the set

$$
S(X)=\left\{Q:(x)(y)\left((x, y) \in X^{2} \rightarrow((x, y) \in Q \text { or }(y, x) \in Q)\right)\right\}
$$

In what follows, we shall use the notations:

[^0]$\bar{R}=\left(R_{1}, R_{2}, \ldots, R_{n}\right)$,
$Q^{-1}=\{(x, y):(y, x) \in Q\}$,
$\bar{R}^{-1}=\left(R_{1}^{-1}, R_{2}^{-1}, \ldots, R_{n}^{-1}\right)$,
$P=$ the set of all permutations $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of $(1,2, \ldots, n)$,
$\bar{R}_{p}=\left(R_{p_{1}}, R_{p_{2}}, \ldots, R_{p_{n}}\right)$,
$N\left((x, y) \in R_{i}, U\right)=$ the number of elements of the set
$\left\{i: i \in U,(x, y) \in R_{i}\right\}$, where $U \subseteq V,{ }^{(2)}$
$\left(\bar{R} ; Y^{2}\right)=\left(R_{1} \cap Y^{2}, R_{2} \cap Y^{2}, \ldots, R_{n} \cap Y^{2}\right)$.
Let us now introduce the definition of a group decision function.
Definition: A mapping R is called a group decision function if and only if its domain (denoted by D) and range are a set of n-tuples \bar{R} of individual preference relations and a set of social preference relations, respectively.

Throughout this paper, we make
Assumption: $D \subseteq S^{n}(X)$.
We now make a list of six axioms on the properties of a group decision function.

Aхıом 0 (simple majority decision): $\quad(\bar{R})(x)(y)\left(\left(\bar{R} \in D,(x, y) \in X^{2}\right) \rightarrow\right.$ $\left.\left((x, y) \in R(\bar{R}) \leftrightarrow N\left((x, y) \in R_{i}, V\right) \geqq N\left((y, x) \in R_{i}, V\right)\right)\right)$.

Axiom 1 (decisiveness): $\quad(\bar{R})(\bar{R} \in D \rightarrow R(\bar{R}) \in S(X))$.
Axiom 2 (neutrality): $\quad(\bar{R})\left(\left(\tilde{R} \in D, \bar{R}^{-1} \in D\right) \rightarrow R\left(\bar{R}^{-1}\right) \cap X^{2}=R^{-1}(\bar{R}) \cap X^{2}\right)$.
Axıом 3 (equality): $\quad(p)(\bar{R})\left(\left(p \in P, \bar{R} \in D, \bar{R}_{p} \in D\right) \rightarrow R(\bar{R}) \cap X^{2}=R\left(\bar{R}_{p}\right)\right.$ $\cap X^{2}$).

Aхıом 4 (binary choice): $\quad(\bar{R})\left(\bar{R}^{\prime}\right)(x)(y)\left(\left(\bar{R} \in D, \quad \bar{R}^{\prime} \in D, \quad(x, y) \in X^{2}\right.\right.$, $\left.\left.\left(\bar{R} ;\{x, y\}^{2}\right)=\left(\bar{R}^{\prime} ;\{x, y\}^{2}\right)\right) \rightarrow R(\bar{R}) \cap\{x, y\}^{2}=R\left(\bar{R}^{\prime}\right) \cap\{x, y\}^{2}\right) .{ }^{(3)}$

Aхıом 5 (monotonicity): $\quad(\bar{R})\left(\bar{R}^{\prime}\right)(x)\left(\left(\bar{R} \in D, \bar{R}^{\prime} \in D, x \in X,(y)(y \in X \rightarrow\right.\right.$ $\left((i)\left(i \in V \rightarrow\left(\left((x, y) \in R_{i} \rightarrow(x, y) \in R_{i}^{\prime}\right),\left((y, x) \notin R_{i} \rightarrow(y, x) \notin R_{i}^{\prime}\right),(z)((z \in\right.\right.\right.$ $\left.\left.\left.X, y \neq x, z \neq x) \rightarrow R_{i} \cap\{y, z\}^{2}=R_{i}^{\prime} \cap\{y, z\}^{2}\right)\right)\right),(y \neq x \rightarrow(\exists i)(i \in V,(((x, y)$ $\left.\in R_{i},(y, x) \in R_{i},(y, x) \notin R_{i}^{\prime}\right)$ or $\left.\left.\left.\left.\left.\left.\left((x, y) \notin R_{i},(x, y) \in R_{i}^{\prime}\right)\right)\right)\right)\right)\right)\right) \rightarrow(y)((y \in X$, $\left.\left.y \neq x,(x, y) \in R(\bar{R})) \rightarrow(y, x) \notin R\left(\bar{R}^{\prime}\right)\right)\right)$.

Let $H_{1}=\left\{D: D \supseteq T^{n}(X)\right\}, H_{2}=\left\{D:(\bar{R})\left(\bar{R} \in D \rightarrow \bar{R}^{-1} \in D\right)\right\}$, and $H_{3}=$ $\left\{D:(p)(\bar{R})\left((p \in P, \bar{R} \in D) \rightarrow \bar{R}_{p} \in D\right)\right\}$. In the next section, we shall prove the following theorem in a series of lemmas.
(2) The symbols for set-theoretical inclusion are defined as follows:

$$
\begin{aligned}
& A \subseteq B \leftrightarrow(x)(x \in A \rightarrow x \in B), \\
& A \subset B \leftrightarrow(A \subseteq B, A \neq B) .
\end{aligned}
$$

(3) The term binary choice is borrowed from May [6].

Theorem: If the domain D of a group decision function belongs to the intersection of the sets H_{1}, H_{2}, and H_{3}, then Axiom 0 is equivalent to Axioms 1 through 5.

3. PROOF OF THEOREM

For convenience, let us define

$$
\begin{aligned}
G(R) & =\left\{(\bar{R}, Q): Q=R(\bar{R}) \cap X^{2}\right\} \\
A_{i}(D) & =\{G(R): R \text { satisfies Axiom } i \text { on } D\} .
\end{aligned}
$$

Lemma 1: $\quad(D)\left(A_{0}(D) \subseteq A_{1}(D)\right)$.
Proof: Obvious.
Lemma 2: $\quad(D)\left(A_{0}(D) \subseteq A_{2}(D)\right)$.
Proof: Suppose that $\bar{R} \in D$ and $\bar{R}^{-1} \in D$. Take any $(x, y) \in X^{2}$. Then clearly, $N\left((y, x) \in R_{i}, V\right)=N\left((x, y) \in R_{i}^{-1}, V\right)$, so that $(x, y) \in R^{-1}(\bar{R}) \leftrightarrow$ $(y, x) \in R(\bar{R}) \leftrightarrow(x, y) \in R\left(\bar{R}^{-1}\right)$. Since (x, y) is arbitrary, it follows immediately that $R\left(\bar{R}^{-1}\right) \cap X^{2}=R^{-1}(\bar{R}) \cap X^{2}$.

Lemma 3: $\quad(D)\left(A_{0}(D) \subseteq A_{3}(D)\right)$.
Proof: Suppose that $p \in P, \bar{R} \in D$, and $\bar{R}_{p} \in D$. Take any $(x, y) \in X^{2}$. Then clearly, $N\left((x, y) \in R_{i}, V\right)=N\left((x, y) \in R_{p_{i}}, V\right)$, so that $(x, y) \in R(\bar{R}) \leftrightarrow$ $(x, y) \in R\left(\bar{R}_{p}\right) . \quad$ Since (x, y) is arbitrary, $R(\bar{R}) \cap X^{2}=R\left(\bar{R}_{p}\right) \cap X^{2}$.

Lemma 4: $\quad(D)\left(A_{0}(D) \subseteq A_{4}(D)\right)$.
Proof: Suppose that $\bar{R} \in D, \bar{R}^{\prime} \in D,(x, y) \in X^{2},\left(\vec{R} ;\{x, y\}^{2}\right)=\left(\bar{R}^{\prime} ;\{x, y\}^{2}\right)$. Then, $(x, y) \in R(\bar{R}) \leftrightarrow N\left((x, y) \in R_{i}, V\right) \geqq N\left((y, x) \in R_{i}, V\right) \leftrightarrow N\left((x, y) \in R_{i}^{\prime}, V\right)$ $\geqq N\left((y, x) \in R_{i}^{\prime}, V\right) \leftrightarrow(x, y) \in R\left(\bar{R}^{\prime}\right) . \quad$ Similar arguments are valid for the pairs: $(y, x),(x, x)$, and (y, y). Hence, $R(\bar{R}) \cap\{x, y\}^{2}=R\left(\bar{R}^{\prime}\right) \cap\{x, y\}^{2}$.

Lemma 5: $\quad(D)\left(A_{0}(D) \subseteq A_{5}(D)\right)$.
Proof: Take any $\bar{R}, \bar{R}^{\prime}$, and x such that $\bar{R} \in D, \bar{R}^{\prime} \in D, x \in X,(y)(y \in X \rightarrow$ $\left((i)\left(i \in V \rightarrow\left(\left((x, y) \in R_{i} \rightarrow(x, y) \in R_{i}^{\prime}\right),\left((y, x) \notin R_{i} \rightarrow(y, x) \notin R_{i}^{\prime}\right),(z)((z \in X\right.\right.\right.$, $\left.\left.\left.y \neq x, z \neq x) \rightarrow R_{i} \cap\{y, z\}^{2}=R_{i}^{\prime} \cap\{y, z\}^{2}\right)\right)\right),(y \neq x \rightarrow(\exists i)(i \in V,(((x, y) \in$ $\left.R_{i},(y, x) \in R_{i},(y, x) \notin R_{i}^{\prime}\right)$ or $\left.\left.\left.\left.\left.\left((x, y) \notin R_{i},(x, y) \in R_{i}^{\prime}\right)\right)\right)\right)\right)\right)$. Let $U_{1}=\{i: i \in V$, $\left.(x, y) \in R_{i},(y, x) \in R_{i},(y, x) \notin R_{i}^{\prime}\right\}$ and $U_{2}=\left\{i: i \in V,(x, y) \notin R_{i},(x, y) \in R_{i}^{\prime}\right\}$. Then, $U_{1} \cup U_{2} \neq \emptyset$ for all y such that $y \in X$ and $y \neq x$. First, suppose $U_{1} \neq \emptyset$. Then, $N\left((y, x) \in R_{i}^{\prime}, V-U_{1}\right) \leqq N\left((y, x) \in R_{i}, V-U_{1}\right)$ and $N\left((y, x) \in R_{i}^{\prime}, U_{1}\right)$ $<N\left((y, x) \in R_{i}, U_{1}\right)$, so that $N\left((y, x) \in R_{i}^{\prime}, V\right)<N\left((y, x) \in R_{i}, V\right)$. Then suppose $U_{2} \neq \emptyset$. Thus, $N\left((x, y) \in R_{i}, V-U_{2}\right) \leqq N\left((x, y) \in R_{i}^{\prime}, V-U_{2}\right)$ and $N\left((x, y) \in R_{i}, U_{2}\right)<N\left((x, y) \in R_{i}^{\prime}, U_{2}\right)$, so that $N\left((x, y) \in R_{i}, V\right)<N((x, y)$ $\left.\in R_{i}^{\prime}, V\right)$. Hence,
(1) if $y \in X$ and $y \neq x$, then either $N\left((y, x) \in R_{i}, V\right)>N\left((y, x) \in R_{i}^{\prime}, V\right)$ or $N\left((x, y) \in R_{i}, V\right)<N\left((x, y) \in R_{i}^{\prime}, V\right)$.
Furthermore, evidently
(2) for all $y \in X, N\left((y, x) \in R_{i}, V\right) \geqq N\left((y, x) \in R_{i}^{\prime}, V\right)$ and $N\left((x, y) \in R_{i}, V\right)$ $\leqq N\left((x, y) \in R_{i}^{\prime}, V\right)$.
Now, suppose that $y \in X, y \neq x$, and $(x, y) \in R(\bar{R})$. Then, $N\left((x, y) \in R_{i}\right.$, $V) \geqq N\left((y, x) \in R_{i}, V\right)$. Hence, from (1) and (2), $N\left((x, y) \in R_{i}^{\prime}, V\right)>N((y, x)$ $\left.\in R_{i}^{\prime}, V\right)$, so that $(y, x) \notin R\left(\bar{R}^{\prime}\right)$.

Remark: Lemmas 1 through 4 are independent of the assumption $D \subseteq$ $S^{n}(X)$.

The lemmas above state that Axiom 0 implies Axioms 1 through 5. Before proceeding to the proof of the converse proposition, we introduce an extension of Axiom 5.

Axiom 5': $\quad(\bar{R})\left(\bar{R}^{\prime}\right)(x)(y)\left(\left(\bar{R} \in D, \bar{R}^{\prime} \in D,(x, y) \in X^{2}, x \neq y,(i)(i \in V \rightarrow\right.\right.$ $\left.\left(\left((x, y) \in R_{i} \rightarrow(x, y) \in R_{i}^{\prime}\right),\left((y, x) \notin R_{i} \rightarrow(y, x) \notin R_{i}^{\prime}\right)\right)\right),(\exists i)(i \in V,(((x, y)$ $\left.\in R_{i},(y, x) \in R_{i},(y, x) \notin R_{i}^{\prime}\right)$ or $\left.\left.\left.\left((x, y) \notin R_{i},(x, y) \in R_{i}^{\prime}\right)\right)\right),(x, y) \in R(\bar{R})\right) \rightarrow$ $\left.(y, x) \notin R\left(\bar{R}^{\prime}\right)\right)$.

Lemma 6: $\quad(D)\left(D \in H_{1} \rightarrow A_{4}(D) \cap A_{5}(D) \subseteq A_{5^{\prime}}(D)\right)$.
Proof: \quad Suppose that $\bar{R} \in D, \bar{R}^{\prime} \in D,(x, y) \in X^{2}, x \neq y,(i)(i \in V \rightarrow(((x, y)$ $\left.\left.\left.\in R_{i} \rightarrow(x, y) \in R_{i}^{\prime}\right),\left((y, x) \notin R_{i} \rightarrow(y, x) \notin R_{i}^{\prime}\right)\right)\right),(\exists i)\left(i \in V, \quad\left(\left((x, y) \in R_{i}\right.\right.\right.$, $\left.(y, x) \in R_{i},(y, x) \notin R_{i}^{\prime}\right)$ or $\left.\left.\left((x, y) \notin R_{i},(x, y) \in R_{i}^{\prime}\right)\right)\right),(x, y) \in R(\bar{R})$. Then there exist \bar{R}^{*} and $\bar{R}^{* *}$ such that $\bar{R}^{*} \in T^{n}(X) \subseteq D, \bar{R}^{* *} \in T^{n}(X) \subseteq D,\left(\bar{R}^{*} ;\right.$ $\left.\{x, y\}^{2}\right)=\left(\bar{R} ;\{x, y\}^{2}\right),\left(\bar{R}^{* *} ;\{x, y\}^{2}\right)=\left(\bar{R}^{\prime} ;\{x, y\}^{2}\right),(i)(z)((i \in V, z \in X, z \neq x$, $\left.z \neq y) \rightarrow\left((z, x) \in R_{i}^{*},(x, z) \in R_{i}^{*},(z, x) \notin R_{i}^{* *}\right)\right),\left(\bar{R}^{*} ; X^{2}-\{x, y\}^{2}\right)=\left(\bar{R}^{* *} ;\right.$ $\left.X^{2}-\{x, y\}^{2}\right)$. Hence, $(u)\left(u \in X \rightarrow\left((i)\left(i \in V \rightarrow\left(\left((x, u) \in R_{i}^{*} \rightarrow(x, u) \in R_{i}^{* *}\right)\right.\right.\right.\right.$, $\left((u, x) \notin R_{i}^{*} \rightarrow(u, x) \notin R_{i}^{* *}\right),(z)\left((z \in X, u \neq x, z \neq x) \rightarrow R_{i}^{*} \cap\{u, z\}^{2}=R_{i}^{* *} \cap\right.$ $\left.\left.\{u, z\}^{2}\right)\right),\left(u \neq x \rightarrow(\exists i)\left(i \in V,\left(\left((x, u) \in R_{i}^{*},(u, x) \in R_{i}^{*},(u, x) \notin R_{i}^{* *}\right)\right.\right.\right.$ or $\left.\left.\left.\left.\left.\left((x, u) \notin R_{i}^{*},(x, u) \in R_{i}^{* *}\right)\right)\right)\right)\right)\right)$. Thus, all hypotheses of Axiom 5 are satisfied, so that $(y)\left(\left(y \in X, y \neq x,(x, y) \in R\left(\bar{R}^{*}\right)\right) \rightarrow(y, x) \notin R\left(\bar{R}^{* *}\right)\right)$.

On the other hand, since $\bar{R} \in D, \bar{R}^{*} \in D,(x, y) \in X^{2},\left(\bar{R} ;\{x, y\}^{2}\right)=\left(\bar{R}^{*} ;\right.$ $\left.\{x, y\}^{2}\right)$, it follows from Axiom 4 that $(x, y) \in R\left(\bar{R}^{*}\right)$ by $(x, y) \in R(\bar{R})$. Hence, from the results of the preceding paragraph, $(y, x) \notin R\left(\bar{R}^{* *}\right)$, which implies $(y, x) \notin R\left(\bar{R}^{\prime}\right)$ again by Axiom 4.

We are now in a position to prove the converse proposition mentioned above.

Lemma 7: $\quad(D)\left(D \in \bigcap_{i=1}^{3} H_{i} \rightarrow \bigcap_{i=1}^{5} A_{i}(D) \subseteq A_{0}(D)\right)$.
Proof: Suppose that $\bar{R} \in D,(x, y) \in X^{2}, N\left((x, y) \in R_{i}, V\right)=N((y, x) \in$ $\left.R_{i}, V\right)$. Then there is a permutation $p \in P$ such that $(i)\left(i \in V \rightarrow\left(\left((x, y) \in R_{i} \rightarrow\right.\right.\right.$
$\left.\left.(x, y) \in R_{p_{i}}^{-1}\right),\left((y, x) \in R_{i} \rightarrow(y, x) \in R_{p_{i}}^{-1}\right)\right)$, so that $\left(\bar{R} ;\{x, y\}^{2}\right)=\left(\bar{R}_{p}^{-1} ;\{x, y\}^{2}\right)$. Since $D \in H_{2} \cap H_{3}, \bar{R}_{p}^{-1} \in D$. Hence, $G(R) \in A_{4}(D)$ implies $R(\bar{R}) \cap\{x, y\}^{2}=$ $R\left(\bar{R}_{p}^{-1}\right) \cap\{x, y\}^{2}$. Assume $(y, x) \notin R(\bar{R})$. Then $(x, y) \in R(\bar{R})$ by $G(R) \in A_{1}(D)$, so that $(x, y) \in R\left(\bar{R}_{p}^{-1}\right)$. Hence, $(x, y) \in R\left(\bar{R}^{-1}\right)$ by $G(R) \in A_{3}(D)$, so that $(x, y) \in R^{-1}(\bar{R})$ by $G(R) \in A_{2}(D)$; and therefore, $(y, x) \in R(\bar{R})$, a contradiction. Thus, $(y, x) \in R(\bar{R})$. Similarly, $(x, y) \in R(\bar{R})$. Hence,
(1) $N\left((x, y) \in R_{i}, V\right)=N\left((y, x) \in R_{i}, V\right) \rightarrow((x, y) \in R(\bar{R}),(y, x) \in R(\bar{R}))$.

Next, suppose that $N\left((x, y) \in R_{i}, V\right)>N\left((y, x) \in R_{i}, V\right)$. Then, $N((y, x) \notin$ $\left.R_{i}, V\right)>N\left((x, y) \notin R_{i}, V\right) . \quad$ Let $U_{1}=\left\{i: i \in V,(x, y) \notin R_{i}\right\}, U_{2}=\{i: i \in V$, $\left.(y, x) \notin R_{i}\right\}$, and $U_{1}+U_{2}+U_{3}=V$. Then, by $D \in H_{1}$, there is \tilde{R}^{\prime} such that $\bar{R}^{\prime} \in D,(i)\left(i \in U_{1} \leftrightarrow(x, y) \notin R_{i}^{\prime}\right),(i)\left((y, x) \notin R_{i}^{\prime} \rightarrow i \in U_{2}\right), N\left((y, x) \notin R_{i}^{\prime}, V\right)=$ $N\left((x, y) \notin R_{i}, V\right)$. Let $U_{4}=\left\{i: i \in V,(y, x) \notin R_{i}^{\prime}\right\}, U_{4}+U_{5}=U_{2}$, and $U_{1}+$ $U_{4}+U_{6}=V . \quad$ Since $N\left((x, y) \notin R_{i}, V\right)=N\left((x, y) \notin R_{i}^{\prime}, V\right)=N\left((y, x) \notin R_{i}^{\prime}\right.$, $V)<\frac{1}{2}, N\left((x, y) \notin R_{i}, V\right)+N\left((y, x) \notin R_{i}^{\prime}, V\right)<n$, so that $U_{6} \neq \emptyset$. Further, since $N\left((y, x) \notin R_{i}, V\right)>N\left((y, x) \notin R_{i}^{\prime}, V\right)$, it follows that
(2) $U_{5} \neq \emptyset$.

Since $U_{5}=U_{2} \cap U_{6}$ and $(i)\left(i \in U_{6} \leftrightarrow\left((x, y) \in R_{i}^{\prime},(y, x) \in R_{i}^{\prime}, i \in V\right)\right)$, it must be that
(3) $\quad(i)\left(i \in U_{5} \leftrightarrow\left((y, x) \notin R_{i},(x, y) \in R_{i}^{\prime},(y, x) \in R_{i}^{\prime}, i \in V\right)\right)$.

Further, we can easily see that $(i)\left(i \in U_{1} \rightarrow\left((x, y) \notin R_{i},(x, y) \notin R_{i}^{\prime}\right)\right),(i)(i \in$ $\left.U_{3} \rightarrow\left((x, y) \in R_{i},(y, x) \in R_{i},(x, y) \in R_{i}^{\prime},(y, x) \in R_{i}^{\prime}\right)\right), \quad$ and $\quad(i)\left(i \in U_{4} \rightarrow\right.$ $\left.\left((y, x) \notin R_{i},(y, x) \notin R_{i}^{\prime}\right)\right)$, so that $(i)\left(i \in U_{1}+U_{3}+U_{4} \rightarrow R_{i} \cap\{x, y\}^{2}=R_{i}^{\prime} \cap\right.$ $\left.\{x, y\}^{2}\right)$. But, since $U_{1}+U_{3}+U_{4}+U_{5}=V$, this implies
(4) $\quad(i)\left(i \in V-U_{5} \rightarrow R_{i} \cap\{x, y\}^{2}=R_{i}^{\prime} \cap\{x, y\}^{2}\right)$.

As was seen above, $N\left((x, y) \in R_{i}^{\prime}, V\right)=N\left((y, x) \in R_{i}^{\prime}, V\right)$ and $\bar{R}^{\prime} \in D$, so that, (5) $\quad(x, y) \in R\left(\bar{R}^{\prime}\right)$ and $(y, x) \in R\left(\bar{R}^{\prime}\right)$.

Thus, all hypotheses of Axiom 5^{\prime} are satisfied by (2) through (5). Hence, $(y, x) \notin R(\bar{R})$. Thus,
(6) $\quad N\left((x, y) \in R_{i}, V\right)>N\left((y, x) \in R_{i}, V\right) \rightarrow(y, x) \notin R(\bar{R})$.

Similarly,
(7) $\quad N\left((x, y) \in R_{i}, V\right)<N\left((y, x) \in R_{i}, V\right) \rightarrow(x, y) \notin R(\bar{R})$.

Now, suppose $N\left((x, y) \in R_{i}, V\right) \geqq N\left((y, x) \in R_{i}, V\right)$. Then, by (1) and (6), $((x, y) \in R(\bar{R}),(y, x) \in R(\bar{R}))$ or $(y, x) \notin R(\bar{R})$. Since $G(R) \in A_{1}(D)$, this implies $(x, y) \in R(\bar{R})$. Thus,
(8) $\quad N\left((x, y) \in R_{i}, V\right) \geqq N\left((y, x) \in R_{i}, V\right) \rightarrow(x, y) \in R(\bar{R})$,
which, together with (7), completes the proof of the lemma.
From Lemmas 1 through 5 and 7, we immediately obtain
Theorem 1: $\quad(D)\left(D \in \bigcap_{i=1}^{3} H_{i} \rightarrow A_{0}(D)=\bigcap_{i=1}^{5} A_{i}(D)\right)$.
This is merely a restatement of Theorem in Section 2.

4. DISCUSSION

Theorem 1 extends May's classical results so as to be applicable to the problem with an arbitrary number of alternatives. In the special case of two alternatives, any choice is necessarily binary, so that Axiom 4 is superfluous. This is why May's Theorem includes only four conditions which correspond to Axioms 1, 2, 3, and 5. But, in the general case of an arbitrary number of alternatives, Axiom 4 is not a trivial property of group decision functions, but a significant property which restricts the class of group decision functions. Indeed, the literature on the possibility of social welfare functions shows that this axiom is crucial in establishing the General Impossibility Theorem. ${ }^{(4)}$ Thus, the property of binary choice should be marked as an important condition for a simple majority decision.

It should be noted, however, that our generalization depends upon some restrictions on the properties of the domain of group decision functions; namely the domain D is assumed to belong to all of the sets H_{1}, H_{2}, and $H_{3} \cdot{ }^{(5)} \quad D \in H_{1}$ means that the domain is large enough to include the n-fold Cartesian product of the set of all total preorderings in $X . \quad D \in H_{2}\left(D \in H_{3}\right)$ means that the domain is symmetrical with respect to alternatives (individuals, respectively). The following example shows, in particular, that the assumption $D \in H_{1}$ is crucial in Theorem 1.

Example: $\quad D^{*}=\left\{\bar{R}^{*}, \bar{R}^{*-1}\right\}, \bar{R}^{*}=\left(Q^{*}, Q^{*}, \ldots, Q^{*}\right), Q^{*} \in S(X),\left(x^{*}, y^{*}\right)$ $\notin Q^{*},\left(y^{*}, x^{*}\right) \in Q^{*},\left(x^{*}, y^{*}\right) \in R^{*}\left(\bar{R}^{*}\right),\left(y^{*}, x^{*}\right) \notin R^{*}\left(\bar{R}^{*}\right),\left(x^{*}, y^{*}\right) \notin R^{*}\left(\bar{R}^{*-1}\right)$, $\left(y^{*}, x^{*}\right) \in R^{*}\left(\bar{R}^{*-1}\right),(\bar{R})(x)(y)\left(\left(\bar{R} \in D^{*},(x, y) \in X^{2},(x, y) \neq\left(x^{*}, y^{*}\right),(x, y) \notin\right.\right.$ $\left.\left.\left(y^{*}, x^{*}\right)\right) \rightarrow\left((x, y) \in R^{*}(\bar{R}) \leftrightarrow N\left((x, y) \in R_{i}, V\right) \geqq N\left((y, x) \in R_{i}, V\right)\right)\right)$.
Evidently, $D^{*} \notin H_{1}$ and $G\left(R^{*}\right) \notin A_{0}\left(D^{*}\right)$. But trivially, $G\left(R^{*}\right) \in \bigcap_{i=1}^{\delta} A_{i}\left(D^{*}\right)$. Hence, if $D \notin H_{1}$, then it does not necessarily follow that $A_{0}(D)=\bigcap_{i=1}^{5} A_{i}(D)$. Nevertheless, it is not asserted that the assumption $D \in \bigcap_{i=1}^{3} H_{i}$ is necessary for the equivalence between simple majority decision and the five axioms. It is an open question to find the necessary and sufficient conditions for the equivalence.

REFERENCES

[1] Arrow, K. J., Social Choice and Individual Values (Wiley, New York, 1951; 2nd edition, 1963).
[2] Blau, J. H., "The Existence of Social Welfare Functions," Econometrica, 25 (1957).
[3] Hansson, B., "Group Preferences," Econometrica, 37 (1969).
(4) See Chapter 8 of [1], [2], [3], and [4].
(5) This assumption is clearly satisfied under Blau's Condition 1^{\prime} of universal domain. See [2].
[4] Kemp, M. C. and A. Asimakopulos, "A Note on 'Social Welfare Functions' and Cardinal Utility," Canadian Journal of Economics and Political Science, 18 (1952).
[5] May, K. O., "A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision," Econometrica, 20 (1952).
[6] May, K. O., 'Intransitivity, Utility, and the Aggregation of Preference Patterns," Econometrica, 22 (1954).

[^0]: (1) In this paper, we use some logical symbols: (x) for the universal quantifier ''for every x, " $(\exists x)$ for the existential quantifier "for some $x, " P \rightarrow Q$ for the implication " P implies Q," and $P \leftrightarrow Q$ for the equivalence " P if and only if Q."

