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NECESSARY AND SUFFICIENT CONDITIONS 

   FOR  SIMPLE MAJORITY DECISION

BY HIROAKI OSANA

1. INTRODUCTION

 In his book [1],  K. J. Arrow has presented a set of necessary conditions for 
the rule of simple majority decision defined for an arbitrary number of alter-
natives, while K. 0. May [5] has presented a set of necessary and sufficient 
conditions for the rule of simple majority decision for two alternatives. The 

purpose of this paper is to present a set of necessary and sufficient conditions 
for the simple majority decision defined by Arrow. With some restrictions 
on the properties of the domain of group decision function, it will be shown 
that the simple majority decision is equivalent to the set of the following five 
axioms: decisiveness, neutrality, equality, binary choice, and monotonicity; 
each of the preceding terms will be defined precisely below.

2. STATEMENT OF THE PROBLEM

 We shall consider a society with the set X of all conceivable alternatives 
and the set V of all individuals of the society; the latter set may be regarded 
as a finite set of natural numbers, i.e., V = {1, 2, . . . , n}. Each individual i 
is supposed to have his preference relation Rz, which is assumed to be a binary 
relation on X, i.e., a set of ordered pairs. If he prefers an alternative x to 
an alternative y or is indifferent between them, then we write (x, y) E R. 
Hence, (x, y) Rti means that i prefers y strictly to x; and (x, y) E Rz and 

(y, x) E Rz mean that i is indifferent between x and y. Usually, R4 is assumed 
to be a total preordering in X; i.e., it is assumed to belong to the set 

 T(X) _ {Q: (x)(y)((x, y) E X2 —> ((x, y) E Q or (y, x) E Q)) 

       (x)(y)(z)(((x, y, z) E X3, (x, y) E Q, (y, z) E Q) (x, z) E Q)} ,(1) 

where Xm denotes the m-fold Cartesian product of set X. In this paper, 
however, we are not concerned with transitivity; thus it will be assumed that 
Rt belongs to the set 

    S(X) = {Q: (x)(y)((x, y) E X2 — ((x, y) E Q or (y, x) E Q))1 . 

 In what follows, we shall use the notations:

 (1) In this paper, we use some logical symbols: (x) for the universal quantifier "for every 
x," (3x) for the existential quantifier "for some x," P -> Q for the implication "P implies Q," 

and P H Q for the equivalence "P if and only if Q." 

                        1



2 HIROAKI OSANA

    R =  (RI, R2, ... 

Q-l = {(x, .Y): (.y, x) E Q} 
R-l = (RI 1, Ra 1, . . . , R;'), 

   P = the set of all permutations p = (pl, p2, ... , ph) of (1, 2, ... , n) , 

Rp = (Rpt, RP2, ... , Rpm) 

   N((x, y) e RE, U) = the number of elements of the set 

{i: i E U, (x, y) E Rti} , where U c V ,(2' 

   (P; Y2) = (RI n Y2, R2 n Y2, ... , Rn n Y2) . 

 Let us now introduce the definition of a group decision function. 

 DEFINITION: A mapping R is called a group decision function if and only if 
its domain (denoted by D) and range are a set of n-tuples R of individual 

preference relations and a set of social preference relations, respectively. 
 Throughout this paper, we make 

 ASSUMPTION: D C Sn(X). 

 We now make a list of six axioms on the properties of a group decision 
function. 

 AXIOM 0 (simple majority decision): (R) (x) (y) ((R E D, (x, y) E X2) -~ 
((x, y) E R(R) N((x, y) E Ra, V) ? N((y, x) E R4, V))). 

 AXIOM 1 (decisiveness): (R)(R E D -* R(R) E S(X)). 

 AXIOM 2 (neutrality): (R)((R E D, R-l E D) R(R-l) n X2 = R-l(R) n X2). 

 AXIOM 3 (equality): (p)(R)((p E P, R E D, Rp E D)--› R(R) n X2 = R(R„) 
n X2). 

 AXIOM 4 (binary choice): (R) (R') (x) (y) ((R E D, R' E D, (x, y) E X2, 
(R; {x, y}2) = (P'; {x, y}2)) R(R) n {x, y}2 = R(R') n {x, y}2). (3) 

 AXIOM 5 (monotonicity): (R)(R')(x)((R E D, R' E D, x E A', (y)(y E X --~ 
((i)(i E V -+ (((x, y) E (x, y) E RD, ((y, x) Rt -÷ (y, x) R'), (z)((z E 
X, y # x, z # x) -~ Rb n {y, z}2 = n {y, z}2))), (y # x (30(i E V,(((x, y) 
E R8, (y, x) E R4, (y, x) R•) or ((x, y) R,, (x, y) E Ra))))))) --+ (y)((yE X, 
y # x, (x, y) E R(R)) —> (y, x) R(R'))). 

 Let Hl = {D: D Tn(X)}, "2 = {D: (R)(R E D E D)}, and H3 = 
{D: (p)(R)((p E P, R e D) --> Rp E D)). In the next section, we shall prove 
the following theorem in a series of lemmas.

(2) The symbols for set-theoretical inclusion are defined as follows: 

AcB-.(x)(xEA->xEB), 

AcBH(AcB,A*B). 

(3) The term binary choice is borrowed from May [6].



SIMPLE MAJORITY DECISION 3

 THEOREM: If the domain D of a group decision function belongs to the intersec-
tion of the sets  Hl, H2, and H3, then Axiom 0 is equivalent to Axioms 1 through 5.

3. PROOF OF THEOREM

  For convenience, let us define 

          G(R) = {(R, Q): Q = R(R) n X2} , 

Al(D) _ {G(R): R satisfies Axiom i on D} . 

 LEMMA 1: (D)(Ac(D) c Al(D)). 

PROOF: Obvious. 

 LEMMA 2: (D)(Ac(D) c A2(D)). 

 PROOF: Suppose that R E D and R-' E D. Take any (x, y) E X2. Then 
clearly, N((y, x) E Rs, V) = N((x, y) E RT 1, V), so that (x, y) E R-'(R) •-~ 

(y, x) E R(R) F-^ (x, y) E R(R-l). Since (x, y) is arbitrary, it follows imme-
diately that R(P-') n X2 = R-l(R) n X2. 

 LEMMA 3: (D)(Ac(D) c A3(D)). 

 PROOF: Suppose that p E P, R E D, and R,, E D. Take any (x, y) E X2. 
Then clearly, N((x, y) E Rt, V) = N((x, y) E Rpa, V), so that (x, y) E R(R) 

(x, y) E R(Rp). Since (x, y) is arbitrary, R(R) n X2 = R(Rp) n X2. 

 LEMMA 4: (D)(Ac(D) c A4(D)). 

PROOF: Suppose that R E D, R' E D, (x, y) E X2, (R; {x, y}2) = (R'; {x, y}2). 
Then, (x, y) E R(R) `-' N((x, y) E R„ V) N((y, x) E Ra, V) N((x, y) E R$, V) 
> N((y, x) E Rq, V) (x, y) E R(R'). Similar arguments are valid for the 

pairs: (y, x), (x, x), and (y, y). Hence, R(R) n {x, y}2 = R(R') n {x, y}2. 

 LEMMA 5: (D)(Ac(D) c A3(D)). 

PROOF: Take any R, R', and x such that R E D, R' E D, x E X, (y)(y E X --

((i)(i E V — (((x, y) E R$ (x, y) E Rt), ((y, x) R, (y, x) Rti), (z)((z E X, 
y # x, z # x) —> Rti n { y, z}2 = R; n {y, z}2))), (y # x (3 i)(i E V, (((x, y) E 
R„ (y, x) E R (y, x) RD or ((x, y) R (x, y) E Rt)))))). Let Ut = {i: i E V, 

(x, y) E Ra, (y, x) E Ra, (y, x) R3 and U2 = {i: i E V, (x, y) Rz, (x, y) E Ra• 
Then, Ut U U2 # 0 for all y such thaty E Xand y # x. First, suppose U,� 0. 
Then, N((y,x)ER:, V — Ut) <N((y,x)ERy, V — Ut) and N((y,x)E RI, Ut) 

< N((y, x) E Rti, Ut), so that N((y, x) E Rti, V) < N((y, x) E Ra, V). Then 
suppose U2 # 0. Thus, N((x, y) E Rti, V — U2) < N((x, y) E Rs, V — U2) and 
N((x, y) E Ra, U2) < N((x, y) E RI, U2), so that N((x, y) E Rg, V) < N((x, y) 
E R;, V). Hence,
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(1) if y  E X and y x, then either N((y, x) E Rt, V) > N((y, x) E R;, V) 
orN((x,y)ERi, V) <N((x,y)ERi, V). 

Furthermore, evidently 

(2) for all y E X, N((y, x) E Rt, V) >_ N((y, x) E R%, V) and N((x, y) E Rt, V) 
N((x, y) E Ra, V). 

 Now, suppose that y E X, y x, and (x, y) E R(P). Then, N((x, y) E Rt, 
V) > N((y, x) E Rt, V). Hence, from (1) and (2), N((x, y) E Rt, V) > N((y, x) 
E R, V), so that (y, x) R(R'). 

 REMARK: Lemmas 1 through 4 are independent of the assumption D c 
Sn(X). 
 The lemmas above state that Axiom 0 implies Axioms 1 through 5. Before 

proceeding to the proof of the converse proposition, we introduce an extension 
of Axiom 5. 

 AXIOM 5': (R)(R')(x)(y)((R E D, R' E D, (x, y) E X2, x # y, (i)(i E V --> 

(((x, y) E Rz -~ (x, y) E RD, ((y, x) Rt (y, x) RD)), (30(i E V, (((x, y) 
E Rt, (y, x) E Rt, (y, x) Rt) or ((x, y) Rt, (x, y) E RD)), (x, y) E R(R)) --

(y, x) R(R')) 

 LEMMA 6: (D)(D E Hl --p A4(D) fl As(D) c 215,(D)). 

 PROOF: Suppose that R E D, P' E D, (x, y) e X2, x * y, (i)(i E V -›(((x,  y) 
E Rt --> (x, y) E Rt), ((y, x) Rt (y, x) o Rz))), (3i)(i E V, (((x, y) E Rt, 

(y, x) E Rt, (y, x) Rt) or ((x, y) Rt, (x, y) E Rz))), (x, y) E R(R). Then 
there exist R* and R** such that R* E Tn(X) c D, R** E Tn(X) c D, (R*; 

{x, y}2) = (R; {x, y}2), (R**; {x, y}2) = (R'; {x, y}2), (i)(z)((i E V, z E X, z x, 
z#y) ((z,x)ER ,(x,z)ER (z, x) RZ*)),(E*;X2-{x,y}2)=(R**; 
X2 — {x, y}2). Hence, (u)(u E X --› ((i)(i E V -› (((x, u) E Ra - (x, u) E RZ *), 

((u, x) Ct Rz (u, x) O Ra * ), (z)((z EX, u * x, z * x) —+ Rt n {u, z}2 = R2 * f l 
{u, z}2))), (u x -> (i)(i E V, (((x, u) E Rt , (u, x) e Rz , (u, x) R, *) or 
((x, u) R, , (x, u) E Rt *)))))). Thus, all hypotheses of Axiom 5 are satisfied, 
so that (y)((y E X, y x, (x, y) E R(P*)) — (y, x) R(P**)). 

 On the other hand, since R E D, R* E D, (x, y) E X2, (E; {x, y}2) = (R*; 

{x, y}2), it follows from Axiom 4 that (x, y) E R(P*) by (x, y) E R(R). Hence, 
from the results of the preceding paragraph, (y, x) R(P**), which implies 

(y, x) R(k) again by Axiom 4. 
 We are now in a position to prove the converse proposition mentioned 

above. 

 LEMMA 7: (D)(D e (l Hi -› if Al(D) c Ac(D)). 
 PROOF: Suppose that R E D, (x, y) E X2, N((x, y) E Rt, V) = N((y, x) E 

Rt, V). Then there is a permutation p E P such that (i)(i E V --› (((x, y) E Rt -k
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(x, y)  E  R;  ), ((y, x) (y, x) E R;4 ))), so that (R; {x, y}2) = (1?-;1; {x, y}2). 
Since D E H2 n H3, Rp 1 E D. Hence, G(R) E A4(D) implies R(R) n {x, y}2 = 
R(1;1) n {x, y}2. Assume (y, x) R(R). Then (x, y) E R(R) by G(R) E Al(D), 
so that (x, y) E R(RP 1). Hence, (x, y) E R(R-l) by G(R) E A3(D), so that 
(x, y) E R-l(R) by G(R) E A2(D); and therefore, (y, x) E R(R), a contradiction. 
Thus, (y, x) E R(R). Similarly, (x, y) E R(R). Hence, 
(1) N((x, y) E Rt, V) = N((y, x) E Rt, V) -> ((x, y) E R(R), (y, x) E R(R)). 

 Next, suppose that N((x, y) E Rt, V) > N((y, x) E Rt, V). Then, N((y, x)0 
Rt, V) > N((x, y) Rt, V). Let Ut = {i: i E V, (x, y) Rt}, U2 = {i: i E V, 
(y, x) Rt}, and Ut + U2 -}- U3 = V. Then, by D E Hl, there is R' such that 
R' E D, (i)(i E Ut (x, y) Ra, (i)((y, x) € R' i E U2), N((y, x) R:,V) = 
N((x, y) Rt, V). LetU4={i: IE V,(y,x) R'}, U4+ Us= U2,andUl+ 
U4 + LIB = V. Since N((x, y) Rt, V) = N((x, y) Rt, V) = N((y, x) R', 
V) < 2, N((x, y) Rt, V) + N((y, x) R;, V) < n, so that Uc # 0. Further, 
since N((y, x) Rt, V) > N((y, x) R', V), it follows that 

(2) Us # 0. 
Since Us = U2 n U6 and (Z)(Z E U6 ((x, y) E Rz, (y, x) E R', I E V)), it must 
be that 
(3) (i)(i E Us H ((y, x) Rt, (x, y) E R', (y, x) E Rt, i E V)). 
Further, we can easily see that (i)(i E Ut --> ((x, y) Rt, (x, y) R')), (i)(i E 
U3 -> ((x, y) E Rt, (y, x) E Rt, (x, y) E R', (y, x) E R')), and (i) (i E U4 -~ 
((y, x) Rt, (y, x) Rt)), so that (i)(i E Ut + U3 + U4 Rt fl {x, y}2 = R' fl 
{x, y}2). But, since Ut + U3 + U4 + Us = V, this implies 
(4) (i)(i E V - Us --~ Rt n {x, y}2 = R: n {x, y}2). 
As was seen above, N((x, y) E R', V) = N((y, x) E Rt, V) and R' E D, so that, 
(5) (x, y) E R(R') and (y, x) E R(R'). 
Thus, all hypotheses of Axiom 5' are satisfied by (2) through (5). Hence, 
(y, x) R(R). Thus, 
(6) N((x, y) E R, V) > N((y, x) E Rt, V) -> (y, x) R(R). 
Similarly, 
(7) N((x, y) E Rt, V) < N((y, x) E Rt, V) — (x, y) R(P). 

 Now, suppose N((x, y) E Rt, V) > N((y, x) E Rt, V). Then, by (1) and 

(6), ((x, y) E R(R), (y, x) E R(R)) or (y, x) R(P). Since G(R) E AA(D), this 
implies (x, y) E R(P). Thus, 
(8) N((x, y) E Rt, V) > N((y, x) E Rt, V) --+ (x, y) E R(R), 
which, together with (7), completes the proof of the lemma. 

 From Lemmas 1 through 5 and 7, we immediately obtain 

THEOREM 1: (D)(D E(~Hi--> Ac(D) =(l A4(D)). 
       \ i=ll=1 

This is merely a restatement of Theorem in Section 2.
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4. DISCUSSION

 Theorem 1 extends May's classical results so as to be applicable to the 
problem with an arbitrary number of alternatives. In the special case of two 
alternatives, any choice is necessarily binary, so that Axiom 4 is superfluous. 
This is why May's Theorem includes only four conditions which correspond 
to Axioms 1, 2, 3, and 5. But, in the general case of an arbitrary number of 
alternatives, Axiom 4 is not a trivial property of group decision functions, but 
a significant property which restricts the class of group decision functions. 
Indeed, the literature on the possibility of  social welfare functions shows that 
this axiom is crucial in establishing the General Impossibility Theorem.“ 
Thus, the property of binary choice should be marked as an important con-
dition for a simple majority decision. 

 It should be noted, however, that our generalization depends upon some 
restrictions on the properties of the domain of group decision functions; namely 
the domain D is assumed to belong to all of the sets Hl, H2, and H3. (5) D E Hl 
means that the domain is large enough to include the n-fold Cartesian product 
of the set of all total preorderings in X. D E H2 (D E H3) means that the 
domain is symmetrical with respect to alternatives (individuals, respectively). 
The following example shows, in particular, that the assumption D E Hl is 
crucial in Theorem 1. 

 EXAMPLE: D* — {R*, 1?*-1}, R* — (Q*, Q*, ..., Q*), Q* E S(X), (x*, y*) 
OQ*, (y*, x*)EQ*, (x*,Y*)ER*(R*), (y*, x*)0R*(12*), (x*,Y*)OR*(R*-1), 
(y*, x*) E R*(R*-1), (R)(x)(Y)((R E D*, (x,Y) E X2, (x,Y) # (x*, Y*), (x, .Y) 
(y*, x*)) ((x, y) E R*(R)'--' N((x, y) E Rt, V) ? N((y, x) E Rt, V))). 

5 Evidently, D* Hl and G(R*) Ac(D*). But trivially, G(R*) E fl Aq,(D*). 
i=1 

5 

Hence, if D Hl, then it does not necessarily follow that Ac(D) = fl Al(D). 
i=1 

3 

Nevertheless, it is not asserted that the assumption D E f l Hi is necessary for 
i=1 

the equivalence between simple majority decision and the five axioms. It is an 
open question to find the necessary and sufficient conditions for the equivalence.
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