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LEARNING BY DOING AND INDUCED  INNOVATION

BY TAKAHIRO MIYAO

I. INTRODUCTION

  Following the famous work of Harrod [3], many economists have been ex-
tensively studied the dynamic .process of economic growth with technological 

progress. - While the stimulating effects of technical progress upon the process of 
economic growth and capital accumulation have been adequately investigated in 
the existing literatures, the fundamental structure within which technological change 
itself is generated has not been much studied; the rate and the direction of tech-
nical progress have been generally assumed to be given exogenously. 

  Recently, however, several authors have begun to develop the endogenous 
theory of technical progress, which is intended to analyse . the phenomenon of 
technological progress itself in the light of more fundamental hypothesis. The 
two by now best known hypotheses are the `learning by doing' function of Arrow 

[1] and the `innovation possibility' frontier of Kennedy [5]. 
 In a model with the first concept, the rate of technical progress is explicitly 

related to, and is simultaneously determined with, economic variables. Arrow 
concentrates upon the relation between `learning' and `experience' and studies the 
technical improvement which grows out of `experience' generated within the pro-
cess of production. He measures cumulated experience by cumulated gross in-
vestment. Thus the rate of technical progress is taken to be dependent upon the 
rate of increase in cumulated investment, which in turn, depends upon the rate of 
technical progress itself. 

 The second endogenous theory of technological change is a model of induced 
innovation, in which the direction of technical progress is a dependence variable. 
In his model, Kennedy allows the enterpreneur to choose rates of capital-augmen-
ting and labor-augmenting technical progress, rates that are constrained to lie 
within an innovation possibility set, so as to maximize the instantaneous rate of 
technological progress (or the instantaneous rate of cost reduction). Thus the 
direction of technical progress is endogenously determined as a result of the 
enterpreneur's optimizing behavior under competitive conditions. 

 Although the first model has essentially the same property as the second one, they 
have been independently developed for somewhat different purposes. While the 
`learning by doing' model has been mainly devoted to explore the normative im-

plication of an external effect of gross investment, the `induced innovation' model 
has been investigated for clarifying the positive implication of a bias in technical 

progress. 
 In order to integrate these two models, we shall try, in this paper, to construct 

a generalized model with both hypotheses, in which the position of innovation
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LEARNING BY DOING AND INDUCED INNOVATION 11

possibility frontier is assumed to be dependent upon cumulated investment and 
 `learning' is taken to expand the frontier steadily . In a sense our innovation pos-

sibility frontier may be thought of a re-formulation of Kaldor's famous `technical 

progress function' [4]. 
 In what follows, we will investigate both positive and normative implications 

of our model.

II. LEARNING AND INDUCED INNOVATION 

 Let us construct a model with `learning by doing' and `induced innovation'. 
The production function to be considered is a neoclassical one exhibiting constant 
returns to scale and diminishing marginal productivities of capital and labor, with 
factor-augmenting technical progress; 

(1)Y = F(BK AL) 
where Y denotes the rate of output, K, the stock of capital, L, the labor force and B 
and A, the levels of efficiency of capital and labor respectively. 

 Now, the levels of efficiency B and A are assumed to reflect cumulated experience 
which is measured by cumulated gross investment. If we assume that there is no 
capital depreciation, the cumulated gross investment is equal to the total stock of 
captial. Thus B and A depend upon the existing stock of capital. 

 Let, 

(2)A = K", B = K~ 
where a and (3 are non-negative parameters. Then we have 

(3)A = aK, = Pk 

where z dentotes the proportionate rate of change of a variable x. 
 Our innovation possibility frontier is assumed to be given by

(4)a 

where (See Fig. 1) 

 (5)

= c((3), es(0) > 0, CYO) < 0,

0<a<a<1, 

O <1,

a = 0(0) 

0 = 0(a)

es"(/3) <0

It should be noted that (3) and (4) implies A/K = OB/K), compared with the usual 
assumption A = 00). 
 Since learning effects may not be explicitly evaluated under competitive condi-

tions, the competitive shares of capital and labor may be expressed as 

(6)r = FiBKF2AL                 I,1—77 = 

respectively. 
 The enterpreneurs will choose a and 13 so as to maximize the instantaneous 

rate of technical progress or the current growth rate of output, subject to the frontier



12 TAKAHIRO MIYAO

                               Fig. 1 

(4). Since (1) (3) (4) and (6), together with the homogeneity of production  junc= 
tion imply 2 = 7r(.& + K) + (1 7r)(A + L), we can express the enterpreneur's 
maximizing problem as 

 (7) Max 2- = Max (7r(3 + (1 — 7000) 7rt + (1 — 2r)L 
Os 9<05,3<,9- 

If K is positive, an interior maximum exists for a certain range of 7r; 

 (8) it ± (1 — 7r)¢10) = 0 . or cb'(8) = — 1 7r 
In this case, one can see easily that an increase of it increases optimal (3 and decreases 
optimal a. In the case of corner maximum, we have 

 (9) S= Q, a=¢(Q)=0, if re+(l-2r)¢'(Q)<0 

 (10) /9=0, a=c(0) aa, if 7+(1-7)0'0)?0 
Summarizing, a and 13 are continuous functions of r 

 such that 

               a(2r)=a,8(7r)=0, for 0<7r<7r1=— 1¢'(0) 
a = a(7r)S~'(0) 

 (11)(a'(7r) < 0 , l3'('r) > 0 , for 7r1 < < ~2 
= IS(7r)"(Q)  

              ~(7r) = 0 ,/9(7r)=Qfor—1 — ¢'(Q)—7r2<SI

                III. PREPERTIES OF BALANCED GROWTH 

 Let us examine the dynamic behavior of factor shares and of the growth  rate, of 

 (1) Sheshinski [8] deals with a special case of our model, in which a = a and ,8 = 0 are assumed. 
 (2) It should be noted that the competitive (private) rate of return on capital is equal to FIB, 

while the social rate of return canbe expressedas F1(1-{-19)B +F.2 aK
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capital. We assume a constant saving  ratio  : 

 (12) 0<s<1, K(t)=sY(t), K(0)>9. 

where a dot above a variable denotes the rate of change of that variable with respect 
to time. Further, we suppose that the rate of increase of labor force is exogenous 
and constant; 

 (13) L=n>0, or L(t)= Lac" , Lo>0 

 Following Drandakis-Phelps [2] (p. 831), we can now derive 

 (14)=7r(1 —7r)16(A-B-l+n) 

 (15)K = K(1 - 7r) (A +lirir- K -}- n) 
where a =Fi• F2  , the elasticity of substitution, which is assumed to be different F• F12 
from unity everywhere. Our assumptions (12) and (13) guarantee that K(0) _ 
sY(o) = sF(K(o), Lo) > 0 and therefore K(t) > 0, K(t) > 0 for all t and 0 < 7r < 1 

for all t. Hence a balanced growth in which it = K = 0 implies K(t) = K* > 0, 
7r(t) = 7r*, 0 < 7r* < 1 

  Then, from our fundamental equations (16) and (17) we see that an equilibrium 
should satisfy. 

  (18)n — {1 — a(7r*) 13(7r*)} k* = 0 

 (19)n — {1 — a(7r*)— 1*~*P(7r*)}K*= 0 
which together simply 

 (20)P(7r*) = 0 
Also 

 (21)a(7r*) = a 
That is, the equilibrium conditions give the purely labor-augmenting (Harrod 
neutral) technical progress. Thus, we obtain from (18) or (19) 

 (22)K* l------n> 0 

Recalling (11) we have 

This solution is illustrated in Fig. 2. 
  We shall now investigate the stability of balanced growth path. Let us assume 

that quantity a — 1 is of constant algebraic sign for all capital-labor ratios and 
 time. 

  First, we consider the case with it = 0. In this case, from (16) we have K =
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Fig. 2 

n/{1 — a(z) -E- /3(z)} > 0 since 1 — a(z) 13(z) is positive. Let g(z) - n/{1 — a(r) 
+ 9(z)} 
Then 

 (24) g'(z) -n2{a'(z)-48'(z)1j0,ifzl< z < z2 
             { 1—a(7r)+13(z)}l= 0 otherwise 

                 n if 0<
z<zl                        1 —a 

 (25)g(z) = 

n  1 n , if z, z<1 

The behavior of z, derived from (16), can be stated as follows: 
 Case I: if a. < 1, (as Fig. 3 shows) it < 0 for z above the it = 0 line and it > 0 

for z below the it = 0 line. 
 Case II: if Q > 1(as Fig. 4 shows) it > 0 for z above the it = 0 line and it < 0 

for z below the it = 0 line. 

 Next, examine the case with K = 0. In this case we have K = n/{1 - a(z)   
l--------zA(re)} (where 1— a(z) —lzzp(r) # 0) 

from (17) Let h(7r) - nI {1 — a(z) —lzis(z)} Then

 (26) 

Since. 48(z) = 

 (27) 
We also have

h(z)

 0  for  0  <  7V

 >  0 if a(n) + 1 7 7 

< 0 if a(7r) + 1 7  

7 <_ 1r1,  we obtain 

h(r) = g(7r) for 0 < zr

((7r) < I 

Az) > 1 

C ~1
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 (28)h'(2r) = n2 

{1 1 — a(7r) — l---------Q(7r)} 
           x {a'() + --------~'(                    Ir) +(1-------------1 7r)2AO} 

        

(----------------------2 >0, for hl<7r<1              il — a(7r) — l--------T i8(7)} 
It can be easily seen that h(it) approaches — 0, since 43 = Q, as 7 approaches 1. 
The following behavior of k can be drived from (17). 

If h(it) > 0, we have K < 0 for K above the I = 0 line and K > 0 for K below 

the K = 0 line; if h(er) < 0, we have k> 0 for K > 0; this is independent of a, 
since (17) does not contain a. 
In Fig. 3 and 4, r+ is defined as follows: 

 (29)a(r+)+---------IQ(7r+) = 1 

One can see immediately from Fig. 5 that 7r+ is uniquely determined and 

(30) < 7+ < r2 
Fig. 3 shows that if a < 1, the system is globally stable. The arrows showing the 
direction of the path, starting at any region in Fig. 3, confirm the global stability. 
If a > 1, as Fig. 4 shows, we have the stable paths in regions 1 2a and 4b, but the 
paths starting at regions 2b 3 and 4a are unstable.

n

].—a

1+Q

K

r

0

K=O

1 

R,

r i 

3 fr=o

 0

 

I  I

Jr,I 7,2 1 r.

K=0

Fig. 3 Fig. 4
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a

0
 ly

Fig. 5

 a  <1

 7>1

1

0

0

2a

0

0

2b

0

x

3

0

x

4a

0

x

4b

0

0

0: stable, x : unstable

IV. ' TECHNICAL PROGRESS AND' OPTIMAL GROWTH 

 Let us now focus upon the normative aspect of our model and try to find some 
welfare implications. We assume that the planning board's objective is to maximize 
the sum of discounted future consumption per capita. We further assume that the 

planning authority can control the saving ratio as well as the direction of technical 
progress. If o is the planning board's rate of time discount for per capita consump-
tion,, then the problem is equivalent to the following maximization problem: 

 To maximize :

(31)

subject to the constraints:

 (32) 

 (33) 

 (34) 

 (35) 
with

o(1—s)
Y(t)
L(t)

e-'tdt

  K := sF(BK AL) 

A=0((3)k.A 

= pK• B 

0<s<1, 0<13

K(0) > 0 , A(0) > 0 , 

o>0, L=n>0, 

Define the usual per capita quantities;

B(0) > 0 

Lo>0
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 (38)Ay = F( BAK  ' 1) .f AL) f AB k) 
Then, the problem (31)-(37) reduces to the following problem in miniature form: 

 To  maximize: 

 (39)F(1  — s)Al (—A-k)e-atdt 
subject to the constraints : 

(40)k= sAf (A k) — nk with k(0) > 0 
f(Ak)  

 (41) = 0(13)sAk A with A(0) > 0 

f(Ak)  
 (42)E= lssA kB with B(0) > 0 

This problem is solved by use of Pontryagin's "maximum principle" [7]. Introduce 
the Hamiltonian form 

 (43) H = e-at (1 — s)A f (A k) + qt {sAf(k) — nk} 

f(1k)f(Ak) I`_ 
+ q2 0(j3)sA k A + q3 ̀ issA k 

If a program [k(t): s(t), (3(t); 0 < t < 00] is optimal, then there exist continuous 
functions qt(t), q2(t) and q3(t) such that

(44)

(45)

(46) 43 =

41 = (n + o)qt — (1—s)Bf' + glsBf 

          .f' Bk —.f.f'k — .f 
  + g2OsA------------Ak2A + g3(ssA------------Ak2B 

q2=oq2— {(l — s)(f_f'k) + qrs(f_f'k) 
          .f+.f—.f'k.f.f'Bk 

43 — {(1 — s)f'k + gist.% + q2osA k + qsfisA 
  + g2~sA--------------k+ q3 jssB-------------k 

f%f +f'A k 

k
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 (47) Max sAf •{—_1 +qi-I-q2~k+ q3,3B 
 (48) Max sAf • {g2Ac(3) -I- gsBls} 

os9<3 

  (49) rim qie-'t = 0 ,rim g2e-'t = 0,rim qse-°t = 0 
        t-+oat—t-*00 

 Following Nordhaus [6], let us confine our attention to the optimum balanced 

growth path in which each variable is steadily growing at a constant rate. Since 
the Cobb Douglas type (a - 1) of production function is excluded and diminishing 
marginal productivities are assumed, that each of Y, BK and AL is growing at a con-
stant rate implies that all these variables are steadily growing at the same constant 

rate; that is, A k is constant over time. Thus, recalling (40)-(42), we have 
 (50) 0 = (—BAk)= B -}- k ~-A = 'SSA-{-sA— n — OsA 

Hence 

 (51) sA k= 1+ —or s=--------------f>0 
                              A—(1+ —0) 

In order to exclude a trivial case in which the sum of discounted future consumption 

per capita is zero, we assume that the saving ratio is strictly less than one. (51) 
shows that 13 is constant over time and therefore the left hand side of (51) should be 
constant over time. 

For O<s<1, 

 (52)— 1 +qt+q2~A + kkqs(3B= 0 

is obtained from (47). Then 

 (53)higi = (n -}- o)qt — Bf' -F- g2osA kA + qsjssAB 
= (n 3)gr—Bf' sAf (1 — qt) 

 (54)h2g2=(6-osA k)q2—(f—f' 4-k) 
 (55)hsqs = (a — (3sA —f — f'k 

where hi, h2 and h3 denote the rates of growth of qt, q, and q3 respectively. Since 

(53) implies qt = B = 0, we have 

(56)h11=0,/3=0 

Then, (51) means that the saving ratio is constant over time, because A k is constant 
for both A k and B are constant over time. It can be seen from (54) that q, is 
constant over time, while (55) shows that q3 is growing at the same rate as k;
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(57) h2  =  42  -  0 

 (58) h3 = q3 = k = SA  - n =--------1 — (0)n10(0)(0)n 

Substituting (56)-(58) into (53)-(55), we obtain the following implicit prices of 
k, A and B: 

          —Bf' —  1 —(0)f — f'A  
(—59)qlq2             0(0) ,—(0) 

         ~— Ina—               —0(0)  1-0(0)re 

          f'k  q3 
3 — 0(0)                 1 — 0(0) 

where the denominator, which can be interpreted as the modified rate of time discount 
in the growing economy, should be a positive quantity, consistent with the optimum 
condition (49). Recalling that 13 = 0 and substituting (59) into (52) one obtains 

Bf' —-------hf — f' —BkA 
(60) — l-f (0)~(0) ±0(0)0(0)k=_0 

3-1 — 0(0)n—                          ~ 1 —0(0) n 

or 

(il) Bf' + 0(0)Al — Bf'--------k=n }\~0(0)  n                         1 — 0(0)1— 0(0)l 

The left hand side of (61) is equal to FIB + F2aAL/K and this can be regarded as 
the social rate of return on capital. Further, the right hand side of (61) is equal to 
the sum of the growth rate of capital and' the modified rate of time discount or the 
sum of the natural growth rate of labor and the original rate of time discount. 

The remaining condition (48) means 

(E2)g2Ao'(0) + q3B < 0 
for s > 0 and 13 = 0. If we substitute (62) into (59), then we obtain 

 (63)B  f'k = FlBK= 7r           — ~~(0)—A B F2AL 1 — 7r f—f' Ak 

so that 

 (64)0 < < 7r, — 1'(0) 

It should be noted that the optimal share of distribution is equal to the private 

(competitive) one which can be achieved under competitive conditions. 
 Thus, on the optimum balanced growth path in which the sum of discounted 

future consumption per capita is positive, we should have 0 < s < 1, a = a, 13 = 0 
and the following relations.



20 TAKAHIRO MIYAO

growth rate

0

 ¢(0)
1 - 0(0)

n

n

1 — 0(0)

variable

B gr q2 s

k A Qs

K Y

the social rate of return on capital 
= the growth rate of capital + the modified rate of time discount 

= the natural growth rate of labor + the original rate of time discount 

the absolute value of tangency of the innovation possibility frontier 

       the (competitive) distributive share of capital  
           the distributive share of labor 

the implicit price of per capita quantity of capital 

_ the private rate of return on capital — the growth rate of capital
                 the modified rate of time discount 

the implicit price of labor augmenting technical progress 

       the wage rate in terms of the efficiency of labor
            the modified rate of time discount 

the implicit price of capital augmenting technical progress 

       the private rate of return in terms of the efficiency of capital

              the modified rate of time discount 

x per capita quantity of capital

                          V. CONCLUSION 

 As is well known, one of the main conclusions of a theory of learning by doing 
is that under competitive conditions every private enterpreneur whose investment 
produces extra knowledge is not rewarded with his full marginal product and 
therefore he tends to devote less resources to 'investment than is socially desirable. 
The same conclusion still holds in our generalized `learning by doing' model. 
Consider a perfectly competitive economy in which all the individuals have the same 
utility function of Integral (31). In this case, investors will determine their volume 
of investment at every point of time so as to equate the private (competitive) rate 
of return and the growth rate of capital plus the modified time discount rate. This 
condition defines the unique competitive balanced capital-labor ratio which is less 
than the socially optimum ratio derived from (61). Thus, corrective fiscal policy 
should be aim to subsidize investment so as to equate the private and the social rate 
of return. 

 It was also shown that, in the long run, the socially desirable direction of
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technical progress is purely labor-augmenting one and this direction is asympto-

tically achieved under competitive conditions if the elasticity of substitution is less 

than unity everywhere. In this regard, therefore, the optimum solution can be 

obtained by a competitive  tatonnement as well as by centralized planning. 

 To summarize, if the adequate size of subsidy which should be equal to the 

difference between the private and the social rate of return is given to the enter-

preneurs, perfect competition may be expected to lead to the optimal choice of the 
rate and the direction of technical progress, provided the elasticity of substitution 

is less than unity everywhere.
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