
Title E-cell fundamentals
Sub Title
Author 慶應義塾大学湘南藤沢キャンパス先端生命科学研究会(Keio gijuku

daigaku Shonan Fujisawa kyanpasu sentan seimei kagaku
kenkyukai)
内藤, 泰宏(Naito, Yasuhiro)

Publisher 慶應義塾大学湘南藤沢学会
Publication

year
2010-03

Jtitle リサーチメモ
JaLC DOI
Abstract
Notes
Genre Technical Report
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara

_id=0302-0000-0629

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会また
は出版社/発行者に帰属し、その権利は著作権法によって保護されています。引用にあたっては、著作権法を遵守し
てご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to
the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese
Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

E-Cell Fundamentals

E-Cell

Fundamentals
慶應義塾大学湘南藤沢キャンパス

先端生命科学研究会

慶應義塾大学 湘南藤沢学会

1 は じめに

E-Cel1と は

本書の構成

必要となる知識

13

13

13

14

2 E-Cellを は じ め よ う

シ ミ ュ レー シ ョン の準 備

 EMか らEMLへ の変換

 C++ダ イナミ ックモジ ュ-ル のコンパイル

E-Cel ISEの 起 動

 GUIモ ー ド

 スク リプ トモー ド

 DM探 索 パスと環 境変数ECELL3_DM_PATH

そ の他 の コマ ン ド

 EMLか らEMへ の変換

17

17

17

17

18

18

19

19

zo

zo

3 E-CelIに よ るモデル作成

 モデル中のオブジェク ト

オ ブ ジ ェク ト指 向 に よ る 生 命 現 象 の 表 現

オ ブ ジ ェク トの型

 Entityオ ブ ジ ェ ク ト

 Stepperオ ブ ジ ェク ト

オ ブ ジ ェク ト識 別 子

 ID(Entity lD, Stepper lD)

 SystemPath

 FulliD

 FullPN(Fully qualified Property Name)

zi

21

21

21

23

4

 オブジ ェク トの属性

 属性の型

 属性値の動 的な型 適用

E-Cellモ デ ル(EM)フ ァイル の 基礎

 EMと は

 なぜ、そ していつEMを 使 うの か

 一 目で見 るEM

 EMの 一般 的な文 法

 オブジ ェク トのイ ンスタンス化宣言文の一般的 な書式

 マ クロとプ リプ ロセ ッシング

 コメン ト

モデ ル の構 造

 最上位 の要素

 System

 ルー トシ ステム

 Systemの 階層構造

 Systemの サイズ 〔容積>

 VariableとProcess

 StepperとEntityオ ブジェク トの結合

 Priority属 性

 VariableとProcessの 結合

モ デル 作 成 の 方式

 離散か連続 か

 離散ク ラス

 利用可能な離散 クラス(抜 粋)

25

7

8

2

2

Q
/

0

2

3

2

3

4
,

4

4

3

3

2
丿

つ
丿

つ
丿

7

8

3

3

Q
/

2

2

3

4

4

43

 DiscreteEventStepperお よび GillespieProcess(Gillespie-Gibsonペ ア)

 DiscreteTimeStepper(離 散 時 間Stepper)

 Passivestepper

 PythonProcess

 PythonEventProcess

 ExpressionAssignmentProcess

 そ の他 の 離 散 ク ラ ス

利 用 可 能 な 連 続 ク ラ ス(抜 粋) 52

 一 般 的 な 常 微 分Stepper

 MassActionFluxProcess

目 次

ExpressionFluxProcess

定 義 済 み の 反 応 速 度 ク ラ ス

PythonFluxProcess

一 般 的 な 微 分 代 数 系Stepper

代 数Process (Algebraic Process)

Power-law(べ き 乗則)の 正 規 形 微 分 方 程 式 〔S-System、 GMA)

モデル化に際しての変換

単位

57

57

4 モデル作成のチ ュー トリアル

モ デ ル の実 行

Gillespie アル ゴ リズム を 使 う

 ちい さな反応 系

 Next ReaCtlon methodの 設定

 コ ンパー トメン ト(区 画)の 定義

 変数(Variable)の 定義

 反応過程(ProCess)の 定義

 つな ぎ合わせ る

決 定論 的 微 分方 程 式 を 使 う

 StepperとProcessク ラスの選択

 モデルの変換

複数 の アル ゴ リズム を 切 り替 え られ る モデ ル を作 る

簡 単 な決 定 論/確 率 論 連成 シ ミ ュ レー シ ョ ン

 ちい さな複数タ イムスケール反応モデル

 モデル ファイルを書 く

方程 式 の カ ス タ マイ ズ

 複雑 な反応速度式

 代数 方程式

59

59

59

60

60

60

61

61

62

64

64

65

66

68

68

69

71

71

72

5 スク リプ トによるセッションの操作

セ ッシ ョン を スク リプ トで操 作 す る

E-Cellセ ッシ ョンス ク リプ トの 実行

 コマ ン ドライ ンでのESSの 実行

 バ ッチモー ド

73

73

74

74

目 次 5

6

 インタラクテ ィヴモー ド

 スク リプ トへのパ ラメータの受 け渡 し

 ecell3-session-monitorで のESSの 読み込 み

 セ ッシ ョンマネ-ジ ャを使う

E-Cellセ ッシ ョン スク リプ トを書 く

 Sessionメ ソ ッ ドを使う

 一般的な ルール

 モデル の読 み込み

 シミュ レーシ ョンの実行

 現時 刻の取得

 メ ッセ-ジ の表示

 Sessionメ ソ ッ ドの例

 Sessionパ ラメータの取得

 ObjectStubに よるモデルの観 察と操作

 ObjeCtStubと は

 ObjeCtStubは なぜ必要 か

 IDか らObjectstubを 作る

 ObjeCtStubの 作成 とバ ックエ ン ドオ ブジェク トの確 認

 ObjectStubか らの 名前 、クラス名の取得

 属性の設定 と取 得

 Loggerデ ータ の取得

 Loggerに よる記録間 隔の取 得と変更

 Entitystubの 使用例

デ ー タ フ ァイル の操 作

 ECDフ ァイル について

 ECDDataFiIeク ラスのイ ンポー ト

 データの保存 と読み込 み

 ECDの ヘ ッダに含まれる情報

 E-CellSEの 外部でECDを 利用 する

 バイナ リ形式

モ デル フ ァイル の操 作

 EMLモ ジュール のインポー ト

そ の 他 の メソ ッ ド

 バー ジ ョン番号 の取得

 ダ イナミ ックモジ ュール(DM)読 み込み に関連 する メソ ッド

目 次

匚
⊃

5

7

7

7

7

7

7

()

0

0Q

8

Fう

5

6

6

7

7

8

8

8

8

8

8

8

8

◎
0

9

8

8

◎
ノ

Q
/

9

8

8

8

上 級 者 向 け の話 題

 ecell3-sessionの 実行機構

 実行環境 に関する情報 の取得

 デバ ッグ

 ブロフ ァイル作成

E-Cel-Pythonラ イブ ラ リAPI

 Sessionク ラスAPI

 Sessionメ ソ ッ ド

 Stepperメ ソ ッ ド

 Entityメ ソ ッ ド

 Loggerメ ソッ ド

 Sessionク ラスの属性

 ObjectStubク ラスAPI

 すべて のObjeCtStubに 共通する メソッ ド

 EntityStubとStepperStubに 共通 するメソ ッ ド

 LoggerStubだ けが持つメソ ッ ド

 ECDDataFiIeク ラスAPI

 ECDDataFileメ ソッ ド

0

0

1

等

2

勹⊃

3

9

9

9

9

9

9

9

97

101

6 新規 オブジ ェク トクラスの作成

 ダイナミックモジュールについて

 新規 クラスの定義

DMTYPE, CLASSNAME, BASECLASS

フ ァイル名

インクルー ドす るフ ァイル

DMマ クロ

コンス トラクタ とデス トラクタ

型と宣言

 基本的な型

 ポインタ型 と参照型

 型 の制限 とその他の属性

Polymorphク ラス

 Polymorphオ ブジ ェク トのコンス トラク ト

 Polymorphの 値の取得

 Polymorphの 型の確認 と変 更

105

105

105

106

107

107

107

108

108

110

目 次 7

8

 PolyrnorphVector

 その他のC++構 文

Propertyslot

 PropertySlotと は

 PropertySIotは 何のため にあるのか

 PropertySlotの 型

 PropertySlotの 定義

 setメ ソッ ドとgetメ ソ ッド

 PropertySloiの 登録

 Ioad/saveメ ソッ ド

 基底 クラスの属性の継承

 シミュ レー ションで のPropertySlotの 利用

新 規Processク ラ ス の定 義

7 標 準 ダ イ ナ ミ ッ ク モ ジ ュ ー ル ラ イ ブ ラ リ

 Stepperク ラ ス

 DifferentialStepper(微 分Stepper)

 汎用の微分Stepper

 DiscreteEventstepper(離 散 イベ ン トStepper)

 DisCreteTimeStepper(離 散時 間Stepper)

 PassiveStepper(受 動StepPer)

 Processク ラ ス

 連続Processク ラス

 微 分方程式 に基づ くProcessク ラス

 その他の連続Processク ラ ス

 離散Processク ラス

 その他のProcessク ラス

 Variableク ラ ス

8 E-Cellの シ ミュレーシ ョン機構

 メタアルゴリズム

 離散事象システム

 メタアルゴリズムの概要

 Stepper

目 次

111

111

111

112

118

119

121

121

321

122

123

123

124

124

125

125

125

127

127

127

128

 Process

 必須の情報

 メタアル ゴリズムの実行

E-CeII SEカ ー ネル

 Libecs

 4つ の基本 的なオブジ ェク トク ラス

 属性

 2種 類 のProcessと 、4種 類 のStepper

 LoggerBroker

 シミュ レーシ ョンの実行

 モデル のインスタ ンス化

 メタアル ゴ リズムの実行

 次 回イベ ン トの発生時刻

 次 回イベ ン トまでのVariabIeの 積 分

 Stepperの ステ ップ

 データ記 録

 イベ ン トキ ューの更新

 他 のStepperへ の割 り込み

 アーキテクチ ャの優位性

カ-ネ ルへ のイ ンタ-フ ェイ ス

 Pythonイ ンターフェイスAPI

 libemCマ イ クロコア

 フロン トエン ド

9 E-Cell SEに つ い て

129

130

130

133

136

137

137

137

138

141

Appendix-1 EmPyモ ジ ュール

基 礎

展 開

制 御

注意すべき点

Appendix-2 サ ンプルモデル

143

143

144

147

150

初心者向けのモデル

151

151

目 次 9

Appendix-3

Appendix-4

10

 simple

決 定論 モデ ル

 Drosophila, Drosophila-cpp

 Heinrich

 CoupledOsclllator

 branche

 LTD

 SSystem

 Pendulum

確 率 論 モ デ ル

 tauleap

確 率 論 決定 論 連 成 モ デル

 heatshock

 Toy_Hybrid

セ ッシ ョンマ ネ ー ジ ャの 利用 例

 sessionmanager

 ga

シ ス テ ム の フ ァ イ ル 構 成

セ ッ シ ョ ン モ ニ タ マ ニ ュ ア ル

セ ッシ ョンモ ニ タ と は

起 動 と終 了

 セ ッシ ョンモニタの起動

 セ ッシ ョンモニ タの終 了

モ デル フ ァイル の読 み込 み

 起 動時 に読み込 む

 GUIか ら読み込む

シ ミ ュ レー シ ョンの 実 行

 メイ ンウィン ドウの情報

 ツールバ ー

 メインコン トローラ

 Entityリ ス ト

 メ ッセージ

目 次

151

1

1

2

2

2

2

2

2

5

5

5

5

5

5

5

5

1

1

1

1

1

1

1

1

3

3

3

3

3

【
J

5

匚
」

匚
」

5

1

1

 1

1

1

つ
」

つ
丿

3

5

5

「⊃

1

1

1

5

◎
ノ

に
」

眞
」

1

 1

9

0

0

2

2

2

2

3

3

5

6

6

6

6

6

6

6

6

1

哩

1

1

1

1

4l

1

1

 シミュ レーシ ョンの開始

 トレー サー:Entityの 変化 をグラフ化する

 もっともシンプルな トレーサーの作 り方

 任 意の属性をプ ロッ トする

 トレーサーに属性 を追加 する

 トレ-サ ーに表示 され るデータ

 グラフの拡大 ・縮小

 Stepperウ イン ドウ

 シミ ュレー ション中のパラメ-タ の変更

デ ー タの 保 存

 モデル状態の保存

 時系列の保存

 Loggerウ イン ドウ

 ECDフ ァイルの保存

 データ記録方式(LoggerPolicy)の 設定

 Logging frequencyとdata interval

169

169

176

177

177

178

178

180

目 次 11

次目12

はじめに

1 羅

E-Cellと は

E-Cell Simulation Environment(E-Cell SE)は 、 さ ま ざ ま な 細 胞 内 現 象 の シ ミ ュ

レー シ ョン を 実 行 す る ため の ソ フ トウ ェア 環 境 で す。

本書の構成

本書は以下の各章より構成されます。

1.は じめに(本 章)

2.E-Ceｌｌ をは じめ よう

3.E-Cellに よるモデル作成

4.モ デル作成のチ ュー トリアル

5.ス ク リプ トによるセ ッシ ョンの操作

6.新 規 オブジ ェク トク ラスの作成

7.標 準 ダイナミ ックモ ジュール ライブラ リ

8.E-Cellの シミ ュレ-シ ョン機構

9.E-Cell SEに ついて

Appendix

1.EmPyモ ジ ュール

2.サ ンプルモデル

3.シ ステムのフ ァイル構成

4.セ ッシ ョンモニタ マニ ュアル

ユ ーザと してE-Cellを 使 いは じめたいな ら、2、3、4章 を読み、プロ ジェク トをは

じめて ください。必要 に応 じて他の章も読み進めて ください。モデルを作成 するため

に用いることがで きるクラスに関する情報を得 るには7童 をご覧 くだ さい。独 自のモ

ジ ュールを開発するた めには6章 を読んで くだ さい。 シミ ュレーシ ョンの実行 を自動

13

蠶

婁1

化 するために は5章 が役立 つで しょう。

E-Cell SEの フロン トエ ン ドモ ジュール(Python言 語で記 述 します)の 開発 に関心

があるな ら5章 を中心に読んで ください。 システムが どのように構成 され、利用 され

るか につ いて よく知 らないな ら、2、3章 も読んで くだ さい。

C柵 ダ イナミ ックモ ジュール(新 規 アル ゴリズムモ ジュ-ル など)を 開発す るのであ

れ ば6章 を読 む必 要があ ります。E-Cellに ついて よく知 らな ければ、2、3章 を、す

で に提供 され ているクラ スの設計 につ いて知 りた けれ ば7章 を読 んで ください。

E-Cell SEが シミ ュレ-シ ョンを実行 する仕組み につ いて関心があるな ら8章 を読 ん

で ください。

Appendix

モデル フ ァイル中で利用で きるマクロEmPyの 簡 易マニ ュアルをAppendix-1に 収

録 します。

システム ととも に提供 されるサ ンプルモデル の内容について はAppendix-2を ご覧

ください。

E-Cell SEが インス ト-ル する ファイルの構成 について はAppendix-3を ご覧 くださ

い。

E-CellのGUIで あるセ ッシ ョンモニ タの簡易 マニ ュアルをAppendix-4に 収録 しま

す。

必 要 と な る 知 識

 本書 は、以 下に挙 げる ような内容について は、前提知識 と して特 に詳細な説明を しま

 せ ん。 それらについて は、そ れぞれの教科書、解説書 等で学んで ください。

 UNIX系 プラ ットホームの使い方

 E-CellSEは 、基本的 にUNIX系 プラッ トホームのソ フ トウェアと して開発されて

 います。セ ッシ ョンモニタな どのGUIを 備 えて いますが、 UNIXの コマン ドライ

 ンの操作ぬ きにE-Cellを 使 いこなすの は不可能 です。

 UNI× 系 プラ ッ トホ-ム の基本的 な使い方 につ いて は、本 書では説明 しません。

 オブ ジェク ト指 向とはなにか

 E-Cellは オ ブジェク ト指 向の プログラム言 語を用いて書 かれ たプログラムです。

 そ して、 モデル フ ァイルで定義 されるモデルの構造も またオブジ ェク ト指向であ

 り、 モデル フ ァイルがシ ステム に読み込まれる と、モデル フ ァイル に表現された

 構造 をそのまま持 ったオ ブジェク ト群 として コンピュータ上に構成され ます。

 このように、E-Cellは 完全 なオブジ ェク ト指向 に則 って細胞 シミ ュレー ションを

14 1章 はじめに

 実行 します。ですか ら、オブジ ェク ト指向 につ いて理解 している ことによって、

 E-Ce1山の設計、動作 に関する理解 が格段 に深 まります。

 本書 では、オブジ ェク ト指向 プログラミ ングの-般 的 な用語(オ ブジェク ト、 イ

 ンスタンス、コ ンス トラクタ など)を 、特 に説 明することな く使 って います。

Python言 語

 E-Cellは 、主にC++とPythonの2つ のプ 囗グラミング言語で書かれて います。

 中で もPythonは 、 ユ-ザ がE-Ce… こアクセ スするためのプログラム�� なの

 で、E-Cellを 利用する上でPython言 語の基本的 な使 い方を知 って いることはほ

 ぼ必須 といえます。

 例 えば、E-Ce■1に よる作業を 自動 化するスク リプ トは、 Python言 語そ のもので

 書 くことにな ります。 また、E-Cellの モデル言語で あるEMはPythonの 書式 を

 多 く流用 しています。 また、 モデルフ ァイルの 中では、Python言 語 による文を

 書 く局面 も多 くあ り、Python言 語を書 けれ ば、 モデル作成の効率が 向上 しま

 す。

 Python言 語 について は、多 くの優れた解説書 がありますので、それ らを利用 し

 て学 んで ください。

C++言 語

 E-Cel市 を使 う上 で、 Pythonに 加 えてC++言 語 を使 える ことによる利益 は、 シ

 ミュ レー シ ョンの高速化、効率化 であるといえ ます。Pythonを 使えれ ば、-般

 的なE-Ce凵 の機 能をすべて利用 することができるので、C++を 知 らないか らで き

 ない ということはほ とん どあ りません。ただ、Pythonだ けでもできる ことのい

 くつか は、C++を 駆使す ることによ って、 より簡単 に、 よ り高速に実現で きま

 す。

 C++は 、E{el"の コア ライブラ リを書 くの に使わ れています。 Pythonと は異 な

 り、C÷+を 知 らな くてもE-Cel■ を使うこ とは可能で す。C++で 書かれた システム

 コアが提供 する機 能の うち一般的 なユ-ザ が必要 とす るものは、すべてPython

 を介 して利 用可能 にな っている からです。

 一方、新 しいダイナミ ックモ ジュ-ル の作 成 といった-部 の作業では、(二++の

 コー ドそ のものを書 くことにな ります。C++を 使 ってこれ らの機能を利用 するこ

 とがで きれば、シミ ュレーシ ョンを効 率化するの に役立 ちます。

 C++�� について は、多 くの優 れた解説書があ りますので、それ らを利用 して学

 んで ください。

1章 はじめに 15

覊

盤
鬟 1

臻 鑿

16 1章 はじめに

E-Cellを は じめ よ う

i

驪
本章 は以下 の項目 について書 かれています。

 ・シミュ レーシ ョンを実行す るために必 要な ファイル とそ の形式

 ・シミュ レーシ ョンを実行す るために必要 なフ ァイル の作 り方

 ・E-Cell SEを 使 ってシ ミュ レーシ ョンを実行する方法

シミュレーシ ョンの準備

シミュ レーシ ョンを開始す るには以下 の形式の ファイル が必要 です。

。EML形 式 で書かれたモデル ファイル

・(省 略可能)E-CellSEが 提供 しない独 自のオ ブジェク トクラ スをモデル中で使用

 する場 合、その共有オ ブジェク トフ ァイル(フ ァイル の拡張子 は通常、UN-× 系

 プラ ットホームで は.SO、 Mac OS× で は.dylib、 Windowsで は.d胴 です。〉

・(省 略可能)シ ミュレ-シ ョンのセ ッシ ョンを 自動的 に実行 する場合、そのため

 の スク リプ トフ ァイル(E-CeIIセ ッシ ョンスク リブ ト、 ESS)

EMか らEMLへ の変 換

E-Cellのシミ ュレ-シ ョンモデルは多 くの場合EM形 式 で書か れています。 EM

(.em)フ ァイル をEML(.eml)フ ァイル に変 換するには次の コマ ン ドを実 行 しま

す。

8 ecell3-em2eml filename.em

C++ダ イ ナ ミ ック モ ジ ュー ル の コ ンパ イ ル

シミ ュレーシ ョンモデル を作 成するため に、C++言 語で書かれたダ イナミ ックモ

ジ ュール(DM)の ソースコー ドを要す る場合 があ ります。その場合 、シミュ レー

シ ョンを実行す る前 に、 ソースコ-ド フ ァイル を予 めコンパイルお よび リンク して共

有モジ ュール ファイル を作成 してお く必要があ ります。また、DMを 利用 するには環

n

境変数ECELL3-DM_PATHを 適 切 に設定す る必要が あります(後 述)。

DMを コンパ イルお よび リンクするには、 ecell3-dmcコ マン ドを用いるのが簡単

です。

鋸
$ ece113-dmc 匚opt/oη5] fデ1en∂me.cpp [compプ アer oρtアoη5]

ファイル名 filename.cppの 前の引数[options]は 、 ece113-dmcコ マ ン ド自

身 のオプシ ョンとして処理 されます。フ ァイル名 の後 の引数[compiler options]

はバ ックエン ドで実行 されるコ ンパイラ(g++な ど)に 引き渡され ます。バ ックzン

ドのコ ンパイラ は、 システムそのものを ビル ドする際 に用いたもの と同 じで す。

コ]マン ド内で実行 されている処理を確認す るため には、-vオ プシ ョン(冗 長モー

ド)を 用い ます。

入力 ファイルを指定 せず、-hオ プシ ョンとともにecell3-dmcを 実行 すること

で、すべてのオ プシ ョンの リス トを得 ることができます。ece113-dmc-hで 表示 さ

れるヘルプ メ ッセージは以下の通 りで す。

Compile dynamic modules for E-Cell Simulation Environment Version 3.

U>age:

 ecell3-dmc C ece113-dmc options 7 sourcefile C compiler options]

 ece113-dmc -hl--heユP

ecell3-dmc options:

 - no-stdinclude Don't set standard include file path.

 一一no-stdlibdir Don't set standard include file path.

 一一ldflags=Cldflags] Specify options to the linker.

 一-cxxflagS=[cxxflags] Override the default comp1]er optlons

 ‐dmcompile=Cpath] Specify dmcompile path.

 -v or --verbose Be verbose.

 -h or --help Print this message.

E-Cell SEの 起 動

ECellSEは 、 スク リプ トモー ドあるいはGUIモ ー ドで起動 することができます。

GUIモ ー ド

E-CellSEをGUIモ ー ドで起動 するには、以下の コマン ドを用 います.

S ecell3-session-monitor &

18 2章 E-Cellを は じめ よう

この コマン ドは、シミ ュ レー タインスタンスを、GUIフ ロン トエ ン ドであるE-Ce山 山

セ ッシ ョンモニタととも に立 ち上 げます、,

ス グ1丿プ トモ-ド

E-Ce-市SEを スク リプ トモ-ド で起動 するには、以下の コマン ドを用 います。

$ ecel13-sessうon [fi 7en∂me.ess]

fiアename.e∬ は実行するPythonス ク ー丿プ トファイルの名前です。

filename.θ ∬ を省略 して実行 すると、 インタプ リタがイ ンタラクテ ィヴモー ドで

立ち上が ります。

スク リプ トについて は5章 を ご覧 ください。

DM探 索 パ ス と環 境 変数EtELL3 _DMーPATH

モデルが、ece1「3-dmcで ビル ドするなど して作成 した標準 のDM以 外 のDMを 利

用 している場舎、環境変数ECELL3 -DM-PATHで 、それ らのDMが 格 納されているパ

スを指定する必要があ ります。

環境 変数ECELL3_DM_PATHは 、複数 のデ ィレク トリ名を保持 できます。 その際の区

切 り文 字は、UNI× 系のプラ ッ トホ■ムで は1(コ ロ ン)、Windowsで は;(セ ミ

コロン)で す。

以下 に、ecell3-session-monitorを 起動 する前にECELL3 _DM-PATHを 設定す

る例 を示 します:

8 ECELL3 _DM_PATH=.:/home/example/mydms
$ export ECELL3_DM_PATH
 ece113-session-monitor

E-Ce山ISE3.1-105ま で は 、 カ レ ン トデ ィ レク トリ が 暗 黙 の うち に

ECELL3 _DM_PATHに 含 まれ て い ま した 。 こ の不 適 切 な 仕 様 は3.1,106以 降 は取 り除

か れ て い ます 。

2章 E-(二ellをは じめ よう 19

靉

その他のコマンド

EMLか らEMへ の変換

ece113-eml2emコ マ ン ドを 使 っ て 、 EMLフ ァイ ル をEMフ ァイ ル に 変 換 で き ま す 。

鼕

醒夢

ece113-em12em convert E卜4L file to EM file

Usage:

 ece113-eml2em C-h] C-f] C-o EMPILE] infile.eml

Options:

 -h or --help Print this message.

 -f or --force : Forcefully overwrite EMしF王LE

 even if it already exists.

 -o or --outfile=EMPILE Specify output file name.

zo 2章 E-Cellを は じめ よう

E-Cellに よるモデル作成

3

本章 は以下 の項 目について書 かれ ています。

・E-CeIlの シミ ュレーシ ョンモデル の構成

・シミュ レーシ ョンモデルの作 り方

・EM形 式で のモデルフ ァイルの書 き方

驪

モデル中のオブジェクト

E-Cellで は、シミ ュレ-シ ョンモデル を完全にオ ブジェク ト指 向で記 述 します。すな

わ ち、シミ ュレーシ ョンモデル は相 互に結合 したオ ブジェク トの集合 とな って いま

す。 オブジ ェク トは属性(Property)を 持ち、属性 はオ ブジェク トの性 質(化 学反

応 であれば反応速度定数)お よび オブジ ェク ト間の関係 を決定 づけます。

オブジェクト指向による生命現象の表現

生命現象をオ ブジ ェク ト指 向で表現 するために、E-Cellで は、 モデル 化の対象 とする

生 命システムを、システム が作動 する場:System、 システムを構成 する要 素(モ

ノ):Variable、 システム内で起 こる動 き(要 素間相互作用):Processの3つ の

概念 の集合と して捉え ます。

どのような生命現象も、 このコンセプ トで捉える ことがで きます。

例 えば、真核細胞の解糖系 は、以下 のよ うに記述で きるで しょう:

 System: 細胞 質

 Variable: グル コース、 G6P、 F6P、 …---ピル ビン酸 、 ATP、 ADP、---…

 Process: グル コキナーゼ、ホ スホフルク トキナーゼ、 ・

E-Ce目 ではこのコ ンセ プ トに沿 ったオブジ ェク トを用意 してお り、オブ ジェク ト指向

で記 述 したモデルを、そ のまま、コ ンピュータ 上 に構築 するこ とがで きます。

オブジェクトの型

E-CeIl　SEの シ ミュ レ-シ ョンモデルは以下の型のオ ブジ ェク トによ って構成 され ま

す。

zi

韮

 .

㍑窰
夢

蹊
變
靉

毒
羅
讐

zz

・通 常、2つ 以上のEntityオ ブジ ェク ト

・1っ 以上のStepperオ ブジェク ト

Entityオ ブジェク トはシミ ュレーシ ョンモデル の構造を定義 し、 モデル 中の現象(化

学反応 など)を 表現 します。Stepperオ ブジェク トはそれぞれ シミュ レーシ3ン アル

ゴリズムを実装 しています。

Entityオ ブ ジxク ト

Entityに は3つ の下位ク ラス(派 生クラ ス)が あ ります。

System

 Systemオ ブジ ェク トは、モ デル の全体 構造を定義 します。

 Systemオ ブジェク トは、その中 に他 のEntityオ ブジ ェク ト(System,

 Varーable, Process)を 持つ ことができます。

 複 数のSystemに よって木構 造をつ くる ことができます。

 一般 には、反応 の起 こる場を表す、細胞質 やオルガネラの内腔の ような空間、細

 胞膜の ような区画 を表現するの に用 います。

Variable

 状態変数 を表 すオブ ジェク トで す。

 ひ とつ のVariableオ ブジェク トは、ひ とつの ス力ラー霎数値(Value属 性)を

 持 っています。

 モ デルに含まれるすべてのVariableの 値 によって、ある時刻 におけるモデル の

 状態 を定義でき ます。

 一般 には、分子な ど物質 の量 を表 します。

Process

 モデル中で生 じる現 象を記 述 します。

 ProCessは 、ひ とつ以上 のVariableの 値 を時間発展 に応 じて変更 します。

 -般 には、酵素 反応や物質の移動な どを表 します。

Stepperオ ブジ エク ト

モデル は、1つ 以上 のStepperオ ブジェク トを念んでいな けれ ばなりません。ひ と

つ のモデル中のすべてのProcess、 Systemオ ブジェク トは、それぞれ特定の1つ の

Stepperオ ブジ ェク トに結合されて いなければな りませ ん。換言 すれば、モデル中の

Stepperオ ブジ ェク ト 〔群)は 、重複 な くProCess、 Systemオ ブジ ェク トと結合

しています。

3章E-Cel日 によるモ デル作 成

ProCess, Systemは 、必 ず1つ

のStepperと 結合 します。

2つ のStepperに 結合 する こ と

はな く(×)、Stepperに

結合 しな い ことも

あ りませ ん。

,ate艦

.x'ド

救 懸象轟 覊織蕪黥籌し蠡無 …鬚驫

Stepperは 、特定 のシミ ュレーシ ョンアル ゴリズムを実装 したク ラスです。 モデルが

2つ 以上 のStepperオ ブジェク トを持 ってい ると、複数Stepperシ ミ ュレー シ ョン

とな ります。ProCess、 Systemオ ブジェク トの リス トに加 え、 Stepperは 、読み込

み/書 き込 み可 能なVariableの リス トを持 っています。 Variableの リス トは、

Stepperが 持つPrOCessオ ブ ジェク トから与 え られます。 また、 Stepperは 、時 間

ステ ップ間隔 を正の実数で持 っています。 システム はステ ップ間隔 に従ってStepper

オ ブジェク トをスケジ ュール し、現在時 刻を更新 します。

§禦B瓢

Prg�;esse慰9鼠 懸§

騾

Stepperは 、結 合す るProcessを 介 し

て、関 連す るVariableの ■ルス トを得 ま

す。Variab■eは それ ぞれ複 数の

ProCess、 Stepperと 結合 する ことが でき

ます。

'

h
"

↑
1

'

'
'

齒 甅凾
上 の図の右 のStepperは 、破線 で結 ばれ

たSystem、 ProCessに 結合 してお り、 そ

れ らのProCessが 結合 する(破 線)

VariabIeを 自らが関連 す るVariableと

して リス ト化 します。

システムか ら呼 ばれると、Stepperオ ブジ ェク トは、 (モデルが微分 の要素 を含 んで

いる場合)関 連づ けられたVariabIeオ ブジ ェク トの値を現在時刻 まで積 分 し、

Stepperに 結合 したProcessを アル ゴリズム によって決め られた順序 に従 って呼び

だ し、次の時間 ステ ップ間隔を決定 します。 シミ ュレ■ ション手順 の詳細 については

次章以降を読 んでください。

オブジェク ト識別子

E-Cell SEで は、モデル中のEntityやStepperを 指定す るため に、い くつかの識別子

(ID)を 用い ます。

3章E-Ce■ こよるモデ ル作成 23

華

.
・

難

駕
…:
猟
聽

誤

匡

震

24

ID(Entity lD, Stepper ID)

すぺ てのEntityお よびStepperオ ブジェク トは、ひ とつの-Dを 持ちまず。

IDは 任意 の長さの文字列で、アル ファベ ッ トかL-で 姶ま り、2文 字 目以 降には、ア

ルフ ァベ ッ ト、目 に加 え数 字も使えます。

アルフ ァベ ッ トの大文 字と小文字 は区別 され ます。

IDをStepperオ ブジ ェク トに対 して用 いる場 合、 StepperIDと いいます。 Entity

オブジ ェク トに対 して用いる場合 は、Entity Dあ るいは単 に-Dと いいます。

伊」:_P3, ATP, c,iucoKゴnase

SystemPath

SystemPathは 、シミ ュレ-シ ョンモデ ル中で樹状の階層構造 をつ くるSystemオ

ブジェク ト群 か ら、特定のSystemを 指定 する識別 子で、 Entity IDを 「/」 (ス

ラ ッシュ)で 結合 した形式で記述 します。ただ し、ル-ト システムのSystemPath

は単 に/と 書きます。例 えばSystemAが あり、 Aが その下層 にSystem Bを 持つ場

合、SystemPath/A/Bは 、 Systemオ ブジェク トBを 指定 します。

このsystemPathは3つ の部分 からな ります。

(1)/1ル ー トシ ステ ム

(2)System A:Aは ル ー トシ ス テ ム の直 下 に位 置 しま す.

(3>System B:8は 、 System Aの 直 下 に位 置 しま す。

SystemPathは 相対表記 するこ とがで きます(た だ し、現在のSystemが 確定 して

いな けれ ばな りません)。

以下の場合、SystemPathは 相対表記 と解釈 されます。

 (1)systemPathの 表記が 「/」 (ル-Fシ ステム)か ら始 まらない。

 (2)SystemPathが 「,」 (現在のSystem)ま たは 「,、」 (直上 の上位

 System)を 含む。

{列:/A/B, -./A, ., /Cytoplasm/Mitochondria, ../Chloroplast

FulilD

FuI山山D(完 全表記 識別子、 Flay qualified 1(2entifier)は シミ ュレ■ ションモデル

中の特定のEntityオ ブジェク トを指定 します。 Fu--IDは 、(1)EntityType (2)

SystemPath (3)Entity IDの3部 分 か らな り、各部分を 「:」でつなぎ合わせて以

下の ように表記 します。

3章 E-Cellに よ るモデル 作成

EntityType: SystemPath:ID

EntityTypeは 以 下 の い ず れ かで す 。

 ・System

 ・ ProCess

 ・Variable

例 え ば 以 下 のFulllDは 、 System/A/Bに 含 ま れ るProcess Pを 指 し ま す。

Process:/A/B:P

Ful山山Dの表記 には、スペ■ ス(空 白)を 入 れてはい けません。

FullPN(Fully qualified Property Name)

Fu-IPN (完全表o=属 性 名、皿y qua陏edRropertyName)は モデル構 造の中

のあるEntityが 有 する特 定の属 性(詳 細 は次節)を 指 定する識別子です。 Fu■■PN

は、FulllDと 属性の名前を 「=」でつなぎ合わせて表記 します。

FullID:属 性 の 名 前

すなわ ち、以下 のようにな ります。

EntityType:SystemPath:ID:属 性 の 名 前

以 下 のFuliPNIよSystem/A/Bに 含 まれ るProCess PのActivity属 性 を 指 し ま

す。

Process:/A/B:P:Activity

オ ブジ ェク トの 属性

Entityお よびStepperオ ブ ジェク トは属性 を持ってい ます。属性 はオブジ ェク トの

持つ特性を表 して おり、 その名前は表現する特性 に因んでいます(MOIarConc属 性

が表すの はオ ブジェク トのモル濃度である等)。 属性 の値は、シミ ュレー シ ョン中に

読み出 した り、書 き込 んだりするこ とがで きます。

3章 E-Cellに よる モデル作 成 25

鑼

靉
 灘

26

属性の型

属 性 の値 に は 型 が あ り、 以 下 の い ず れ か で す 。

Rea1(実 数)型

 例:10,333e+10

日nteger(整 数)型

 例.1、300

String(文 字 列)型

 文字 列Str-ng型 に は引 用 符 付 き と 引 用 符 無 し の2つ の形 式 が あ り ます 。 引 用 符 付

 き のStringは 、 引 用 符 自 身([」 また は 「"」)を 除 く すべ て のASC1山 文 字 を 含

 む こ とが で き ま す(日 本 語 を含 め た マ ル チ バ イ ト文 字 を 含 む こ と はで き ま せ

 ん)。 文 字 列 が 正 当 な 識 別 子(Entity ID、 Stepper ID、 SystemPath、 FulllD、

 FullPN>で あ る場 合 、 引 用 符 を 省 略 で き ま す。 三 重 引 用 符(… ま た は.7".")

 で 括 ったStnngに は改 行 記 号 を 含 む こ と がで き ま す(複 数 行 の 文 字 列 を含 む こ と

 が で き ま す)。

 {列」:ーClOーA、 Pr'ocess:/A/B:Pi、 "-lt can lnc達ude spaces if double-

 quoted."「 、 山Single-quote is avallable too, if you want to use

 "double-quotes" inside.'

リ ス ト型

 リ ス トに は 、Reap、 Integer型 、 Str}ng型 の 値 を含 め る こ とが で き ま す。 ま

 た 、 リ ス トの要 素 と して リ ス トを含 め る こ とも で き ます(ネ ス トす る こ とが で き

 ま す 〉。 リス トは 、 角 カ ッ コ[1で 囲 む こ とで 表 記 しま す。 要 素 間 は、 スペ ー ス

 (空 白 〉 に よ って 分 割 し ま す。 最 も 外側 の 角 カ ッ コ が省 略 さ れ る 場 合 が あ り ま す

 (EMフ ァイ ル な ど)。

 1歹1亅:[A 10 [1,0 "'a string.' le+10 234]]

属性値の動的な型適用

属 性値の型が、 シュミュ レ■タ中のオ ブジェク ト(Process、 Variableな ど)が 求め

る型 と異なる場合、 システムは自動的 に型変換 を行 います。これ によりバ ックエン ド

のオ ブジェク トが受 け取 った型と与え られ た型 が異 な っていても、 システ ムエラーは

起 き ません。 システムは、シ ミュレータ 中のオブジ ェク トが要求す る型 にモデルフ ァ

イル中の値を変換 するよう試みます。変換 に成功 する と、 シミュ レータ中のオブジ ェ

ク トは属性の値 を取得 する ことがで きます。以下 の節も参照 して ください.変 換は以

下の ように行 われます。

3章E{eI"に よるモデル作成

属性値の型適用の方法

数値型(Realま た はInteger)か らの変換

 String型 へ

 数値 は単純 に文字列に変換 され ます。例 えば、数値12.3はString.12.3'

 に変換 されます。

 リス ト型へ

 数値 は、 その数値を最初の要 素とする長さ1の リス トに変 換されます。例 え

 ば、12.3は 、 リス ト[12,3]に 変換 され ます。

String型 か らの変換

 数値型(Realま たは-nteger)へ

 文 字列の最初の部分が数値 に変換されます。数 は、10進 ある いは16進 表記 で

 書 くこ とがで きます。先 頭 の空白は無視され ます。 「INF-」および 「NAN」

 (大文字小文字 は無視)は 、それぞれ無限大、NaN(非 数)に 変換 されます。

 文字列の最初の部分 が数 値 に変換できない場合 は、ゼロ(0.0ま たはO)と 見

 なされます。 この変換 手続きは、C言 語のStrtO1お よびstrtod関 数 と同 じ

 です。

 リス ト型へ

 文字列 は、そ の文字列 を最初の要素 とする長 さ1の リス トに変換 され ます,例

 え ば、'string'は 、-丿ス ト['string"]に 変換 されます。

リス ト型か らの変換

 数値型あ るいはString型 へ

 単純 に、 リス トの最初の要素が取 り出されます。取 り出された要 素の型 は、必

 要 に応 じてさ らに変換され ます。

 属性値変換の際のオーバーフ囗一、アンダーフロー:ReaI型 から 一nteger型 へ、ある

 いはString型 から数値型への変換の際に、オ-バ ーフm(桁 あふれ)や アンダーフ

 ロー(下 位桁あふれ)が 起こることがあります。バックエンドのオブジェク トが変換を

 試みた際にこれらが生じた場合、例外が発生します。

購

E-Cellモ デ ル(EM)フ ァ イ ル の 基 礎

 これまでに、E-Cellの シミュ レーシ ョンモデル が数種 類のオブジ ェク トからなり、 オ

 ブジ ェク トは属性 を持つ ことを学びま した。次 に、 シミ ュレー ションモ デル はどのよ

 うに構築されて いるのか、そのモデルの構造 を学 びま しょう。E-Cellモ デル ファイル

3章E-Cellに よる モデル作 成 27

を記述 する言語 をE-Cel-モ デル(EM)言 語 といい ます。 これ以降、本書 に掲載 され

て いる例 の多 くはEM言 語で記述 されてい ますので、次 の章に進む前 にEMフ ァイル

の文 法を学んでお くと、 内容の理解を助 けて くれるで しょう。

EMと は

艦

E-Cel■SEで は、 モデルの記述 と交換 にXMLベ-ス のモデル記述言語EML(E-Ce■l

u・ ・-descriptionLanguage)を 用います。

EMLは モデル を記述 し、 E{el■ と他 のソフ トウ ェアで統-的 にモデル を扱 うために

は理想的 な記述形 式ですが、人 間が読 み書きする にはあまりにも冗長です。

そ こで、人 間が読み書き しや すい形式 で、EMLと 互換性 のあるモデル記述言語 とし

て、EM(F-Cei■Mode■)が 用意 されています。 EMは プ囗グラム言語に似 通 った形式

で モデル を記 述できる言語 です。EMとEMLは 記述されて いる慵報 について完全 に

等価 で、相互 に変換する ことができます(た だ し、EM中 に記述 された コメ ン トは例

外 で、EMLに は変換 され ません),, EMフ ァイルの拡張子 は 「.emsで す。

なぜ、そしていつEMを 使うのか

EMLを 基盤 とした、 より洗練された スケー ラブルかつイ ンテ リジェン トなモデル構

築 の しくみをE-Cellモ デ リング環境(E-Cell ME、 開発中)が 提供 します が、 EMの

文法 とセマ ンテ ィクスを学ぶ ことで、E-Cell内 部 でオ ブジ ェク トモデル がどのように

構築され、それ を用いたシ ミュレー シ ョンがどのよ うに実行 され ているかを理解 する

ことがで きます。 また、プ ログラム言語様 の文法を持つEMは 、他 のユーザとコミ ュ

ニケー トする際 、シンプルで直観的 なツ-ル と して役立 ちます。 本書でも、E-Cel■ 上

での モデル構築 を説明するため にEMを 用いています。

EMは 、 EMLを 生成するための スク リプ トである ともい えます。

28 3章 E-Cellに よるモデ ル作成

-目 で 見 るEM

EMの 細か い文法 を学ぶ前に、 ごくシンプルなEMフ ァイルを見て みましょう。今す

べて理解 する必要 はあ りませ ん。次 の例 をざ っと眺めてみ ま しょう。

例3-1.簡 単なEMの 例

Stepper ODE45Stepper(ODE

 # no pr'operty

System System(

 StepperlD ODE_1;

 Variable Variable(

 Value le-1ﾟ;

 Variable Variable(

 Value 10000;

Variable Variable(

 Value O;

Process MassActionFluxProcess(

 Name 一匚A mass act育on from

 1.0;

 VarlableReferenceLゴst SO

 PO

この例 は、質量作用 則(■aw of mass-aCtion)と 呼 ばれる単純な反応形式 の、微 分

方程式 モデル です。 このモデル にはStepperオ ブジ ェク トODE 1が 定義 されて いま

す。Stepperオ ブジ ェク トのクラ スはODE45Stepperで す。 このクラスは一般的な

常微分方程式 のソル バです。次 に、ル ー トシステム(/)が 定義されてい ます。ル ー ト

システム内には、Stepper1D属 性、な らび に4つ のEntityオ ブジ ェク ト(3つ の

Variableオ ブジ ェク トSIZE、 S、 P、 お よびProCessオ ブジ ェク トE)が 定義 され

3章E{eIlに よるモデル作成 29

鯉
嬢
簿
撚
瀞

獵
韈嬲

30

てい ます。 SエZEは 、 コンパ-ト メン トの容積を定義 する特殊 なVariab■eオ ブジェ

ク トです。コンパ■ トメン トが3次 元空間の場合 は、単位 は リッ トル(L)に なりま

す。 SIZEの 値は、他の オブジェク トの濃度を計算 するために用い られ ます。 Entity

オブジ ェク トは、それ ぞれに異なるさまざ まな属性 を持 っています。ル-ト システム

の属 性StepperIDは 、引用符で括 られていない文字列ODE!で す。 Variable Sの

初 期値 は、Va日ue属 性で与え られます。 ここでは 「10000」 と記述 していますが、 自

動的 にReal型10000.0に 変換 されます。 Process EのName属 性は引用符で括 られ

た文字列'"Amass action from S to P."で す。 k属 性 はReap!.0で す。

VariableReferenceListは 、2つ の リス トを要素 とする リス トです(最 も外側 の

角 カ ッコは除外されてい ます)。 この リス トには、文孚列(例:SO)、 数値

(例1-1)、 相対FulllD〔 例::.:S) (引用符で括 られて いな い文掌列)が 含まれ

ています。

EMの 一般的な文法

EM(EMLも)に 記 述されてるのは、オ ブジェク トのイ ンスタ ンス化 の手順 です。こ

れ まで見て きたように、E-Ce"-の モデル を構成 するオ ブジ ェク トは、基本 的にた った

2種 類 です(StepperとEntity)。 オブジェク トを作成 した ら、その すべ ての属性

を設定 しなければな りませ ん。 したがって、オブ ジェク トの作成 は以下の2ス テ ップ

からなります:(1)オ ブジェク トを新 しく作成する (2)属 性 を設 定する。

オ ブジ ェク トの イ ン ス タ ンス 化宣 言 文 の-般 的 な 書式

EM中 でオ ブジ ェク トを定義(イ ンスタ ンス化)す るための-般 的な書式 は以下 の通

りです。

TYPE CLASSNA卜1E(ID
盟.'嘘INFO (optiona1)掣 一撃"騨

 PROPERTY_NAME_1 PROPERTY_VALUE_!;

 PROPERTY-NA卜4E-2 PROPERTY-VALUEー2:

 PROPERTY NAME n PROPERTY_VALUE_n;

畫式の内容 は以下の通 りです。

TYPE

 オ ブジェク トの型を書きます。型 は、以下 のうちの どれかです。

3章E{el■ によるモデル作成

 ・Stepper

 ・Variable

 ・ Process

 ・System

ID

 Stepperの 場合 はStepperlDを 記述 します。

 Systemの 場合 はSystemPathを 記 述 します。

 Variableま たはProCessの 場合 はEntity IDを 記述 します。

CLASSNAME

 オブジ ェク トのクラス名。CLASSNAMEは 、 rvPE I`よ って定義された基底ク ラス

 の派生ク ラスでなけれ ばな りませ ん。

 例え ば、 TYPEがProcessの 場合、 CLA∬NAMEはProcessの 派生クラスでな

 けれ ばな りません(MassACtionF■uxProcessな ど)。

INFO

 オブジェク トの説明。 この項 目はオプシ ョンで、 シミ ュ レ-シ ョンには用い られ

 ませ ん。 引用符で括 られた単一行("string")あ るいは複 数行(…'"「multi-

 line string"…')と して記述で きます。

PROPERTY(属 性)

 定義上、 オブジ ェク トは0個 以上 の属 性を持ち ます。

 属性 の記 述は、引用符無 しの属性 の名 前を表す文字列 と、値 を-組 として表記さ

 れ、末尾 にセミ コロン(;)を 付 します。

 例 えば、属 性の名前がConcentrationで 、値が 「10,0」 の場合、以 下のように

 記述 します。

韆

鼕

Concentration !0.0;

値 と しては、Real型 、 Integer型 、 String型 、 リス トを用い ることができます。

値 と して リス トを用 いる場合 、 リス トの最も外側 の角 カ ッコは省略 され ます.例

えば、属性Fooの 値 と して リス ト[1G.'string"[LIST]]を 与えた い場

舎、以 下の ように表記 します。

Foo 10 "string" [LIST];

角カ ッコを省略するわけ:す べての属性の値はリス トとして扱われています 〔値が単■

のスカラ■値である場含でも)。 実数型の値1.0は 、1つ の要紊をもつリス ト[1.0]

として扱われています。同様にE-Ce-1は 、角カッコのないリストをリス トとして処理

3章 E-CeIIに よる モデル作 成 31

します。

したがって、もし最も外側の角カッコを省略せず、以下のように書いたとすると

Foo C 10 C LIST]];

以下のように要素にリストをもつ、要素数1の リス トとして処理されます。

蠶
鑛

一 コ
この リス トの最初 の要素 は[10[し 王ST]]と な ります。

マ ク ロ とプ リプ ロセ ッシ ング

EMLへ の変換 に先 立って、 ecell3-em2emlはEmPyプ リプ[]セ ッサ(前 処理を行

うプ ログラム〉を 呼び出 し、EMフ ァイルの プ リプロセ ッシ ング(前 処理)を 行 いま

ず,

EmPyを 用 いることによ って、 Python言 語による処理 をマクロと してEMに 埋め込

む ことができます。

EMフ ァイル 内で 「@】 に引きつ づいてPythonの 式 や文を書 くことで、 EmPyに よ

る処理 が行 われます。

Pythonに よる式を 「@(Pythonの 式)」 の形(こ れ がマクロです)でEMフ ァイ

ル に埋 め込んでお くと、EmPyに よって式が評価され、そ の評価結 果(戻 り値)が マ

ク[]部 分 と置換され ます。

式 が単純な場合、 「O」は省略可能で す。

Pythonの 文を埋 め込 みたい場含 は、 「@{python statements}」 のよ うに波

力 ッコ{}を 用い ます。

以下 に例を示 します:

@lAA諞10 }

@(AA*2)

@AA

これ は、以下の ように展開され ます。

∩
)
∩
)

2

1

32 3章 E-Ce11に よるモ デル作 成

もちろ ん複数行 にわたる記述もで きます。例 えば:

@{

def f(,tr):

 return str 十 is true.'

}

@f('Video Games Boost Visual Skills')

このコー ドは、以下のよ うに展 聞され ます。

Video Games Boost Visual Skills is true.

鑵聾
灘韈

EmPyは 、他の ファイルを取 り込 むためにも使え ます。

以下 の1行 を表記する と、 この行 は、EMLへ の変換 に先 だって、フ ァイル

「-foo.em」 の内容 に置 き換 えられます。

@include('foo.em')

eCe市I3-em2emlコ マ ン ド実行 時に、-Eオ プシ ョンを用いる と、 プリプロセ ッシ ング

(前処理)中 に行われた処理 を確認 する ことがで きます。-Eオ プシ ョンを使用する

と、プ リプ ロセ ッシングの結 果が標準出力(一 般 にはコンソール)に 出力 され、EMし

フ ァイルは作成 され ませ ん。

EmPyを 用い ることで、柔 軟性 の高い高度なモデ リングが可能 とな ります。 EmPyに

はさ らに多 くの特長が あります。EMフ ァイルで よく利用 する機 能 について、

Appendix-1で 解説 してい ます。すべ ての機能 を知るには、 EmPyのwebを ご覧 く

ださい。

コ メ ン ト

シ ャ-プ(#)は コメン ト文字です。ある1行 の中で、コメ ン ト文字以 降に書 かれた

文字 はコメン トとして扱 われ、ece113-em2emlコ]マ ン ドの処 理対象外 とな ります。

引用符で括 られ た文字列 の中 に書かれた シャープはコメ ン ト文字 として処理 されませ

ん,、

EmPyの コメン ト(@#)は 異 なった処理をされ ます。

「@#」 はEmPyに よ って処理 され ますが、 PythOnの コメン トして評価 され るの

で、結果 と してEMLに は何 も反映され ませ ん。

た だし、 「#」以 降の文字列 は、EmPyに よるプ リプロセ ッシ ングの対象 とな りま

3章 E-Cellに よ るモデル作 成 33

す。 したがって、EmPyマ クロをコメ ン トア ウ トしたい場合は、 「#@Pythonの

式」 ではな く、 「@#Pythonの 式」 と書かな けれ ばな りません,

鑾

萋

鑿

簽
欝
纛

醒

現 バ-ジ ョンで は、ecell3-em2emlは マルチバイ ト文字 に未対 応であるため、 EM

フ ァイル に日本語 の2バ イ ト文字な どASCI-文 字 以外の文字を含め ることはできませ

ん。-方 、EmPyはUTF-8形 式 に対応 しています。 そのため、 EmPy中 のコメン トと

して 「@#コ メン ト」 「@1-嚠コメン ト11-」のような書式で コメン トを埋め込め ば、 日

本語な どのマル チバイ ト文字 を含め ることが可能 にな ります 〔EMLフ ァイルの文字

コ-ド はUTF-8に して くだ さい)。 これ をece113-em2emlが 処理 すると、 プ リプロ

セ スの段階 でEmPyの コメン ト行が削除され、マルチ バイ ト文字 に夫対応の

ecell3-em2eml本 体 での処理 にはコメン ト中のマルチバイ ト文字 が引き渡されない

ため、正常 に変換が行われ ます。

モデルの構造

最上位の要素

通常、EMは 、1つ 以上のStepper宣 言文 と、1つ 以 上のSystem竚ｾ 文を含 みま

す。 これ らの宣�ｶ は、モ デル の階層構造中の最上位 の要素 です。

-般 的なEMフ ァイルの構造 は以下 のようにな ります。

STEPPER_n
SYSTEM_0 4k the root system

SYSTEM

STEPPER-?はStepperの 宣 言 文 で す。 SYSTEMー?はSystemの 宣 言 文 で す 。

System

ル-ト システム

モデル には、必 ずSystemPath"/'を 持 つSystemオ ブ ジェク トが存在 します。 こ

のSystemを ルー トシステム(root system)と 呼びます。

34 3章 E-Cellに よるモ デル作 成

System System(

 ヂ'

ル■ トシステムのクラ スはSystemで な ければな りません。

E-Cellシ ステムはモデル ファイル を読 み込 む前にルーhシ ステ ムを作成するため、

ユーザ が改変 したSystemク ラ スをルー トシステム とする ことはで きません。

EMLフ ァイルに書かれてい るルー トシステム 自体の宣言 は、 EMLフ ァイル読み込み

時 には無視されてお り、属性 の設 定だけが行われて います。 したが って、ク ラス名 を

指定 しても無視され ます。

属性 をひ とつも設定 しない場合 にも、モデル ファイル にはル-ト システムを記述 する

必要 があ ります。

Systemの 階 層 構造

モデルが2つ 以上 のSystemオ ブジ ェク トを持つ場合、ル ー トシステムを頂点 とする

木構 造を持つ ことになります。

以下のEMは 無効で す。

System System(

ここで宣 言されている2つ のSystemは 互 いに結合されてい ませ ん。

モデルの構造をEMに 明確かつ完全

に定義 しなければなりません。

システムは、曖昧なEMに 対 して、

推定 ・補完を行いません。

もうひ とつのSystem/CELLOを 付 加する ことで、 お互いが結合 され、有効 なEMに

な ります。

3葷 E-Cellに よ るモデル 作成 35

醗

馴

萋

36

ひ とつのSystemは 任意 の数 の下位Systemを 持つ ことが できます。

System System(/CELLI

System System(/CELL2)

System System(/CELL3

幸

モデル合成のサポー ト(計 画 中):将 来のバ-ジ ョンで、複数 のモデル ファイル

(EMま たはEML)か らひ とつ のモデルを合成す る機能 をサポー トする計画があ りま

す。これは、EmPyに よるインクル■ ドとは異 なる機 能です.

Systemの サ イ ズ(容 積)

Systemの 大きさ(サ イズ)を 定義 する には、 IDSIZEを 持つVariableを 作成 しま

す。

Systemが3次 元 のコンパー トメン トであれ ば、 SIZEは 容積 を表 し、単位 はリ ッ ト

ル(L)に なります。

以下 の例 では、 ルー トシステムの容積 は1e-18Lで す。

System System(

 Variable Var'iable(SIZE) # tne size (volume) of thls

 4k compartment

3章 E-Ce■ こよるモ デル作 成

S工ZE>ariableを も たないSystemは その上位SystemとSIZEVariableを 共有 し

ます(同 じ容積を持 つもの として定義 され ます)。

ル■ トシステム は常にSIZEVariab■eを 持 ちます。

モデル ファイル によってルー トシステム のSIZEが 与 えられなか った場合のデ フォル

ト値 は1.0[L]で す。

以下の例 には4つ のSystemオ ブジ ェク トが含 まれます。 うち2つ(/と/

COMPARTMENT)は 、それぞれのSIZEVariableを 持 ってい ます。残 る2つ(/

SUBSYSTEMと そ の下位 システム/SUBSYSTEM/SUBSUBSYSTEM)は ル-ト システム

とSIZEVariableを 共有 します。

System System(/)

 尭 no SIZE

System System(/COMPARTMENT) 尭 SIZE 謂罵 2.Oe-15

 Variable Variable(SIZE

 Value 2.Oe-15

System System(

 4k no SIZE

/SUBSYSTEM/SUBSUBSYSTEM

 デ' SIZE == SIZE of the r'oot system

S工ZEは 正の実数で なけれ ばな りません。 SIZEに ゼロあるいは負の数を設定 した場

合、SIZEは 定義 されませ ん.

 SIZEの 単位:現 在、 SIZEの 単位は(ioCm)dで す。 dはSystemの 次元です。 dが3

 の場合、単位は(10Cm)3=リ ットル です。この仕様には現在も議論があり、将来の

 バ■ジョンで変更されるかもしれません。

Variab-eとProCess

System宣 言文 には、任意の数(ゼ ロの場 合もある)のVariab■eお よびProcess宣

言文が、それ らの属性 とともに含まれます。

3章 E-Cel山 によるモデ ル作成 37

㌍窶

鞭

同轟
轍

縦

i 鑞
蘿

38

System System(

 ll properties of this System ltself comes here..

 Variable Variable(VO) O

 Variable Variable(Vl) {f

 プ弄

 Variable Variable(Un) {}

 Process SomeProcess(PO) {}

 Process SomeProcess(Pi) {}

 Process OtherProcess(Pm) Il

System宣 言文 を(別 の)System宣 言文の中 に書 くことはで きません。

Systemの 階層構 造はSystemPathに よって定義 します。

StepperとEntityオ ブ ジ ェク トの 結合

モデル中のすべてのProCessオ ブジ ェク トは、 Stepper-Dを 指定 することによ っ

て、それぞれ1つ のStepperと 結合 されていな けれ ばな りません。

ProcessのStepperlDが 省略 され た場合 は、 ProCessが 属 するSystemの

StepperlDが 設定 されます。

SystemのStepperlDは 省 略でき ません。

以 下の例で は、ル ー トシステムはStepper STEPPEROに 結合されて います。

ProCess POとP1は 、それぞ れStepper STEPPEROとSTEPPERIに 結合 されてい ま

す。

Stepper SomeClassOfStepper(STEPPERO) 1}

Stepper AnotherClassofStepper(STEPPERI) {}

System System() デ' connected tG STEPPERO

 StepperlD STEPPERO;

 Process AProcess(PO) 4k connected to STEPPERO

 # No StepperlD Specifled.

Process AProcess(P1) デ' connected to STEPPER!

 StepperlD STEPPERL;

3章E{el山 によるモデル作成

StepperとVariab■eの 結合は 自動的 に決定 され、手動で指定 することはできませ

ん、、

Priority属 性

あるStepperに 結合 したProCessに つい て、 計算 の順序を決めた い場合 があ りま

す。例 えば、ProCess BがProcess Aの 計算結 果が反映されるVariable× の値 に基

づいてVariableYの 値 を更新する場合な どが考 えられます。 すべて のProcessは 、

Priority属 性を持 ちます。 これを設定 して、1ス テ ップ中のProCe∬ の計算順 序を

指定で きます。Priorityの 値の大 きいProcessの 方が、先に計算 され ます。 PriOrity

のデ フォル ト値 は0で す。Priorityの 設定 によってシ ミュレー シ ョン結果 が変わる場

合が あるので、Priority属 性を利用する際 には、そ の影 響について注意深 く検討 する

必要 があります。

VariableとProcessの 結 合

ProCessオ ブ ジェク トは、 質量作用則(mass action)な どそれ ぞれに実装された反

応 モデルに したが って、Variableの 値を変化 させ ます。

個々 のProcessを プ ログラムする時点では、それ らがモデル中で使われ る際 に結合

するVariableの 名前 はわかりません。

ProCessが 扱 う具体的 な>ariableの 設定 は、 モデルを構築する際 に、 モデル フ ァイ

ル上 でなされます。

ProcessとVariab■eを 関連づ けるため にProcessオ ブジ ェク トの

VariableReferenCeUst属 性 を用 います。

VariableReferenceListは 、1つ 以上 のVariableReferenceを 要素 に持 つ リス ト

です。

Variab■eReferenCeは 、以下 の4つ の要 素を持つ リス トで す.

[reference name Ful11D coefficient accessor_flag]

最後の2つ 要素は省略できます:

[refeノ(θ ηce na〃 ～θ Fuア アID CoeffブCノ θηt]

あるい は、

[reference_name Fu771D]

3章 E{eI山によるモデル作成 39

鶴

それぞれの要素は以下の意味を持ちます。

蘯
磁

聾

reference_name(参 照 名)

 こ の要 素 は、 このVarーab■eReferenceに 対 す るProcess内 部 で の 呼 び 名 を 与 え

 ま す,,ProCessに よ って は 、 参 照 名 に よ っ てVariab■eReferenCeオ ブ ジ ェク ト

 を特 定 し ま す。

 す べ て のVariableReferenCeに 参B�ｼ を 指 定 す る必 要 が あ り ま す(PrOCess内

 部 で 参 照 さ れ な いVariableReferenCeに 対 して も)。

 参 照 名 に使 用 で き る 文 字 列 の ル ■ ル は、Entity-Dと 同 じで す 。

FuiiID

 VariableReferenCeが 参 照 す るVariableのFu■1-Dを 指 定 しま す。

 SystemPathは 相 対 パ ス で 表 記 す る こ と も で き ま す 。

 EntityTypeは 省 略 可 能 で す 、

 例 え ば 、ProCessが/CELLに 属 して い る場 含 、

Uariable:/CELL:SO

と書 く代わ りに、以 下のような表記が可能 です、,

..:SO

coefficient (係数) (省略可能)

 coefficientは 、整数型の値 です。

 coefficientは 、 Processと 、>ariab山eReferenceが 参 照するVariab■e間 の

 量 的な関係を定義 します。

 係数 が非ゼロの整数 である場AQ、 Processは 、 そのVar-ab■eReferenCeが 参照

 する>ar-abieの 値 を変 更する ことがで きることを表 します。

 係数がゼ ロであ る場合、Processは 、そ のVar-ableReferenCeが 参照す る

 Variableの 値 を変 更する ことはで きません。

 Processが 化 学反応を表現 して いる場合 、係数の値 は、化学量 論係数に相当 しま

 す。

 例 えば、 あるVariableReferenCeのcoefficientが 一zだったな ら、順方向 の

 反応 が1回 起 こるたび に、 このVariab市eReferenCeが 参照する>ar-ableの 値 は

 Processが 算出する反応速度 の2倍 の値ずつ減少 していきます。

 coefficientを 省略 した場 合のデフ ォル トの値 はゼ囗です。

40 3章 E-Cellに よるモ デル作 成

∂ccessor _flag(isAcCessorフ ラグ) (省略可能)

 バイナ リの フラグです。1(true>あ るいは0(fa■se)に 設 定 します。

 isACCessorフ ラグがfalseの 場合 、 Processの 振 る舞いはその

 VariableReferenceが 指 すVariab山eの 影響 を受けません。すなわ ち、 ProCess

 がVariableの 値を読み込む ことはあ りません。 Variableの 現在の値 にか まわ

 ず、ProCessが これを書 き換 えるこ とが起 こりえます。

 ProCessに よ って は、 あるVariableReferenCeが 指すVariab■eの 値を変更 しな

 いことが明 らかな場合、iSACCessorフ ラグの値を 自動的 に設定 します。このフラ

 グを手動 で設定する場合、 この フラグを確認せずVariab-eの 値を読み込む

 PrOCessが 数多 くあることに注意 して くだ さい,

 デフォル ト値 は1(true)で す。 この要素は頻繁 に省略 されます。

 シミュレ-シ ョン中のisACCessorフ ラグの用いられ方:複 数Stepperを 用いるシミュ

 レーションにおいて、isACCessorフ ラグの情報がシステムの実行を効率化する場合があ

 ります。例えば、StepperAに 結合するすべてのProcessが 、別のStepper Bに結合す

 るVariableを 一切変更しないことを知ることができれば、システムは、 StepperAが い

 ずれかのVariableの 値を変更 していないかを常に確認する代わりに、 Stepper Bのス

 テップ幅をより大きく設定する機会を得ることができます.こ のフラグは、主に2つ 以

 上のStepperの 存在下で用いられます。

Variab■e Sを 基質 と して消費 し、 Variable Pを 生成物 と して生成す るルー トシステ

ム内での反応PrQcess Rが 、 Variab山eEを 反応 を触媒する酵素 として進行 する様子

をモデル ファイル に記述 してみ ます。

System System(

 握

 Variable Variable(

 Variable Variable(

 Variable Variable(

{'
VariableReferenceListC
 PO :.:P

 ENZYME :.:E O];

こ のProCessは 、 酵 素 を 参 照 名ENZYMEで 参 照 して い る の で 、 上 記 の よ う な

VariableReferenceListを 与 え る こ と に な り ます 。

3章E-Celllこ よる モデル作 成 41

蠶

葦

翫
斜

鰲

灘

}
櫓

蓬

ー
彰

モデル作成の方式

E-Cellは 複数 アル ゴ リズム シミュ レータです。離散アル ゴリズム と連続アル ゴリズム

の両方 を含む、 どんな種類の シミュ レーシ ョンアル ゴリズムで も、 任意の組み合わせ

で用 いることができます。本節 で【よ モデル化 とシ ミュ レーシ ョンの研究プ 自ジェク

トに適 したオブジ ェク トク ラスの組 み合 わせを見いだ す方法を解説 します。本節 に

は、利用可能 なオブジ ェク トクラスの完全な リス トやそれ らの詳細 な利用方法 は含 ま

れて いません。 それ らを知 るためには7章 「標準ダ イナミ ックモジ ュールライ ブラ

リ」 の章 をご覧 くだ さい。

離散か連続か

E-Cellは 、離散 過程 と連続過程 の両方をモデル化 することができ、シ ミュレー シ ョン

中 でこれらを混合す ることも できます。 システム1よ 離散 および運続系を2つ の明確

に異 なる型のProCessとStepperオ ブジ ェク ト:離 散Process/Stepperお よび連続

Process/Stepperに よってモデル 化 します。

Variableは 離散 かつ連続:Variableな らびにSystemは 、離散あ るいは連 続の属する

特別 なクラスを持 ちませ ん。 基底Variableク ラスは離散および連続の操作 の両方をサ

ポ ー トします。なぜ なら、Variableは あらゆる型 のProce∬ やStepperと 結合可能だ

からです。また、Systemオ ブジ ェク トは、離散 と連続 の区別が必要 とな るいかな る

計 算も行いません.

離散クラス

1つ あるい はそれ以上 のVariableオ ブジェク トの離散的な変化 をモデル 化する

Processを 離散Processと 呼び 、それ らは必ず離散Stepperと 結合 していな けれ ばな

りません。離散Processは 、 Stepperの 要 求がある と、関係す るVariableの 値を直接

変更 します。

離散Process/Stepperに は離散型(離 散 時間型)と 離散 イベ ン ト型 の2つ の型があ

ります。

離散型

 離散Processは 、 これ と結合 するVariableオ ブジェク ト

 (VariableReferenceListに 含 まれるVariable)の 値を離散的 に変更 します。

 PrOCess基 底クラ スはデ フォル トで離散Processと なっているため、現バ ージ ョン

 にはDiscreteProcessと いう名 前の特別なク ラスはありません。 Variableの 値 が

 どの ように変更 されるかは、PrOcersが アクセ スするVariableReferencesの 値 、

 属性 の値 、そ して時 にはStepperの 時刻 によ って決定され ます。次項 で説明する

42 3章 E-Cellに よるモ デル作成

 離散イベ ン ト型 のProCessと 異 なり、 Variableの 値 の離散的な変更が いつ起 こる

 かを特定 する必要 はあ りません。代わ りに、値の更新 は、離散Stepperに よって

 決定され るタイミングで-方 的 に実行 されます。

 すべての離散ProCessは 、離散Stepperと 呼ばれるStepperに 結合 していなければ

 な りません。現バ ージ ョンでは、基底Stepperク ラスが離散的なので、

 DisCretestepperと いう特 別なク ラス はあ りません。

離散イベ ン ト型

 離散イベ ン トは特殊 な離散的な事例のひ とつです。システム は離散 イベ ン トモデ

 ル作成のため にDisCreteEventStepperお よびDisCreteEventProCessを 用意 し

 ています。基底Processク ラ スの持つ通 常の点火 メソッ ド(fire()メ ソッ ド、1ス

 テ ップの数値計算 を実 行 します)に 加え、DiscreteEventProcessに は、次のイ

 ベン ト(こ の離散 イベ ン トProCessに 関係 するVariable値 の離散 的な更新)が い

 つ発 生するかを、ProCessが アクセ スする>ariableReferenCesの 値 、属性の値、

 Stepperの 現在時刻 から計算 するメ ソッ ドが定義 され ています。

 D一sCreteEventStepperは 、 このメ ソッ ドがも たらす情報 を用いて、それぞれの

 離散 イベ ン トP「oCessを 次にいつ点火 すべ きかを決定 します。

 DiscreteEventStepperは インスタ ンス化可能 です。 Dis〔reteEventStepperの

 動作 についての より詳細 な記述 は7章 「標準ダイナ ミックモ ジ ュ■ルライブラ リ」

 の車 をご覧 くだ さい。

連続 クラス

 ー方 、Variableオ ブジ ェク トの連続的な変 化を計算 するProCessを 連続

 P「oce∬ と呼び、連続Stepperと 組み合わせて用 います。 離散ProCessが

 Variableの 値を直接変 更 したのに対 し、連続Processオ ブジェク トは、結合 す

 る>ariab■eオ ブジ ェク トの変化 速度を設定 することで現 象をシ ミュレー トしま

 す。連 続Stepperは 、連続ProCessが 算出 した変化速度(VelOcity 性)に 基

 づいてVariab市eオ ブジェク トの値(Va【ue属 性)を 積 分 し、 Processが 次に変

 化速度 を再計算すべ き時 刻を決定 します。連続ProCessとStepperは 、典型的

 には、微 分方程式 と微分方程式 ソルバの実装 と して利用 され、微分方程式系のシ

 ミュ レーシ ョンを実現 します。

羹

盟糶
融鶏
靉
鬣

利用可能な離散クラス(抜 粋)

以下 にE-Cellで 利用可能な いくつ かの離 散クラ スを挙 げます。

3章E一Celiに よるモデ ル作成 43

鍵

44

DisCreteEventStepperお よ びGillespieProCess(Gillespie-Gibsonペ ァ)

E-Cel-に よ る離 散 イ ベ ン トシ ミ ュ レー シ ョ ン手 法 の 一 例 と して 、 Gillespieの 確 率 論 ア

ル ゴ リズ ム の変 法 で あ るNe×t Reaction Method(Gillespie-Gibsonア ル ゴ リズ

ム)が 挙 げ ら れ ま す,、DixreteEventStepperは この アル ゴ リズ ム を 実 装 して い ま

す。DiscreteEventProcessの 派 生 ク ラ ス でG-市espieの 反応 確 率 方 程 式 を 用 い て次

の反 応 が 起 こ る 時 刻 を計 算 す るGi--espiePrOCe∬ を 、 こ のStepperに 結 合 して 用 い る

こ と で 、 素 化 学 反 応 のGi■Iespie-Gibsonの 確 率 論 シ ミ ュ レー シ ョ ンを 実 行 す る こ と

が で き ま す 。 これ ら の オ ブ ジ ェク トの 使 い 方 は簡 単 で 、GillespiePrOCessオ ブ ジ ェ

ク トにStepper-D、 Variab-eReferenCeListお よ び 速 度 反 応 定 数kを 設 定 す る だ け

で す 。

DiscreteTimeStepper(離 散時 間Stepper)

離散Stepperの ひとつと してシ ステム が用 意 しているもの にDisCreteTimeStepper

があ ります、,このStepperク ラ スがイ ンスタンス化される と、ユー ザが設 定 したス

テ ップ間隔(Stepinterval)で 離散ProCessオ ブジ ェク トを呼びだ します。例え

ば、 あるモデル中のDisCreteTimeStepperのStepInterval属 性 が0、001(秒)に 設

定 されている と、 これ に結合 しているすべてのProCessオ ブジ ェク トは1ミ リ秒毎 に

点火 されます。DisCreteTimeStepperは 、 ステップとステ ップの中間の時亥ーjを持た

ないため、離散時間Stepperで あり、 ProCessオ ブジ ェク トに影響す る可能性 のある

システムの状態(Variab-eオ ブジ ェク トの値)の 変化を知 らせ る他のStepperに よる

割 り込みが発生 しても、 それ らを無視 します。そ れ らの変化 は次の ステ ップで反映さ

れます。

PassiveStepper

PassiveStepperは 、もうひ とつの離散Stepperの クラスです。 これ は、

Steplntervalが 無限 大のDisCreteTimeStepperの ように振る舞 う部分も あります

が違 いも あります。DisCreteTimeStepperと 異な り、 Stepperに 結合 するPrOCess

オ ブジェク トに影響をあた えるか も しれないシステム状態 の変化 を知 らせるStepper

の割 り込 みを無視 しません。

このStepperのProCe∬ オブジ ェク トがアクセ スするVariableの 少な くともひとつの

変 化速度 の値が他のStepperオ ブジ ェク トによ って変更 され たときにだ け、 Process

オブジ ェク トが点火されれ ばよいような特殊な手順 を組み込むために このSteppe「 を

用います.

3章E-Celllこ よる モデル作 成

PythonProcess

PythonProCessを 用 い る と、 ユ ー ザ はPython構 文 によ ってProcessオ ブ ジ ェク トを

ス ク リプ トで 操 作 す る こ と が で き ます 。

ProCessの 持 つinitialize()お よ びfire()メ ソ ッ ドを 、 そ れ ぞ れ 、

InitializeMethodお よ びFireMe蜥od属 性 で ス ク リプ ト化 で き ま ず.

PythonProCessは 離 散 的 に も連 続 的 にも 用 い る こ と が で き 、 こ の 「動 作 モ■ ド-1は

-sContinuous属 性 で 設 定 し ます 。 デ フ ォ ル ト値 はfa-se(0)で 離散 的 で す 。 連 続

モ-ド に切 り替 え る に は 、 この 属 性 を に1に 設 定 し ます,

Process PythonProcess(PY1)

{
 IsContinuous 1;

}

懿
覇

通常のPython構 文 に加えて、以 下のオ ブジ ェク ト、 メソ ッド、属性を、

山nitializeMethodお よびFireMethOdの 双方のメ ソッ ド属性 で利 用するこ とがで き

ます:

属性

 PythonProcessで は、任意の名前の属性を用 いるこ とができます。例 えば、以 下

 の コー ドでは2つ の新規属性 を作成 しています。

Process PythonProcess(PY1)

{

 NewProperty
 KK 3.0;
}

'new property";

これ らの属性 をPythOnメ ソ ッ ド中で用い ることができます:

Process PythonProcess(PYI)

{

 NewProperty 「'new property'";

 KK 3.0;

 InitializeMethod "print NewProperty";

 FireMethod "'

κK+隅LO

print KK
-"膠;

1

3章 E-Cellに よるモ デル作 成 45

灘

46

上 の例のよ うにFireMethOd属 性 などに三重 引用符を用 いて複数行 のPython構

文を書 くときには、行 頭の空白がPythOn言 語の インデ ン トと して解 釈される こ

とに注意 して ください。

新 しい属性 は、Pythonメ ソ ッド中で作成 することもできます。

InitializeMethod-'A-3.o°;@#Aを 作 成

FireMethod"print A★2'.; @dl Aを 使 用

 これらの属性 はグ ロ-バ ル変数 と して扱われ ます。

オブジ ェク ト

 self

 ProCessオ ブジ ェク ト自身で す。以下 の属 性を持ち ます:

 Activity

 このProCessのACtivity属 性の値。

 addValue(value)

 各>ariableReferenceに 、 valueに>ariableReferenceのCoefficientを 乗

 じた値 を加えます。

 ProCessが 離散的 な場 合に限 り、 この メソ ッドを利 用する ことがで きます。

 IsContinuous属 性 がfa-seで あるこ とを確認 して ください。

 getSuperSystem()

 このProCessが 属 するSystemを 返 します。 Systemオ ブジ ェク トの属性 に

 ついて は後述 します。

 Priority

 このProCessのPriority属 性 の値。

 setFlux(value)

 各VariableReferenceのVeloCityに 、 V∂)ueにVar-ab-eReferenCeの

 coefficientを 乗 じた値 を加えます。

 Processが 連続的 な場合 に限り、このメ ソッ ドを利 用することがで きます。

 IsContinuous属 性 がtrueで あることを確認 して くだ さい。

 StepperlD

 このProCessのStepper-D。

 VariableReference

 VariableReferenceイ ンスタンスは、このProCe∬ のVariableReferenceList

3章 E-Cel日 による モデル作 成

 属性 によ って与 えられ 、Pythonメ ソ ッ ド中で用いる ことがで きます。各イ ン

 スタンスは以下の属性 を持 ちます:

 addValue(value)

 Variableの>alue属 性 にvalueを 加 える。

 Coefficient

 VariableReferenceのCoeffiCient属 性 の値。

 getSuperSystem()

 Variab■eが 属 するSystemオ ブジェク トを返 します。

 MolarConc

 Variableの 濃度 をモル濃度[M]で 返 します。

 Name

 >ariableReferenCeの 名前。

 NumberConc

 >ariableの 濃度を個数濃度[個 数/Variableが 属 するSystemの 容積]で 返 し

 ます。

 IsFixed

 >ariab"eのFixed属 性が0の ときfalseを 、それ以外 の場合 は非ゼ囗の整数

 を返 します。

 IsAccessor

 >ariableReferenCeの-sACcessorフ ラグ が0の ときfa}seを 、それ以外 の

 場合 は非ゼ 囗の整 数を返 します。

 Value

 Variableの 値(>alue属1生)。

 Velocity

 現在計算中 のStepperに よる暫定的な反応 速度(>elocity)を 返 します。

 通常使用 しません。

System

 Systemオ ブジェク トは以下の属性を持 ちます。

 getSuperSystem()

 このSystemの 上4iSystemのSystemオ ブジェク トを返 します。

3章E-Celiに よ るモデ ル作成 47

灘

難

48

 Size

 Systemの 容積。

 SizeN A

 Size X N_Aの 計算結果 を返 します。 N_Aは アボ ガ ドロ数 です。

 Stepper工D

 SystemのStepperlD。

以下 にPythOnProCessの 使用例 を示 します。

例3-2.PythQnProCessの 使用例

Process PythonProcess(PYl

 4k IsContinuous O; 一一 default

 FireMethod "Sl.Value = S2.Value + S3.Value";

 VariableReferenceList C(Sl)] C(S2)] C(S3)];

PythonEventProcess

ユ ■ ザ は 、 こ の ク ラ スを 用 い て 時 間 イ ベ ン トを ス ク リ プ トで操 作 で き ます 。 こ の ク ラ

ス で は 、initializeUとfire()に 加 え、 updateSteplntervalOメ ソ ッ ドを

ス ク リプ トす る こ と がで き ま す 。 こ れ を 設 定 す る た め に は

UpdateStepinter>alMethod属 性 を 用 い ま す。

PythOnPrOce∬ で 利 用 可 能 な も の に 加 え て 、 PythonEventProCessのselfオ ブ

ジ ェク トは以 下 の属 性 を 持 ち ま す:

Steplnterval

 updateSteplntervalOメ ソ ッ ドが計 算 した最 新 のStepintervah

DependentProcessList

 このProcessに 依 存 す るProCe∬ のIDの タ プ ル 。

こ の ク ラ ス の オ ブ ジ ェク トは、DisCreteE>entStepperと とも に 用 い な け れ ばな り ま

せ ん。

ExpressionAssignmentProcess

E×pressiOnAssignmentProce∬ は離 散 的 なVariableの 更 新 を 簡 単 か つ 効 率 的 に表

現 で きる よ う設 計 され て い ま す 。

3章E-Cellに よる モデル作 成

この クラスのExpress-on属 性に は、平文 テキス トによ って式を与 えます.式 は、更

新後 のVar-ableの 値を[個 数]で 与えな けれ ばなりません([濃 度]で はないので注

意 してください).以 下 にExpressiOnAssignmentPrOcessの 使用例を示 します:

Process ExpressionAssignmentProcess(P1)

{
 kO.1;

 Expression "S.Value + k";

 VariableReferenceList C S :.:5 1];

}

PythonProcessに 比 べ 、 こ のProCessは 高 速 に動 作 しま す(代 償 と して 表 現 の柔 軟

性 を 犠 牲 に して い ます)。

Express-on属 性 で 利 用 で き る要 素 を以 下 に 示 しま す 。 利 用 可 能 な 算 術 演 算 子 お よび

数 学 関 数 は、 制 御 構 造 を 除 きSBMLlevel 2に 準 拠 して い ま す 。

定 数

 数 値(例:10,10.33、1.33e-5>,true,faire(ゼ 匚]と 等 価L pl(τ 「L NaN

 (非 数),INF(無 限 大L N_A(ア ボ ガ ドロ数),exp(ネ イ ピ ア数eを 底 とす る

 指 数 関 数)

算 術 演 算 子

 +、一、塞,/,^(羃(べ き);pow(x, y)と 等 価)

数 学 関 数

 abs, teil, exp, *fact, floor, log, 10910, pow sgrt,*sec,

 sin, cos, tan, Binh, cosh, tanh, coth, *csch,*sech, *asin,

 *acos, *atan, *asec, *acsc, *acot,*asinh,*acosh, *atanh,

 *riech,*acsch,*acoth(ア ス タ リ ス ク 「☆」 を 付 した 関 数 はWindows版 で

 は利 用 で き ま せ ん)

 pow以 外 の すべ て の 関 数 は 引 数 を1つ と り ま す 。 powの 弓■数 は2つ で す 。

比 較/論 理 関 数

 比 較/論 理 演 算 子 の 代 わ り に以 下 の 関 数 を 利 用 で き ま す 。

 eq(1hs, rhs)

]hserhsな ら1を 、 そ れ 以 外 な ら0を 返 しま す.

 neq(1hs, rhs)

]hs≠rhsな ら1を 、 そ れ 以 外 な ら0を 返 しま す 。

3章E-Cel山 によるモ デル作 成 49

覊

語

50

gt(7hs, rhs)

)hs>rhsな ら1を 、 そ れ 以 外 な ら0を 返 しま す。

lt(7hs, rhs)

 Ihs<rhsな ら1を 、 そ れ以 外 な ら0を 返 しま す 。

geq(Ihs, rhs >

 肋5≧rhsな ら1を 、 そ れ 以 外 な ら0を 返 しま す 。

leq(Ihs, rhs)

 防5≦rhsな ら1を 、 そ れ 以 外 な ら0を 返 し ます 。

and(Ihs, rhs)

 Ihsとrhsが とも にtrueな ら1を 、 そ れ 以 外 な ら0を 返 し ます 。

or(7hs, rhs)

 Ihsとrhsの 両 方 あ る い は い ず れ か がtrueな ら1を 、 両 方 ともfalseな らO

 を 返 し ま す 。

xor(1hs, rhs>

 1hsとrhsの い ず れ か 一 方 だ け がtrueな ら1を 、 そ れ 以 外 な ら0を 返 し ま

 す,,

not(わ>

 bがfalseな ら1を 、 trueな らOを 返 し ま す。

例:Variab■eA、 Bが あ り 、 A≧0の と きBに1性kの 値 を 加 え 、 A<0の とき

何 も しな いProCe∬Pの モ デ ル を 示 しま す 。

Process ExpressionAssignmentProcess(P)

 kO.上;

 Expresslon '山B-Value + geq(A.Value, 0.0) ★k"";

 VariableReferenceList C A :.:A O 7 C B :.:B 1];

属 性

 PythonProcess同 様、 ExpressionASSignmentProCessも 任意 の名前 の属 性を

 モデル中で使 うことができます,、ただ し、PythonProcessと 異な り、 このク ラス

 で は、それ らの属性 の型はRealに 限られます。

オブジェク ト

3章E-(=ellに よるモデ ル作成

 self

 このProcessオ ブ ジェク ト自身です。 PythonProCessの サ ブセ ッ トにあたる以

 下 の属性 を持 ちます:

 getsuperSystemO

 VariableReference

 このProcessのVariab-eReferenceListに よって与え られる

 VariableReferenCeイ ンスタ ンスを式の中で用い ることができます。各イ ンス

 タンスは、PythonProcessの サブセ ッ トにあ たる以下 の属性 を持ち ます:

 Value

 MolarConc

 NumberConc

 TotalVelocity

 Velocity

 System

 Systemオ ブジェク トは以下の2つ の属性 を持ちます。

 Size

 SizeN A

複雑 な酵素反応速度式を モデルフ ァイル に記述す る場合 など、Expressbn属 性 に

セ ッ トする式が非常 に長 くなることがあ ります。Expre∬ion属 性 に書 けるの は1つ

の式 ですが、EmPyを 用 いれば、式を複数行 に分割 して書 くこ とができ、読 みやすさ

を改善で きます。EmPyは 、改行の直前 に@を 見っける と、改行 コ-ド を削除 しま

す。 これを利用 して、iつ の式を複数行 にわたって書 くことがで きます。

例え ば次の記述(改 行記 号 ψ を明示 します)は;

Expr'ess寸on 山'@<ρ

 (Umax★Glc,MolarConc/@d

 Km + GIc.MolarConc) * ((ATP.MolarConc

ADP.MolarConc) /@d

 1.0 / 0.44 + ATP.MolarConc / ADP.MOIarConc)))

 ★se「f,getSuperSystem().SizeN_A@d

は、以下の記述(改 行記号を含んでおらず3行 で表示されているものが1パ ラグラフ

です)と 等価です。

3章 E-Cellに よ るモデル作 成 51

鍵

飜

写認…籌
」.纛

鮴

`

¢蒙

蠻

攤

Expression "(Umax * GIc.MolarConc / (Km + GIc.MOIarConc
 ((ATP.MolarConc / ADP.MolarConc) / (!.0 / 0.44 +
ATP.MolarConc / ADP.MOIarConc))) * self.getSuperSystein
O.SizeN_A

なお、Pythonプ ログラムで は、バ ック スラ ッシュ へ)に よって行の継続を表現で

きますが、E×pression属 性で は ＼を使 う ことはで きません。

纖
購

その他の離散クラス

tau-eap法 を実行 するためのStepperも 用意されて います。 そのために は、

TauLeapStepperをGillespieProCessと 組み合わせて使 います。 tau■eap法 は、ボ

アソ ン近似 に基づ いて重要 なイベ ン トが発生 しない区間を推定す るアル ゴ リズムで、

こう した区間の計算 を雀 略する ことによって計算 コス トを軽減 し、 シミュ レ一シ ョン

を加速 します。TauLeapStepperのepsi山on属 性を用 いて、許 容する最大誤差 を制

御でき ます(大 きな値を設 定す ると近似 が緩 くなり、計算を高速化で きる反 面、精度

が低下 します)、,

生化学的反応経 路の動的-静 的ハイブ リッ ドシ ミュ レーシ ョンのための流束分布法

は、以下の クラスによ って利思で きます:F-u×DistributionStepper、

FluxDistributionProCess, QuasiDynamiCFlu×ProCe∬ 。 これらのProCessを 用 い

る ことによって、反応速度式 と速度論パ ラメ-タ を用い ず、連立質量 保存 式(mass

ba-anCe equatiOn)の 解 と して流束分布を得 ることができます。 この方法 によっ

て、未知 の要 素を含む系の シミュ レ■シ ョンと解析を行 うことができます。 この理論

とこれらのProCessの 使 い方に関 しては、以下の学術論 文で詳 しく議論 して います:

YugiK, Nakayama Y, Kinoshita A, Tonvita M,Hybrid dynamic/static method

for large-scalesimulationofmetabolism.TheorBio/MedModel.20050ct

4;2.42.

利用可能な連続クラス(抜 粋)

E-Ce--は 常微分方程式(ODE)と 微分 代数系(DAE)の 双方をサポ-ト しており、そ

れぞれのためのStepperを 用意 しています。シ ステムにはいくつかの連続ProCessク

ラスも含まれてい ます。 たとえば、MassACtionF市u×ProCessは 質鑿作用則(law of

mass aCtion)に 基づ く反応速度 を計 算 します。 E×pressionFluxProCessで は、

ユ■ザが任意の速度式 をモデルフ ァイル に書 くことができます。PythonProCessと

PythonFlu×ProCessは 、 Processオ ブジ ェク トをPythonス ク リプ トで操作す るた

52 3章 E-Cellに よる モデル作 成

め に用 います。特 定の酵素反応速度式 に特 化 したProcessも いくつか用意されてい

ます、,

ー 般 的 な 常微 分Stepper

モデル が常微 分方程式系で あるなら、現 バー ジョンのE-CeIlで はODEStepperの 利

用 を推 奨 します。 このStepperは 、系 の状態 に応 じて数値積分 アル ゴ リズムを切 り

替 えます(陽 的なDormand-Pr-nCe法 と陰的方法のRadau IIA法)。

この他のODEStepperと して、よ り低次(2次)の 積 分機構を搭載 した

ODE23Stepper、 も っともシンプルなオイラー法を実装 し、適応 的なステ ップ幅調

節機 構を持たな いFI×edODElStepperが あります。

Fi×edODElStepperを 除き、 これ らのODEStepperに は、ユ■ ザが設 定できるい

くつかの共通の属性 があ ります。以下 はそ の一部 です:

Tolerance

 局所的な打 ち切 り誤差 に対するエ ラー耐性。 この値 を小さ くする と、Stepperの

 ステ ップ幅 が小 さ くな り、シミ ュ レー シ ョンが遅くな ります。値を大 き くする

 と、精度 を犠牲 に して計算速度が速 くなります。標準的なイ直は1e-6で す。

MinSteplnterval

 ステ ップ幅の最 小値です。 この値 は、-ro-eranCeよ り優 先されます。

MaxSteplnterval

 この属 性はすでにサポー トされ ていませんので、設定 して もシステムに影響を与

 えません。

MassActionFluxProcess

MassActionFlu×Pro(essは 、単純 な質量作用則(law of mass action)の ため の

Processク ラスです。このク ラスは非可逆 の質量作 用則 に従 って反応速度 を計 算 しま

す。速度定数を設 定するには、属性kを 用います。

ExpressionFluxProcess

E×pressionFlu×PrOCe∬1ま 以 下 の2点 を 除 き、 ExpressionAssignrnentProcess

と同 じで す。(1)Expression属 性 に は 、 反 応 速 度 式 を書 き ま す。 反 応 速 度 は[個 数

/秒]で 与 え な け れ ば な り ま せ ん([濃 度/秒1で は な い の で 注 意 し て く だ さ い)。

(2)Expression属 性 の値(式 の 計 算 結 果)は 、 暗 黙 にsetFlu×0メ ソ ッ ドに 渡 さ れ

た も の と して 解 釈 さ れ 、VarーableのVe■Ocityに 各Variab市eReferenceの

CoeffiC-entを 乗 じて 受 け渡 さ れ ま す。

3章E-Ce目 によるモデ ル作成 53

驪

「翻馨

聾

54

ExpressionFluxProCess lま、 PythonPro(二ess、 PythonFlu×Processよ り 高 速fこ 動

作 し ま す.

以 下 にExpressionFluxProcessの 使 用 例 を 示 しま す:

Process ExpressionFluxProcess(

 kO.1;

 Expression 山'k ★ S,Value";

 VariableReferenceList [S :.:5

基 本 的 なMiChaelis-Menten反 応 をE×pressionF市uxProCessで プ ロ グ ラ ム した 例 を

以 下 に示 し ま す。

サ ン プル コー ド3-3,ExpressionFluxProcessに よ るMiChaelis-Menten反 応

Process ExpressionFluxProcess(P)

 Km 1.0;

 KCdt 10;

 Expression"E.Value*Kcat*S.MolarConc/@
 S.MolarConc + Km

 VariableReferenceList C S :.:5 -1] C P :.:P

 :.:E 蕁;

定 義 済 み の反 応 速 度 ク ラ ス

特 定の酵素反応速度式を実装 したProcessに つ いては、7章 「標準ダ イナミ ックモ

ジ ュ-ル ライブラ リ」 をご覧 ください。

PythonFluxProcess

PythonFluxProCessは 以下の2点 を除 き、 PythonProcessと 同 じです。(1)

Expressめn属 性 には、1行 のPythonrtを 書 きます。(2)ExpressionE■uxProCess

のよ うに、暗黙 にsetFlux()メ ソッ ドに渡されたもの として解釈 されます。

3章E-Cellに よ るモデル 作成

一般的な微分代数系Stepper

微分代数系(DAE)モ デル には、 DAEStepperを 用います。モ デル はindex 1'の

DAEで なけれ ばな りませ ん。 DAEStepperは 、1っ あるい はそれ以上 の離散

Processオ ブジ ェク トを見つ けると、それ らを代数Proce∬ オブジ ェク トとみな しま

す。 したがって、DAEStepperと 結合する すべて の雕散ProCessは 代数 を表現 してい

な けれ ばなりまセん。代数ProCessの 定義 につ いて は以 下を読んで ください。

DAEStepperを 常微分系(ODE系)に 用いることができます:な ぜならODEは 代数方

程式を持たないDAE i=i題の特殊型としてみることができるからです。 DAEStepperは

ODEモ デルを実行することができます。ただし、モデルがODEの 場合には、積分手法

や実装においてODE問 題に特化しているODEStepperを 用いた方が優れたパフォ■

マンスを発揮します。

ODEStepperク ラ ス の属 性(ToleranCe属 性 な ど)は 、 DAEStepperに も 備 わ っ て

い ま す 。

气

髯

代 数ProCess (AlgebraiCProCess)

これは離散Processの ひとつですが、連続Stepperで あるDAEStepperと ともに用

い られるので ここで記述 します。

原 則 として、連続ProCessオ ブジェク トはつ ねに連 続Stepperイ ンスタンスに結合さ

れていな けれ ばな らず、離散Stepperは 離散ProCessオ ブジェク トだけを結合 する と

考え られます。た だ し、例外 があ り、そのひ とつ が代 数ProCessで す。奇妙ではあ り

ますが、DAEの シミ ュレー シ ョンで は、離散 的な代数方程式 はその他の微分方程式

と連動 して連続的 に解 かれます。

E-Cel■における代数 方程式 の記述形式 は以下 の通りです:

0=g(∫,x)

ただ し、'は 時刻、XはVariableReferenceの ベク トルで す。

E{e[1のDAEソ ルバ は、代数 関数g(t,x)の 値 は、 Processオ ブジェク トのActivlty属

性 に格納 され ているもの として計算 するよう設計 されて います。代数Proce∬ は

>ariableの 値を陽的 に変更 することはあ りません。 DAEStepperは 、式gOが 表現 さ

れて いる場所 を見 いだす役割を果た しています。

モデル を作 る際 には、代数ProCessのVariableReferencesの 係数 〔CoeffiClent)

1indexと は、 大ざ っぱ にいっ て、あ るDAEを それ と等価 なODEに 変 形す るため に必要 な最

小 の微分 回数 です。ODEは 、 index OのDAEと いえ ます。 index 1の 系 とは、 DAE中 の代

数 方程式 の解 を微分 方程式 に代 入する こ とでODEに な るよ うな系で す。

3箪 E{eI山によるモデル作成 55

讖
灘

に気を配 って ください。 多 くの場合、単純 に1と 設定 します。例 えば、Aの 係数がゼ

ロだ った とす ると、式の計算 にAの 値を利用す ることはできますが、式の解 によって

Aの 指すVariableの 値が変更 され ることはありません。

代数方程式 を記述 する方法 として、ExpressionA-gebraicProcessを 利用で きま

ず。式 の評価結果 が代数関数g(〉の値 と して解 釈される点を除いて、使 い方は

ExpressionAssignmentProcess、 Expre∬ionFluxProCessと 同 じです。

下のサ ンプルコー ド3-4は 、以下の式を記述 しています。

aA+B=]0, u=1-5

サ ンプルコ■ ド3-4,ExpressionAlgebraicProCess>を 用いた簡単な代数式

Stepper DAEStepper(DAE1) (}

Process ExpressionFluxProcess(P)

{

 StepperlD DAE1;

 a!.5;

 Expression "(a * A + B) - 10";

 VariableReferenceList C A :.:A !] C B :.:6 !];

1

C++あ るい はPythonProCe∬ を代数式 に用いる には、式 の値 をACtivity属 性にセ ッ

トするため にsetActivityOメ ソ ッドを 呼びだ します。 PythOnProCessに よる例

を以下に示 します:

サ ンプル コ-ド3-5.PythonProcessを 用 いた簡単 な代数 式

Process PythonProcess(PY)

l

 a1.5;

 FireMethod "self.setActivity((a * A + B) - 10)";

 VariableRefer、enceLlst 匚 A :.:A 1] C B :.:B 1];

J

56 3章E-Cellに よるモデル作成

Power-law(べ き乗 則)の 正 規 形微 分方 程 式2(S-System、 GMA)

ESSYNSStepperは 、 ESSYNSア ル ゴリズムを用 いたS-Systemお よびGMAの シ

ミュ レーシ ョンをサポー トします。ESSYNSStepperは 、単 一のSSysすemProCess

あ るいはGMAProCessと 結合 していなければな りませ ん(P「o(PSSの 参照す る

VariableReferenceと 、 StepperがProcessを 介 して参照 する

VariableReferenCeが 一致 していな けれ ばな りません)。SSystemMatrlx属 性 あ

る いはGMAMatrix属 性 を用 いてパ ラメータを設定 します。

これ らのProcessは どちらも、 power-law(べ き乗則)の 正規形微分方程 式によ っ

て モデル化 されたさまざまな細胞現象 をシミュ レ-ト す ることができます。S-

SystemとGMA(Generalized Mass ACtion)は 、それぞれ、 SSystemMatri× 属

性、GMAMatrlx属 性 として、 S-Systemあ る いはGMA座 標 の行列 を持ちます.サ

ンプル モデルssystemが このアル ゴリズムを用 いた例 にな っていまず

(Appendix-2を 参照 して ください)。

これらのモジ ュールは現在開発 中です、,

纓

モデル化に際しての変換

単位

E-Cell SEで は以下の単位 を用 いています.こ の標準単位 はシミ ュレータ 内部での表

現 を意味するだ けで、モデル化 の過程 では どんな単位 を用 いることもできます,,た だ

し、標 準と異なる単位を用 いた場合 には、シミ ュレ-タ に読み込 む前に標準単位 に変

換 しておかな けれ ば成 りませ ん。

時 間

 S(秒)

容 積

 L (リ ッ トル)

濃 度

 モル濃度(M、mol/L(リ ッ トル)、Variableオ ブジェク トのMolarConC属 性 に

 相 当)あ るい は、個数濃度(個 数/L(リ ッ トル)、VariableのNumbe「ConC属

 性 がこの単位を持つ)。

2正 規型 の微 分方 程式 とは dy/dx=f(x, y) と書 けるもの をい います。

3章E-Cellに よるモデル作成 57

鷺 '

鏤 ・

攤

58 3章 E-Cellに よるモ デル作 成

モデル作成のチュー トリアル

4

本章 は、E-Cellを 用 いた簡単 なモデル作成のチ ュー トリアル です。

モ デ ル の 実 行

 本章 のすべてのサ ンプル コー ドは、以下の手順 で実行 できます。

 1,エ デ ィタでモデル ファイル を作成 し、保存 します(simple-gillespie.emな どと

 して)。

 emacsな ど、 UNIX系 のエ ディタの利用をお勧め します。 Macintosh、 Windowsな

 どのエデ ィタを用 いた場合 、改行 コー ドをLFと して保 存 して くださ い(UNIXの ファ

 イル形i式)。

恥
撃

璽

ご
穿

一

2-ece113一em2em1コ マ ン ドで 、 EMフ ァイ ル をEMLフ ァ イル に 変 換 しま す 。

8 ece113-em2emi simple-gillespie.em

3.ecell-session-monitorコ マ ン ドを用 い てGUIモ 一 ドで モ デ ル を 読 み 込 み 、 シ

 ミ ュ レー シ ョ ン を実 行 しま す 。

S ecell-session-monitor -f simple-gillespie.eml

あ るいは、ece113-sessionコ マ ン ドを用 いてスク リプ トモ■ ドで実 行 します(5

章を ご覧ください)。

$ ece113-session -f simple-gillespie.eml

Gillespieア ル ゴ リズ ム を 使 う

 E-CellSEはGillespieの 確率論アル ゴリズムを用いたシ ミュ レー シ ョンのためのク

 ラスを備えています。

59

ちいさな反応系

まず最初 に、2つ のVariable(こ こでは、 各分子種の分子 の個数)と2つ の素反応

ProCessか らなる、も っとも単純で 安定な素 反応系か らはじめま しょう。素反応 は不

可逆なので、反応 系が安定 になるため には少な くとも2つ の反応 インスタンスが必要

です。反応系 は以 下のよ うにな ります:

 P1

⑨.一 一一コ ー_ｺS2
 P2

轢
S1とS2は 分子種 、そ してP1とP2は 反応過程で す。2つ の反応の速度定数 は等 しく、

1.0[s-1]で す。S1とS2の 初期値 は、それぞれ1000、0で す。速度定数が等 しいの

で、 この系 はS1=S2=5GOで 定常 とな ります。

Next Reaction methodの 設 定

DiscreteEventStepperク ラ ス は、 G1-lespieア ル ゴ リズ ム のGibsonに よ る効 率 的 な

変 法 で あ るNext Reaction(NR)methodを 実 装 して い ま す 。

シ ミ ュ レー シ ョン モ デ ル 中 でDisCreteEventStepperを 用 い る に は、 EMフ ァイ ル に

以 下 の よ う に記 述 しま す:

Stepper DiscreteEventStepper(DSI)

{

 ヂ舌 no property

}

この例 では、DisCreteE>entStepperはStepper-D「DS1」 を与 えられて います。今

の ところ、このオブジ ェク トの属性 を指 定する必要 はあ りませ ん。

コンパートメント(区 画)の 定義

次 に、コンパ■ トメ ン ト(区 画)を 定義 し、それ らをStepperDS1に 結合 します。 こ

の モデル は1つ の⊃ ンパ-ト メン トしか持たないので、ル ー トシステム(/)を 使 う

ことに します。 すべての反応 が一次反応 であるため このモデル はコンパ■ トメン トの

容積 の影響 を受けませんが、明示 的にSIZEを 定義 して おくことは、 定義せず にデ

フォル ト値1.0の ま まにして おくよりもよい考えです、,

ここでは、/e-15[L]に 設定 してお くこ とにしま ず。

60 4章 モデル作成のチュー トリアル

System System(/)

[

 StepperlD DSI;

 Variable Variable SIZE) { Value le-15;

尭

1

変 数(Variab-e)の 定 義

次 に、VariableS1とSZを 定義 します。 オブジェク トの初期値 を設定 するためには、

「Va■ue .i属性を用 います。

System System(/)

し

 4k.斷.

F

Variable Variable(S1)

{

 Value 1000;

k

Variable Variable(S2)
i

 Value O;
f

#...

癰
羅

反応 過 程(Process)の 定義

最後 に、反応過程 のインスタ ンスであ るProCess P1とP2を 作成 します,,

Gi山■esp-eProCe∬ クラスをDisCreteEventStepperと 組み舎わせるこ とで、素反応

をシ ミュレー トします。

2つ の異な る型 の属 性(kお よび>ariableReferenCeL一st)を それぞれの

GillespieProCessオ ブジ ェク トにつ いて設 定 しなければな りませ ん。 kは 速度定数パ

ラー メータで、 単位 は、一次反応の場合[S-i]、 二次 反応ではS-'M']で す(二 次反

応が存在 する場合 、SIZEVariableの 定義をお忘れな く)。Variab一eReferenCeList

属性 には、P1はS1を 消費 してS2を 産生 し、 P2はS2を 用 いてS1を 産 生するよ うに設

定 しま しょう。

4章 モデル作成のチュー トリアル 61

靉
韆

System System(/)

t

 ヂ'。.,

 Process GillespieProcess(P1) 推 the reaction S1 -->

S2

 f

 VariableReferenceList [S :.:Sl -1]

 匚 P :.:S2 1];

 k 1.0; 審 the rate constant

 }

 Process GiliespieProcess(P2) {' the reactjon S2 -->

Sl

 {

 VariableReferenceList C S :.:52 -1]

 [P:.:51 i];

 k1.0;

 1

f

つなぎ合わせる

このモデルに含まれるオブジェクトの関係図と、実行可能な完全なEMフ ァイルを以

下に示 します。

特 に指 定 しない場合 、

ProcessのStepperは

ProCessが 結合す る

SystemのStepPerに

設 定 され ます。

62 4章 モデル作成のチュートリアル

サ ン プ ル コ ー ド4-1.も っ と も 簡 単 なGillespie-Gibsonモ デ ル

Stepper DiscreteEventStepper(DS1)

 4i no property

System System(

 StepperlD DS1;

 Variable Variable(SIZE

 Variable Variable(Sl

 Value 1000;

Variable Variable(

 Value O;

Process GiliespieProcess(P1) 搬 the reactてon S工 一『> S2

VariableReferenceList [S :

k1,0;幸the rate constant

.:Sl-1
:S2 1];

Protess GillespてeProcess(P2) 非 the reactlon S2 -一> Si

VariableReferenceList [

k1.0;

:S2-1

:S1 1];

このモデルをセ ッションモニタ 〔ece113-session-monitor>で 実行 し、 S1とS2

の軌跡をプ ロッ トするために トレーサー ウィン ドウを開いてみて ください。2つ の

Variab■eが 速や かに定常状態であ る500、0付 近 に到達 することがわかるで しょう

(セ ッシ3ン モ ニタの使用 法 はAppendi×-4を ご覧 くだ さい。)。

以下 に、セ ッシ ョンモニタで観察 した例を示 します。

4章 モデル作成のチュー トリアル 63

"城
夷

懸
蝋 鞠 胸ktrace

Vanable51と 、 S2を

トレ■サー に登録 し、10秒 の

シミ ュ レー シ ョンを実行 した

状 態。

ほぼ定 常状 態 に達 して います。

鬮 困 0匚 」>amble'、Sユ ・Vヨlue

O 劉 0口Vanable'52 Value

ト レ ー ス を 拡 大 し て み る と 、 確 率 的 ゆ ら ぎ を 見 る こ と が で き ま す 。

{ 暢 ・F顛 弱 " 点 へ 丶" 喘 手"い 財 `,ピ 鰰純_.ご 、

み
》'.・

i灘.

鞴

團 口Va舶b-e♂51 value

匿 目Vane61e(52VaNe

譬
、i「

2～6秒 の トレー スを拡大 し

てみ る と、 確率 的ゆ らぎのた

め、 ぴ った り500で 一 定 には

な らない様 子 がわか ります。

決定論的微分方程式を使う

前節で は確率論的Giilesp一eア ル ゴ リズムを用いて実行 するモデルの作 り方 を示 しま

した.ECellは 複数 アルゴ リズムシ ミュ レータなので、別のアル ゴ-丿ズムをこのモデ

ル に用いて シミ ュレーシ ョンを行 うこともできます。本節で は、 シンプル な質壁作用

則(mass-aCt-Qn)反 応系のシ ミュ レ■シ ョンに決定論的微分 方程式 ソルバを用いる

方法 を解説 します.

StepperとProcessク ラ スの選 択

現バ ージ ョンでは、微 分方程式系を シミ ュレ■Fす るため の汎用Stepperと して、

ODEStepperの 利尾 を推奨 します。

MassACtionFluxProcessは 、連続 な微分方程式PrOCessで 、離散 イベ ン トにお け

64 4章 モデル作成のチュー トリアル

るGillespieProCessに 相 当 しま す。 Gi■-espieProCessと 異 な り 、

MassACtionFluxProCessで は 反応 機 構 の 次 数 に制 限 は あ り ま せ ん 、,例 え ば、 次 の よ

う な 反 応 も 取 り扱 う こ と が で き ま す:SO+S1+2S2→PO+P1

モ デル の 変換

Gi■lespieア ルゴ リズムの ちいさな反応系モデルを、微分方程 式モデルに変換する方

法は とてもシ ンプル で、DisCreteEventStepperをODEStepperに 置 き換 え、

ProCessの クラス名をGillespieProCessか らMa∬ACt一 〇nFiuxProCessに 書 き換 え

るだ けで す。

微分ODEStepperで 実行 され るちいさなモデルを以下 に示 します。 前節の確率論 モ

デル と似通 ったシミ ュレー ション結果 が得 られます。ただ し、Var-ableの 変動 を拡大

して みると、 もはや確率的 ゆらぎが見 られないのがわか ります。確率 論モデルか ら決

定論 モデルに変 更されたか らで す。

飆 ⑱ 胸 界 悌cゼ ー

 凹 ロ Va-iδble l SI Value

 団 口Variable/S2一Value

団 口 噛 冂able.(SbValue

●[]Vana61eg32roalue

鑵

li籔.

韈谿

確率 論 モデル同様 、S1と 、 S2

を トレー サー に登録 し、10秒 の

シミ ュ レー シ ョンを 実行 した状

態 です。

定 常状 態 に達 して います。

や はり同様 に、2～6秒 の

トレース を拡大 して みる と、

確率 的ゆ らぎ はQら れ ず、

S1=52罵500の 定常状 態 に

収束 して います。

トレースの右端が途切れたよ

うに描画されているのは、現

バージ ョンの仕様です。

4章 モデル作成のチュー トリアル 65

韆

サ ンプル コー ド4-2.簡 単 な決定論mass-actionモ デル

灘

Stepper ODE45Stepper(ODE1)

 寿 no property

System System(

 StepperlD ODEi;

 Variable Variable(SIZE

 VariableVariable(Sl

 Value 1000;

Variable Variable(

 Value O;

Process MassActionFluxProcess(

 VariableReferenceList C SO :.:51

1.0;

PO :.:52

Process MassActionFluxProcess(

 VariableReferenceList C SO

.o:

PO

P2

.:S2

..:51

複 数 の アル ゴ リズ ム を 切 り 替 え ら れ る モ デ ル を 作 る

 モデルが素反応だ けか ら構成されて いる場合 などでは、DisCreteEventStepperと

 Gi山lespieProcessの ペ ア、 ODEStepperとMassActionFluxProcessの ペアのク

 ラス名を切 り替えるだ けで、確率論 と決定論 のアル ゴリズムを切 り替 える ことがで き

 ます。 どちらのProCessク ラスも、同 じ属牲kを 、同 じ単位 で持っています。

 EmPyマ クロを用 いて、モデル を汎 用化 する ことがで きます。以下 の例 では、

 Pythonの 変数TYPEを--ODE"に 設 定する と決定論的微分 方程 式モ-ド に、-INR-`に

 設定 する と確 率論的 にな ります。

66 4章 モデル作成のチュー トリアル

サ ン プ ル コ ー ド4ー3-simple-switchable.em

@(ALGORITHM='ODE')

@i

if ALGORITHM =_ 'ODE':

 STEPPER='ODEStepper'

 PROCESS='MassActionFluxProcess'

ellf ALGOR王THM 冨繍 'NR':

 STEPPER='DiscreteEventStepper'

 PROCESS=山GiilespiePr'ocess「

else:

 raise 'unknown algorithm: %s' % ALGORITHM

}

Stepper@(STEPPER)(STEPPERL)

{

 4i no property

}

System System(/)

{

 StepperlD STEPPERI;

 Variable Variable(SIZE) { Value le-15; }

 Variable Variable(S1)

 {

 Value 1000;

 }

 Variable Variable(S2)

 {

 Value O;

 1

 Process@(PROCESS)(P1)

 {

 VariableReferenceList [SO :.:51 -1]

 [PO :.:52 1];

 k1.0;

 I

 Process@(PROCESS)(P2)

 I

 VariableReferenceList [SO :.:52 -1]

 [PO :.:Si 1];

 k1.0;

 1

1

4章 モデル作成のチュー トリアル 67

騰
墾
。

垂

靉

.

.

毒

窮

耄

再」押:
ヒ

、:

簡単な決定論/確 率論連成シミュレーション

E{el■ は複 数のStepperオ ブジェク トを持つモデルを実行 できます。それぞれの

Stepperに 、異なる シミュ レーシ ョンアル ゴリズム、異 なる時Pa9スケ■ルを実装 する

こ とができます、,この複数 アルゴ リズム、複数時 間スケ一ルシ ミュレ-シ ョンのフ

レ-ム ワーク は、 どんな数の どんな に異 なる下位 モデルの組み合わせも許 す、真に一

般的なモデル化 とシミ ュレー ションを実現 します。本節で はその簡単 な例 と して、

ODEとGil-espie反 応を組み合わせ た(連 成 した)モ デルを示 します、、

ちいさな複数タイムスケ-ル 反応モデル

下 に示す4つ のVariabIeと6つ の反応ProCessか らなるちいさな モデル を考 えます:

si

 P1

ご ㊥
 P2

 P3
�

 P4

㊥ご
 P5

S4L一
一見複雑 そうですが、 この系は、前出の2つ の ちいさなモデルを下位モデル としてつ

なぎ合わせただ けで す:

下位 モデル1

 P1

⑨. 一㊥
 P2

下位モ デル2

 P4

㊥ 一 一 〉.一一 ⑭
 P5

これ ら2つ の下位 モデルは、反応ProCess P3とP6で 結合 され ています。 P3とP6

の時間 スケール は、 それぞれS2とS4に よって決まるので、 P3は 下位 モデル1に 、

P6は 下位 モデル2に 属 している といえます。

下位・デル1・ ㊥ 一P3一 ㊥

 P651f-一㊥ ・下位・デル2

主 反応P1、 P2, P4、 P5の 速度定数 は前出のモデル と同 じ1.0[seC-1]と します。

一 方で、下位モデルをつ なぐ1ブ リッジ」反応 は主 反応 よ りも遅いもの と し、P3は

1e-1、 P6は1e-3と します。その結果、下位モ デル1と2の 定常状態の物質濃 度に

は、おお よそ1e-1/1e-3=re-2倍 の差 が生 じます。ブ ■丿ッジ反応 の速度差 による

時間スケール の違 いが原 因である と考 えられ ます。

68 4章 モデル作成のチュー トリアル

モ デル フ ァイル を書 く

以下の コー ドは、複数 時間 スケ-ル を実装 しています。最初の2行 では、モデルの2

つの部分で用 いるアルゴ リズ ムを指定 しています。変数ALGORITHM1は 、下位 モ

デル1に 、ALGORITHM2は 、下位 モデル2に 用 いるアル ゴ リズムです。 どちらの変

数も、llNR仁-または--ODE'嚠 の値 をと ります。

た とえば、純粋 な確率論的 シミュ レーシ ョンを試行 したいなら以 下のよう に変数を設

定 します:

@IALGORITHM!需"NR"}

@{ALGORITHM2='NR-}

ALGOR山THM1を-'NR-一 に、 ALGOR-THM2を ト10DEi嚠にセ ットするのが理想的 な設

定です。確率論だ けに設定 した場 合よ り、 はるか に高速 にシミ ュレー ションを実行 し

ます。

@{ALGOR工THM1='NR"}

@;ALGORITHM2='ODE'}

純粋 に決定論的 なシミ ュレーシ ョンも試 して みま しょう。

@{ALGOR工THM1='ODE'}

@IALGORITHM2='ODE'1

このモデル に関 していえ ば、 この設定 は非常に高速です。 これ は、 この系が非常 に早

く定常状UGに 到達 し、モデルのstiffnessも 低いためで す。た だ し、この ことは必ず

しも、純 粋なODEが つ ねに最速であ ることを意 味 しません。条件 によっては、 NR

とODEの 連成 シミュ レーシ ョンが、確率論 のみ、あるい は決定論 のみのどち らよ り

も高速 にな ります、,

サンプルコ-ド4-4.Composite一em

@{ALGORITHMI=['NR'or 'ODE'])

@;ALGORITHM2= C'NR-or 「ODE']}

4k a function to give appropriate class names.

@[

def getClassNamesByAlgorithm(anAlgorithm):

 可f anAlgor育thm 禦瓢 曾ODE':

 return 'ODEStepper', 'MassActionFluxProcess'

 eiゴf anAlgor、ithm需 零 INR":

4章 モデル作成のチュー トリアル 69

鑞

讃
攤

終

70

 return 山DiscreteEventStepper'., 'GillespieProcess'
 else:

 raise 'unknown algorithm: %s' % ALGORITHMI

}

尭 get classnames

@{

STEPPERI, PROCESS1 質 getClassNamesByAlgorithm(ALGORITH卜41)

STEPPER2, PROCESS2 = getClassNamesByAlgorithm(ALGORITHM2)

}

4i create appropriate steppers.

stepper ids ar'e the same as the ALGORITHM.

@('Stepper%s (%s > {1'% (STEPPERI, ALGORITHMI))

尭 if we have twO different algorithms,

4k one more stepper is needed.

@(ALGORITHMI !=ALGORITHM2 ? 'Stepper %s(%s) {}'%

(STEPPER2, ALGORITHM2))

System CompartmentSystem(/)

{

 StepperlD@(ALGORITHMI):

 Variable Variable(SIZE) { Value le-15;)

 Variable Variable(Sl)

 1

 Va1し 老e 1000;

 j

 Variable Variable(S2)

 {

 Value O;

 }

 Variable Variable(S3)

 く

 Value 1000000;

 }

 Variable Variable(S4)

 c

 Value O;

 E

 Process@(PROCESSI)(P1)

 i

 VariableReferenceList C SO :.:Sl -1] C PO :.:S2

1];

 k1.0:

 }

 Process@(PROCESSI)(P2)

 {

4章 モデル作成のチュー トリアル

VariableReferenceList

 1.0;

Process@(PROCESSI)(P3

 VariableReferenceList

 kle-1;

Process@(PROCESS2)(P4

 StepperlD@(ALGORITHM2>:
 VariableReferenceList C SO
 k1.0;

Process@(PROCESS2)(P5

 StepperlD@(ALGORITNM2);
 VariableReferenceList C SO

 k1.0;

Process@(PROCESS2)(P6

 StepperlD@(ALGORITHM2);
 VariableReferenceList C SO

 le-4;

驪

方程式のカスタマイズ

複 雑 な 反応 速 度 式

独 自の反応速度式を表現 するもっ とも簡単な方法 は、ExpressionFlu×ProCessを 用

いるこ とです。以下 に、 シ ョウジ ョウバエのサ ンプルモデル(Drosophila,

Appendix-2参 照)か ら-例 を示 します。 この例で は、 P「ocessの 上位Systemの

SizeN ーA(Size×N_A)を 用いて、 式の単位 を[個 数/秒]に 保 っています。

4章 モデル作成のチュートリアル 71

サンプル コー ド4一5-シ ョウジョウバ エモデル内の微分方程式 の一例

蓑

噛
岫頸

Process ExpressionFluxProcess(R_toyl

 vsO.ア6;

 KII;

 Expression "(vs*KI) / (KI + CO.MolarConc 3)

 * self.getSuperSystemO.SizeN_A";

 VariableReferenceList C PO :.:M 1] [CO :.:Pn

代 数 方程 式

代数方程 式を記 述するため のもっとも簡単な方法 は、E×pressionA■gebraicProCess

を使 うこ とです。VariableReferenceの 係数(CoeffiCient属 性)に 注意 して くださ

い(通 常 は1に 設 定 します〉。

72 4章 モデル作成のチュートリアル

スクリプ トによるセ ッションの操作

5

本章 は以下の項 目につ いて書 かれています。

・E-Celiセ ッションスク リプ ト(ESS)と は

・スク リプ トモ-ド でESSを 実行す る方法

・GUIモー ドでESSを 実行する方法

・ESSフ ァイルを書 くことで シミュ レーシ ョンを 白動化す る方 法

・PythonでE-CeIlの フロン トエン ドソフ トウェアを書 く方法

セッションをスクリプトで操作する

E-Cellセ ッシ ョンスク リプ ト(ESS)は 、 E-CellSessionオ ブジ ェク トによって読 み

込 まれるPythonス クリプ トです。 Sessionイ ンスタ ンスは、1回 の シミュ レ-

シ ョンセ ッシ ョンの実行 を担 っています。

ESSは 、1回 のセ ッシ ョンの実行(お よびそ の前後 の処理)を 自動化 するために用い

ます。シ ンプルかつ典 型的なセ ッションには、以下 の5つ の段階が含 まれて います。

1、モデル ファイルの読 み込み(load)

 通常、EMLフ ァイルを読み込み ます。

2,シ ミュ レーシ ョンに先立つシ ミュ レータの設定

 シミュ レータとモデルパ ラメー タ(>ariableオ ブジェク トの初期値、 Processオ

 ブジェク トの属性値な ど)を 、設 定あるい は変更 します。 データLOgger(ロ

 ガー、記 録器)も この段階で作成 します。

3-シ ミ ーレーシ ョンの実行

 シミ ュレーシ ョンが、 ある時 間実行され ます。

4.シ ミ ュレ-シ ョン後 のデータ処理

 この段階で は、 シミ ュレーシ ョン後のモデル の状態や、Loggerオ ブジ ェク トに

 よ って記録 され たデ-タ を検査 します。 シミ ュレーシ ョン結果 を数値 処理する場

 合も あります。必要 に応 じて、前 の段階 に戻 り、さ らにシミュ レーシ ョンを実行

 します。

73

畿

燃.灘
錨
鬱
韈
靉
戀
覊

,
躍
難

笛
舜
三

5,デ ータの保存

 最後 に、処 理済みのあ るいは生 のシミ ュレー シ ョン結果 のデータを ファイル に保

 存 します。

ESSフ ァイルの拡張子 は通 常 「.PY」 です。

E-Cellセ ッ シ ョ ン ス ク リ プ トの 実 行

 ESSを 実行す るには3つ のや り方があ ります;

 ・スク リプ トを コマン ドライ ン(シ ェル プロンプ ト)か ら実行 する方 法。

 ・ecell3-session-monitorの ようなフロ ン トエ ン ドソフ トウ ェアか らスク-丿プ

 トを読み込む方法 。

 ・シ ミュレー シ ョンセ ッシ ョンそ のも のの実行を 自動化 するためにセ ッシ ョンマ

 ネー ジャ(ecell3-session-manager)を 使 う方法。この方法 は通常、 パラ

 メー タ最適化 など、複数の シミュ レ-タ の実行を含む数 理解 析スク リプ トを書 く

 場合 に用い られます。

 コマ ン ドラ イ ンで のESSの 実 行

 ecell3-sessionコ マ ン ドを用 いて、 ESSを 、バ ッチモ■ ドあるい はインタ ラク

 テ ィヴモー ドで実行す ることができます。

 バ ッチ モ ー ド

 ユーザ による操作 を求 めずにESSを 実行 するには、シ ェル プロンプ トで以下の コマ

 ン ドを入力 します:

8 ecell3-session C-f model.eml] C-e7ess.py

ecell3-sessionコ マ ン ドは、 シミュ レ-シ ョンSessionオ ブジ ェク トを作成 し、

ESSフ ァイル θ∬.PYを そのオブジ ェク ト上で実行 します。オ プシ ョン[-e]は 省略

できます。[-fmode].em1]オ プシ ョンが指定 されている場合 には、 ESSの 実行

に先立って、直ち にEMLフ ァイルmode/eノ η1が 読み込 まれ ます,,

イ ンタ ラ ク テ ィ ヴモ-ド

ece113-sessionを インタラクテ ィヴモー ドで実行 するには、 ESSフ ァイル を指 定

せず にコマン ドを実行 します。

74 5章 スクリプトによるセ ッシ ョンの操作

S ece113-session [-f model.eml]

ecell3-session [E-Cell SE Version 3.1.!06, 0n Python Version 2.4.3

Copyright (C) 1996-2008 Keio University.

Copyright (C) 2005-2008 The Molecular Sciences Institute.

More info: http://www.e-cell.org/software

ece113-session≫ 〉

表示され るバナ ーとプロ ンプ トは、E-Cel"の バージ ョンによって大き く異な ります。

オプシ ョン 匚-f]model.em7が 指定されて いる場合 に は、プ ロンプ トの表示 に先

立 って、直 ちにEMLフ ァイル ノnodel.em1が 読 み込 まれます。

スクリプトへのパラメ-タ の受け渡し

セ ッシ ョンパ ラメータをスク リプ トに引き渡す ことも できます。 引き渡 したセ ッショ

ンパ ラメ-タ は、 グロ一バル変数 と してESSス ク リプ トか らアクセスで きます(以

下の節 をご覧 ください)。

ece113-session=]マ ン ドか らESSパ ラメ-タ を引 き渡 すには、-Dオ プションあ

るい は 一-parameters=オ プシ ョンを用 います。

 ecell3-session -DNAMEI=VALUEI -DNAME2=VALUE2.

$ ece113-sesslon --parameters="{'NAMEI山:VALUE!,山NAME2.:VALUE2,..}}'

一Dオ プ シ ョ ン と--parameters=オ プ シ ョ ンを 混 在 させ て も 問 題 あ り ませ ん 。

eceil3-session-monitorで のESSの 読 み 込 み

ESSフ ァイ ル をGUIか ら手 動で 読 み 込 む に は、 メ ニ ュ ー か らFi■e→IoadScriptを

選 び ま す 。

ece1】3-session-monitorコ マ ン ドは、 ece113-sessionコ マ ン ド同様 、-eお

よ び 一fオ プ シ ョン を 受 け 付 け ま す 。

セッションマネージャを使う

E-Ce【 市セ ッシ ョ ン マネ-ジ ャ を 用 い る と、E-CeliのSessionManagerク ラ ス を利 用

して 複 数 の シ ミ ュ レ■ シ ョン セ ッ シ ョ ン を ス ク リプ トす る こ と が で き ま す 。

SessionManagerク ラ ス は 、 単 一 プ ロセ ッサ の ワ ー ク ス テ-シ ョン、 複 数 プ ロ セ ッ

サ の 共 有 メ モ リ(SMP)マ シ ン、 ワ ■ ク ス テ ー シ ョン ク ラ ス タ 、 グ リ ッ ドニ]ン ピ ュ-

テ ィ ン グ環 境 な ど で ジ ョブ を 実 行 し ま す。

ece113-session-managerを 用 い て 、複 数 の シ ミ ュ レー シ ョン の セ ッ トを 実 行 す

る こ と がで き ま す。ece113-session-managerコ マ ン ドは 、 イ ン タ ラ ク テ ィヴ

5章 スクリプトによるセッションの操作 75

蠶
藪
鍵
,
踏
羅
騾
}、

攤
黼

蔆

鸛
璽

朞
ーー
惹

ー簽

尉
驚
了蔚

..、.、嘩
じ、

モー ドあるいは、-eオ プシ ョンで.emsス ク リプ トフ ァイルを指定する ことで実行

で きます、、

単一 プロセ ッサ ワ■ クステ-シ ョン、複数 プロセ ッサワークステ-シ ョン、 クラス

タ■またはグ リッ ド上 のコン ピュータ にジョブを害ー」り当てるSessionMangerの 機

能 にアクセスする には、 一一environmentお よび 一concurrencyオ プシ ョンを用

います。 一-environinentオ プシ ョンは、ロ-カ ル、 SGE、 Globus2の い ずれか の

値 をとるこ とがで き、 デフ ォル ト値 はロ■ カル です。-concurrencyオ プ シ ョンは

正 の整数を とり、デ フォル ト値 は 達です。

E-Ce-"セ ッシ ョンマネージ ャを実行する には、(1)モ デルフ ァイル、(2)セ ッシ ョン

スク-丿プ トフ ァイル 、(3)セ ッシ ョンマネー ジャスク-丿プ トファイル の3種 類 のフ ァ

イルが必要です。典 型的には、EMS中 で、 ジ ョブ は、実行 に必要 なセ ッシ ョンスク

リプ トの引数、 オプシ ョンのパ ラメ■タ、 スク リプ トの入力 ファイル ととも に

registerEcellSession()メ ソ ッドを用いて登録 され、実 行されます。

以下の例で は、1つ のESSフ ァイル に、100通 りの異なる>ariab■e:/:Sの 値を渡 し

て条件の異 なる複 数のジ ョブ構成 し、計算環 境に投入す るEMSを 示 します。

MODEL FILE='model.eml'

ESS_FILE=runsession.py

誰 Reglster Jobs

aJoblDList = C]

for S_VALUE in range(0,100):

 aParamDict = {'MODEL_FILE':MODEL_FILE, 'VALUE_OF_S':S_VALUE)

 尭 reglsterEceliSesslon(theScrlpt, parameter's,

 霧 f耳1es that the ESS uses)

 aJoblD = registerEcellSession(ESS_FILE, aParamDict, [MODEL_FILE])

 aJoblDList.append(aJoblD)

プ声 Run the r'egゴstered jobs

run()

デ'Exam言ne the reSultS

for aJoblD in aJoblDList:

 print getstdout(aJoblD)

以下 は、これ に対応す るESSフ ァイルです:

loadModel(MODEL FILE)

S = createEntityStub('Variable:/:S')

S['Value'7 = VALUE_OF_S
run(200)

message(S['Value'7)

76 5章 スクリプトによるセッションの操作

E-Cellセ ッ シ ョ ン ス ク リ プ トを 書 く

 ESSの 文法 はPython言 語そのもので す。 Pythonの 機能を フル活用できる上、 いく

 つ かの便利な機能が加わ っています。

 Sessionメ ソ ッ ドを 使 う

 ー 般 的 な ル ール

 ESSで は、 蓚つのSessionイ ンスタ ンスが与 え られてお り、 このク ラスの持つメ

 ソ ッ ドのうち、 グローバル名前空間 に定義 されているものをすべて使 うことができま

 す,

 例え ば、10秒 間のシ ミュレー シ ョンを実 行する には、Sessionオ ブジ ェク トに備

 わ って いるrunOメ ソ ッ ドを用い ます。一 二
こ こ で 、selfは シ ステ ム に よ って 与 え られ て い る現 在 のSessionオ ブ ジ ェ ク トで

す、、selfの 代 わ り に、 theSessionを 用 い る こ とも で き ま す、、

theSession.run(10)

通 常のPythonス ク リプ トと異な り、現在のSessiOnに 対 してメ ソッ ドを呼び だす

際に は、オ ブジェク トを省略するこ とがで きます。

run(10)

モ デル の読 み 込 み

ecell3-sessionコ マ ン ドのイ ンタ ラクテ ィヴモ-ド でloadModel()メ ソ ッ ドを実

行す る(プ ロンプ トに入力す る)と 、EMLフ ァイルが読み込 まれ ます。

ecell3 session≫> loadModel('simple.eml')

EMLフ ァイ ル が 読 み 込 まれ る と、 プ ロ ン プ トが 「ecell3-session>>〉 」 か ら 「[モ

デル 名 ユ,t判 現 在 時 刻]>>〉 」 に変 化 しま す 。

simple.eml, t=0≫ 〉

5章 スクリプ トによるセッションの操作 77

飜
鏤

鑼
懸

78

シ ミ ュ レー シ ョ ンの実 行

シミ ュレーシ ョンを実行 して時刻を進める には、stepOお よびrun()メ ソッ ドを

用 います。

simple.eml

simple.eml

simple.eml

simple.eml

t=0≫> step()

t=0≫> step()

t=二7.6ア306e-07>〉>

t=10.0032≫ 〉

step(n)に よ ってnス テ ップのシミ ュレ-シ ョンが実行 されます。 nの デフォ

ル ト値は1で す、,

 ノ-ト:上 の例で、stepOを 最初に呼びだした際に、時刻が変化しないことにお気づ

 きかもしれません。シミュレ-タ は、ステップの開始時点で時刻を更新 し、その後、-

 時的なステ ップ幅を計算 します。ステップ幅の初期値はゼロです。そのため、時刻を進

 めるためにはstepOを2度 呼びだす必要があります。シミュレーション機構の詳細

 については6章 をご覧ください。

シミ ュレーシ ョンをあ る時間分進める には、runOメ ソ ッ ドを呼びだ して、 実行 時間

を秒単位で引 き渡 して ください。例 え ば、run(io)で は10秒 分の シミュ レー

シ ョンを実行 します。runOメ ソ ッ ドはステ ップを繰 り返 し霙行 し、与 えられた秒 数

が過ぎるまで シミュ レ■シ ョンを進行させ まず,換 言すれば、run(10)は シミ ュ

レーシ ョンを少な くとも10秒 間進め ます。 このメソ ッ ドは、つね に指定 された実行

時間をやや超過 しますが、超 過する長さ は、stepOメ ソッ ドの ステ ップ幅 よ りも小

さ くな ります。

引数を渡さ ずにrun(〉 を実 行する こともで きます。 この場合、イベ ン トチ ェ ッカ、

イベ ン トハ ン ドラが設 定されていない と停止 するこ とな くシ ミュ レーシ ョンを実行 し

つづ け、継続 に支 障を来 す と例外を発生 します。Sessionク ラ スの メソ ッ ドリス トに

あるsetEventCheckerUを ご覧 ください。

現 時刻 の取 得

シ ミsレ-タ の現在時 刻を取得する には、getCurrentTime()メ ソ ッ ドを用います。

simple.eml, t=10.0032≫> getCurrentTimeO

10.003221620379463

モデル中で時刻を使うには;E-Cel■ では、 ProCessに 記述された生命現象モデルがシ

ミュレータの現在時刻を取得するためのメソッドを用意していません。 これは、分子な

5箪 スクリプトによるセッションの操作

ど細胞内の要素は、直接時間を計測することはできないという事実に基づく仕様です。

時間を計測しているのは、細胞ではなく計測者であり、計測者は、絶対的な時刻を知っ

ているのではなく、計測者の用意した機器で、細胞の観察と平行 して時刻を計測してい

ます。モデル中で時刻を用いるには、時刻を�測するための 「時計モデル」を作成 して

おくといった方法があります(下 に例を挙げます)。 また、C++で 独自のProCessを 書

けば、getCurrentTimeOで 得られる値 と同じ現在時刻を取得するプログラムは書

くこともできます。

Variable Variable(

 Value O;

Process ExpressionFluxProcess(stopwatch)

 VariableReferenceList C time :.:time
 expression"1.0";

この例 で は、単純 な微分 方程式dx/dt=1.0[sec1}を 記述 した

ExpressionFluxProcessに よって時 刻を 表現 するVariab山etimeを 積 分 する ことで、

timeに 時刻 を保持 させ てい ます。 シミ ュ レー タの現在 時刻 はセ ッシ ョン毎 にゼロ に リ

セ ッ トされ ます が、モ デル中 に こう した仕 組 みを持 たせ るこ とで、簡単 に、 複数 のセ ッ

シ ョン にわた ってひ とつの時 間軸 を持た せる こ とも でき ます。

メッセージの表示

ESS中 でメ ッセージを出力 したい場面 があるかも しれ ません。 その際 には、 mess∂ge

〔message)メ ソッ ドを利用 します。 引数 肥 ∬ageは 出力される文字列 です。

デ フォル トの設 定で は、message()はPythonのpr�t文 と同様 に取 り扱われ、標

準 出力に新 しい行を 出力 します。setMessageMethod()メ ソ ッドを用いて、この振

る舞 いを変更する ことがで きます。

Sessionメ ソ ッ ドの例

以下 に、Sessionメ ソ ッ ドを用いてモデル を読 み込 み、100秒 間のシ ミュ レーシ ョ

ンを実行 し、短 いメッセージを出力する簡単 な例 を示 します。

サ ンプル コー ド5-1-簡 単 なESSの 例

loadModel('simple.eml'

run(100
message('stopped at %f seconds.

5章 スクリプトによるセ ッシ ョンの操作 79

鱶
黐

読靉

羅

鑞

80

Sessionパ ラ メー タ の取 得

SessiOnパ ラ メー タはグロ-バ/L変 数 としてE55に 引き渡され ます。で すか ら、

Sessionパ ラ メー タの使 い方は とても簡単 です。例 え ば、 Sessionパ ラメータ

MODELFILEが 与え られていると想定され、 これ をESS中 で変数 として使 うには以 下

のよ うに書き ます:

loadModel(MODELFILE)

どうい ったパ ラメータがESSに 引 き渡 されているかを確認す るには、組 み込み関数

dir()あ るい はglobals()を 用い ます。ある特 定のSessionパ ラメ-タ また はグ

mバ ル変数 が引き渡されてい るかを確認 するには、以下の ようなif文 を書 きます:

if 'MODELEILE' in globalsO:

 デ' MODELFILE

else:

 dk not given

is given

 ノ-ト;現 在、Sessionパ ラメータとグ〔コーバル変数を区別する方法はありません。

ObjeCtStubに よる モ デ ル の観 察 と操 作

ObjeCtStubと は

ObjeCtStubは システムのフ 囗ン トエ ン ドにおけるシ ミュレータの 内部 オブジ ェク ト

の 「身代 わり」 オブジ ェク トで す。 シミ ュレータの内部 オブジェク トに対するいか な

る操作 も、ObjeCtStubを 通 じて行 います。

ObjeCtStubの 型 は、以下の3種 類で す。

 ・ EntityStub

 ・StepperStub

 ・LoggerStub

これ らはそれぞれ、 シミュ レータ中のEntity、 Stepper、 しoggerク ラスに相 当 しま

す。

ObjeCtStubは な ぜ必 要 か

ObjeCtStubク ラスの実体 はE-Cell Pythonラ イ ブラリのeCell-emC-Simulatorク

ラスに対する薄い ラッパー です、,これは、Simu市atorク ラスの フラッ トな手続き型

5章 スクリプ トによるセッションの操作

..に オブジ ェク ト指向の使 い勝 手を提供 します。Sessionク ラスのtheSimu■ato「

属性 か らSimu■atOrオ ブジェク トに直 接アクセ スすることはできますが、

ObjeCtStubの 利用 を強 く推 奨 します。

このバ ックエ ン ドとフ凹 ン トエ ン ドの分離 が必要なの は、バ ックエ ン ドオブジ ェク ト

の寿命が、 フロン トエン ドオ ブジェク トの寿命と同 じとは限らず、 また状態遷移も必

ず しも 同期 されていないか らで す。 フロン トエン ドが直 にシミュ レータの内部オ ブ

ジ ェク トを操作 する と、オ ブジェク トの寿 命や状態の一貫性が容 易に破 られます。 こ

れ は起 こって はな らない ことで す。

IDか らObjeCtStubを 作 る

ObjectStubオ ブ ジ ェク トを 取 得 する に は 、 Sessionク ラス メ ソ ッ ドの

createEntityStubO、 createStepperStubO、 createLoggerStubOを 用 い

ま す、,例 え ば 、EntityStubを 取 得 す る に はcreateEntityStubUメ ソ ッ ドに

Fu■IID文 字 列 を 引 き渡 しま す:

anADPStub = createEntityStub('Variable:/CELL/MTI:ADP')

轢

同様 に 、StepperStubオ ブ ジ ェ ク ト、 LoggerStubオ ブ ジ ェ ク トも 、 そ れ ぞ れ 、

StepperlD、 FuilPNか ら取 得 す る こ と が で き ま す 。

aStepperStub = createStepperStub('STEPPER_Ol'

aLOggerStub = createLoggerStub('Variable:/CELL/
MTI:GLUCOSE:Concentration'

ObjectStubの 作 成 と バ ックエ ン ドオ ブ ジ ェク トの確 認

バ ックエン ドに対 応するオブ ジェク トが存在 しな くても、ObjeCtStubは 作成 されま

す。つ まり、ObjeCtStubの 作成は純粋 にフロン トエ ン ドの操作です。 ObjectStub

を作 ったら、 これに対応するバ ックエ ン ドオブジ ェク トが存在 するかを確認 する、あ

る いはバ ックエン ドオブジ ェク トを作成 する必要があ るかも しれ ません。

ObjeCtstubに 対応 するバ ックエ ン ドオ ブジェク トの存在を確認す るには、 exists

Oメ ソ ッ ドを用い ます。例 えば、以下のif文 は、 STEPPERーoiと いうIDを 持つ

Stepperの 存在 を確 認するもので す。

5章 スクリプ トによる-ヒッションの操作 81

耄
鼕

…嶺擁
鬟
織
舞 蕚

診

82

aStepperStub = createStepperStub(

if aStepperStub.exists():

 尭 1t already P.XIsts

else:

 尭 it is not created yet

バ ックエン ドオブ ジェク トを作成 するには、create()メ ソッ ドを呼ぶ だけです。

aStepperStub.createO

ObjeCtStubか らの 名 前 、 ク ラ ス名 の 取 得

ObjeCtStubの 名前(ま た はID)を 取得 するには、 getNameOメ ソ ッ ドを使 いま

す。

EntityStubあ るい はStepperStubの クラス名を取得 するには、 getClassname(〉

メソ ッドを呼びます。 この操作 はLoggerStubに 対 して行 うことはできません。

属 性 の設 定 と取 得

これまでも述べて きたように、Entity、 Stepperオ ブジェク トは属性を持 ちます。本

節 ではObjeCtStubを 通 して オブジェク トの属性 にアクセ スする方法を説明 します。

本節 の内容は、LoggerStubsに 対 して は適用 できません。 EntityStubま たは

StepperStubを 用いてバ ック エン ドオブジ ェク トから値 を取得する には、

getProperty()メ ソ ッ ドを実行す るか、属 性の名前を使 ってオブジェク ト属性 にア

クセス します。

aValue = aStub。getProperty(山Activity畳)

あるいは、

aValue = aStubC 'Activity' 7

Entityま た はStepperの 属性 に新 たな値 を設定 するには、 setPropertyOメ ソ ッ

ドを呼びだすか、属性 の名 前 と新たな値で オブジェク ト属性を変更 します。

aStub.getProperty('Activity', aNewUatue)

あるい は、

5章 スクI丿プトによるセッションの操作

aStub['Activity'] = aNewValue

すべて の属性 の"ルス トを取得す るには、getPropertyListOメ ソッ ドを用 いま

す。 これは、属性 の名前の リス トを、文 字列を要素 とするPythonタ プルで返 しま

ず。

aStub.getPropertyListO

ある属性が読み込み可能(getab"e、 accessible)ま たは書 き込み可能(settable、

mutab-e)か を知 るには、 getPropertyAttributes⇔ メソ ッ ドに属性の名前を

引き渡 します。 これ は、Pythonタ プル を返 します。属性 が書 き込 み可能な ら、タ プ

ルの最初の要素 はtrueで す。読 み込 み可能 な ら、2番 目の要素 がtrueで す。読 み込

み不可の属性を取得 しよう とした り、醤 き込 み不 可の属性を書 き換 えようとする と、

例外が発生 します。

aStub.getPropertyAttribute('Activity')CO7
aStub.getPropertyAttribute('Activity')[1]

鑼

Loggerデ-夕 の 取 得

LoggerStubか らLoggerに 記録 されたデ-タ を取得 するには、 getDataOメ ソッ

ドを用います。getDataOメ ソ ッドには、要求するデ■ タ取得 区間 と時間解像度 に

よって3つ の書式があ ります:

getData()

 全データを取得 します。

getData(starttime[, endtime])

 starttimeか らendtimeま で の区間のデ■タを取得 します。 endt'meが 省略 され

 た場合、starttimeか ら末尾までのデ ■タが返 されます。

getData(starttime, endtime, interval)

 startt'meか らendtimeま での区間のデータを取得 します。保存されたデ-タ ポ

 イ ン トの間隔がintervalよ り短 けれ ば、 間のデ■タ は間引 かれ ます。科 学的な

 デー タ分 析には不適当ですが、高 速です。

5章 スクリプ トによるセッションの操作 83

、繊

、

.韈

懸

嚢
垂
蔗
鑵

褒
饗
評

84

getData⇔ メソ ッ ドは、 Numeric Pythonモ ジ ュールのrank-2(行 列)3の 配列オ

ブジェク トを返 します。 この配 列は以下のい ずれか の形式です:

ま た は 、

time value average min max

tune value average min max

time value

time value

最初の例の5一タ プル のデ■タ形式で は、1つ のデータポイ ン トが以下の5つ の値を

持 って います:

time

 時刻、、

value

 値。

average

 直前 のデ-タ ポイ ン トか らこのデータポイ ン トまでの区 間での値 の平均(時 間で

 加重 した平均値)。

min

 直前 のデ■タポイ ン トからこのデ-タ ポイ ン トまでの 区間での最 小の値。

max

 直前 のデータポイ ン トからこのデ■タポイ ン トまで の区間での最大の値。

2一タプルのデ■タ はtimeとvalueだ けを持 ちます。

データ取得に先立 って、記録 されたデータの開始時刻 、終了時刻、サイズを知 るに

は、LoggerStubのgetStartTimeO、 getEndTiineO、 getSizeOメ ソ ッ ドを

用 います。getSizeOは 、 Loggerに 保存 されているデータポイ ン トの数を返 しま

す。

3rankは 行列の 階数 の ことです。 階数 とは行 列の列 ベク トルの一 次独 立な要 素の 最大個数 を指

します。 ここで は、時刻 と値 の2つ が一次 独立 なの でrankは2と な ります。5-タ プルの デー

タ に含 まれ るaverage、 min、 maxはtーmeとvalueか ら求めた もの なので、 一次独 立 と

は いえ ません。 したが っ て、5一タ プル ですが、rankは2と な ります。

5章 スクリプトによるセッションの操作

Loggerに よ る記 録 間隔 の 取 得 と変 更

Loggerの 記録間隔 を確認 、変更する には、 LoggerStubのgetMinimumlnterval

O、setMinimumlnterval(intervaア)メ ソ ッ ドを用います。 intervalは 、

秒 を単位 とするゼ ロまた は正 の数値 でなけれ ばな りませ ん。intervaア が非ゼロの正

の数 の場合、Loggerは 、直前の記録時点 からintervaア 秒 が経 過するまでデー タを

記録 しません。intervalが ゼ[]の 場合、 Loggerは すべ てのシミsレ ー ションス

テ ップでデ-タ を記録 します。

EntityStubの 使 用 例

以下の例 は、EMLフ ァイルを読み込み、 System/CELL中 の>ariableATPの 値を

10秒 お きに出力 します。値が1000以 下になる と、シ ミュ レーシ ョンを停止 しま

す.

サ ンプル コー ド5-2.ATp濃 度 を10秒 毎 に確認 するESS

loadModel('simple.eml

ATP = createEntityStub('Variable:/CELL:ATP'

while 1:

 ATPValue = ATP['Value'

 message('ATP value = Vis' q ATPValue

if A丁PValue く置 1000:

 break

run(10

message(-StopPed at Oo$,「 % getCurrentTime()

懋簸
髏
懿
韈
叢
驪

データファイルの操作

ECDフ ァイ ル につ い て

E-Cell SEは 、シミ ュレー ション結果 の保存 にECD(E-Celi Data)フ ァイル形式を

用 いています。ECDは 平文テキス トファイル で、ユーザおよびサー ドパー テ ィの書

いたデータ処理な らび に視覚化 ソフ トウ ェア(gnuplotな ど)で 容易 に取 り扱うこ

とがで きます。

5章 スクリプトによるセッションの操作 85

鸚

86

E(二Dフ ァイル には、浮動小数点数の行列 を保 存する ことができます。

e〔el山-ECDDataFileク ラスを使 って、 ECDフ ァイルを保存 したり読み込んだ りする

こ とができます。ECDDataFileオ ブジェク トは、 NumeriCPythonのrank-2の 配

列を保持 し、返 します。rank-2の 配列 とは、 Numeric-rank(ARRAY)お よびlen

〔NumeriC.shape〔ARRAY))の 戻 り値が-2-で あ るような行列を意味 します。

ECDDataFileク ラ スの イ ンポ-ト

ECDDataFileク ラ スを インポ ー トする には、 ecellモ ジュ-ル 全体をイ ンポー トす る

か、一 二
eCell、ECDDataFifeモ ジ ュ ー ル を 選 択 的 にイ ンポ ー ト しま す 。

import ecell.ECDDataFile

デ ー タの 保 存 と読 み 込 み

デー タを(た とえばdatafile.ecdと いう)ECDフ ァイル に保存する には、

ECDDataFileオ ブジェク トをインスタ ンス化 し、 sa>eOメ ソッ ドを使 います。

import ecell

aDataFile = ece11.ECDDataFile(
aDataFile.save('datafile.ecd'

ここで、DATAはNumeric Pythonのrank-2配 列も しくはそれ と等価のオ ブジェ

ク トです。イ ンスタ ンス化 の後 、setDataOメ ソッ ドでデータを書 き込む こともで

きます。すで にデ一 タが存在 していた ときには、上 書き します。

aDataFile.setData(DATA)

ECDフ ァイルの読み込 みも簡単 です。

aDataFile = ece11.ECDDataFileO

aDataFile.load('datafile.ecd'
DATA = aDataFile.getDataO

5章 スクリプ トによるセッションの操作

getDataOメ ソッ ド【よECDDataFi■eオ ブジ ェク トか ら配列形式 でデータを取 り出

します。

ECDの ヘ ッダ に含 まれ る情 報

デ■ タそ のものに加え、ECDフ ァイル はいくつ かの情報をヘ ッダ に保持 していま

す。

DATA:デ ータ名

 データの名前。FullPNを 書 き込んでお くとよいかも しれません。 setDataName

 (n∂me)、 getDataNameOメ ソ ッ ドを用 いてこのフ ィール ドを読 み書 きでき

 ます。

LABEL:ラ ベル

 データの軸 の名前 です。setLabe1(labeア5)、 getLabel Oメ ソッ ドで読 み

 書きで きます。これ らの メソ ッ ドの引数、 戻 り値 はPythonタ プルで、 ECDフ ァ

 イル中で はスペース区切 りの リス トと して保存されてい ます。 デフ ォル ト値は:

 (・t-,.value',日avg','min',山max山)で す。

NOTE:ノ-ト

 自由書 式のフ ィ-ル ドです、,複数 行または1行 の文字列 です。setNote

 (note)、 getNoteOメ ソッ ドで読 み書 きできます。

ヘ ッダ情報 は以下 のように保存されてい ます。

デ'DATA:

4kSIZE: 5 1010

ヂ'LABEL: value

デ'NOTE:

ヘ ッダの各行はシ ャープ(#)で 始まってい ます。 彫SIZE:」 で始 まる行 は、デ-タ

のサイズを示 して おり、 フ ァイルが保存される際 に自動的に作成 され、読 み込 まれる

際には無視され ます。ヘ ッダは、 「#一一一一_、-1の行で終わ ります。

E-Celi SEの 外 部 でECDを 利用 する

NumeriCPythonは 、多 くの科学的デー タ処 理に必要な機能を備 えています。一一方

で 、外部 ソフ トウ ェアを用 いることで利便 性が向上す る場合も あります。

5章 スクリプ トによるセ ッションの操作 87

鑿

スペ ース区切 りテキス トをサ ポー トし、行頭の シャー プ(#)を コメ ン トとして扱 う

ことができるソフ トウェアであれば、ECDフ ァイルを取 り扱 うことができます。

GNUgnuplotは 、洗練された インタラクテ ィヴな コマ ン ドシステムを備 えた科学的

プ レゼンテーシ ョンに十分 な品質のグラ フ描画 ソフ トウェアです。gnuplotを 用い

てECDフ ァイル をプロ ッ トする には、 plotコ マ ン ドを使 うだ けです。例 えば、以下

は、時間値 の2次 元グラ フを描画 するコマン ドの例です:

gnuplot> plot 'datafile.ecd' with lines

どの列をプ ロッ トするかを指定する にはモディフ ァイア(modifier)を 利用 しま

す。以下の例 は、時 間-平均値の2次 元プロ ッ トを作成 します。

鬟
.靉

纛

靉

襲

攣
鄲

gnuplot> plot 'datafile.ecd' using 1:3 with lines

デ■タ処理 に役立 つオープ ンソ-ス の ソフ トウ ェア として、 この他 にGNU Octave

があ ります。Octaveか らECDフ ァイル を読み込む のも、 とても簡単です。

octav2:-- load datafile.ecd

この操作 で、 データは、 ファイル名 から拡張子を除い た名前(こ こではdatafile)を

持つ行列変数 に格 納され ました。

octave:2; mean(datafile)

ans

 5.0663 51.7158 51.7!58

バイナリ形式

現在 、E-Cellは バイナ リ形 式での読み込み、保存 はサポー トしてい ませ ん。 ただ し、

NumeriCPythonに は、 プラ ットフ ォーム依存の効率 的な配列データ の書 き出 し

(export)、 取 り込 み(import)手 段 が備わ って います。

モデルファイルの操作

ここで は、E-Cell Pythonラ イ ブラ リのEMLモ ジ ュールを用いてEMLフ ァイルの

作成、変更、読 み込 みをお こな う方法を説明 します。

88 5章 スクリプトによるセッションの操作

EMLモ ジ ュール のイ ンポ ー ト

ecellモ ジ ュールを読み込むだ けで、 EMLモ ジ ュ-ル が読み込 まれます。

importecell

これでecel-Emlク ラスを利用できる ようになります。

その他のメソッド

バ-ジ ョン番号の取得

ecell.ecsモ ジ ュ ー ル のgetLibECSVersion()メ ソ ッ ドを用 い て 、 C++バ ッ ク エ ン

ドラ イ ブ ラ リ(libecs)の バ ー ジ ョ ンを 文 字 列 で 取 得 で き ま す 、、こ の モ ジ ュー ル の

getLibECSUersionInfoOメ ソ ッ ドはPythonタ プル を返 しま す 。 タ プ ル は(メ

ジ ャー バ ー ジ ョン 、 マ イ ナ-バ ー ジ ョ ン、 マ イ ク ロ バ ー ジ ョ ン)の 順 で3つ の 数 値 を

持 って い ま す。

ecell3-session≫> import ecell

ece113-session≫> ecell.ecs.getLibECSVersionU
'3
.1.106'

ecell3-session≫> ecell.ecs.getLibECSUersionlnfoO

(3, 1, 106)

覈
韓

韈

ダイナミックモジュール(DM)読 み込みに関連するメソッド

setDMSearchPath()、 getDMSearchPath()メ ソ ッ ドでDMフ ァイル の探索パス

を設 定あるいは取得する ことができます。 これ らの メソッ ドは、デ ィレク ト-丿名の リ

ス トをコロン(:)区 切 りで取得 した り、返 したりします。 探索パス は

ECELL3_DM _PATH環 境変数を用 いて指定 する こともで きます。 DM探 索パス に関 し

ては、2章 の 「DM探 索 パス と環境 変数ECELL3_DM_PATH」 で詳 しく述べてい ま

す。

ece113-session≫> import ecell

ece113-sesslon>>> ece11。ecs,setDMSearchPath('一/dm:一/test/dm-

ece113-session≫> ecell.ecs.getDMSearchPathO
匣～/dm=～/test/dm'

5章 スクリプトによるセッションの操作 89

靉
懸
灘
灘
霾
鷹蠻

鑿

靉
轗
鰐

eCell.emC-Simulatorク ラ スのgetDMInfo()メ ソ ッ ドを用 い て 、組 み 込 み 済 み お

よ び す で に読 み 込 ま れ たDMク ラ スの リ ス トを 取 得 で き ま す 。 Simulatorイ ン ス タ

ン ス は、SessionのtheSimulator変 数 と して 利 用 で き ます 。 こ の メ ソ ッ ドは 、

((TYPET, CLASSNAMEI, PATH1). (TYPE2, CLASSNAME2,

PATH2),.,,)と い う形 式 の ネ ス トされ たPythonタ プ ル を 返 しま す。 TYPE

は、'Process-、'Variable-、 嚠System一 、"Stepper一 の い ずれ か で す 。 CLASSNAMEは

DMの ク ラ ス 名 で す。 PATHはDMが 読 み 込 ま れ た デ ィ レ ク トリ で す 。組 み 込 み ク ラ

ス の場 合 、PATHは 空 の 文 字 列('')う で す 。

ecell3-session≫> theSimulator.getDMInfoO

(("Process山 'GillespiePr'ocess"/usr/iib/ece11/3.2/

GillespieProcess.so'),

('StepPer山 'DiscreteTimeStepPer"),

('Stepper', 'NRStepper', '/usr/lib/ecell/3.2/NRStepper.so'),

上級者向けの話題

ecell3-sessionの 実 行機 構

ece113-sessionコ マン ドは、 ece113-pythonイ ンタプ リタコマ ン ド上 で実行 さ

れ ます。ecell3-pythonコ マン ドは、 Pythonイ ンタプ リタへの薄い ラ ッパーで

す。ecell3-pythOnコ マン ドは、 コ1ンパイル された際 に指 定されたPythonイ ン

タプ リタを呼びだ します。ecell3-pythonは 、 Pythonが 必要なE-Cel市 の

Python機 能拡張 や標準DMラ イ ブラリを見 つけ出せるよ うに、 Pythonを 実行する

前にい くつかの環境変数 を設定 します。 コマ ン ドラインオプシ ョンを処理 した後で、

ecell3-sessionコ マ ン ドはecell.ecS,Simulatorオ ブジ ェク トを作成 します。そ

して、シ ミュ レータオブジ ェク トが利用 するeCell-Sessionオ ブジェク トをインスタ

ンス化 します。

基本的 にecell3-pythonは 単なるPythonイ ンタプ リタであ り、 E-Cell SEの フ

ロン トエ ン ド要 素はこの コマ ン ドを実行 しています。ecell3-pythonコ マン ドか

らE-Cell Pythonラ イ ブラ リを用 いるには、以下の ように記述 します:一 コ
プロンプ ト画面は以下 のようにな ります:

90 5章 スク リプ トによるセッションの操作

S ecell3-python

Python 2日4.2 (尭1, Feb l2 2006, 19:13=11)

[GCC 4.1.0 20060210 (Red Hat Linux 4.1.0-0.2)7 0n linux2

Type "helP'山, '"copyright'", 山'credits" or "1icense" for more

≫> import ecell

≫ 〉

あるい は、UN-X系 の システム では以下 の記 述で姶まる ファイル を実行 します:

4k!/usr/bin/env ecell3-python
import ecell

C...]

実行環境に関する情報の取得

ecell3-pythonコ マン ドの現在 の設定内容を取得 するには、-hオ プシ ョンととも

にecell3-pythonコ マ ン ドを実行 します。コマン ドの使 い方 とともに、現在 設定

され ている変数 のい くつかが 出力 され ます。

8 ece113-python -h

C...7

 Configurations:

 PACKAGE = ecell

 VERSION=3.1.105

 PYTHON 窩 /usrソ10ca1/bin/python

 PYTHONPATH = /usr/local/lib/python2.4/site-packages:

 DEBUGGER = gdb

 LD LIBRARY PATH = /usr/lib:/url/local/lib:

 prefix = /usr

 pythondir = /usr/local/lib/python2.4/site-packages

 ECELL3 DM PATH =

[レ..]

「PYTHON=」 の行 は 、 ece113-pythonが 使 って い るPythonイ ンタ プ リタ の パ

ス で す 。

デバッグ

ecell3-pythonコ マ ン ドを デ バ ッ グ モ ー ドで 実 行 す る に は、 環 境 変 数

ECELL ーDEBUGを 設 定 しま す 。 ECELL_DEBUGがtrue(1)に 設 定 さ れ て い る と 、

ece113-pythonコ マ ン ドはGNUgdbデ バ ッ ガ ソ フ トウ ェア 上 で 実 行 さ れ ます 。

ECELL DEBUGは 、 ece113-sessionやecell3-session-monitorを 含

5章 スクリプトによるセ ッションの操作 91

難
靆

むece113-python上 で実行 され るあ らゆるコマ ン ドで利用 されます。 以下は、

シェル プ巳ンプ ト上で、ece113-sessionを デバ ッグモ■ ドで実行 した例 です:

鑞

$ ECELL_DEBUG=1 ecell3-session -f foo.einl

gdb --command=/tmp/ece113.OmlQyE /usr/bin/python

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and

you are

welcome to change it and/or distribute copies of it under certain

cond育tゴons.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for

details.

This GDB was configured as "i386-redhat-linux gnu"..

[New Thread 10741781!2 (LWP 7327)]

ecell3-session [E-Cell SE Version 3.2.0, 0n Python Version 2.2.2]

Copyright (C) 1996-2003 Keio University.

Send feedback to Koichi Takahashi <shafi@e-cell.org>

<foo.eml, t=0≫> Ctrl+C

Pr'ogr'am received signal SIG工NT, Interrupt.

〔Switch寸ng to Thread 10ア4!78112 (LWP 7327)]

OxffffeOO2 in ?? ()

(gdb)

プ ログラム とそ のコマン ドオプ ションは、gdbの1-一Command='コ マン ドオプシ ョ

ンとして自動的 に実行されます。そ して、 プログラムがクラ ッシ ュするか、 ユ-ザ が

Ctrl+Cを 入力 してプ ログラムの実行 を中止する と、 gdbの プロンプ トが表れます。

ECELL _DEBUGは 、 C++コ ー ドの レベルで機能す るgdbを 実行 します。 Pythonレ

イヤ-の スク リプ トをデバ ッグするには、Pythonデ バ ッガを用います。 Pythonラ

イブラ リの リフ ァレンスマニュアル などをご覧 くだ さい。

プ囗ファイル作成

OSがGNUsprofコ マ ン ドを備 えていて、Cラ イブラ リがLD-PRORLE環 境変数を

サポー トして いれ ば、ece113-pythonコ マン ドをブロフ ァイ リングモ■ ドで実行

す ることがで きます。 現在サポー トして いるの は共有 オブジ ェク トプロファイル のみ

で す(GNUCラ イブラ リの リファレンスマニ ュアルな どを参照 して ください)。

プロファイリングモー ドでecell3-pythonを 実行す るには、共有 オブジ ェク トの

SONAMEを 環境変数ECELL-PROFILEに 設 定 します。共有オ ブジェク トファイル の

SONAMEは 、 objdumpコ マ ン ドを 一pオ プシ ョンな どととも に実行 することで取

得 できます。

92 5章 スクリプ トによるセッションの操作

実行 が終了する と、SONAME-profileと いう名前のプ ロファイル データフ ァイルが

カ レン トデ ィレク トリに作成 されます。 この例で は、 山ibecs.so-2.profileで す。

sprofコ マ ン ドを使 って、バイナ リのプ ロファイル データをテキス ト形式 に変換 する

ことがで きます。以下 はそ の例 です:

$ sprof -p libecs.so.2 1ibecs.so.2.profile

E-Cell Pythonラ イ ブ ラ リAPI

 本節 ではE-CelIに おいてPythonか ら利用でき るAPI(Application Program

 Interface)に つ いて説 明 します。

 Sessionク ラ スAPI

 Sessionク ラ スの メソッ ドは、以下 の5つ のグル-プ に分 けられます。

 ・Sessionメ ソッ ド

 ・SimulatiOnメ ソッ ド

 ・Stepperメ ソッ ド

 ・Entityメ ソ ッ ド

 ・LOggerメ ソッ ド

 Sessionメ ソ ッ ド

 loadModel(file)

 戻 り値:な し

 EMLフ ァイル を読み込 みます。 fileは ファイル名 またはフ ァイルオ ブジ ェク

 トであ る必要 があります,、

 loadScprit(filename)

 戻 り値:な し

 ESSフ ァイルを読み込み ます、通 常このコマ ン ドはESS内 で は使 用 しません。

 message(massage)

 戻 り値:な し

 引数 m∂ssageを 出力 します。デフ ォル トで はmassageを 標準 出力 に表示 しま

韈

5章 スクリプトによるセッションの操作 93

灘

44

 す。 m∂ssageの 処理方法 はsetMessageMethodOメ ソッ ドを用 いて変更 で

 きます。

saveModel(file)

 戻 り値:な し

 モデル の現在 の状態をEMLフ ァイル に保存 します。 fileは 、フ ァイル名 ある

 いはファイルオブジ ェク トです。

setMessageMethod(method)

 戻 り値:な し

 message()メ ソ ッ ドが呼ばれた ときの処理 方法を変更 します。 methodは

 Pythonメ ソッ ドで なければな りません。

 関連項 目:message

getCurrentTime()

 戻りイ直:float

 シミ ュレ■タの現在時刻 を返 します。

getNextEvent()

 戻 り値:Python 2-タ プル(float, string)

 次に スケ ジュール されているイベ ン トを、 スケジュ■ル されている時刻、

 StepperiOの 順で2つ の要素を含 むPythonタ プルで返 します。 このイベ ン ト

 は、次 にrunOかstepOが 呼ばれた ときに処理 されます。通常、

 getCurrentTime()が 返す時刻 とは異 なる値 です。このメ ソッ ドは、次 のイベ

 ン トがスケジュールされている時刻 を返 します。-方 、getCurrent丁imeOは

 直近 のイベ ン トが起 こった時刻を返 します。2つ 以上のイベ ン トが同 じ時刻 にス

 ケジュ-ル されている場合、 これ らのメソ ッ ドは同 じ値を返 す場合が あります。

run(匚sec])

 戻 り値:な し

 seC秒 のシミュ レーシ ョンを実行 します,,こ のメソ ッ ドが呼び出される と、指定

 したseC秒 が経過 するまで、すなわち、現時刻 〉 開始時刻+5ecが 満 たされる

 まで、stepOを 繰 り返 し呼び だ します。そ して、 シミュ レータ内の時刻が指定

 された時点を超え ると直 ちにシミ ュレーシ ョンを停止 します。モデルによ って、

 Stepperの ステ ップ幅が非常 に大 きい場合 、指定 した時 間と実行 したシミ ュレ■

 シ ョン時間 に誤差が生 じます。

 イベ ン トチ ェッカや イベ ン トハン ドラオブ ジェク トが設 定されている場合、 sec

5章 スクリプトによるセッションの操作

 を省略す ることができます。

 関連工頁目 :setEventCheker、 setEventHandler

setEventChecker(eventchecker)

 戻 り値:な し

 イベ ン トチェ ッ力やイベ ン トハ ン ドラが正 し〈設定されていて、run()メ ソ ッド

 が実行時 間引数 と とも に、ある いは引数 を省略 して呼びだ されて いる状 況下 で、

 シミュ レ■タはnス テ ップ毎に、イベ ン トハ ン ドラがtrueを 返 して いるかを確 認

 します。 ここで、nはsetEventChecklntervalUに よって宣言 された正の整

 数 です 〔初期値 はn=20)。 この メソッ ドが呼び出される と、 シミュレータ はただ

 ちにイベ ン トハ ン ドラを呼び だ します。イベ ン トハ ン ドラがSessionのstopO

 メソ ッ ドを呼びだ すと、 シミュ レータは、次の ステ ップが計 算される前 に停止 し

 ます。引数を与え ずにrunOを 呼び だ した場合、 この方法 によってのみシミ ュ

 レ-シ ョンのルー プを止め ることができます。

 この機 構 は、主 にGU1フ ロン トエン ドの要 素を実装 するため に用 いられますが、

 用途がそ こに限定 されるわけではあ りません。

setEventchecklnterval(n)

 戻 り値:な し

 関係項 目:setE>entChecker

 この メソッ ドは未実装です。

setEventHandler(eventhandler)

 戻 り値:な し

 setEventCheckerの 項 を ご覧 くだ さい。

step([numsteps])

 戻 り値:な し

 1ス テ ップのシ ミュレ-シ ョンを実行 します。任意の整数numstepsが 与えられ

 た場 合、その数だ けシミュ レ■タをステ ップ します。 引数 が省略 された場合、1

 回だけステ ップ します。

stop()

 戻 り値:な し

 シミ ュレー ションを停止 します。この メソ ッドは多 くの場合、イベ ン トハ ン ドラ

 か、イベ ン トハ ン ドラが呼びだすメ ソッ ドによって呼ばれます。

 関連項 目:setEventChecker、 setEventHandler

5章 スクリプトによるセ ッションの操作 95

驪

饕

96

initialize()

 戻 り値:な し

 シ ミュ レーシ ョン実行の準備を します。step⇔ やrun()を 実行 するの に先 だっ

 て 自動的 に呼び だされるので、通常 はこのメソ ッ ドを呼びだ す必要 はあ りませ

 ん。

Stepperメ ソ ッ ド

getStepperList()

 戻 り値:-D文 字列 のタプル

 シミ ュレ-タ 中のStepperオ ブジェク トのIDを 含 むPythonタ プルを返 しま

 す。

createStepperStub(id)

 戻 り値:新 規StepperStubオ ブジ ェク ト

 引数idに 一致 する-Dを 持 ち、 このSessionオ ブジ ェク トと結合 した

 StepperStubオ ブジ ェク トを返 します。

Entityメ ソ ッ ド

getEntityList(entitytype, systempath)

 戻 り値:FulllD文 字 列 の タ プ ル

 引 数5y5tθ 卯 ∂tnで 指 定 され たSystem中 に存 在 す る す べ て のentデtンtンpθ 型

 のEntityオ ブ ジ ェク トのFu■1-Dを 含 むPythonタ プ ル を 返 しま す 。

 引 数entitytypeは 、 ecell.ECSモ ジ ュ ール で 定 義 さ れ て い る

 'VARIABLE'、"PROCESS'、'SYSTEM'の い ず れ か で な けれ ば な りま せ ん 。 引 数

 systempathは 有 効 なSystemPath文 字 列 で な けれ ば な り ませ ん。

createEntityStub(fullid)

 戻 り値:新 規EntityStubオ ブジ ェ ク ト

 引 数ful7idに 一 致 す るFul■i[)を 持 ち、 こ のSessionと 結 合 したEntitystubオ

 ブ ジ ェ ク トを返 しま す 。

Loggerメ ソ ッ ド

getLoggerListO

 戻 り値:Fu■ ■PN文 字列のPythonタ プル

 シミ ュレータ中のすべてのLoggerオ ブジェク トのFullPN文 字列を含む

 Pythonタ プル を返 します。

5章 スクリプ トによるセッションの操作

createLoggerStub(fullpn)

 戻 り値:新 規LoggerStubオ ブ ジ ェク ト

 引 数fu71pnで 与 え られ たFul1PNを 持 ち、 こ のSessionと 結 合 した

 LoggerStubオ ブ ジ ェ ク トを 返 しま す 。

 引 数fullpnは 、有 効 なFu-IPN文 字 列 で な け れ ば な り ま せ ん 。

saveLoggerData(fullpn, ∂∫∂veDデrectory, aStartTデme,

anEndTime, anlnterva7)

 戻 り値:な し

 fullpnで 指 定 さ れ るLoggerが 保 持 して い る前 デ ■ タ を ∂SaveDirectoryに

 保 存 しま す 。fuア)pnを 指 定 しな い場 合 、 す べ て のLoggerの デ ー タ を 保 存 しま

 す 。 ∂SaveDirectoryは デ ー タ フ ァ イル を保 存 す る デ ィ レク トリで 、 指 定 が な い

 場 合 の デ フ ォ ル トは./Dataで す。 aStartTime、 ∂nEndTime、 ∂nlnterv∂1

 は、 そ れ ぞ れ 、 保 存 す る最 初 の時 刻 、 最 後 の 時 刻 、 デ ー タ ポ イ ン トの 間 隔 で す 。

 LoggerStubの メ ソ ッ ドな ども 参 照 し て く だ さ い 。

 サ ン プ ル モ デ ルDrosophila内 に あ る ス ク リ プ トsample_osogo-script.PY

 に使 用例 が あ り ます 。

Sessionク ラ スの 属性

theSimulator

 型:Simulator

 SessionAP山 およびObjectStubク ラスを用いるこ とで、シ ミュ レ-シ ョン中の

 作 業の大部分 を実行 するこ とがで きるの で、ESSユ ーザ は、通常Simulatorク ラ

 スの詳細 に踏 み込 む必要はあ りません。

 Simulatorク ラ スの詳細 を知 るために は、 E-CellC++ラ イブラ-丿リファ レンスマ

 ニsア ル(準 備 中)お よび、 システム のソ-ス コー ド、中でもece113/ece11/

 libemc/Simulator.hppを ご覧 ください。

theMainWindow

 型:Malnwlndow

 theMainWindow変 数 は、 Sessionがecell3-session-monitorで 実行 され

 る場含 に存在 してい る可能性 があります。 この変数 は状 況によって は存在 しな い

 の で、 利用する際 には、先 だってその存在を確認 する必要 があ ります。

ObjectStubク ラ スAP1

ObjeCtStubに は以下のサ ブクラスがあ ります。

5章 スクリプ トによるセッションの操作 97

飜

翻

98

 ・ EntityStub

 ・StepperStub

 ・LoggerStub

い くつか のメソ ッ ドは、複数のサ ブク ラスに共通 してい ます。

す べ てのObjeCtStubに 共通 する メ ソ ッ ド

create()

 戻 り値:な し

 オ ブジェク トを作 ります。例 えばStepperStubの 場合、 このStepperStubを 作

 成 した際 に指定 した名前 を持つ(バ ックエ ン ド)Stepperオ ブジェク トの作 成を

 試 みます。

exists()

 戻 り値:boolean

 ObjeCtStubが 指す(バ ックエン ド)オ ブジ ェク トが存在 すればtrue、 そ うでな

 ければfalseを 返 します。

getNameO

 戻 りイ直 :strln9

 0bjeCtStubが 指 すオブジ ェク トの名前を返 します。 通常、名前 はシミュレー タ

 中で用 いられている文字歹I」の識別子 です。EntityStubはFu■ ■IDを、

 StepperStubはStepperlDを 、 LoggerStubはFul[PNを それぞれ返 します。

EntityStubとStepperStubに 共通 す るメ ソ ッ ド

getClassNameO

 戻 りイ直;string

 Entityま たはStepperの クラ ス名 を得 るために使用され ます。

getProperty(propertyname)

 戻 り値:属 性の型 により、int、 float、 string、 Pythonタ プルの いずれか

 propertynameのEntityま たはStepperオ ブジ ェク トの属性 を返 します。 戻り

 値は、int、 float、 stringあ るい はこれ らの型 の混在 するタプルのい ずれかで、 タ

 プル はネ ス トされる場合があ ります,,特 殊 なメソ ッ ドであ る_getitem_を

 使 って これ らの値 を取得する こともで き:

value = stub.getProperty(propertyname)

と

5章 スクリプ トによるセッションの操作

value = stub[propertyname]

 は同 じ意味を持ち ます。

getPropertyAttributes(propertyname)

 戻 り値:タ プル

 propertyn∂meを 名 前に持つ属性の特性 をPythonタ プルで返 します。 タプルの

 要 素 はtrueま たはfalseで 、(settable, getab-e)の 順 に返 します。例えば、

 (false, true)で あれ ば、読み 出し専用 です。読み出 し専用 の属性 に書 き込も うと

 するか、書 き込 み専 用の属性を読み出そ うとすると例 外が発生 します。

getPropertyList()

 戻 り値:Entityま たはStepperの 属性の名前のPythonタ プル

 Entityま たはStepperオ ブジ ェク トのすべて の属性 の名前を含むPythonタ プル

 を返 します。

setProperty(propertyname, value)

 戻 り値:な し

 propertyn∂meで 設定 されたEntityま た はStepperオ ブジェク トの属 性 に、

 valueを 書き込みます。

 V∂lueと して、 int、 float、 stringあ るい は、それ らの混在 するPythonタ ブ

 ル、Pythonリ ス トオブジ ェク トを与 えることができます。

 特 殊な メソッ ドである setitem を通 して このメソ ッ ドを使 うこともで き:

stub.setProperty(propertynaine, value)

と 、

stub[prLopertyname] = vaiue

 は 同 じ意 味 を 持 ち ます 。

LoggerStubだ け が 持 つ メ ソ ッ ド

getData(Cstarttimel. Cendtime], [interval])

 戻 り値:数 値 のarray

 Loggerの デ ー タ を 取 得 す る ため に用 い ま す 。 戻 り値 はrank-2の 配 列 で 、 各 列 は

 5一タ プル また は2一 タ プ ル で す。5-タ プ ル の 場 合 、(time, value, average,

 min, max)、2一 タ プル の場 合 、(time, value)で す 。 timeは デ ー タが 記 録 さ

 れ た 時 刻 、valueは そ の 時 刻 で の 値 、 minとmaxは 指 定 したinterval区 間 内

5章 スクIルプトによるセ ッションの操作 99

麟

灘

100

 での最小値 と最大値 、averageは 時 間加重平均値を返 します。 intervalで 指

 定され るデ ータ間隔の区間は、デー タポ イン ト集積である場合 と、単-の デ-タ

 ポイ ン トである場合 があ ります(デ ■タポ イン ト集積 について は

 setMinimumlntervalOの 項を ご覧 ください)。 データポイ ン ト集積 でない場

 合、value、 average、 min、 maxの 値 はすべ て同 じにな ります。

 引数を とらずに、書式getDataOで 呼びだ された場合 、 Loggerに 記 録された

 すべて のデータを返 しまず,

 書式getData(5t∂rttime)で 呼び だされた場 合、 starttimeL;(降 の すべ

 てのデ-タ を、書式getData(St∂rttime, endtime)で 呼びだ された場

 合、 starttimeか らendtimeの 区間内の すべ てのヂータを返 します。

 書式getData(starttime, endtime, interval)で 呼びだ され た場合

 は、 starttimeとendtimeの 問のデー タを デnterv∂1の 間 隔で返 します。例

 えば、 データポイ ン トnに お けるデ-タd(n)に つ いて、ld(n-1)-d(n+1)1

 >intervalの 場合 、 d〔n)は 、メソ ッ ドが返 すデ-夕 か ら取 り除かれ ます。そ

 のため、 interv∂1が 同 じでも、 St∂rttimeが 異 なれ ば記録され るデータが

 変 ることがあ り、注意 が必要で す。 したが って、科学的 なデータ分析 には適 しま

 せんが、 リアルタイム のGUIフ ロン トエ ン ドでは役 に立 ちます。

getStartTime()

 戻 りイ直:float

 Loggerが 作成 された時刻、あるい は最初 にデータを記録 した時刻の うち、遅い

 方を返 します。多 くの場合、 これ らは同 じ時刻 になります。

getEndTime()

 戻 レ丿で直:float

 デ-タ が最後にLoggerに 記録された時亥-」を返 します。

getSizeO

 戻りイ直:float

 Loggerに 記録 されたデ-タ ポ イン トの数 を返 します。

getMinimumlntervalO

 戻りイ直lfloat

 Loggerオ ブジ ェク トの現在の最小記録 間隔を返 します、,

 関連項 目:setMinimumInterval

5章 スクリプトによるセッションの操作

setMinimumlnterval(interval)

 戻 り値1な し

 intervalは 、 ゼ匸]または正の実数でな ければな りません。

 ゼロに設定されて いる場合、Loggerは すべ てのステ ップでデ■タ を記録 しま

 す。 この場合、デー タポイン ト集 積は行われ ません。

 正 の数が設定されて いると、指 定 したintervalよ りも短い ステ ップ間隔でシ

 ミュ レ-シ ョンが進行 する場合 に、LOggerが データポ イン ト集積 を行うことが

 あります。

getLoggerPolicyO

 戻 り値lPythonタ プル

 このLoggerのLoggerPoliCy(デ-タ 記録の方式)を 、4つ の値を持つ4一タ プ

 ルで返 します。1番 目の要 素は最小ステ ップ数 です。2番 目は最小時 間間隔で

 す。3番 目は、保存 のために割 り当て られ たディスク容量を使い切 った場合 の対

 処 方法を表 し、Oは 例外を発生 し、1は 古 いデ ータを上 書き します。4番 目は、 こ

 の しoggerに 割 り当てる最大記憶容量 で、キロバイ ト単位で設定 します。

 現在のバー ジ ョンでは、最小ステ ップ数 と最 小時間間隔の両方を設定 するとデ■

 タが記録 され ません。どち らか-方 を設定 してください。

setLoggerPolicy(aLoggingPolicy)

 戻 り値:な し

 LQgger Po-iCyを 設定 します。引数 ∂LoggingPolicyは 、 getLoggerPOIicyの

 項で述べ た4一タプル です。

ECDDataFi-eク ラ スAPI

ECDDataFileメ ソ ッ ド

ECDDataFile(data = None)

 戻 り値:な し

 コンス トラクタです。引数dataは 、 NumeriCPythonのrank-2の 配列ある い

 はそ れと等価 のオ ブジェク トです。dataが 引き渡されない場合、空 の行 列

 ([[]]〉 が用いられます。

getDataO

 戻 レ丿イ直 l array

 NumeriCPythonのrank-2の 配列を返 します。

5章 スクリプ トによるセッションの操作 ioi

灘

懿

ioz

getDataNameO

 戻し丿イ直:string

 データの名前 を返 します。デフ ォル ト値 は空の文字列(" 聖)で す。

getFileName()

 戻 り値:string

 ファイル の読 み込みある いは保存 に成 功 した場合 に、 ファイル名 を返 します。そ

 れ以外 の場 合には、空の文字列(日)を 返 します。

getLabel O

 戻 り値:タ プル

 データの軸の名前(軸 ラベル)を 文字列のタ プル と して返 します。デ フォル ト値

 は('t','value','avg",'min',"max-)で す。

getNote()

 戻 りイ直 :string

 ECDDataEileの ノー ト(NOTEフ ィール ドの内容)を 返 します。 戻り値 は1行 ま

 た は複数行 の文字 列です。

load(fi lename)

 戻 り値:な し

 fi lenameと い うフ ァイルか らデ■タを読 み込 みます。

save(fi7en∂ 仞e)

 戻 り値:な し

 fi lenameと いうフ ァイルにデータを書 き込 みます。

setData(data)

 戻 り値:な し

 ECDDataFi■eオ ブジ ェク ト内のデー タを、引数dataで 上書き します。 d∂t∂は

 NumeriCPythonのrank-2の 配歹Ijあるいは これ と等価 のオブジ ェク トでな けれ

 ばな りません。

setDataName(name)

 戻 り値:な し

 ECDDataFileオ ブ ジェク トの名前 を設定 します。 n∂meは 改行を含 まない文 字列

 で なければなりません。

set!abel(labels)

 戻 り値:な し

5章 スクリプ トによるセッションの操作

 ECDDataFileオ ブジェク トのデ■タ軸の名前(軸 ラベル}を 設定 します。

 7∂belsは 軸ラベル の文字列 を含 むPythonシ ーケンスでな けれ ばな りませ ん。

setNote(note)

 戻り値:な し

 ECDDataFileオ ブジ ェク トの ノ-ト を設 定 します。 noteはstringオ ブジ ェ

 ク トでな けれ ばな りません。 文字列 は1行 で も複数行 でも構いません。

鞨

5章 スクリプ トによるセ ッシ ョンの操作 103

スクリプトによるセッションの操作5章104

.
・

窪

.
獅

`

醇騨

新規オブジェク トクラスの作成

6

本章 には、シミ ュ レー シ ョンで利用するための独 自のクラスを定義する方法が書 かれ

ています。

ダイナミックモジュール について

ダイナ ミックモ ジュール(DM)は 、 アプ リケーシ ョンによって読 み込 まれインスタ

ンス化 され るオブジェク トクラ ス(特 にC++ク ラス1を 記述 した ファイル です。E-C

ell SEは 、ユーザが システム全体 を再コ ンパイルする ことなく、シミ ュレーシ ョン

モデル で用 いる新 規クラスを定義、追加 するための方法 として この仕組 みを用意 して

い ます。 クラスの定義はネイテ ィヴの コー ド様式 によ って行われ るので、容量や速度

の観点 からは、新 しいコー ドや オブジェク トクラスを追加す るための最も効 率的な方

法で す。

E-Ce■lSEで は、 Process、 Variable、 System、 Stepperの 派生クラ スを システム

か ら動 的に読み込むこ とがで きます。

E-Cell SEと とも に配布 され ている標準ダイナ ミック モジ ュールに加え、 ecell3-

dmcコ マ ン ドでC++ソ-ス コー ドファイル('.cpplフ ァイル)を コンパイルする こ

とで、ユーザが定義す るDMフ ァイルを作成 することができます。 コンパ イル され

たフ ァイル は、通常、共有 オブジ ェク トファイル 〔UNIXで は".SQ.、 Mac OS×

では'.dylib'、 Windowsで は-.d11.)の 形式 をとります。

養 靉
か 戮

 蠢靆

鬱 嚢

新規クラスの定義

新規 オブジェク トは、い くつかの特別 なC++マ ク ロを利用 してC++ソ ース コー ドを醤

くことで定義 できます。

以下 にDMフ ァイルの常用テ ンプ レー トを示 します。 C++の 経験があれ ばわ かりや す

い記述 で しょう。DMTYPE、 CLASSNAME、 BASECLASSは 適宜特 定の値 に書 き換

えます。

105

鸚

106

サ ン プ ル コー ド6-1.CLASSNAME-cpp;常 用DMテ ン プ レー ト

尭1nciude <11becs/1ibecs.hpp>

話'1nclude <1ibecs/BASECLASS.hpp>

USE_LIBECS;

L工BECS_D卜4_CLASS(CLASSNAME, BASECLASS

public:

 LIBECS_DM_OBJECT(CLASSNAME, DMTYPE

 // (Property definition of this class comes here.

 CLASSNAMEO ;

 ～CLASSNA卜7E()

};

LIBECS _DM_INIT

// A constructor

}// A destructor

CLASSNAME, OMTYPE

DMTYPE, CLASSNAME, BASECLASS

最初 に、定義 しようとするクラ スの基本的 な特 性を決めな けれ ばな りません。 具体的

に は、DMの 型(ProCess、 VariabIe、 System、 Stepperの いずれか)、 ク ラス

名、基底 クラスです。

DMTYPE

 DMTYPEはE-Cell SEが 定義 するDM基 底ク ラスで 、 ProCess、 Stepper、

 Variable、 Systemの いずれかです。

CLASSNAME

 CLASSNAMEは オブジ ェク トクラスの名 前です。

 有効なC++の クラス名 でな けれ ばな らず、末尾 はDMTVPE名 とすべ きです。例 え

 ば、新 しいProce∬ クラスを定義 し、 「Foo」 と名付 けるなら、クラ ス名 は

 「FooProcess」 とするのが適切です。

BASECLASS

 作成す るクラスが継 承するクラ スで す。

 BASECLASSはDMTVPfと 異なる場合が あります。作 成するクラ スがDM基 底 ク

 ラスの直接 の派生クラ スであるか どうかに依存 します。

6章 新規オブジェク トクラスの作成

フ ァ イ ル 名

ソー ス フ ァ イル の名 前 は 、CLA∬NAMEに ㌧cpp巳 拡 張 子 を 付 した も の で な け れ ば な

り ませ ん。 例 え ば 、CLASSNAMEがFooProcessな ら、 フ ァイ ル 名 は

FooPrQcess日cppで あ る 必 要 が あ り ま す。 ソ ー ス コ ー ドは 、 ヘ ッ ダ フ ァ イル と ソ-

ス フ ァ イル に 分 割 す る こ と もで き ま す(FooProcess.hppとFooProcess,cppな

ど)。 そ の場 合 に も 、 最 低 限LIBECS一DM_IN工Tマ ク ロ は ソー ス フ ァ イル

(FooProcess.cpp)に 記 述 す る必 要 が あ りま す 。

インクルードするファイル

最 低 限libecsヘ ッダ フ ァイ ル(libecs/libecs.hpp)と 基 底 ク ラ ス の ヘ ッダ フ ァ

イ ル(libecs/BASECLASS.hppな ど)は 、 フ ァイ ル の ヘ ッダ部 分 で イ ンク ル ー ドさ

れ て い る 必 要 が あ り ま す。

DMマ クロ

テ ン プ レー トが い くつ か の特 別 な マ ク ロ:USEーLIBECS、 LIBECS_DM_CLASS、

LIBECSーDMーOBJECT、 LIBECS_DM_INITを 利 用 して い る こ と に 注 意 し ま し ょ う。

USE_LIBECSは 、 E-Cel-SEの コ ア ラ イ ブラ リで あ るJibeCSラ イ ブ ラ リの使 用 を 宣

Oす る マ ク ロで 、 フ ァ イ ル 中 の 次 の 行 に宣 言 文 を挿 入 しま す 。

麟

LIBECS _DM_CLASS

LIBECS-DMーOBJECT(DMTYPE, CLASSNAME)は 、ク ラス定義 の記述の先頭、す

なわちク ラスの'{.の 直後 に配置 します。 このマク 匚]は、 クラスがDMク ラスであ

ることを宣�ｵ 、 クラスが動的 にインスタンス化できるよ うに設定 し、 自動的に

getClassName⇔ メソ ッ ドを定義 します。 このマクロは、アクセ ス指定子pubIic

を挿入 します。従って、 このマク ロ以 降の記 述はpub}icに 位置 することにな りま

す。 このマク囗の直後 に、つね に明示 的に 「public:」 と書くようにす るとよいで

しょう。

LIBECS _DM_OBJECT(

 public:

6章 新規オブジェク トクラスの作成 107

礼
灘

諺

…

必

108

LIBECS_DM-INIT(DMTYPE, CLA∬NAME)は 、クラ スCLASSNAMEをDMTVPE

型のDMク ラス として書 き出します。 このマク 日は、 LIBECS_DM_OBJECTに よって

書 き出されるクラス定義(宣 言 だけではな く〉の後 に配置 される必要 があ ります。

コンストラクタとデストラクタ

DMオ ブジェク トは、つねに引数な しの コンス トラクタによ って インスタンス化され

ます。デ ス トラクタは、仮 想関数 として基底 クラスに定義されてい ます。

型と宣言

基本的な型

コ-ド 中でヘ ッダフ ァイル-ibeC5/libecs.hppを インクル-ド し、 USE⊥ 山BECSマ

クロを呼びだす と、以下の4つ の基本 的な型を利用で きるようになります。

Real

 実 数 。 通 常 、 倍 精 度 浮 動 小 数 点数 と して 実 装 され てい ま す。

 Linux/IA32/gCCプ ラ ッ トホ-ム な ど の64-blt環 境 で は、64-bit浮 動 小 数 点 数

 で す 。

Integer

 符 号 つ き整 数 、、64-bit環 境 で は64-bit long int。

Unsignedlnteger

 符 号 な し整 数。64-bit環 境 で は64-bit符 号 な しlong int,

String

 文 字 列 。C++標 準 ラ イ ブ ラ リのstd::stringク ラ ス と等 価 。

Polymorph

 Polymorphは-種 のユニバ-サ ル(汎 用性 の高 い)な オブジ ェク ト型(実 際 に

 はクラス)で す。Po■ymOrphオ ブジェク トは、 Real、 Integer、 Stringの いず

 れ として振る舞 うこともでき、またいずれ からも作成 する ことがで きます。 ま

 た、 これ らの型 が混在 する リス トであるPolymorphVeCtorと して利用/作 成す

 る ことも できます。 詳細は次節を ご覧 ください。

これ らの型 を、C++の 標準オ ブジェク ト型であるdouble、 int、Char`の 代わ りに

用 いることを推 奨 します。

6章 新規オブジェク トクラスの作成

ポ イ ンタ型 と参 照型

各 オブジ ェク ト型 について 、以下のtypedefに よる型定義を利用 できます。

TYPEPtr

 ポイ ンタ型(TYPE'と 等価)

TYPECptr

 定数ポイ ンタ型(tonst TYPE*と 等価>

TYPERef

 参AR型(TYPE&と 等価)

TYPECref

 定数参照型(const TYPE&と 等価)

 例 えば、RealCrefは 、 const Real&と 書 くの と同 じ意味 をも ちます。これ ら

 のtypedefの 使用を推奨 します。

 新規 の型を宣言す るには、DECLARE_TYPEマ クロを用います。例 えば、

DECLARE TYPE(double, Real);

とい うマクロを システム中で呼ぶ ことで、RealCrefをconst double&と して

利 用で きるよ うになります。

DECLARE CLASS(Process):

 このマク ロによって、ProcessCref、 ProcessPtrな どの表記 が利用可能 にな

 ります。libecsで 定義 されているクラ スの多 〈は、これ らのtypedefを 持ってい

 ます。

型 の制 限 とそ の 他 の属 性

これらの数値 型の制限や制度 を知 るには、C++標 準ライブラ リの

std::numeric-imits〈 〉テ ンプ レー トクラスを用 います.例 えば、 Real型 で表現 可

能 な最大値を取得する ため には、以下の ようにテ ンプ レ-ト クラ スを使 います:

ザ月nclude <iてmits>

numeric limit.s<Real>::max(};

よ り詳 しくは、C++標 準ライ ブラリの-丿フ ァレンスマ ニュアル をご覧 ください。

6章 新規オブジェク トクラスの作成 109

鞴

鑵

m饕

110

Po-ymorphク ラ ス

PO■ymorphオ ブジ ェク トは、 Rea1、 Integer、 String型 および

PolymorphVeCtorク ラスから作るこ とがで き、 またいずれにも変換 することができ

ます。

Polymorphオ ブ ジ ェク トの コン ス トラ ク ト

Polymorphオ ブ ジェク トを作成 する手順 は、値 とともに コンス トラ クタを呼び だす

だけです:

Polymorph anlntegerPolymorph(1);

Polymorph aRealPolymorph(3.1);
Polymorph aStringPolymorph(."2.13e2"

Polymorphオ ブジ ェク トは、別のPolymorphオ ブジ ェク トか ら作成(あ るいは複

製)す ることもでき ます:

Polymorph aRealPolymorph2(aRealPolymorph);

Polymorphの 値 の取 得

Polymorphオ ブジ ェク トの値 は、 as<>0テ ンプ レー トを用 いて、 いずれの型でも

取得 する ことがで きます。

anlntegerPolymorph.as<Real>O; // _= 1.O

aRealPolymorph.as<String>O; // __ "3.1"

aStr'ingPolymor'ph.as<lnteger>(); // 箪= 213

 ノ-ト:非 常 に大き なRea山 を ■ntegerに 変 換 しよう として桁 あふ れが起 こる と、

 ValueError例 外 が投 げ られます。

Polymorphの 型 の 確 認 と変 更

Polymorphの 型 を 取 得 す る に はgetTypeOを 、 型 を 変 更 す る に はchangeType

(Type aType>を 用 い ま す 。

PolymorphVector

PolymOrphVeCtorは 、 Po■ymorphオ ブジ ェク トの ■丿ス トで す 。

6章 新規オブジェクトクラスの作成

その他のC++構 文

唯一 の制約 は、クラスをDMク ラス として書 き出すDM_INITマ クロを、 単-の 共有

ライブラ リを構 成する－連 の記述(ヘ ッダフ ァイル とソースフ ァイルな ど)の 中で1

回 だけ用 いるとい う点で す。 この点を除 けば、C++コ ンパイラが解釈で きる限 り、記

述 に制 限はあ りません。 クラス定義の内部ある いは外 部で、他のクラ ス定義、 ネス ト

されたクラス、typedef、 静的関数、名 前空間、テ ンプ レー トを含 む、あ らゆるC++

構文 を記 述する ことがで きます。

ただ し、名前空間の衝突 には注意 して くださ い。DMク ラ スの外 でクラスや関数を宣

言 する必要があ る場合、 プライペー トなC++名 前空間や静的空 間を利 用 したい場合が

あるかも しれ ません。

PropertySlot

PropertySlotと は

PropertySlot(属 性ス ロッ ト)は 、 オブジ ェク トの属性 に対 する読み出 し(get)、

書 き込み(set)メ ソッ ドのペ アで、属性の名前 に関連 する名前を与 えられて いま

す。オ ブジェク ト属 性の値 は、オ ブジ ェク トのメ ンバ変数 に格納 されている こともあ

れ ば、 メソ ッドが呼ばれた際 に動 的に作 成される ことも あります。ProCess、

VariabIe、 System、 Stepperの4つ のDM基 底ク ラスはすべて、 PropertyS-otの

セ ッ トや オブジェク ト属性 を持 つことができ ます。換言 すると、これ らの クラスは、

共通基底 クラスProperty-nterfaceを 継承 しています。

PropertySlotは 何 の ため にあ る のか

シミュ レ-シ ョンモデル 中の各 オブジ ェク ト(Entity、 Stepperオ ブジェク トなど)

にパラメータ値を与 えるために、モデル ファイル(EMフ ァイルな ど)中 で、

PropertySlotを 用 いることができ ます。 また、 シミ ュレ-シ ョン中に動 的にオブ

ジ ェク ト間の連絡 を行 うための方法 として も使 えます。

PropertySlotの 型

PropertySlotの 型は、以下の4つ のいずれかです。

韈

・Real

・ Integer

・String

・Polymorph

6章 新規オブジェク トクラスの作成 111

難 「

PropertySlotの 定義

オブジ ェケ トクラス中でPropertySiotを 定義する手順 は以 下の通 りですl

set、 getメ ソ ッ ドの両方あ るいは片方を定義 します。

必要 に応 じて、属 性値を保存 するためのメ ンバ変数 を定 義 します。

作成 したメソ ッ ドをPropertySlotと して登録 します。

setメ ソ ッ ドとgetメ ソ ッ ド

PropertyS■Otは 、 オブジ ェク トの属性 に対 する読み出 し(get)、 書 き込 み(set)

メソ ッ ドのペアで、属性 の名前 に関連す る名前 を与え られ てい ます。 どち らかのメ

ソ ッ ドを省略で きる場 合があ ります。PropertyS■ot{こsetメ ソ ッ ドがある場合、

PropertyS■otは 書 き込 み可能(settable)で あるといいます。 getメ ソッ ドがあ る

場 合、読み出 し可能(gettabIe)で あ るといいます。

システム によって認 識されるため に、setメ ソッ ドは以 下の形式でな けれ ばな りませ

ん。

void CLASS::* (const T&)

また、getメ ソ ッドは以下の形式 でなければな りませ ん:

tonst T CLASS::* (void) tonst

ここで、Tは 属性 の型 でず。CLASSは 、 PropertySlotが 属す るオ ブジェク トクラ ス

です。

これ らのプ ロ トタイプを記 憶 してお く必要 はありません。以下の4つ のマクロを用い

て、特定の型 と属性 名に対するset、 getメ ソ ッ ドを宣言、 定義 するこ とができま

す。

SET_METHOD(TYPE, NAME)

 展開

 void setNAME(const TYPE&value)

 使い方

 SET-METHODマ ク ロは、ク ラス定義内で、属性 に値 を書き込むsetメ ソ ッ ドを

 宣 言、定義するため に用 いられます。対象 となる属 性の型 はTYPE、 名前 は

112 6章 新規オブジェク トクラスの作成

 NAMEで す。書 き込まれた属性の値 は、>ariab-eのValueと して取得で きま

 す。

例

 下 のコー ド:

class FooProcess

 SET_METHOD(Real, Flux

 theFlux = value;

 Real theFlux;

};

は、以下 のC++プ ログ ラムに展開 されます。

class FooProcess

 void setFlux(tonst

 theFlux = value;

 Real theFlux;

);

 この例で は、引 き渡 された属性値 は、 メンバ変数theFIuxに 保存 されます.

GET_METHOD(TYPE, NAME)

 展開

 const TYPE getNAMED const

 使い方

 GET_METHODマ クロは、クラ ス定義 内で、属性 に値を読 み出すgetメ ソ ッド

 を宣言、 定義 するため に用 いられます。対象 とな る属性 の型 はrupf,名 前は

 NAMEで す。 メソ ッ ドは、属性の値 をTYPEオ ブジ ェク トとして返 すように定

 義 されます。

6章 新規オブジェク トクラスの作成 113

鑾

鬮

114

例

下 の コ ー ド:

class FooProcess

 GETーME丁HOD(Real

 return theflux;

 Real theFlux;

1:

は、以下 のC++プ ログ ラム に展開 されます。

class FooProcess

 tonst Real getFluxO tonst

 return theFlux;

 Real theFlux;

};

SET _METHOD_DEF(TYPE, NAME, CLASSNAME)

 展開

 void CLASSNAME::setNAME(const TYPE&value)

 使 い方

 SET METHOD DEFマ ク ロは、ク ラスのスコープ外で属性 のsetメ ソ ッ ドを定

 義するため に使い ます。

 例

 SET_METHOD_DEFマ ク ロは通常 、 SETーMETHODマ ク ロと組 み合わせて使いま

 す。例え ば、以下 のコ一 ドでは、SET_METHODマ クロを用いてクラ ス定義 内で

 仮想関数 としてsetメ ソ ッ ドを宣言 し、 クラス定義の後で、 SETーMETHOD_DEF

 を用いて メソッ ドの実体 を定義 して います。

6章 新規オブジェク トクラスの作成

class FooProcess

 vir'tual SE丁_METHOD〔

 Real theFlux;

1:

SET_METHOD_DEF(Real

 theFlux = value;

定義部分 は、以下 のC++プ ログラム に展 開されます。

void FooProcess::setFlux(const Real&

 theFlux = value;

};

6ET _METNDD_DEF(TYPE, NAME, CLASSNAME)

 展開

 tonst TYPE CLASSNAME::getNAMEO tonst

 使い方

 GET■METHODーDEFマ クロは、クラスの スコープ外 で属性のgetメ ソッ ドを定

 義 するために使 います。

 例

 上記 のSET_METHOD_DEFの 例を ご覧 ください。

属性 が書 き込 み可能かつ読み 出 し可能 で、単純に メンバ変数 に保存 されている場合、

以下 のマク日を用いる ことがで きます。

S王 卜1PLEーSETーGET-METNOD(ノVAME, 厂}!Pど)

このマクロは、属性名(NAME)と 同 じ名前 を持 つVariableの 存在 を仮定 して、以

下 のコー ドと等価の コー ドに展 開 します:

6章 新規オブジェク トクラスの作成 115

釀

鰈
鑼

「、叢

蛋
3
陸
～
ゴ

掌
奏
劈

㌦二
」
麹

「

「

116

SET_METHOD(NAME,

 NAME = value;

GET METHOD(NAME,

return NAME;

PropertySlotの 登録

PropertyS■Otを ク ラスに登録 するには、対象 クラスのLI6ECS_DM_DBJECTマ クロ

に含まれる以下のマク ロのうち1つ を用います:

PROPERTYSLGT _SET_GET(NAME, TYPE)

属 性が書き込み可能 かつ 読み出 し可能で あるときに用います。ク ラスは、set、 get

メ ソッ ドの両方 を定義 します、、

例えば、FooProcessク ラスに属 するReal型 のF■ux属 性 を定義 する には、ク ラス

定義のpublic領 域 に以 下のよ うに書 きます:

public:

L王BECS_DMーOBJECT(F=ooProcess, Process

 PRGPERTYSLOT SET GET(Flux, Real);

このマクロは、FooProCessのFlux属 性のset、 getメ ソ ッ ドと して、以下の2つ

のメソ ッ ドをそれぞれ登録 します:

void FooProcess::setFlux(tonst Real&);

tonst Real FooProcess::getFluxO tonst;

メソ ッ ドの特性 は、既 に定義済 みのプ ロ トタ イプと-致 していな けれ ばなりません。

LIBECS_DMーOBJECTは 属性 をい くつで も持つ ことができ ます。 また、1つ も持たな

くても構い ません。

6章 新規オブジェク トクラスの作成

PROPERTYSLOT_SET(NAVε, TYPE)

 この マクロは、getメ ソ ッ ドを登録 しない点を除き、 PROPERTYSLOT-SET-GET

 と同 じです、setメ ソ ッドだけを利用可能 にする際に用います。

PROPERTYSLOT _GET(NAME, TYPE)

 このマクロは、setメ ソ ッ ドを登録 しな い点 を除き、 PROPERTYSLOT_SELGET

 と同 じです。getメ ソッ ドだ けを利用可能 にする際 に用 います。

PROPERTYSLOT(NAME, TYPE, SET METHOD, GET METHOD)

 set、 getメ ソッ ドの一 方あるい は両方 の名前 がデフ ォル トの形式(setNAMEO、

 getNAMEO)と 異な る場合 に、このマク ロを用 いて、明示的 にメソッ ドへ のポイ

 ンタを指定 します。

 以 下の例で は、FooProcessク ラスのFlu× 属性に対 して、 setFlux20お よび

 anotherGetMethod()メ ソ ッドを登録 してい ます:

Flux, Real

&FooProcess::setFlux2,

&FooProcess::anotherGetMethod

ひ とつ のオブジ ェク トに同名 のPropertySlotが 複数作 られた場合 には、最後 に作

られ たものが利用 され ます。

Ioad/saveメ ソ ッ ド

set、 getメ ソッ ドに加 えて、 load、 saveメ ソッ ドを定義する ことがで きます。

badメ ソ ッ ドは、モデル ファイルか らモデルを読 み込 む際に呼びだされ ます。 同様

に、saveメ ソッ ドは、 シミ ュレータのsaveModel Oメ ソッ ドによってモデルの状

態をフ ァイル に保存 する際に呼ばれ ます。

特に指定 しな くて も、-oad、 saveメ ソッ ドは、 set、 getメ ソッ ドを作成する際 に

デフ ォル トで定義 されます。以下 に挙 げるい くつかのマク ロを用 いて、デ フォル トの

定義を変更 することができます。

PROPERTYSLOT_LOAD_SAVE(NAME, TYPE, SET METHOD,

6ET_METHOD, LOAD_METHOD, SA VE_METHOD)

 このマクロは、属性メ ソッ ドを設 定する最も一般的 な方法 です。set、 get、

 ■oad、 saveメ ソ ッ ドを独立 に指定 できます。 LOAD_METHODがNOMETHODの 場

 合 、属性 はモデル ファイル からの読み込みがで きません。 また、SA VE-METHOD

 がNOMETHODの 場 合、属性の値を ファイル に保存する ことはできません。

6章 新規オブジェク トクラスの作成 117

繍

鸚

118

PROPERTYSLOT_NO_LOAD_SAVE(NAME, TYPE, SET METHOD,

GET METHOD)

 ζのマク ロは、LOAD_METHODとSAVE一METHODをNOME〒HODに 設 定する点を除

 き、前節で説明 したPROPERTYSLOTと 同 じです。

 すなわち、 このマクロは、以下の記述 と等価です:

PROPERTYSLOTーLOAD一SAVE(NAME TYPE SET-METHOD.

GET _METHOD, NOMETHDD, NOMETHOD

PROPERTYSLOT _SET_6ET_NO_LOAD_SAVE(NAME, TYPE, SET_METHOD,

GET METHOD

PROPERTYSLOT_SET_NO_LOAD_SAVE(NAME, TYPE, SET_METHOD

PROPERTYSLOT_GET_NO_LOAD_SAVE(NAME, TYPE, GET_METHOD

これ ら の マ ク 囗 は 、set、 getメ ソ ッ ドload、 sa>eメ ソ ッ ドを設 定 しな い 点 を 除 い

て 、PROPERTYSLOT-SETーGE丁 、 PROPERTYSLOTーSET、 PROPERTYSLOT-GETと 同

じで す。

基 底 ク ラ ス の 属 性 の 継 承

基 底 ク ラ ス の 属 性 を 使 い た い場 合 が しば し ばあ り ま す。 基 底 ク ラ ス の 属 性 を継 承 す る

に は 、 工NHERIT_PROPERTIES(PROPERTY-BASECLASS)マ ク 囗を 用 い ま す。 こ の

マ ク ロ は 通 常 、 属 性 定 義 マ ク ロ(PROPERTYーSETーGET()な ど)の 前 に 配 置 し ま す。

LIBECS_DM_OBJECT(CLASSNAME, DMTVPE)

 INHERIT_PROPERTIES(PROPERTY_BASECLASS

 PROPERTYSLOT_SET_GET(NAME, TYPE);

通 常 、PROPERTYーBASECLASSとBASECLASSは 同 一 で す 。 例 外 は 、 BASECLA∬

が 、LIBECSーDMーOBJECT()マ ク ロ を 利 用 して いな い場 合 で す 。 そ の 場 合 、

LIBECS_DM_OBJECTOを 使 っ て い る 基 底 ク ラ ス の う ち 、 ク ラ ス の 継 承 関 係 上 も っ と

も 近 い も の をPROPERTYーBASECLA∬ に 選 び ます 。

シ ミ ュ レ-シ ョンで のPropertySlotの 利 用

シ ミュ レーシ ョン中にオブジ ェク トの属性 にアクセ スするには、以下の3種 類 の経路

があ ります:

(1)ネ イティヴのC++メ ソッ ドを用 いた静的で直接 のアクセス。この方法 は

 Prope「tyS■otを 介 しませ ん。

6章 新規オブジェク トクラスの作成

(2)Propertyslotオ ブジ ェク トを介 した動的に結合 され たアクセス。

(3)Propertylnterfaceを 介 した動 的に結合されたア クセス。

新規Processク ラスの定義

新規 のProcessク ラ スを定義 するには、最小限、以下 の2つ のメソ ッ ドを定義 する

必要 があ ります。

・ initialize()

・fire()

initialize()は 、 シ ミ ュ レー シ ョ ンの 状 態 を リセ ッ トす る 必 要 が あ る時 に 呼 び だ

さ れ ま す 。 リセ ッ トは セ ッシ ョン 開 始 時 に限 ら ず、 状 態 の 再積 分 が 必 要 な 場 合 な ど 、

い か な る 時 にも 起 こ り え ま す。

fire()は 、 モデ ル 中 の反 応 の計 算 を 進 め る際 に 呼 び だ さ れ ま す 。

VariableReferenCeに 従 って 、 ProCessが 参 照 す るVariab■eを 更 新 す る 方 法 を記

述 しま す 。

ProCessの 持 つVariableReferenCeは 、 coefficientの 値 で ソー トさ れ て メ ンバ 変

数theVariableReferenceVectorに 格 納 さ れ て い ま す 。 ソー トの 順 序 は、 負 の

Coefficientを 持 っ>ariableReference、 coefficientが ゼ ロ の も の 、 正 の 値 を持

つ も の の 順 で す。 ゼ ロ ま た は 正 の 値 をCoeffiCientに 持 つVariableReferenceの オ

フ セ ッ トを取 得 す る た め に 、getZeroVariableReferenceOffsetOお よ び

getPositiveVariableReferenceoffsetOメ ソ ッ ドを 利 用 で き ま す。 特 定 の 名

前 のVariableReferenceを 探 す に は 、 getUariableReference()メ ソ ッ ドを用

い ま す 。

蠶

6章 新規オブジェク トクラスの作成 119

蠶

120

コ-ド6-2一SimpleProCess.Cpp

101include '"11becs hPP

尭1nclude "'Pr'ocess hpP

USE _LIBECS;

LIBECS _DM_CLASS(SimpleProcess, Process

 public:

 LIBECS_DM_OBJECT(SimpleFluxProcess, Process

 PROPERTYSLOT_SET_GET(Real, k);

 SimpleProcessO: k(

 SIMPLE SET GET METHOD(Real, k);

 virtual void initialize()

 Process::initializeO;

 SO = getVariableReference("SO");

 virtual void fire()

 setFlux(k*SO.getValueO);

 protected:

 Real k;

 VariableReference SO;

};

LIBECS_DM_INIT(SimpleProcess, Process);

6章 新規オブジェク トクラスの作成

標準ダイナミックモジュ ール ライブラリ

7

本章で は、ECeliSEと ともに配布 されて いる標 準ダイナ ミックモ ジュールライブラ

リを概観 します。標 準ダイナ ミックモ ジュールライブラ リに含 まれ るクラスの-部 を

リス トし、使 い方 を説明 します。 システ ムが正常にイ ンス トール されると、ライブラ

リの提供す るクラスを特 別な手順を必要 とせずに用いる ことがで きます。

本章 は完全な リフ ァレンスで はあ りませ ん。ライブラ リで定義 されているクラス につ

いて より詳 しく知 るにはE-CelI3標 準ダイナ ミックモジ ュールライ ブラリリファ レン

スマ ニュアル(準 備 中)を ご覧 くだ さい。

Stepperク ラ ス

 Stepperに は、 以下 の4つ の直接の下位 クラスがあ ります:

 ・Differentialstepper

 ・DiscreteEventStepper

 ・DiscreteTimeStepper

 ・PassiveStepper

Differentialstepper(微 分Stepper)

汎用 の 微 分Stepper

以 下のStepperク ラ スは、汎用 の常微分方程式 ソルバ を実 装 しています。 これ らの

クラ スは連続Processク ラスを結合 して機能 します、,

ODEStepper

 ODEStepperは 、各時点 における方程式系のstiffnessに 応 じて、適応的 に

 Dormand-PrinCe法 とRadau IIA法 を切 り替え ます。

 多 くの場合、 このStepperがODEモ デルに対す る最適 の汎用 ソルバです。

ODE45Stepper

 ODE系 の シミュレー シ ョンのため に、 Dormand-PrinCe 5(4)7Mア ル ゴ リズム

 を実装 しています.

121

盆
購

覊
馨
難
謬

122

ODE23Stepper

 ODE系 の シミュ レーシ ョンのため に、 Fehlberg 2(3)ア ル ゴ リズムを実装 して い

 ます。

 モデル の-部 が小さな タイム スケールを有す る場合 に、 このStepperを 試 してみ

 て ください。このStepperは 、中程度 にstiffな 微分方程式系 に用 いるこ とがで

 きます。

FixedODEIStepper

 適応 的なステ ップ幅調節機構 を持たないDifferentialstepperで す。 この

 Stepperの 微分方程式の解法 は1次 です。

 このStepperは 、1ス テ ップにつき、各ProCessのfireOメ ソッ ドを1回 だ

 け呼びだ します。 このStepperは 、平坦な連続的微分 方程 式系を高精度 に解 くの

 に適 してい るとはいえませんが、アル ゴリズムの単純さが役立つ場合 もありま

 す。

S-Systemお よびGMA Stepper

 S-Systemお よびGMAの モデル で用いるStepperで す。3章 の 「Power-law(べ

 き乗則)の 正規形 微分方程式」を ご覧 ください。また、サ ンプル モデル

 SSystem、 brancheも 参照 して ください(Appendix 2)。

DiscreteEventStepper(離 散 イベ ン トStepper)

DiscreteEventStepper

 離散 イベ ン トシミ ュ レー ションを実行する際 に用い ます。 このStepperは 、

 DisCreteE>entProCe∬ の下位クラ スと組 み合わ せて用いな けれ ばなりませ ん。

 このStepperは 、 ProCe∬ オ ブジ ェク トをイベ ン ト生成器 と して用います。 この

 Stepperのinitialize()メ ソ ッ ドは、以下 のような手順です:

 1.Stepperが 結合する すべてのDisCreteEventProcessオ ブジ ェク トの

 updateSteplntervalOメ ソ ッ ドを実行 します。

 2,最 も小さい スケ ジュ■ル 時刻を持つProcess(ト ップProCess)を 見つ けだ し

 ます。スケ ジュール時刻 は、 (現在時刻)+〔ProCessのSteplnterval属 性

 値)で 計算 します。

 3.Stepperの スケ ジs-ル を、 トップProcessの スケジ ュール時刻 に設定 しま

 す。

このStepperのstep()メ ソ ッ ドは以下の ような手順 です:

1,現 時点 の トップProCessのfire()メ ソ ッ ドを呼び ます。

ア章 標準ダイナミックモジュールライブラ-ル

2.ト ップProcessお よび、 トップProCessの 影響を受 けるすべ てのProCessの

 updateSteplntervalOメ ソ ッ ドを 呼び だ し、次の トップProcessを 見いだす

 ため にスケ ジ ュール時刻を更新 します。

3.最 後 に、Stepperの スケジ ュールを、新 しい トップProCessの スケジ ュ■ル時刻

 に設定 します。

この ク ラ ス のinterrupt()メ ソ ッ ドの 手 順 はinitialize〔 〉メ ソ ッ ドと同 じで

す 。

DiscreteTimeStepper(離 散 時 間Stepper}

DiscreteTimeStepper

 このStepperは 固定された間隔 でステ ップ します。例 えば、 Stepperの

 Steplnterval属 性が0.1に 設定 され ている場合、 このStepperは0.1秒 毎 にス

 テ ップ します。

 このStepperが ステ ップす ると、結合 するすべてのProCessイ ンスタ ンスの

 fire()メ ソッ ドを呼びだ します。 この振 る舞 いを変更する には、下位 クラスを

 作成 して くだ さい。

 このStepperは 、他のStepperに よる割 り込みを無視 します。

PassiveStepper(受 動Stepper)

PassiveStepper

 このStepperは 自発 的にステ ップ しませ ん(ス テ ップ間隔 は無限大 です)。 代わ

 りに、 このStepperは 、割 り込み によってステ ップ します。つ まり、この

 Stepperに 影響 を与える別のStepperが ステ ップすると、その直後 にこの

 Stepperも ステ ップ します。

 このStepperが ステ ップす ると、結合 するすべてのProCessイ ンスタ ンスの

 fireOメ ソッ ドを呼 びだ します。 この振る舞 いを変更する には、下位 クラスを

 作成 して ください。

7章 標準ダイナミックモジュールライブラリ 123

灘
鐵
驪

Processク ラ ス

連 続Processク ラス

微 分 方程 式 に基 づ くProcessク ラ ス

以下 のProcessク ラ スは、微分 方程式をその まま実 装 してお り、 ODEStepper、

ODE45Stepper、 ODE23Stepper、 FixedODElStepperな どの汎用の

Differentialsteppersと 組 み合 わせて用い ることができます。

現在 のバージ ョンで は、多 くのクラスが特定 の反応速 度式を表現す るもの になってい

ます。

もちろん、これ らの使途 は、化学的、生化学 的シミ ュレ-シ ョンに限定 されるもので

はあ りません。

DecayFluxProcess

 DeCayFluxProCessはFluxProCessの 一 種 で 、 質 鬘 作 用 則(law Qfmass-

 actiOn>に よ る減 衰 過 程 を 、 半 減 期Tに 基 づ い て計 算 し ます 。 T属 性 お よ び

 VariableReferenceを 設 定 して 用 い ま す 。

MassActionProcess

 MassACtionProcessは 標 準 的 な 質 量 作 用 則(law of mass-aCtion)を 実 装 して

 い ま す 。 速 度 定 数k属 性 とVariableReferenCeを 設 定 し て用 い ま す.

MichaelisUniUniFluxProcess

 こ のProCe∬ は 、 MichaelisのUni-Uni反 応 モ デ ル(1基 質 、1生 成 物 反応 モ

 デ ル)を 実 装 して お り、 以 下 の 反 応 速 度 式 に よ ってVe■ocityを 算 出 しま す 。

 [C]、[S}、[P]は そ れ ぞ れ 、 酵 素 、 基 質 、 生 成 物 の 濃 度 で す。 モ デ ル 中 の 定 数 、

 K,s. K�,Y、 κ。F、邸Rは そ れ ぞ れKmS、 KmP、 KcF、 KCR属 性 と して モ デ ル フ ァ

 イ ル に記 述 し ま す 、

v=
[C](1ζ 「c戸・K,,,,、[S]一κ 。κ。、、[P])

κ脱∫[P]+κ 班P[S]+κ"、 ∫κ"、ρ

そ の 他 の 連 続Processク ラ ス

PythonFluxProcess

 PythonFluxPrOCe∬ は 、 Expression属 性 に1つ のPython式 を と り、 この 属

 性 の式 の 評 価 結 果 をsetFIuxOに 引 き渡 しま す 。

124 7章 標準ダイナミックモジュールライブラリ

SSystemProcess

 SSystemProCessはVariableReferenCeList、 rank-nの 行 列(nはVariabIe

 の 数)で あ るSSystemMatrix、 Order属 性 を と り ま す 。

Process SSystemProcess(SSystem)

 Name "SSystemPProcess";

 Order 3;

 SSystemMatrix

 O.5

 0。ア0,1

 0.5 0 0.1 0 0.1

 0.i

 O.1 0.7

PO Variable

PI Variable

P2 Variable

P3 Variable

P4 Variable

6

2

4

Q
/
5

0

0

0

0

0

/CELL/CYTOPLASM

/CELL/CYTOPLASM

/CELL/CYTOPLASM

/CELL/CYTOPLASM

/CELL/CYTOPLASM

離 散Processク ラ ス

Gi山lespieProcess

 このProcessはDiscreteProCessStepperと とも に用 い な け れ ば な りま せ ん 。

 このProcessは 、1つ の 属 性kを 持 ち 、 Gillespieの 確 率 過 程 に よ って 結 合 す る

 Vanableの 変 化 を シ ミ ュ レ-ト しま す 。

そ の 他 のProcessク ラ ス

糶

PythonProcess

 3章 に詳細な説明が あります、

Variableク ラ ス

Variable

 状 態変数を表現 するため の標 準クラスです。

7章 標準ダイナミックモジュールライブラリ izs

7章 標準ダイナミックモジュールライブラリ126

獵

E-Cellの シ ミ ュ レー シ ョン 機 構

8

本章で は、E-CellSEが シミ ュレー ションを実行する際 に中核 をな しているメタアル

ゴリズムを概説 し、E-Cell SEが メタアル ゴ リズムを実行 する仕組 みについて解 説 し

ます。

メタアルゴリズム

E-CellSEは 、メタアル ゴリズム(meta-a日gorithm)と い うフ レ-ム ワ-ク を用 い

て、様々 なシミ ュレーシ ョンアル ゴ リズムを一 斉 に実行 します。E-Cellシ ステムのコ]

ア部分 の多 くは、メタアル ゴリズムの実装そのものです。

離散事象システム

メタアル ゴ リズムは、離散事象(離 散 イベン ト)シ ミュ レ■シ ョンと呼 ばれる手法の

ひ とつ です。時間駆動型 のシミュ レーシ ョンアル ゴリズムはすべて、変数の値を更新

する手 法によ って大き く3種 類 に分類 できます。ひ とつ は微分 方程式で、変数の変化

速度 を計 算するこ とで、連続的 に変数の値を更新 します.2つ めは離散時間方程式

で、変数 の値を離散的、即 時的に更新 します。3つ めが離散 事象方程式で、 これ は、

モデル 内で生 じる他の事象 によって起 こる変数 の変化を記 述する方程式 からなりま

す。

驫

1976年 、Zeiglerは 、離散事 象システム仕様(DEVS, QisCrete丘yent∫ystem

SpeCifiCation)と 名付 けた表現形式で、 これ ら3つ のすべてを包含 した モデル化 と

解析がで きると提案 しま した4。DEVSで は、モデル内 の変 数は離散 時間 に発生す るイ

ベ ン ト(事 象)に よって更新され ます。そ して、更新された系の状態 によって次 のイ

ベ ン トが発生 する時 刻が決ま ります。個々 のイベ ン トが離散的であれ連 続的であれ、

結果 として起 こるのは変数の更新で す。変数 を更新する と、次 のイベ ン ト発 生まで時

間が進み、速度 が与 え られてい る変数 は積分 され ます。DEUSシ ミュレー シ ョンは、

イベ ン ト発 生毎に系の状態(濡 モデル 中のすべての変数の値)を 計算 し、系の時間発

AZeigler B. TheoryofModeling and Simulation(1st ed.). Wiley Interscience, New

York.1976

127

慧

128

展の ようすを算出 します。理論 的には、DE>Sを 用いて汎用 シミュ レ-タ を構築する

ことが可能です。

メタアルゴリズムの概要

メタアルゴ リズム は、DEYSの アイディアを基盤 に、高橋 によって考案されたアル ゴ

リズムで、DEVSの 枠組みで、複数 のアル ゴリズムを用 いてひとつのモデルの シミュ

レ■シ ョンを実行 するための詳細な方法 を提案 しています。 この アル ゴリズムが 「-メ

タJと 名付 けられ ているのは、アル ゴ■丿ズムが提 示 しているの はシミュ レ■シ ョンを

実行す るための フ レームワークであ り、具体 的なモデル、具体的 なアルゴ リズムを適

用する ことによっては じめて シミュ レー シ ョンが実体化するもの だからです。

メタアル ゴリズムではまず、複数アル ゴ リズムモデルの シミュ レーシ ョンに用いる

データ構造 を規 定 しています。も っとも基 本的なデ■タ構造 は、Modelと 呼ばれる

オ ブジェク トで、これは、Variableオ ブジ ェク トおよびStepperオ ブジ ェク トの集合

として定義 されます。Variableは ユ ニー クな名前 を持つ実数で、任意の時点 の

MOdelの 状態 は、 Variab■eの 状態 の集合 として完全 に記述 することができ ます.

Stepper

Stepperは 、 MOdei内 で起 こる さまざまな相互作用を表現 しており、個々のStepper

オ ブジェク トは、ProCessオ ブジ ェク トの集合、割 り込みメ ソッ ド、 ロー カル

Stepper時 刻 、ステ ップ幅(E-Cell 3.2以 降で はNextTime)か ら構成 されます。

Processは 個々 のアル ゴ リズムを内包 するオブジ ェク トです。 メタアル ゴ リズムにお

けるイベン ト(事 象)は 、 あるひとつのStepperの 「ステップ」に相当 します、

Stepperが 「ステ ップ」 すると、 Stepperは 自身が持つProCessに よってMode1を 更

新 し、他のStepperに 更新 の発 生を通 知 し、 自身 が次 にステ ップする スケ ジュ■ルを

更新 します。 これ らが メタアルゴ リズム におけるひ とつのイベ ン トを構成 していま

す。

Process

ProCe∬ は、 自身と関係づ けられ たModel内 のVariableの 値 を更新 する役割を担 う

計 算ユニ ッ トで す。Processは 、現在 の状態に基づ き、未来 の状 態を計算 します。

Processに 関係 づ けられるVariab■eに は、未来の状態 を計 算するため に読み だされ る

Variableと 、計 算結果の書 きこみによ って変更 され るVariableの2種 類 があり、 中

には読みだ しと書 きこみの両方が行われ るVariableも あります。メタアル ゴリズム で

はProcessを 連続型 と離散型 に区別 し、ひ とつひ とつ のStepperは どちらかのタイプ

8章 E-Cellの シ ミュ レー シ ョン機構

のProcessし か持 つことがで きません。 Stepperに は、連続Stepper、 離散 時間

Stepper、 離散 イベ ン トStepperの3種 類 があります。

必須の情報

メタアル ゴリズムでシミ ュレ一 ション実行 するために必須のﾂ報 が少 な くとも2つ あ

ります。ひ とつ はグローバル時刻で、 すべてのStepperの ロー 力ルStepper時 刻の最

小値 と等 しくなります。も うひ とつ は、Stepper問 の二項関係 で、 Stepper従 属関係

と呼び ます。Stepper従 属関係 は次の ように定義され ます。異 なる2つ のStepperSi

とSzの 対があ り、 StepperSiはProcess P,を、 SzはProCe∬Pノ を内包するもの とし

ます.P;に よって変更されるVariableとP∫ が未来の値を計算 するために参照する

Variableに 重複があ ったとき、2つ のStepperに は従属関係 がある とい います。 Siに

よってMode■ が変更され ると、 S2が その影響を受 けるため再 計算を行わな けれ ばな

らないというこ とです。

メタアルゴリズムの実行

DEVSの シミュ レーシ ョンは-連 の離散 イベン トによ って時 間が進行 していきます。

メタアル ゴリズム で表現 されたMQde1の 場合、そ れぞれのStepperが ステ ップす るこ

とによるProcessの 点火(firing)に よ ってイベ ン トが発生 し、時間 が進みます。

メタアル ゴリズム の1回 の離散イベ ン トを実行 するには、まず、次 にステ ップすべき

Stepperを 選び、続 いて、選ばれたStepperを ステ ップ しMode■ を更新 します。 これ

がメタアル ゴリズムの1ラ ウ ン ドにな り、 これを繰 り返す ことで系 の時 間発展をシ

ミ ュレー トします。

それぞれ のStepperは 次 にステ ップすべ き時刻 をローカルStepper時 刻 と して保持 し

てい るの で、次 にステ ップすべ きS業epperを 選 ぶの は簡単です(最 も小 さい 口■カル

Stepper時 刻 を持つStepperが 、次 にステ ップすべきStepperで す)。

Stepperを 選 んだ ら、そのStepperで 次 のイベ ン トが発生す る時刻 まで、時間を進め

ます。 それぞれのイベ ン トは離散 時刻に発生する ので、-般 に、連続するイベ ン トの

時 間間隔はゼロではあ りませ ん、,また、イベ ン トが終 了 した時点で、すべての

Variableの 変化速度 がゼロにな って いるとは限りません。そ こで、前回 のイベン トか

ら今 回のイベ ン トまで に起 こる変数 の変化を、前 回のイベ ン ト終了時点の変数 の値 と

変 化速度に基づいて外挿5し ます。

蕪
鑾
轗

5既知のデータを参考に、既知のデ-タ の範囲外の値を推定すること。ここでは、現在までの

データに基づいて未来の値を近似しようとしています。

8章E-Cellの シミ ュ レー シ ョン機 構 129

次 に、Stepperが ステ ップ します。グ ローバ ル時刻を書き換え、 Model内 の

Variableの 値を更新 し、 自身の次 のステ ップの準備 をし、他 のStepperにModelの

更新 を通知 します。

ステ ップする際には、まずStepperのstep関 数が呼 ばれ、 step関 数 は、 Stepperに

属 するひとつ あるいは複数のProCessを 呼びだ します。 ProCessは 、 それぞれに関連

づ けられたVariableの 値、 あるいは変化速度を更新 します。 step関 数 は、 Stepper

自身 の時刻変 数も変更 します。 まず、現在 のロ-カ ルStepperu刻 にステ ップ幅が加

えられ、更新され ます。 また、ステ ップ後のModelの 状態 に基 づき、 次のステ ップ時

亥-」までのステ ップ幅を設定 します(E-Cell 3,2以 降で は、 ステ ップ幅で はな く、次 に

ステ ップする時刻Ne×trimeを 設定 します)。

step関 数 による処理 が終了する と、 このStepperと 従属 関係のあるすべてのStepper

にModelが 更新された ことを通知 します。通知を受 けたStepperは 、 Modelの 更新

によ って次のイベ ン トの発生 時刻を変更す る必要 がないか、再計算 します。

以 上がメタアル ゴリズムの概 要です。 メタアル ゴ リズムの数学的な詳細 につ いては、

高橋 らによ る以下 の論文 をご覧 ください。

Takahashi K, Kaizu K, Hu B, Tomita M.Amulti-algorithm, multi-timescale

method forcellsimulation. Bioinformatics.2004;20(4):538-46.

鑠

滋
鬱

脳

E-Cell SEカ ー ネ ル

Libecs

E-Cel山SEの シミ ュレータ カーネル であるLibecsは 、 C++言 語で記述 されています。

Libecsに は、 メタ アル ゴ リズムが実装 されて います。 それに加え、モデル オブジェク

トの生成や データの記録 とい った機能 と、それ ら機能へのAPIを 提供 します。

LibeCSは 、 モデル の状態 を表現するデ-タ 構造、 モデル内で生 じる相互作用 を表現 す

るデータ構 造をそれぞれ定義 し、 これ ら2つ を操作 して シミュ レーシ ョンを実行 し、

時 間を進行 させます。

4つ の基本的なオブジェク トクラス

Libecsの デ ータ構造 の基盤は、4つ の基本 的なオブジ ェク トクラスです。

Variable、 Process、 Stepperの3つ のクラス は、 メタアルゴ リズムにお ける同名 の

オブジ ェク トに相当 します。4番 目のクラスであ るSystemは 、 Variableの 集合 と関

連 づけ られてお り、変数 問の関係 などモデルの構造 を表現 する役割を担 って います。

130 8章 E-Cellの シミ ュ レー ショ ン機構

基本的 なオブジ ェク トクラ スの関係 を以 下に図示 します。 それ ぞれのオブジ ェク トの

意味、 役割について は3章 も ご覧 ください。

 0-.艇

theProcessMap

theVariableMap

E-Cellの 基 本クラス構造の概要

属 性

汎用性 を高め、 さまざまなモデル構築 を容 易にするため に、各オ ブジェク トには、予

め定義 されている属性(Property)が あります。例え ば、 Variableオ ブジェク ト

は,実 数 はまたは整数を保持 するVaIue属 性を持 ちます。 Valueは 、多 くの場合 、

Variableが 表現する対象 の数 を表 します。 Systemオ ブジェク トは、 Size属 性を持 ち

ます。 これは、コ】ンパー トメン トの容積 を表 します。 また、 すべ てのオブジ ェク ト

は、文 字列型 のName属 性を持ちます、 こう したオブジ ェク トの属性 を読 み書 きする

ためのAPIも 提供 されてお り、オ ブジェク トの種 類に関わ らず共通 になっています。

こう した設 計によ り、 どんなモデル を構築 しても共通 の方法でモデルを取 り扱 うこと

ができます。

こう した共通の属性イ ンタ-フ ェイスを実現す るために、カーネルの4つ の モデルオ

ブジ ェク トは基底 クラスPropertiedC山d55か らの派生クラス として設計 されていま

す。PropertiedC■assで 、属性 の取 り扱いが規定 されているため、そ こから派生 し

たオ ブジ ェク トクラスでは共通の方法で属性の読 み書きができます。

属性の読み書 きにはPropertySlotを 用い ます。 PropertySlotはPropertyName

(属性の名前、文 字列 型)-とPrope「tyValue(属 性 の値)を 対 に したもので、

PrQperty>alueは 、実数型、整数型、文字列型 、 リス ト型のいずれか を取 りうる多

態型(polymorph)で す。 PropertiedC-assオ ブジ ェク トには、 すべ ての

PropertySlotの 静的なマ ップが備 わっているため、 E-Cellの モデル では、あらゆる

麟

8章E-Cellの シミュ レーシ ョン機構 131

難

132

モデルオ ブジェク トか ら、任意のオ ブジ ェク トの任意の属性 に容 易に到達 する ことが

で きます、,

2種 類 のProcessと 、4種 類 のStepper

LibeCSが 提供するProCe∬ には、連続型(Continuous)と 離散 型(Discrete)の

2つ のタイプがあ ります、,連続Processは 、連続的 に変化する値を記述す る微分 方程

式 を表 現 します。離散Processは 、時刻毎 に離散的 に変化する値を記述す る方程 式を

表現 します。 これ に基づ き、Libecsは4種 類 のStepperを 提供 して います。 微分

Stepper(Differentialstepper)、 離散 時間Stepper

(DisCreteTimeStepper>、 離散イベ ン トStepper(DiscreteEventStepper)そ

してPassiveStepperで す.

微分Stepperは 連続ProCe∬ を内包 し、微分 方程 式系を解 く計算ユ ニ ットにな りま

す。個々のProce∬ は、モデル中のひ とつの方程 式に相当 し、微分Stepperは 、方程

式のセ ッ ト(運 立微分 方程 式)を 解 くソルバ と して機 能 します。一部の連続Stepper

は、 シミ ュレー ションを高速 に実行する ため、精 度を維持できる範 囲でで ぎるだけ計

算回数を減 らそ うと(ス テ ップ幅を延 ばそ うと)し ます。 また、微分方程 式を解 く際

の問題 として微分 方程 式系の硬さ(stーffness)が あ りまず.陽 的な数 値解法を用 いた

際 に、 ステ ップ幅 を極 端に小 さくしない限り精度 が保てない ような系を硬 い(Stーffで

ある)と いいます。こう した場合、現在 に加え過去の状態 に関する情報 を用いて式を

解 く陰的解法 が有効 です 〔系が硬 くない状況では陽的解法の方 が高速です〉。L-beCs

が提供す る微分Stepperに は、系の硬 さを判別 して適応的 に陽的Dormand-Prince

アル ゴリズム(ス テ ップ幅を適応的 に可 変する4次Runge-Kutta法)と 陰的Radau

I山Aアル ゴ リズム(現 在最高の陰 的Runge-Kutta法)を 切 り替 えるODEStepperも 含

まれ ています。

離散 モデル構築のため に、E-Cellは 、離 散時間Stepper、 離散 イベ ン トStepper、

PassiveStepperの3種 類 のStepperを 提供 しています。離散時間Stepperは 、 系の

状態 が離散 的に変化 し、 「ステ ップ 」すべき時刻が 系の状態 によ って決ま るような状

況 を表現 するアル ゴリズムに用います。Gillespieア ル ゴ-丿ズムはその一例 です。離

散 イベン トStepperは 、 モデル の状態 とは無関係 に点火 する離散Processに 用いま

す。PassiveStepperは 、 自発 的にステ ップすることはあ りません。従属 関係 にある

Stepperに よる害-」り込み があると、これ に応 じて受動 的にステ ップ します。

LoggerBroker

も うひ とつ、LibeCsの 重要な要素 にLoggerBrokerが あ ります。 LOggerBroke「

は、デ-タ 記録 に関するイ ンター フェイス全般 を担 っていまず 、LoggerBrokerを 用

8章 E-Cel山のシミ ュ レー シ ョン機 構

いる ことで、 シミュ レーシ ョン中 にModel内 のあ らゆるPropertySlotの 値を選択

し、記録する ことができます。LoggerBrokerは 、 Loggerオ ブジ ェク トを生成、 管

理 します。 シミュ レ-シ ョン中の各イベ ン トの終了後 にLoggerBrokerがlog()メ

ソ ッ ドを実行 すると、すべてのLoggerオ ブジェク トが設 定された属性 の値を記録 し

ます。

以下 にE-Ce-ISEカ ーネルの クラス構 造の概要 を図示 します。

+initializeC

+sミepQ

a-getCurrentTinreO

+createEntity(in aClassname:Striny, in aFulllD:FulllD)

+getEntity(in∂FUII一D:FUI■ID)

+getSystem(inaSystemPath:SystemPath)

十createstepperiln aClassname:String, inanlD:String)

+getStepper;in znlD:String)

+臼ushしoggerG

+getNextEven[OO

+reschedule(astepperP[r5[epperPtr)O

theStepperMap

LoggerBroker

 theProcessMap

 theVariableMapth
eSystemVector

theVariableVector(r/w)

 theProcessVector

E{el-SEカ ーネルの クラス構造 の概要

シ ミ ュ レー シ ョンの 実 行

モ デ ルの イ ンス タ ン ス化

次 に、E-Ce山 ■SE上 に数理 モデル がインスタ ンス化 され、 シミ ュレーシ ョンが実行 さ

れ る仕組 みについて述べ ます。 力一 ネルが初期化され ると、Modelと い う名称 のオ

ブジェク トが生成されます。Modeけ ブジ ェク トにはシミュ レ-シ ョン実行 に必要 な

各種要素 とE-CellSE力 ■ ネルへ のイ ンタ■ フェイスが含 まれていますが、 中でも重

要 なのが、root Systemオ ブジ ェク ト、 Schedulerオ ブ ジェク ト、 LQggerBroker

オブジェク トの3つ です。root Systemオ ブジ ェク トは、 モデル を構成するすべて

のVariab■eとroot System以 外 のすべ てのSystemを 内包 しています。 Scheduler

 1

8章 臣{elIのシミュレーション機構 133

り.懸
㎜…織
蝋難
、鯨

欝

厂

虚

懸
ハ

134

オ ブジェク トは、モデル内の すべ てのStepperを 内包 し、 Stepperイ ベン トの発生を

司 っています。 すべてのStepperがSchedu■erに 属 し、すべてのProcessが 、それぞ

れ特定 のひとつのStepperに 属 して います。 LoggerBrokerオ ブジ ェク トは、 メタア

ル ゴリズムの1ラ ウ ン ドが終 了する度にオブジ ェク トの属性 を記 録 します。

Modelク ラスがイ ンスタ ンス化 され ると、 Variable、 ProCe∬ 、 Stepperと い った

オ ブジェク トが、それぞれ、System、 Stepper、 SCheduler内 に生成 されます。 こ

れ らの生成が終了す ると、Mode山 クラスのメ ンバ関数initiailzeOが 呼 ばれ、その他

にModeIオ ブジ ェク トが必要 とするデータ構造を用意 します。 グロ-バ ル時刻 と

Stepper従 属関係の設定も ここで行 われます。 この処理 によって、シ ミュレ-シ ョン

を開始 する準備 が整 います。

メタアルゴリズムの実行

Modelオ ブジ ェク トのstep()メ ソ ッ ドにより、 メタアルゴ リズムの反復処理 が実 行

されます。1回 の メタアル ゴ リズムの実行 は、次 回イベ ン トの発生特刻 の決 定、それ

に応 じたグ囗■バル時刻 の更 新、新 しいグ ローバル 時刻までのモデル状態 の積 分、次

のイベ ン トでステ ップするStepperのstep()メ ソッ ドの呼び出 しか らな ります。

Stepperのstep()メ ソッ ドは、 関連 づけ られたProCessを 点火 し、そ の結果生 じた変

化を記録 し、Stepper従 属 関係 によ って従属 関係 にあるStepperに イベ ン トの発生 を

通 知 し、Stepper自 身の次 回のイベ ン ト発生 のタイミングを計算 します。

次回イベントの発生時刻

次 のイベ ン トの発生 時刻は、将来のイベ ン ト発 生時刻を時刻順 にリス トしたイベ ン ト

キ ュ-の 最上位 を参 照するこ とで取得 され ます。

次 回 イベ ン トま でのVariableの 積分

つづいて、次回 イベ ン トでステ ップす るStepperが 参照す るすべ てのVariableの 積分

を行い ます。Steppeが 内包す るすべ てのProcessに ついて、それぞれが参照 するす

べてのVariableを 読み込み、 Stepperの 参照変数 リス トを作成 します。そ して、参照

変数 リス ト中 のすべ てのVariableオ ブジ ェク トのintegrate()メ ソ ッ ドを呼びだ しま

す。integrate()メ ソ ッ ドは、記録 された補間値を用 いて指定 された未来の時刻の値

を外挿 します。Variableは 、 自身の変化速度を記録 してお り、 これを積分 に利 用 しま

す.連 続 的に変 化するVariableは 、1つ あ るい は複数 の連続Stepperオ ブジェク トに

よる更新 を受けます(そ うでな ければ連続 的 に更新 されません)。 連続Stepperは 、

それ ぞれ-nterpoIant(補 間)ク ラスを持 って いて、連 続Stepperが 初期化 され る

際、変 更対象 のVariable毎 に、-nterpolantイ ンスタンスが作成され ます。連続

8章E-Ce-1の シミ ュレーシ ョン機構

」

Processに よってVariableの 変 化速度が更新され ると、 Interpolantイ ンスタ ンスを

介 して、その変化 が補間値にも反映 され ます。Variab-eは 、補 間値の差分を計算 し、

自 らの値を次回 イベ ン ト時刻 まで近似積分 します。 この補間係数 を用 いるこ とによ

り、Variableは シミ ュレ-シ ョン中のあ らゆる時刻 において自身の値を算出で きるこ

とが保証 され ています。

Stepperの ス テ ップ

Variableの 積分が終了す ると、 SChedulerは 次回 イベ ン トでスTッ プするStepper

のstepOメ ソ ッドを呼びます。 step()は 、 Stepperに 関連づけ られたProcessを 点火

します。点火 は、すべてのProCessが 共通 して持 っているfire()メ ソ ッ ドによって実

行 されますが、fi re()は仮想 関数 と して実装され ており、 点火の際に起 こるモデル の

変化 は、Stepperの 種類 によって異 なります。例え ば、微分Stepperは 微 分方程式に

対応 するProCess群 を持 っていますが、 ProCessに よ って更新 され るVariableの 変化

速度 を-nterpo-antク ラスを介 して計算 し、 Stepper自 身 が次 にステ ップするまでの

ステ ップ幅も算出 して対応 する自身の属性を更新 します。-方 、離散時間Stepper

は、 関連づ けられたProcessの 点火 によって、 Variableの 値 などの変数を単純 に書 き

換 えるだけです。

データ記録

ステ ップが終了 すると、StepperはlogOメ ソ ッドを実行 して デー タを記 録 します。

log()メ ソッ ドは、 Stepperに 関連するVariableの 値のPropertySlotの ロガ■(記 録

器)に 指定 した の時刻 の値 を保存 します。 ロガ-は 、PropertySlotProxyを 介 して

PropertySlotの 値 を取 得 し、 Physica■Loggerオ ブジェク トに書 き込む ことでデータ

を記録 します。

イベントキュ-の 更新

最後 に、step()メ ソ ッドで計 算 した次回 ステ ップの発 生時刻によ ってSchedu■erの イ

ベ ン トキ ニ1ーを更新 します。

他 のStepperへ の割 り込 み

ここまで の一連 の処理 によって、 モデル内に発生 した状態変化 が反映され、時間も更

新 されま した。 最後に、今回 のイベ ン トでステ ップ したStepperと 従属関係 にある

Stepperに 割 り込んで、それぞれの ステ ップ幅(次 回 イベ ン トまでの時間)を 再計算

し、SChedulerの イベ ン トキュー を更新 します。その結果、次 回のイベ ン ト発生時刻

が変更される場合があ ります。PassiveStepperは 、 内包するProcessを 点火 します

8章 E{eI山 の シミ ュレーシ ョン機構 135

攤

il麟{鑾
…

 (PassiveStepperは 、他のStepperか らの割り込みがあ った ときだけ、 ProCessを

点火 します)。

こ こまで に述べ たE-CellSEカ ー ネル の時間進行プ ロセ スを以 下に図示 します,、

ノ 轡 〆/漸 〆,》/,/
〆 〃

 庁
一〇 〇 1

_.∫

飜 線 璽

setValuep
addVelocityp

『

- - y
1 l l ー 1 竃

l i Iogﾜ l l i i
"ll
 唱

1 このStepperに 驕速づけられたすべてのEntityのLoggeeに 対し「ζ 11

悔_,鼠()

レ

inte;rrupt()

一"

一i
この$t・PP・・蹤 属齷 簽 搬P・ ・に熾 て 刀

 ;

轡魂
i i

← 十

E-CelrSEカ ー ネル の時間進行プ 匸]セス

アー キ テ クチ ャの優 位 性

このア■キテクチ ャに従 って実装 すれば、多様な アル ゴ リズムをE-Ceiiプ ラ グインモ

ジ ュールと してLibecs力 一ネルの実行 中に動 的に読み込む ことがで きます、,例えば、

PrOCessク ラ スの場合 は、 initialize()メソ ッ ドとfire()メ ソ ッドを定 義するだ けで、

新規 アルゴ リズムモ ジュール と してE-Ce■ISEで 利用 するこ とができます(6童)。

136 8章E-Cellの シミュ レーシ ョン機構

カーネルへのインターフ ェイス

Pythonイ ン ター フ ェイ スAPI

Libecsは 、包括的 シミ ュレーシ ョンプラッ トホ ームの実装 として は完結 しています

が、 このコアライ ブラ リを直接 扱うのは非常に面倒で す。そ こで、カーネル に対 する

Pythonイ ンター フェイスを用 意 し、プ ログラミング、スク リプテ ィングを支援 する

とともに、フロ ン トエ ン ドも提供 しています、,

Pythonイ ンター フェイス層APIは 、 Sessionオ ブジェク ト周辺 で、カーネルへ の薄 い

インターフェイスを提供 します。Sessionオ ブジェク トは、モデルの設定、 シミュ

レーシ ョンの実行、シ ミュ レーシ ョンのスク リプテ ィングのためのインター フェイス

を提供 します。Python APIが 提供 するメ ソッ ドは以下 の5種 類に大別され ます。 モ

デル 内にオブジ ェク トを生成 し、これ らにアクセ スするためのEntityメ ソッ ド、

Stepperメ ソ ッ ド;モ デル内 にLoggerを 作成 し、データを保存す るためのLogger

メソ ッド;時 間あ るい はステ ップ数 単位でモデル の時 間を進 行させるための

Simulatorメ ソ ッド;EMLフ ァイル の入 出力な ど、 E-CellSEの 高 レベルでの制御を

行 うためのSessionメ ソッ ドの5つ です。 Python APIの 詳細 について は5章 を ご覧

ください。

libemcマ イ ク ロ コ ア

Pythonイ ンタ ーフ ェイス層は カー ネル を直接 ラ ップ して おらず、 山ibemCと 呼 ばれ る

C++で 記述され たマイクロコア層がカー ネル をラ ップ しています。"ibemcは 、

Pythonイ ンタ-フ ェイスが持つ多 くの機能 を持ってお り、 Pythonイ ンター フェイス

によ ってラ ップ され、PyEceilと 呼 ばれるPythonコ ー ドと結びつ けられてE-Cellへ の

フロ ン トエ ン ドを実現 しています。

懿

8章E-Celー の シ ミュ レー シ ョン機 構 137

E-Cell SEの このアーキテ クチ ャを以 下に図示 します。

スクリプト層 「

(Python)

 i
インター・・イ綱
(C++/C/Python);

 ト
コア層

(C++)

し

ユーザインターフェイス

バ ッチスクリプ ト

CORBAス ケ丿レトン、et(=,

(り
E
ω
)

n

口
や
ヤ
レ

一一Φ
∪
山国

(の
∪
Φ
£
一)

八
ハ
八
H
八
m
《
ー
ム
門
艀
△

5

三

コ
》
O
乂

U
 プラグインモジュール

E-CelISEの アーキテクチャ

(
的
一ー①
U
①
)

一-Φ
口響ー田

∩
こ
O
翼
諞
Φ
順ム

フロントエンド

Python API上 に、3つ の フ ロ ン トエ ン ド(eCell3-session-monitor、 ece■ ■3-

se∬ion、 eCell3-se∬ion-manager)が 提 供 され て い ま す 。 ecell3-session-

monitor(セ ッシ ョン モ ニ タ 、 Appendix4参 照)は 、 イ ン タ ラ ク テ ィ ヴ な モ デ ル の

変 更 と シ ミ ュ レ-シ ョン の 実 行 に適 し た グ ラ フ ィ力 ル ユ ー ザ イ ン タ-フ ェイ ス で す 。

モ デ ル 内 の すべ て の 要 素 にア クセ ス し、 可 視 化 す る こ と がで き る の で 、研 究 者 が 、 最

初 に モ デル の振 る 舞 い を 確 認 、 解 析 す る 際 に 有 用 で す 。eCell3-sessionは コ マ ン ドラ

イ ン イ ン タ-フ ェイ ス で 、 大 規 模 な モ デ ル の ス ク リプ テ ィ ン グ や 自 動 実 行 に 適 して い

ま す。ece■ ■3-sessionは 、 PythQnシ ェル の拡 張 と な って お り、 Python Session

AP-を 直 接 利 用 で き ま す 。 eCell3-session-managerは 、 グ リ ッ ドま た は ク ラ ス タ ー

で 複 数 のSessionを 並 列 に実 行 で き る よ う に設 計 さ れ て い ま す 。 ecell3-session-

managerは 、 SessionManager, SessionProxy、 SystemProxyの3つ の ク ラ ス を

提 供 しま す 。 これ らを 用 い て 、1台 のPCか ら グ リ ッ ド/ク ラ ス タ■ と い っ た 様 々 な

コ ン ピュ ー タ 環 境 で 、 大 鑾 の シ ミ ュ レー シ ョ ンを 容 易 に 実 行 す る こ とが で き ま す。

138 8章 E-CeI山 のシ ミュ レー シ ョン機 構

本 章は以下の文献 の-部 を翻訳 し、改変、加篳 したものです。 より詳 しくは、文献を

参照 して くだ さい、、

Addy N,Takahashi K. FoundationsofE-Cell Simulation Environment

Architecture, E-CellSystem:Basic Concepts andApplications, Arjunan SNV, Dhar

PK, Tomita M(Eds);Austin:Landes Bioscience,2010

http://www.landesbioscience.com/curie/chapter/3559/

幻
..靠

.、羹
鑾

羈
難
購

盛

雛
鑄

げ

8章 E-Cellの シ ミュ レー シ ョン機構 139

韈

140 8章E-Celiの シミ ュ レー シ ョン機 構

E-Cell SEに つ い て

9

E-CellSEは 、 高 橋 恒-(KoichiTakahashi<shaft@e-Cell.Org>)に よ って 開 発 さ

れ ま した 。E-CeilSEに 関 す る よ り多 くの 檣 報 を得 る に は 、 E-Cellプ ロ ジ ェ ク トの

web(http://www.e-cell.org/)を ご覧 くだ さ い。

ア プ リケ ー シ ョン あ る い は マ ニ ュア ル に関 す るバ グ 報 告 、 ご意 見 は、webに 記 載 す

る 方 法 で お 寄 せ く だ さ い 。

こ の プ ロ グ ラム は 、Free Software Foundationが 公 開 す るGNUGeneral Pub■iC

LiCenseバ ー ジ ョン2を 若 干 改 変 した ラ イ セ ン ス に 基 づ い て 頒 布 され て い ま す。 パ ッ

ケ ー ジ に含 ま れ るCOPY-NGフ ァ イル を ご覧 くだ さ い 。

轢

141

畠

E-Cell SEに つい て9章142

灘
.

蠶

諄

¶

EmPyモ ジ ュー ル †

1

EmPyは テキス トフ ァイル中 にPythonに よる記述 を埋 め込 み、展開するシ ステム

で す。

EmPyに は多彩な機能があ りますが、以下に、 E-Cellで のモデル作 成の際 に利用機会

の多 いものを抜粋 します。

基 礎

EmPyは 、 Pythonコ ー ドを、 Pythonで 処理 しないテ キス トの中に埋め込むため に

用います。 ソー スフ ァイルを処理 し、出力 ファイルに書き出 します。通 常のテキス ト

はその まま齧 き出され、EmPy書 式でマ-ク ア ップされた部分が処理、展 開されて書

き出され ます。EmPyに よる ソー ス中 のマークア ップの取 り扱 いと処理 を 「展 開」と

いい ます。

コー ドは、Pythonイ ンタ プ リタに読み込 まれ た場合 と同 じよ うに処理 され、式 に対

してはeva10メ ソ ッ ド、文 に対 してはexec文 で処理 したの と同 じ結果 を返 しま

す。

埋 め込みの開始を表 す記号 は 「@」 です。 これは、有効なPythonコ ー ドと平常のテ

キス トの どち らにも 出現 しない文字です。 「@」 をその まま埋め込 みたい場 合は、

「@@」 と表記 します。

EmPyに お ける改行 コー ドはLF(ラ イ ンフィー ド)で す。 OSに よってデ フォル トの

改行文字 は異 なるので注意 して くだ さい。改行 コー ドは、UNIXで はLF、 Windows

で はCR(キ ャリッジリター ン)+LFで す。 Mac OSは 、CRを 改行 コー ドとして い

ま した が、MaCos xでUNIXベ ー スになったため、シ ステ ムフ ァイル などはLFを

改行 コー ドと してお り、-部 の アプリケーシ ョンの改行 コー ドもLFで す。改行 コー

ドを指 定できるエデ ィタで、明示的 に改行 コー ドを指定 することをお勧め します。

懸 毳

↑本節 はErikMax FranCisに よる ∈mPyド キ ュメ ン トをベ ース に、翻訳-改 変 しています。

743

灘

展 開

144

@#コ メ ン ト 改 行

 コメ ン ト行。@#か ら行末 〔改行文字)ま でを コメン トと して除外 します.コ メン

 ト中 に@で は じまる部分があ っても、EmPyは これを展 開 しません。

 EmPyはUTF8を サボ ■ トしているので、 UTF-8形 式 であれば 日夲語な どを書

 くこともで きます。

 例:

@存 この行 はコメ ン トです。

@4kこ の@xは 展 開され ません。

@ (空 白文 字)

 @の 次 に空 白文字(ス ペース、タ ブ、改行)が ある場 合、何 にも展開 されませ

 ん。

 MassActionFlux@Processは 、 MassActionFluxProcessと 展開され ま

 す。

 行 末に@が ある場 合、直後の改行文学 がEmPyに よって取 り除 かれ るため、次

 の行に継続 することにな ります,、ExpressiOnFluxProcessのExpression属 性

 など、1つ の長 い式 をモデルフ ァイル に書 く際、行末の@に よって複 数行 に分割

 して読みや すくするこ とができ ます。

@＼ エ ス ケ-プmド

 EmPyのzス ケープ コー ドは、Cに 似通 っています。 ただ し、すべて接頭文字 で

 はじまります。

 有効な エスケープ コ■ ドは以下 の通 りです。

@¥0

@¥a

@¥b

@¥dDDD

@¥e

@¥f

@¥h

@¥n

@¥0000

NUL, nullFoo

BEL, beliFoo

BS, backspaceFoo

3桁 の10進 コ-ドDDDFoo

ESC, escapeFoo

FF, forFT、 feedFOo

DEL, deleteFoo

LF, linefeed character, newlineFoo

3桁 の8進 コ ー ド ○○○「Oo

Appendix-1 EmPyモ ジュール

@¥gQQQQ

@¥r

@＼s

@¥t

@¥v

@¥xHH

@¥z

@^X

4桁 の4進 コ-ドQQQQFoo

CR, carriage returnFoo

SP, spaceFoo

HT, horizontal tabFoo

VT, verticaltabFoo

2桁 の16進 コ]-ドHHFoo

EOT, end oftransmissionFoo

制 御 文 字 く×

 C形 式のエスケー プコー ドと異な り、EmPyの エ スケ-プ コー ドには直後 にい〈

 つかの数字を とるものがあ ります。曖昧 さを回避するため数字の数 は決められて

 い ます。解釈 できないエスケ■ プコー ドに対 してはzラ ■を発生 します。そ う し

 ない と微細 な誤 りを見過ごす可能性が あるためです。また、8進 数 を表記するの

 に@＼Qを 使用する点もCと 異な ります。

飽

 ア ッ トマーク 「@」 に展開 されます。

@),@コ,@}

 そ れぞれ、丸カ ッコ、角 カッコ、 波力 ッコの右力 ッコに展 開されます。

@闘...闘,@…'騨.量.'-四 時, etc.

 これ らの文字列 リテ ラル は文 字列 そのもの に展開 され ます。例 え ば、

 「@"「test".1は 、 「test上 に展開され ます。

@(EXPRESSION)

 式EXPRESSIONを 評価 し、その結果を文字列 と して展 開 します。評価結果 が文字

 列でな けれ ば、strOメ ソ ッ ドで変換 します。 力 ッコの直後の スペ■ スは無視 さ

 れ ます。@(EXPRE∬ION>は@(EXPRESSION)と 等価 です。

 例:

 +2 is@(2+2).
4 squared is@(4**2).

The value of the variable x is@(x).
This will be blank:@(None).

@(TEST? THEN[: ELSE] [S CA TCH])

 式TESTを 評価 し、これがtrueで あれば、式THENを 評価 してそ の結果 を展開 し

 ます。TESTがfalseな ら、 式ELSEの 評価 結果を展開 します。 ELSEは オプ シ ョ

Appendix-1 EmPyモ ジ ュール 145

覊

灘

146

 ンです。指定がな い場 合、Noneと して展 開 します。

 cA rcHが 指定され ていると、例 外が発生 した場合 にCA TCHの 評価結果を展開 しま

 す。

@SIMPLE EXPRESSION

 式が簡単な場合、@(---)の カッコを省略 するこ とがで きます。

 簡単な式SIMPLE-EXPRE∬IONの 例 を以下 に示 します:

 変数やオ ブジェク トの名 前1@value,@os.environ

 単純なメ ソッ ドの呼 びだ し 〔関数名 と左 カ ッコの閤 にスペースを入れな いこ

 と) :@min(2,3),@time.ctimeO)

 配列(配 列名 と左 カ ッコの問にスペ-ス を入 れない こと):@array[8]

 Cindex],@os.environ[9]Cname]

 上記の組み合わせ1@function(args).attr[10][sub).other匚117[i]

 (foo)

 文字列の直後の.は 展開されません(EmPyで 処理 され ません)。 式 の中 にス

 ペースを入れ ることができますが、 メソッ ド名 などの識別子 と力 ッコの間にス

 ペースを入 れることはできません(Python構 文 として は許 されていても)。 埋

 め込まれ たEmPyと テキス トの境界が曖趺 にならないように して ください。曖 昧

 になる ようなら@(_)書 式を使 ってください。

 例:

Variable Variable(S1)

{

 Ualue@SIValue;

}

@' EXPRESSION'

 式EXPRE∬IONを 評価 し、結果をreprOメ ソ ッ ドで評価 した値で展 開 します。

 デバ ッグでの用途 が主 にな ります。@㌧..-は 、@(repr(...))と 等価です。

@: EXPRESSION DUMMY

 式EXPRE∬IONを 評価 し、評価結果 をDUMMYに 置 き換えた文字列を返 します。

 DUMMYは 無視 されます。 自己評価 して同形 式のEmPyの 記述を 出力 に挿 入する書

 式で す。 テキス トを複数回EmPyで 処理 するよ うな場合 に利用機会 があ ります。

Appendix-1 EmPyモ ジュール

例:

@:2+2:this will get replaced with 4

この例の展開結果は以下の通りです:

@:2+2:4:

@{ STA TEMENTS}

 Pythonの 文(複 数も可)を 実行 します。文 は値 を返 さないので、何 にも展開 さ

 れません。複数 の文を複数行 にわ たって、 あるいはセミ コロン(;)で 区切 って記

 述する ことができます。通常のPython同 様 にイ ンデ ン トも有効 です、 print文

 は、標準 出力ではな く、展開結果 に出力されます。文が1つ のaAO.文 の前後 の

 空白文字 は無視 され、インデ ン トとして解釈 されません。

 例;

@ISIValue=500)

Variable Variable(S1)

{

 Value@SIValue;

f

@%KEY[空 白文 字VALUE]改 行

 シグニ フィケータを宣言 します。 シグニフ ィケータの宣言 はi行 を占め、改行文

 字で終わ ります。KEY文 字列 には空 白文 字を含んで はいけませ ん。 オプシ ョンの

 VALUEは 先頭 に空白文字 を付す ように します。シグニフ ィケ-タ は、大 きなプロ

 ジ ェク トで繰 り返 し同 じ表現を用 い、そ れを統一 したい場合な どに用 いることが

 でき ます。EmPyの 記述内で、文字列'_KEY_'を 見 つけると、シ グニフィ

 ケ-タ は、 日_KEY_'をVALUEに 置換 します。 VALUE はPythonの 式で

 す。

鑽

制 御

EmPyで は、制御 タグによ って条件付 きや繰 り返 しの展開を行 えます。制御 タグ は、

Pythonのif、 for、 whileと いった制御文 に似ています。制御タ グは@[-.-1の 書

式 で表記 します。

Appendix-1 EmPyモ ジs一 ル 147

制御タ グは対応 するPython制 御文 と同 じ動作を するよう設計 されています。 モデル

フ ァイル に多量 のEmPy表 記が挿入 されている際な どには、制御 タグを利用 した方

が便利 です,

制御 タグには、制御構造の先頭 に配置される-次 制御 タグ(if、 for、 whileな ど)

と、 それ らに引きつづいて記述 される二次制御タ グ(elif、 else、 continue、

breakな ど)が あ ります。

Pythonと 違 って、 EmPyで は、制御構造 を決めるのにイ ンデ ン トを使 うことができ

ないため、終了タ グによって構 造を明示 します。

@[PRIMARY ...]...@fend PRIMARY]

PRIMARVは 一 次制 御タグの名前(キ ーワ一 ド)で す。終了 タグには、文字列end

と、制御タ グ名 をスペースで区切 って書 きます。以 下の例は、サ ンプル コ]一ド4-3の

アル ゴリズム切 り替えを制御タ グで記述 し直 したものです。

ー

懸

@(ALGORITHM='ODE'1

@Cif ALGORITHM=='ODE']@{

STEPPER='ODEStepper'

PROCESS="MassAct可onF7uxProcess山

@[elif (ALGORITHM=_ 'NR')]@[

STEPPER='DiscreteEventStepper'

PROCESS='GillespieProcess'

1@Celse]@/

raise 'unknown algorithm: %s'

}@[end if]

Stepper@(STEPPER)(STEPPERL

 46 no property

すべての一次制御 タグはこの形式で終 了する必要 があ ります,,す べ ての-次 タグがそ

れ に対応ず る終 了タグとペア にな って いない場合 、EmPyに よる展開 はエラーで終了

します。開始 タグ@[PRIMARY.,.]と 終 了タ グ@[end PRIMABI!]の 間に別の

EmPy表 記 〔制御構造 を含む)を 挿入 できます。つま り、制御構造 はネス トする こと

がで きます。

@[for elem in elements]@Cif elem]@elem@¥n@[end if]@Cend for]

148 Appendix-i EmPyモ ジ ュー ル

-次 制御 タグに は、大 きく次 の3種 類 があ ります:(1)条 件分 岐(拝 、tryな ど)

(2)ル ■プ制 御(for、 whileな ど) 〔3)定義(defな ど)。

条件分岐制御 タグは、与 えられた条 件に よって展開 内容を決めます。ル-プ 制御 タグ

は、繰 り返 しその内容を展 開します。定義タグ は、新 しいグロ■バルなオ ブジェク ト

を定義 します。

ル ープ制御 構造 は、二次制御 タグと して@匸continue]と@[break]を 備 えていま

す。Pythonと 同様、@[continue]は 次 の繰 り返 し処理への継続 を、@[break]は

ル ープか らの脱 出を意味 します,こ れ らの二次制御 タグはネス トされた制御構造 の中

でも利 用できます。

こ れ ら の タ グ は 、Pythonの 制 御 構 造 を で き る だ け 忠 実 に 再 現 す る よ う に設 計 さ れ て

い ま す。 利 用 で きる 制 御 タ グ は以 下 の 通 りで す:

@Lif CDNDITIONI7...@Lelif CDNDITION2]...@[else]...@Cend if]

@[try]...@[except ...7...@[except ...7...@[end try]

@[try]...@[finally]...@fend try]

@[for VARIABLE in SEQUENCE]...@[else]...@[end for]

@[Whlle CONDIT工ON]...@[else]..6@[end whiie]

@[def SIGNATURE]...@[end def]

す べ て の 書 式 が 対 応 す るPython文 と 同様 に動 作 しま す 。 ifタ グ は 複 数 のelifを

持 つ こ とが で き、elseは オ プ シ ョン で す 。

except節 を と も な うtryタ グ は、 複 数 の例 外 を 扱 う こ と が で き ま す 。

tryタ グ がfinally節 を伴 う 場合 、伴 う こ との で き るfinally節 は1つ だ け で、

同 時 にexcept節 を伴 う こ と は で き ませ ん 。

for、 whileタ グ は 、 continue、 break節 を伴 う こ とが で き ます 。

定 義 タ グ(defな ど)は グ ロー バ ル 属 性 の 新 しい オ ブ ジ ェ ク トを 作 成 し ま す。 定 義 し

た オ ブ ジ ェ ク トを呼 び だ す と、 オ ブ ジ ェ ク ト内 のEmPy表 記 を 展 開 し て返 しま す 。

例 え ば、 以 下 の記 述 で はfと い う関 数 が グ ロ-バ ル に 定 義 され ま す。 鑞
@[def f(x, y, z=2, *args, **keywords)]...@[end def]

Empyの 定義 タグの書式1

@Cdef SIGNATURE]CODE@[end def]

は、以下 のPythonコ ー ドと等価 です;

Appendix-1 EmPyモ ジュール 149

SIGNATURE:

r山一""-CODE'-軽'" # so it ls a doc strlng

empy.expand(r"""CODE""", locals())

これは、同 じ名前 と引数を持つPythonの 関数を定義 しています。 doCstringに は、

展 開されるEmPy表 記を格納 します。この関数を呼び 出すと、 CODEを 展開 して返 し

ます。

注意すべき点

原則 として、EmPyを 三重引用符(「"…1「``'」 な ど)の 中で使 うべきではあ り

ません。EmPyの バグによ って展開結果 に予期せぬ文字列が混入 し、 期待 する結果を

得 ることができません。厳密 には、三重 引用符内の文字列 が改行文 字を含まな けれ ば

正常 に展 開されますが、三重 引用符 を用いる場合 にはそ の中の文字列 が改行を含む場

合 が多いので、使用を避 けた方 が賢明です。

PythonProcessのFireMethod属 性な どの複数 行にわたる文字列中でEmPyを

使 ったプ リプ ロセ シングを行 いたい場合、三重弓-用符 を含めた文字列全体をEmPy

で埋め込む ことで 問題 を回避 するこ とがで きます。以下 にその例 を示 します。

以 下の記述 は正常 に展開 されません。

鶴

@{ 鷹2.

Process PythonProcess(PYl

 FireMethod

S2S3=@k * S2.Value * S3.Value

S1.Value = (1.0 - S2S3) / (1.0 + S2S3

 VariableReferenceList C(Sl)] C(S2)] C(S3)];

 以 下 の よ う に 書 け ば 正 常 に展 開 され ま す 。

@{

k串

PYIFireMethod = "S2S3 = " + str(

PYIFireMethod +_ """ * S2.Value * S3.Value

Si.Value = (!.0 - S2S3) / (1.0 + S2S3)"""

PYIFireMethod = "¥"¥"¥"" + PYIFireMethod + "¥"¥"¥""

Process PythonProcess(PY!

 FireMethod@PYIFireMethod;

 VariableReferenceList [(S1)] C(S2)] C(S3)];

150 Appendix-1 EmPyモ ジ ュール

サンプルモデル

i

E-Cell SEに 同 梱 さ れ て い る サ ンプ ル モ デ ル に つ い て 簡 単 に記 述 し ま す。

バ ー ジ ョ ン3-1.106で は 、 サ ン プ ル モ デ ル は、/usr/share/doc/

ece113-3,1.106/samples/に 格 納 さ れ て い ま す。

以 下 の 説 明 の 項 目名 は 、 サ ンプ ル の 納 ま っ て い る デ ィ レク トリ名 で す。 例 え ば 、 以 下

の 「初 心 者 向 け の モ デ ル 」 の 「s}mple」 は 、/usr/share/doc/

ecell3-3.1.106/samples/simple/に 納 め られ て い ます 。 各 サ ン プ ル の よ り詳 し

い 記 述 は、 デ ィ レク トリ内 のREADMEフ ァイ ル に記 載 さ れ て い ま す 。

上級 者向 け:厳 密 には、 モデル フ ァイ ルは、{datadir}/doc/ece11/samples/に イ

ンス トール されま す。 ここで、(datadir}と は、Configureス ク リプ トの 一

datadirオ プシ ョンで引 き渡 したパ ス、あ るい は、{prefix}/shareで す。

{prefix}は 、 アプ リケ ーシ ョンが イ ンス ト-ル され たデ ィ レク トリで す。 アプ リ

ケ-シ ョンを/usr/に イ ンス ト-ル した場合 、--datadirオ プシ ョンを省略 する

と、上 記の デ ィ レク トリ にサ ンプル モデル がイ ンス トール される こと にな ります。

初心者向けのモデル

simple

E-Cell3初 学者 向けのとても簡単なモデル。3つ の分子種 と1つ の反応(MiChaelis

Menten反 応)か らなるモデルです。

決定論モデル 攤
Drosophila, Drosophila-cpp

シ ョウジョウバエ の概 日 リズムのモデルで、period(PER)タ ンパ ク質の振動 をモ

デル化 して います。Drosophi-aとDrosophila-cppに 納められているモデルの数理

モデル は同じも ので、以下の学術論文で発表 されたものです。

151

靆
爨

霧

甥
徴
驫
謬

聾
濘

152

GoldbeterA., A modelforcircadian oscillationsinthe Drosophila period

protein(PER).Proc Bio/Sci.1995Sep 22;261(1362):319-24.

Drosophi■aに は、 PythonPrOCessを 用 い て 作 成 した モ デ ル フ ァ イ ル と、

E×pressionF-uxProcessを 用 い て作 成 した モ デ ル フ ァ イル が納 め られ て い ま す 。

DrOsophi-a-Cppに は、 独 自 の 共 有 オ ブ ジ ェ ク トを 用 い て 作 成 した モ デ ル フ ァ イル

が 、 共 有 オ ブ ジ ェ ク トの ソ ー ス フ ァイ ル と と も に 納 め られ て い ま す 、

Heinrich

ヒ ト赤 血 球 の 解 糖 系 の モ デ ル 。ATPの 合 成 と消 費 を 考 慮 した モ デ ル で す 。 以 下 の 学 術

論 文 に基 づ い て い ま す 。

RapoportTA, Heinrich R., Mathematicalanalysis ofmultienzyme systems.1.

Modelling ofthe glycolysis of humanerythrocytes. Biosystems.1975Jul;7

(1):120-9.

HeinrichR, Rapoport TA., Mathematical analysis ofmultienzyme systems.

II.Steady state andtransient control.6iosystems.19751u1;7(1}.130-6.

CoupledOscillator

シ ンプルな結合振動 子系のモデル。複数 タイムスケール シミュレー シ ョンのサンプル

です。

branche

一 般 質 量作 用 則(GMA
, Genera■ized Mass Action law)の サ ン プ ル モ デ ル で す 。

LTD

小脳プルキ ンエ細胞の畏期抑制(LTD)の モデル。

SSystem

SSystemProcessを 用 い たS-Systemの モ デ ル 。

Pendulum

単振 り子 のモデル。index-1の 微分代数 系のサ ンプルモデル です。2つ の微分方程式

と3つ の代数 方程式か らな ります。

Appendix-2 サ ンプル モデル

確率論モデル

tauleap

tau-leap法 に よ る モ デ ル の サ ン プル 。 TauLeapPrOcessを 用 い て い ま す 。

tau-leap法 に 関 す る 参 考 文 献 を以 下 に 挙 げ ま す。

Gillespie DT, Petzold LR, lmproved Leap-Size Selection fQrACCelerated

StoChastiCSimulation-丿Chem. Pnys-2003;119(24),12784-12794-

Gillespie DT Approximate accelerated Stochastic simulation of chemically

reacting systems.J. Chem. Phys.2001;115,1716-1733.

確率論-決定論 連成モデル

heatshock

大腸菌の熱シ ョ ック応答 の簡単なモデル。確率論 モデル(Gi市lespie〕 と決定論 モデ

ル(ODE)を 連成 したサ ンプル です。

Toy_Hybrid

動的静 的ハ イブ リッ ド法を用いた ちいさなモデルです。

Flu×DistributionStepper、 QuasiDynamicFlu×ProCessを 利 用 してい ます。

セ ッシ ョンマネージャの利用例

sessionmanager

ece113-session-managerの ご く簡 単 な利 馬例 。

ga

ece113-session-managerを 用 い て遺 伝 的 ア ル ゴ リズ ム を 実 装 した サ ンプ ル,,

灘

Appendix-2 サ ンプルモ デル 153

サ ンプルモデルAppendix-2154

繍

システムのファイル構成

3

E-Cell SEの インス トールに よって作成 されるフ ァイル は、 LINUX OSの 場合、 おお

よそ以下 の通 りです(デ フ ォル トの インス トールパ スを用いた場合 、錯字 はバ-ジ ョ

ン番号 なので、環 境やE-Cellの バー ジョンによって異なる場合があ ります)。

/usr/lib/python2.4/site-packages/ecell

 E-Cellが 用 い るPythonパ ッケ ー ジ が 格 納 さ れ て い ま す。

/usr/lib/ecell-3.1

 /usr/lib/ecell-3.1/dms以 下 に、 共 有 ラ イ ブ ラ リの バ イ ナ リフ ァイ ル を格 納

 して い ま す 。

 バ ー ジ ョン3.1.106に 含 まれ る共 有 ラ イ ブ ラ リは 以 下 の 通 り で す 。

Stepper

 DAEStepper

 ESSYNSStepper

 FixedDAEIStepper

 FixedODEIStepper

 FluxDistributionStepper

 ODE23Stepper

 ODE45Stepper

 ODEStepper

 TauLeapStepper

Process

 ConstantFluxProcess

 DecayFluxProcess

 ExpressionAlgebraicProcess

 ExpressionAssignmentProcess

 ExpressionFluxProcess
 GMAProcess

 GillespieProcess
 MassActionFluxProcess

 MichaelisUniUniFluxProcess

 PythonFluxProcess

 PythonProcess

 QuasiDynamicFluxProcess

 SSystemProcess

 TauLeapProcess

讎

155

嚢羹

耋

撃
遶嚢

毳

156

/usr/include/ecell-3.1

 E-CELLC++ラ イ ブラリ(■ibeCSとlibemC)の ヘ ッダ ファイルが格 納されてい ま

 す。

/usr/bin

 実 行可能なア プリケ-シ ョンが格納されて います。

 バージ ョン3、1、106に 含 まれる主なアプ リケー シ ョンは以下 の通 りです。

 ece113-dmc

 ダイナ ミックモジュールを生成す るコンパ イラ,、

 ecell3-em2eml

 EMフ ァイル をEMLフ ァイルに変換す るパーサ。

 ece113-eml2em

 EMLフ ァイル をEMフ ァイルに変換 するパーサ。

 モデル 内のオブジ ェク トのすべて の属性 を書き出すので、手軽 に属性 の リス ト

 とその値(デ フォル ト値)を 知 るのにも使 えます。

 ecell3-eml2sbml

 EMLフ ァイル をSBMLフ ァイル に変換するパ ■サ。

 ece113-python

 普段、 直接利用する ことはあ りません。

 ece113-sbml 2eml

 SBMLフ ァイル をEMLフ ァイル に変換す るパ ーサ。

 ece113-session

 E-CeII3を スクリプ トモ-ド で操作 するためのアプ リケーシ ョン。

 ecell3-session-manager

 複数 のセ ッシ ョンを 自動的 に実行 するためのア プリケーシ ョン,,

 ece113-session-monitor

 E-Ce■13をGU-モ-ド で操作するため のアプ リケ-シ ョン。

/usr/share/doc

 マニ ュアル、サ ンプル モデル などの ドキ ュメン トが格 納されてい ます。納め られ

 ている ドキ ュメ ン トとそ の場所 はバ-ジ ョン毎 に異 な ります。 ここで は、バ ■

 ジ ョン3,1一106と とも に配布 され ている ドキ ュメン トにつ いて述べ ます。

 /usr/share/doc/ece113-3.1.106/users-manual

 ユ-ザ マ ニュアル(英 語 、HTML形 式)が 納め られて います。

Appendix-3 システム のフ ァイル構 成

 /usr/share/doc/ece113-3.1.106/samples

 サ ン プ ル モ デ ル 、 サ ン プル コ ー ドが 納 め られ て い ま す。

 バ-ジ ョ ン3.1.106に 含 まれ る サ ン プ ル は 以 下 の 通 りで す 。 詳 しく は

 Appendix-2を ご覧 くだ さ い 。

 Coupledoscillator

 Drosophila

 Drosophila-cpp

 Heinrich

 LTD

 Pendulum

 SSystem

 Toy_Hybrid

 branche

 ga

 heatshock

 sessionmanager

 simple

 tauleap

/usr/share/doc/ecel13-devel-3.1.1G6/api

 doxygenで 生 成 さ れ た 、 E-CELLC++ラ イ ブ ラ リ(libecsと ■ibemc)の ドキ ュ

 メ ン ト(英 語 、HTML形 式)が 納 め られ て い ま す 。

/usr/share/ecell-3.1

 /usr/share/ecell-3.1/dms以 下 に、 共 有 ラ イ ブ ラ リの ソ-ス フ ァイ ル を 格 納

 して い ま す.

 バ ー ジ ョン3.1.106に 含 ま れ る共 有 ラ イ ブ ラ リの ソ ー ス フ ァ イル は以 下 の 通 りで

 す。

 ConstantFluxProcess.cpp

 DAEStepper.cpp

 DAEStepper.hpp

 DecayFluxProcess.cpp

 ESSYPISProcess.hpp

 ESSYNSStepper.cpp

 ESSYNSStepper.hpp

 ExpressionAlgebraicProcess.cpp

 ExpressionAssignmentProcess.cpp

 ExpressionCoinpiler.hpp

 ExpressionFluxProcess.cpp

 ExpressionProcessBase.hpp

 FixedDAEIStepper.cpp

 FixedDAEIStepper.hpp

 FixedODEIStepper.cpp

 FixedODEIStepper.hpp

 FluxDistributionStepper.cpp

 FluxDistributionStepper.hpp

 GMAProcess.cpp

 GillespieProcess.cpp

Appendix-3 シス テムの フ ァイ ル構成 751

t

麟

GillespieProcess.hpp

MassActionFluxProcess.cpp

MichaelisUniUniFluxProcess.cpp

ODE23Stepper.cpp

ODE23Stepper.hpp

ODE45Stepper.cpp

ODE45Stepper.hpp

ODEStepper.cpp

ODEStepper.hpp

PythonFluxProcess.cpp

PythonFluxProcess.hpp

PythonProcess.cpp

PythonProcess.hpp

PythonProcessBase.hpp

QuasiDynamicFluxProcess.cpp

QuasiDynamicFluxProcess日hpp

SSystemProcess.cpp

丁auLeapProtess・cPP

TauLeapProcess.hpp

TauLeapStepper.cpp

TauLeapStepper.hpp

158 Appendix-3 システム のフ ァイル構 成

セ ッシ ョンモニタ マニ ュアル

4

本章で は、ece113-session-monitorの 操作方法の うち、頻繁 に利 用する機能 に

絞 って解説 します。

本章 は、以下 の項 目で構成 され ます。

 ・セ ッションモニタ とは

 ・起動 と終 了

 セ ッシ ョンモニタ の起 動

 セ ッシ ョンモニタ の終 了

 ・モデ ルフ ァイルの読み込み

 起動時 に読 み込む

 GUIか ら読み込 む

 。シミ ュレーシ ョンの実行

 メイ ンウィン ドウの情報

 シミュ レーシ ョンの開始

 トレーサ ー:Entityの 変化を グラフ化 する

 Stepperウ イン ドウ

 シミュ レ-シ ョン中のパ ラメ-タ の変更

 ・デー タの保存

 モデル 状態の保存

 時 系列 の保存

 データ記録方式 〔LoggerPoliCy)の 設 定

セ ッシ ョ ン モ ニ タ と は

 セ ッシ ョンモニタは、E-CellSE上 で実行され るひ とつ のSessionを 操作 ・観察する

 ためのGUIで す。

 セ ッシ ョンモニタの1回 の起 動か ら終了 まで に取 り扱 えるSessionは ひ とつだ けで 鋸
159

す。

そ して、ひ とつ のSessionが 取 リ扱 うの は、 ひとつのモデルのひ とつ の時間発展 で

す。Sessionは 、 E-CellSEで 実行 され るシミ ュレ-シ ョンの基本単位 です、モデル

フ ァイルを読 み込 めるのは1回 だけです し、シミ ュレー ションも時 刻ゼロか ら初めて

ひ とつ の時間軸 を未 来 へ と計算するだ けです。途 中でシ ミュ レー シ ョンを一時停止 し

てパラ メ-タ などの実行 条件を変更 し、そ の後 シミ ュレー シ ョンを再 開する とい った

操作 は可能 で すが、時 刻を過去 に戻 して ある時 点か らシ ミュレー シ ョンをや りなおす

こ とはで きません。そうい った試行錯誤 は、複 数のSessionを 用 いて行 います。

したが って、ひ とつのSessionを 操作す るアプ リケ-シ ョンであ るセ ッシ ョンモニ

タでも、1回 の起 動か ら終了 まで に読 み込 めるモデル ファイル はひとつだけです し、

シ ミュレ-シ ョンの時刻も戻す ことはで きません。別の条件を試 したくな った ら、も

う一度 セッシ ョンモニタを起動 して ください。

シミ ュレー シ ョンの途中の状態 をモ デル フ ァイルに保存 して おけば、ある時点か ら別

の条件で シミュ レーシ ョンを実行す ることも可能です。

数多 くのSessionを 駆使 した研究を進め るには、セ ッシ ョンモニタによるGUIモ ー

ドよ りも、ece113-sessionを 用いた スクリブ トモー ド、セ ッションマネージャに

よる複数Sessionの 自動処理を利用す る方 が効 率的です。

起動と終了

セッションモニタの起動

セ ッションモニタを起動する には、 シェルプロンプ トで以下の コマン ドを入力 しま

す。

$ ecell3-session-monitor &

靆
靆

160 Appendix-4 セ ッシ ョンモ ニタ マニ ュアル

メニューバー

メイン

コントmラ

メ ッセ ージ

ウ イン ドウ

コマ ン ドを実行 すると、次のよ うな メイ ンウ ィン ドウが表示 され ます。

右下隅を ドラッグすることで ウィン ドウのサイズを変える ことがで きます。

盡藜盆
ツー ルバ ー

Entityリ ス ト

メイ ンウィン ドウの左 端を ドラ ッグする ことで、下 の図の ようにメインウィン ドウを

分割 することも できます。分割 したウィン ドウの左端を ドラッグ して重 ね合 わせれ

ば、結合 することも可能です。

環境 に応 じて、操 作 しやすい ウィン ドウの配 置に して くだ さい。

 驫一驫 囎 厂薦.纛 廳審1;驚籥{ 撫 弋

 魚競醗一一一 …挙i・嘸四鯉 指・一一一 一 マ

鋼劃篇{1讐;1

璽撫鋼

E高曝雛!麟 餮d 」.

コ

Append"x-4セ ッシ ョンモニタ マニ ュアル 161

聾

セ ッシ ョンモ ニ タ の終 了

セ ッシ ョンモニタを終了す るには、 メニ ュ-か らFile→Exitを 選 びます。

モ デ ル フ ァ イ ル の 読 み 込 み

 起 動 時 に読 み 込 む

 シェルプロンプ トか らecell3-session-monitorを 起 動する際 に、-fオ プショ ン

 でEMLフ ァイルを指定す ることで、 ecell3-session-monitorの 起動 とモデル

 の読 み込みをま とめて実行 できます。

S ecell3-session-monitor -f MDDEL.em1

GUIか ら読 み込 む

ecell3-session-monitorを 起動 した後 で、 EMLフ ァイルを指 定して読 み込 むこ

ともでき ます。方 法は2通 りあ ります。 メニュ-か らFile→Load Modelを 選択す

る方法 と、Loadボ タ ンを押 す方法で、操作の結果 は同 じで、 Sessionメ ソ ッ ドの

loadModel()メ ソ ッ ドを実行するの と等価 です。

ii靉 靆 韈 靉鍵ili

鑼鑿 鑁鸚覊

雛 齪
 搭 一 ζ翫"画鷲

鸚

モデルフ・イ随 _1鍮 「
読み込みます。

162

 スクリプトファイルを
1-ー 読み込みます

。

灘 驫 靆

Load Modelメ ニューを選択するか、 Loadボ タンを押 すと、 ファイルを選択 するダ

イアログが開 きます。 モデル フ ァイルを選択 して、OKボ タ ンを押 します。 次の図で

は、E-Cellに 同梱 されて いるサ ンプルモデルsimple.emlを 読 み込 んでいます。

Appendix-4セ ッシ ョンモニ タマニ ュア ル

〔サンプルモデル にはEMLフ ァイルは含まれて いません。 この操作 に先だ って、

ece113-em2emlでEMフ ァイルをEMLフ ァイル に変換 してお く必要 がありま

す。)

シミュ レ-シ ョンの実行

メ イ ン ウ ィン ドウの 情報

無事 モデル ファイルが読み込 まれる と、次 の画 面のよ うにモデルの構造 がメインウ ィ

ン ドウに表示 されます。

ひ とつのSessionで 読み込めるモデル ファイルはひ とつだ けなので、 モデルを読 み

込む と、Loadボ タンやLoad Modelメ ニ ュー は無効化 され ます(画 面ではLoad

ボ タンの色 が薄 くな り、ク リックで きな くな ってい ます)。 逆 に、起動 時には無効

だったボ タンが、モデルが読 み込 まれたことで有効化 され ます。

讎
Appendix-4セ ッシ ョンモニタ マニ ュアル 163

靉

、

蟹

早

钁
野

モデルの現在の

熱 轟 働
.簸 ・d

状態を保存します・--一1

慧

以下、各領域 〔ペイ ン)に 表示 されている情報につ いて説明 します。

ツ-丿 レノ弋一

 鶚靆ント下 嘱 諭;1湘
瀰d 濕 、轟 轟 驫 ジ轟 驚驪{嘉

黯繍1ウ ィントウ Ste,1per,,ン,ウ」 ホ_!、 ウ

 を開きます。 を開さます。

 よ く使う機能や ウィン トウを呼ひたすシ ョー トカ ソト ボタ ンか並んてい ます。 モデ

 ルを読み込んだ状態の ため、Loadボ タ ンとSCrーptボ タ ンか使用不可 にな っていま

 す。逆 に、起動時 は無効 た ったSaveか らBoardま て の6つ のボ タ ンか有効 にな っ

 ていま す。

164 Appendix 4 セ ッシ ョンモ ニタ マニ ュアル

 ▼丶

 i
シ ミ ュ レ-シ ョン

速度 を表 示 します。

メイ ン コ ン トロ ー ラ

設定に従ってシミュレ■ションを Stepボ タンで実行するステップ

1ス テップ進めます。 の内容を設定します。

シ ミュ レ-シ ョン

を開始 します。-

,1,

變 鑿1_。,。 レータ。_L

シミュ レーシ ョンのStartボ タン と、 Stepボ タ ン(Stopで はあ りません 〉がありま

す。Startボ タ ンは、 引数無 しでSessionメ ソッ ドrun()を 呼びだすの と等価で

す。 このボタ ンは トグル になってお り、Sta「tボ タンを押す と、 Stopボ タンに置き換

わります。

 Stopボ タンを押 すまで、 シミュ レー シ ョンは進行 しつづ けます。シミ ュレー

鬮 タ上の時刻(経 過 時間)は 、SimulatorTimeの 欄 に表示されます。

Stepボ タンは、ユーザの指定 した長さの シミュ レーシ ョンを実行 します。指定 は、

Stepボ タンの右側の インターフ ェイスで行 います。 まずラジオボタ ンで、 stepか

intervalか を選択 します。 stepを 選 んだ場 合、シミ ュレ-シ ョンを指 定 したステ ッ

プ数だ け実行 します。上 段のボ ック スに正の整数 ブを入力 してStepボ タンを押 すと

ブステ ップだけ、シ ミュ レ-シ ョンを実行 します。Sessionメ ソ ッ ドstep(デ)を

実行するの とnじ で す。

intervalを 選んだ場合、指 定 した時間分の シミュ レーシ ョンを実行 します。上段 の

ボ ックス に正の実数xを 入力 してStepボ タンを押す とx秒 だ け、 シミュ レーシ ョン

を実行 します。Sessionメ ソ ッ ドrun(x)を 実行 するの と同 じで す。実行 される

シ ミュレ-シ ョン時 間は、厳密 にはx秒 を超過 します。詳 しくは、5章 中 の 「E-Cell

Pythonラ イブラ リAPI」 のSessionメ ソ ッドrun()の 解 説を ご覧 くだ さい。

韈
Appendix-4 セ ッシ ョンモニ タマニ ュアル 165

Entity I丿ス ト

Variable

の リス ト

System構 造

PrOCessの リス ト

舶c3醐 自d㈱緯 .V緯w簿郵蝉 蝿

齦 したE,,・tyの_」

表示方法を選びます。

選 択 した表示 方法 で

Entトtyを 表 示 します。

Entityリ ス トペ インの左側 には、 Entity(System、 Variable、 ProCess)の 構成 が

ま とめ て表示 されます。

上段 にはモデル が持っSystemオ ブジェク トの階層関係が表示 され ます。

slmple.em1の 持つSyStemは ルー トシステムだけなので、 Systemの 欄 にはルー

トシステム(/)だ けが示 されています。ルー トシステ ムの行がグ レー に反転 してい

るの は、このSystemが 選択されて いることを示 しています。

下段 には、上段 で選択されたSystemに 含 まれるVariableとProCessが リス ト

ア ップされます。Variableに ついては、-D、 Va■ue、 クラス名の3項 目を、

Processに ついて は 山D、 Activity、 クラス名 の3項 目を、そ れぞれ表 示 します。

左側 の リス トで現在選択 されているEntityの 詳細な属性情報 が、 Entityリ ス トの右

側 に表 示されます。

166 Appendi×-4 セ ッシ ョンモニ タマ ニュアル

Summaryタ ブ

1撫鱒講鱗融繍≒ 慧
1∵The R鱒5ys憩 鵝 へ

警 彎 鴨1讐em説.

黯讐轡鞠
…殫 騨繍 、触 繰 ダ
・・一
晶 0 1

耄

、卿 幽 館 ＼'、

聾,
、 1广

Systemオ ブジ ェク トのFulllD

PrQpertiesタ ブ

主要な属性の値

このSystemが 内包 する

Entityの 数

Showali

チ ェ ックポ ックス

議き込み特性

読み出し特性

属性の名前

属性の値

 デ寮ら、.ヒ ;ガ

デフ ォル トで表示 されるのはSummaryペ イ ンです。 Entityの 名前やクラ ス名、

Stepper-Dな どの主要な情報 がまとめ られてい ます。 ほかのEntityに つ いても、表

示され る属性 が若 干異な ります が同様 のSummaryペ インがデフ ォル トで す。

Propertiesタ ブを選ぶ と、下のよ うなProperties(属 性)ペ イ ンに切 り替わりま

す。

 慮ソ的髄 擲嘩 轡 響ヅ ・1广1酢、＼》楚 至鰹 轡 一 脚

…ごSy・t・m・・/

難 静 蜘 ・染
 、肖

 ':・膩 e・㌧.∫ .1∵・
i

ボ ックス

噸灘醒
叡桝 晦 晦 ・コ1贓 ∵ゾ;/ 疇

1

団OStepperlD Oa

EZI 匸コ Size ユe,18

特性

特性

畆
ギ

R一]

い叫榊 ～ 呷甜曲鮒.層曲泌 哺漏广融o冶翫・_葛螂層話勵馬广槲.-Pゴ 广 广广げ ',翻 心 薗卿 黼 广・

選択中 のEntityの 主 な属性 の名前(Property列)値(va■ue歹1」:>clueま た は

ACti>ーty属 性 の値)、 読み書 きの特性(R、 W列)が リス トされて います。

Show allチ ェックボ ックスをチ ェック すると、 すべての属性が リス トに表れます。

Appendix-4セ ッシ ョンモニ タマニ ュアル 167

韆

耶

靉

.埼

羈
餐

参照名

FulllD

Coeffi cient

攤'覊

EZi優] 5teppe6◎

団 団 醤a期白

田 ロSize

DEl

The Root System

1韓一18

Showallチ ェ ックボ ック スを

チ ェックす るこ とで

表 示 された属性

こ の例 〔Systemオ ブ ジ ェク ト)の 場 合 、 Show allを チ ェ ック す る こ とで 、 Name

属 性 が 新 た に リス トに加 わ り ま した。

SystemとVariab■eは 、 SummaryとPropertiesの2種 類 のペ イ ン で 情 報 を 表 示

しま す 。Processは 、 こ れ に 加 え て 、 Variable Referencesペ イ ンを 持 ち ま す。 こ

れ は 、Variab■eReferenCeList属 性 の 要 素 とな っ て い る>ariableReferenCeを リ

ス トした も の で1参 照 名(Name列 〉 、FulllD、 CoeffiCientが 表 示 さ れ ます 。 以 下

の例 は 、simple.emlに 含 ま れ るProcess;/:Eを 選 択 した 際 のVariable

ReferenCesペ イ ンで す 。

辷50

CO

PO

:ノニS

:/:E

j:A

Variab■eReferenCesタ ブ

168 Appendix-4セ ッシ ョンモニ タマ ニュア ル

検索範囲

検索条件

Entityリ ス トには検 索イ ンター フ ェイスが備 わ って います。

鑛鱒鑿繍 欝撫贓 鎌一1鱒 韆灘矧灘 鰯

 検索す・文字列を」
入 力 します。 検索を実行しま

す。

与え られた検索 条件に全部 また は部分一致 するIDを 持つEntityを 抽出 し、 Entityリ

ス トに表示 します。大規模な モデル で威 力を発揮 します。

Entityリ ス トは、必要に応 じて複数表 示 して、それぞれ別 のEntityの 情報を表示す

る ことがで きます。ツ-ル バーのEntityListボ タ ンを押 すと、新 しいEntityリ ス ト

ウィン ドウが開きます。

メ ッセー ジ

甥 睦鮪 登 壁鸞'i广ご

麺
メ ッセ■ ジウィン ドウには、シ ステム からのメ ッセ-ジ が袤示 されます。スク リプ ト

モー ドでタ-ミ ナル に出力される内容 とn一 です。モデルの読 み込 みや、シミ ュレー

シ ョンの実行 に失敗 した際に、原因のn定 の手 がか りとな るメ ッセ-ジ が得 られる場

合もあ ります。

シ ミ ュ レ-シ ョンの 開始

モデルを読み込 んだ状態 でStartボ タ ンを押 す、あるい は条件 を設 定 してStepボ タ

ンを押せ ば、 シミュ レーシ ョンが実行 され 、メイ ンコン トmラ 上 の時 刻

(SimulatorTime)が 更新 され、それ に応 じて、 Entityリ ス トに表示され る各

Entityの 値も リアル タイムに変化 していきます。

しか し、 これだ けでは表 示される数字 が目まぐる しく変わ って いくだけで、モデルの

状態変化を把握 するのは難 しいです し、 シミ ュレーシ ョン結果 もまった く記録されま

せん(シ ミュ レーシ ョンを停止 した時点 でのモデルの状態 を保存 することはできます

[後述])。

トレーサ-=Entityの 変 化 を グ ラ フ化 す る

シミ ュレー ション中のEntityの 変化を把握 するための簡単な方法 と して、 トレー

サーがあ ります。 ユーザ は、任意のEntityの 属性 を トレーサ ーに登録 し、その時間

Appendix-4セ ッシ ョンモニ タマ ニュ アル 169

灘

変化 をグラフ化する ことが できます。

トレーサーを作成す る方法 はい くつかあ りますが、どれも簡単です。

もっともシンプルな トレーサ-の 作り方

も っとも簡単な方法 は、Entityリ ス ト上 でSystem, Variable, ProCessの いずれ

かのEntityを 選択 し、左 下のプルダ ウンメニューがTraCerWindowと なっている

状態(起 動時の設 定です)で 、View Se■ectedボ タ ンを押 すだ けです。複数の

Entityを 選択 して-挙 に トレーサー に登録 するこ ともで きます。

例 え ば、 モデルsimple.emlを 読み込 み、 Variable:/:PとVariable:/:Sを

選択 してView Selectedボ タ ンをクリ ックする と、以下の ようなウ ィン ドウが新 し

く開 きます。選択 した状態でダ ブル クリ ック しても、同 じように トレーサーウ ィン ド

ウを開 くことができます。

ス トリップモ

での横軸の巾

グラフ描画の

Ofrの 切 り替

トレースの

表示色

トレー スのFu■■ID

騒
170 Appendix-4セ ッショ ンモ ニタ マニ ュアル

ここで、 メインコン トロー ラで、intervalを1000(秒)に 設定 してStepボ タ ンを

押す と、1000秒 分の シミュ レーシ ョンが実施 されます。この間、 トレーサ ーには リ

アルタ イムで2つ の値の変化の軌跡 が描 画され ます。1000秒 の シミュ レ-シ ョンが

終了 した時点 の トレーサーを以下 に示 します。

基質Sの トレ

縦軸(y軸)は 値

生成物Pの トレース

横軸(x軸)は 時刻

simple.emlは 、 Michaelis-Menten反 応で基質Sが 生成物Pに 変換 され ていく単

純 な生化学反応をモ デル 化 したものです。基質Sが 徐 々にゼ 囗に近づ き、それ に応 じ

てPが 増加 、500秒 付近 では ほとん どのSがPに 変換され、1000秒 の時点で は、

トレ■サーで見る限 り、Sが ほぼ消費され尽 く したことが読み取れます。

この-連 の操作で トレーサーに登録 したの は、2つ のVariableで した。 Variableは

オブジ ェク トですか ら、単-の 値を持つもので はありません。値を持 っているのは、

Variableの 属性(Property>で す。 この トレ-サ ーに描 かれている値の正体 は、指

定 されたVariableのValue属 性です。

Entityを 指定 して トレー サーに登録 した場合、実際 には、 自動的 に指定 したEntity

の規定値 に設定されて いる属性 の値がプロ ッ トされ ます。Variableの 場合Value属

性 、Processの 場合Activity属 性 、そ してSystemの 場合、 そのSystemが 持つ

SIZE>ariab"eのValue属 性(Systemの 容積)が 規定値 と して登録されます。

上 の例 では、 トレ■サー ウィン ドウの下段 にも衰示 されているように、

Variable:/:P:ValueとVariable:/:S:Valueが 登録 されています。

飜
Appendix-4セ ッシ ョンモニタ マニ ュアル 171

驪

172

同 じ操作 は、Entityを 選択 した状態で、右 ク リックな どで コンテク ス トメニューを開

いてTracerWindowを 選択 するこ とでも可能 です。 この場合、同時 に複数 のEntity

に対 して操作を行 うことはできません。

 ia+06

58ZE le-i8

勤蕣纐鬱

纏蠱;勲痙

鑿

任意の属性をプロットする

もちろん、上記 の規 定値以外の属性 を トレーサーにプ ロッ トすることもできます。

Entityリ ス トの右側 でPrQpertiesペ イ ンを表Tし 、 トレ■サー に登録 したい属性 を

選択 し、 コンテクス トメニ ュー からTraCerWmdowを 選び ます。 この操作では、新

しい トレ-サ-ウ ィン ドウが作成 されます。

下の例で は、 モデルsimple.einl中 のVariable:/:PのMolarCQnc属 性(モ ル

濃度)を トレーサ-に 表示す る操作 を行 ってい ます、、

 蠡轡麟専騨 彎 ヅ梦贈 覧 、・1竺ツ磐「 ～
・細 鱒婦・翻 ・伊

憾鱒 蘭 羸 降 寧藪 舗 幽 蘇,・ '1'、 ド

i回aDlf軸5k}r類Coe段11Σ450Q/

}団 匣]Value

ぼ 団 黶 蜘 曲erConc oo

 O口ve市GO琢 OO

:1-田 団 野1繍

Appendix-4 セ ッシ ョンモ ニタマ ニ ュアル

トレーサーに属性を追加する

すでに開いている トレ-サ ーウ ィン ドウに属性 を追加する こともで きます。

Entityリ ス トでEntityを 選択 し、コ ンテク ス トメニ ューを開いてAppend data to

→TracerXを 選択 します。 TracerXは 、選んだEntityの 値を プロ ットする トレ■

サ-の 名前です。複数 の トレーサーを開いて いる場 合は リス トされ るので、 その中か

ら選択 します。

下の例 で は、Vari∂ble;/=SをTraCer1に 追加 する操作 を しています、,

蠶膿嫁轤 灘 饑叢
E lOOO.o Va 蓐

P O-O Vahabl∈ 夛

 で蟹

 ._

E O.D MichaelisUni

 亀夐垂

SIZE 7e-18

、帯籌コ鎧 磐 調 灘

覊繼螺}
ら 匸＼ζ

…轢轢 麟
-
「

霧驤懿靆 蠱
闇一 一 一--「「---㎜

鰯確槭 繍ll灘鞭轡爨嚢i 1コ;…ζ瀬 離 鉱 廼

驫 蕊i藝麟F纛 …婆
 皆

・∴・'一?"頻撃蓑:鷺'ひ∴トこジ

繃a蜘 攤 攣 …糊…・鰄 総蠶蠶
Logger created fd

幽攤 …・駅一 幽團

現バ-ジ ョンでは、GUIか ら追加可能な のは、 Entityの 規定値 に限 られ ます。

Propertiesペ イ ンで属性 を選 択 して コンTク ス トメニ ュ-を 開いても項 目Append

data tQは 現れ ませ ん。

トレーサーに表示されるデータ

E-Cellが メモリ上 に保存 しているモデル の状態 は、原則 として現時刻 の状態だ けで

す。現時刻 に至 るまでの途中経過(時 系列)を 記録 して お〈には、 データ記録器

Loggerを 、記録 して おきたい属性 ご とに作成 しなければな りません。 Loggerに つ

いての詳細 は、次 の節 か5牽 を参照 してください。

ところで、 トレーサ■に は過去の デ-タ が表示されてい ます。例 えば、前述のよ うに

起動時 に トレ-サ-を 作 ってSとPを 登録 し、1000秒 のシミ ュレー ションを実行す

れ ば、時刻0か ら現在時刻 までの2つ の>ariableの 量 的変化が トレ-ス と して描 か

れ ます.こ れは、セ ッシ ∋ンモ ニタが、 トレーサー に属性 が登 録されるの と同時 に、

その属性 のLoggerを 作成 するこ とで実現 され ています。

シミュ レ-シ ョン開始後、あ る時 間が経過 した時点で トレーサーを作成 した場合、そ

れ以前 のデ-タ は記録 されて いないため、作成以前の軌跡 は トレーサーに表示で きま

せん。

Appendix-4セ ッシ ョンモニタ マニ ュアル 173

継

靉

ドラッグし

下 の例 は、simple.emlに 対 して、起 動時にPの トレーサーを作 り、500秒 の シ

ミュ レ-シ ョンを実行 した後 、Sの トレーサ■を作成、 さ らに500秒 のシミ ュレ■

シ ョンを実行 した状態で す。Sに ついては、0～500秒 の トレー スが表示 されませ

ん。 メモ リ上に記録 がないためです。

グラフの拡大 ・縮小

基 質Sの トレ-サ ー を作成

する以前(0～500秒)に

つ いて は、Sの トレース は

表 示 されませ ん。

トレ-サ-に 表 示されている グラフを拡大 ・縮小する ことがで きます。関心のあ る部

分を詳細 に観察 する際な どに便利 です。

拡大 するには、拡大 したい領域 を ドラ ッグ して選択 します。

ドラッグした領域の

正確な座標

上 の図で は、1000秒 実行 した シミュ レ■シ ョンの前半 を拡大 しようと ドラ ッグ して

います。選択 している領域 の正確な座標 が、グラフの右上 に表示 されます。上 の図で

は、 (時刻0-0,値1.Oe+6.0)と(時 刻360-9756,値0,0)を 対角 とする長方形の

174 Appendix-4セ ッシ ョンモ ニタ マニ ュアル

領域 が選択されてい ます。 マウスで ドラッグす るので、正確にある領域 を拡大 するの

は難 しいです。領域を選択 すると 自勦的 にその領域 が拡大 されます。

ズームアウ トして全体表示 に戻るには、 グラ フ表示領域 でコ ンテキス トメニコ1一を呼

びだ し、Zoom outを 選択 します。

拡大は何度で も繰 り返 して行う ことがで きます。 つまり、拡大表示 した グラフの-部

を選択す ることで、 さらに拡大する ことがで きます。この際、ZOQm outを 実行す

る と、直前の拡大操作 の取 り消 しとして機能 します。拡大操作を4回 繰 り返 した画面

か ら、元の全体表示 に戻るには、Zoom outを4回 行 う必要 があ ります。

シ ミュレー シ ョン実行 中にもグラ フを拡大 することができ ます。 この場合 、拡大操作

を行 った後 に計算 されたシミ ュレー ション結果 はグラフに反映 され ませ ん。 全体表示

までZoom outす ることで、現在 のシミ ュレーシ ョンの状況 が リアルタイム に反映

され ます。

Appendix-4 セ ッシ ョンモ ニタ マニ ュアル 175

驪

獵

Stepperウ イン ドウ

Entity(System、 VariabIe、 Process)の 状 態 はEntityリ ス トで 把 握 す る こ と が で

き ま す。 一 方 、 シ ミ ュ レー シ ョ ン の進 行 を 司 るStepperの 状 態 を 知 る に は、

Stepperウ ィ ン ドウ を 開 き ま す 。 Stepperウ ィ ン ドウ は 、 メ ニ ュー のTools→

Stepper Windowま た は ツ ー ル バ ー のStepperボ タ ン か ら 開 く こと が で き ま す。

下 の 図 は 、以 下 の 操 作 の 後 にStepperウ ィ ン ドウ を 開 い た と きの 状 態 で す。

Stepper■Dペ イ ン

・セ ッ シ ョン モ ニ タ を 起 動 す る。

・simple.emlを 読 み 込 む 。

・Variable:/:S、 Variable:/:Pを ト レー サ-に 登 録 す る 、,

・1000秒 の シ ミ ュ レー シ ョン を 実 行 す る(inter>a■=1000と して 、 Stepボ タ ン

を 押 す)。

Propertyペ イ ン

左側 のStepperlDペ イ ンには、 モデル中 のStepperが-丿 ス トされ ます。

simple.emlの 持つStepperオ ブジェク トはひ とつなの で、そ の-Dで あるDEIだ

けが表示され、選択 された状態 にな って います。

右側のPropertyペ イ ンには、 StepperlDペ インで選択されたStepperの 属性 につ

いて、名前(Property列)、 値(value列)、 読 み書き特性(Get、 Set)が リス ト

され ます。上の例 では、Stepper DE1の クラス名な どの属性が リス トされていま

す。Stepperの 現在時刻(CurrentTime)な ど、 時 刻 ととも に変化 する囓性値 は リ

アルタ イム に更新 されます。

176 Appendix-4セ ッシ ョンモ ニタ マニ ュアル

シミュレーション中のパラメータの変更

シミ ュレーシ ョン中 にパ ラメータ(モ デル中 の属性 の値)を 変更 して、そ の影響がモ

デル全体 にどう波及 してい くかを観察 したい場合 があ ります。セ ッシ ョンモニタを

使 ってパラメータを変更 するのは簡単で す、、

Entityの 属性を変更 するには、シ ミュレー シ ョンが停止 してい る状況で 、 Entityリ

ス ト右側 にPropertiesペ インを表示 し、変更 した い属性 のValueを 書 き換える だけ

です,,書 き換え たらリター ンキーを押 し、変更 内容を確定 します。 リターンキーを押

さずに次の動作 を行 うと、変更が反映され ず、元 の値に戻 ってい ることがありますの

で、必ず確認 してください。

変更できる属性 は書 き込み可能なもの(PrOperdesペ インのW列 にチ ェックの入 っ

ているもの)に 限 られます。書き込み不可の属性 について は、書 き換 えられなくなっ

ています。

・va幽bねPr鱒arty-一'

FU贓v、, able、/、P

撫 鞴 攤(;Properties.

鎧働b細1・ 、
げ

、

続1、蜥 ・画 ∫ iv蜘セ∵ 1
0

騾

劒

團

団DiffusionCoeff

醗 。 ・

ロv耐 。dty

団F廳d

 1.11660095681e+1フ1
、… … 广广广… 广配配广… 、h、…

20{)(}oo◎lI l 卩

P曲…P

 iz.lssoaoszis

 o

シミュレーションを停止した状

態で属性を書き換えられます。

Stepperの 属性を変更 する場合 には、シ ミュ レ-シ ョンが停止 してい る状況で、

Stepperウ ィン ドウで属性 を選 択する と、 ウィン ドウ最下方 にあるValue欄 に選 択

した属性のValueが 表示されますので、 これを書き換えてUpdateボ タンを押 しま

す。

Entityと 同様、変更 できる属性 は書 き込 み可能なもの(Propertyペ イ ンのSet列 が

+の もの)に 限られます。 書 ぎ込み不可 の属性 について は、書 き換 えられな くなって

い ます.

データの保存

シ ミュ レ-シ ョンを実 行 した際の さまざまな時刻 にお けるモデル の状態 、モデル中の

さ まざ まな変数 の時 系列を ファイル に保存 するこ とがで きます.

Appendix-4 セ ッシ ョンモ ニタ マニ ュアル 177

モデル状態の保存

ある時刻のモデル の状態 をEMLフ ァイル と して保存 する ことがで きます。 方法は、

モデルを読み込む際 と同様 に2種 類あ り、 メニューバ■か らFile→Save Model As

を選択する方法 と、 ツ一ルバ一のSaveボ タ ンを押 す方法です、,いずれの操作 も実 体

は同一 で、Sessionメ ソ ッ ドsaveModelOを 呼びだ してい ます。

保存 を実行する とファイルダイア ログが開 くので、フ ァイル名 と保存 するデ ィレク ト

リを選択 し、 ファイルを保 存 します。保存 したEMLフ ァイルをEM形 式 に変換 した

ければ、ecell3-eml2emを 用 います。

時系列の保存

GU-を 通 して、 Loggerオ ブジェク トに記 録 したデー タをECDフ ァイル に保存 する

ことができます。LoggerやECDに ついて の詳 細は、5章 「スク リプ トによるセ ッ

シ ョンの操作」 をご覧ください。

Loggerウ ィン ドウ

セ ッシ ョ ンモ ニ タ でLoggerの 状 態 を確 認 す る に はLoggerウ ィ ン ドウ を 開 き ま

す 。Loggerウ ィ ン ドウ は、 メ ニ ュ ー のTools→LoggerWindowま た は ツ ー ル

バ ー のLoggerボ タ ン か ら開 く こ と が で き ま す 。 下 の 図 は 、 以 下 の 操 作 の 後(画 面

A4-8に 椙 当)にLoggerウ ィ ン ドウ を 開 い た と き の 状 態 で す 。

・セ ッ シ ョ ン モ ニ タ を起 動 す る ,,

 ・simple.em1を 読 み込 む 。

 ・Variable:/:S、 Variable=/:Pを トレー サ ー に 登 録 す る.

 。1000秒 の シ ミ ュ レー シ ョ ン を実 行 す る(interval=1000と して 、 Stepボ タ ン

 を 押 す)、 、

驪

178 Appendix-4 セ ッシ ョンモ ニタ マニ ュアル

データの保存形式

データの保存場所

… … ' 話 唱 濡 照… 饑
隊

自

現在存在;

…

…

}
} デ■タ

 i

--㎝-

轍 』 轡1鰍,_ 舗,__、 ・1〔罐
'

= 、Variable'PValue O、0 999-7B59999B3

Yariable:」:9:Ualue 9.0 999.785994983

L:

叢
存形式

存場所

1ζ 蹴 瞬, ,,鷺 ., . 周日,

L聯 灘盤 糴鐶嘩羸 蘿飜
__鰈 繍・ 瞳きー------

懲飜軸 細一鵡 ㎜餐一邂i難 辮韈制 i

l デ-タ

…
巍 纂 講聾藻離 .
嘱漏幅_』 誕鸚 鰰 鰌晶_ 諺叮r

現在 存在 するLoggerの リス ト

デ■タの保存間隔

デ-タ の保存区間

上 段rよ 現在Sessionが 持 っているLoggerが リス トされ ます。各行 には、それ

ぞれのLoggerが 記 録する属性 のFul-PNと 、デ-タ 記録が記録 された最初 の時刻 と

最後の時刻(Start、 End)が 表示されてい ます。特 にLoggerを 作成 する操作は

行 ってい ませ んが、2つ のVariable 5とPのValueに 対 してLoggerが 作 られて

いる ことがわか ります。これ は、属性 を トレー サ-に 登録する際 に、 自動 的に

Loggerが 作 成されるためで す(前 述)。

各Entityの 規定値 の属性 について は、 トレー サーを作 らず、 Loggerだ けを作る こ

ともで きます。Entityリ ス トでEntityを 選択 してコンテクス トメニ ュ■を呼び だ

し、Create Loggerを 選ぶ ことで、 Loggerだ けを作成で きます。

Loggerを 作 成 してお けば、 シミュ レーシ ョン進行後 に トレーサーに登録 した場合で

も、Loggerに 記録されて いるデータについて は トレ■サー作 成時点よ り過去 まで

遡 って プロ ットされます。

藤糊潔
lE 、。o。

iP ・

SIZE le-18

Vanable

Va舶b.e

 導簡緲 帰～

導 、緬嚇 掴a5軅 ㈱

E O 団k=h臼駐li5Un韮

ぐ 《

撃 榔鄲勝

騰麟8蠏

蘿.
鉾磯 一

 藤 、蠶

Appendix-4セ ッシ ョンモニ タマニ ュアル 179

盤

Loggerウ ィン ドウの下段 は左 右に分かれてい ます.左 側 は、デ-タ フ ァイル の保存

に関する設定で ず,

Data typeは デ-タ を保存する形式 の設 定で、メニ ューで はecdとblnaryが 選択

できるよ うにな っていますが、現バー ジ ョンではbinaryは 未 サボ■ トですので、

ecdを 選択 したままに して ください。

Save direCtoryは 、 データフ ァイルの保存先 の指定 です。デフ ォル トで は、 カ レン

トデ ィレク トリの直下 にDataと いうデ ィレク トリを作成 して保 存 します。別のデ ィ

レク トリを保存先 にする場合、 ここで設定 します.

下段右側 は保存 するデータ に関 する設定 です。Loggerに 記 録されたデータ の全部 を

保存するの か、-部 を保存す るの か、一部 を保 存するな らどの部分 を保存 するのかを

設定 します。

data intervalはLoggerに 記録 され た時系列を間引 いて保存 する設定を行え ます。

use default intervalを チ ェックす ると(デ フ ォル トでチ ェックされています〉、

Loggerが 記録 して いる時 系列を問引かず にすべ てフ ァイルに保存 します。 間引いて

保存 する場合 には、チ ェックを外 して保 存間隔inter>a-を 設定 します。例 えば、

100に 設定 すると、Logger上 の時 系列か ら、100時 点 おきにデ ータが保存されま

す。 デー タの精度 は損なわれ ますが、フ ァイルの容鑾 は大幅 に小 さくな ります。

Specifythetimeto saveで は、保存 するデータの区間を、保存開始 および終了の

時刻で指定 できます。usesametime ontheupper-istを チ ェ ックすると(デ

フォル トでチ ェックされて います)、 上段 のLOggerリ ス トのStartか らEndま

で、LQggerが 記録 している全区間のデ-タ を保存 します。その中 から一部 を保存 し

た い場合、 チェ ックを外 して保存 されるデ-タ の開始時刻(start)と 、終 了時刻

(end)を 指定 して ください。

ECDフ ァイルの保存

デー タをECDフ ァイル と して保存する には、Data typeでeCdを 選択 した状q驍ﾅ

Saveボ タ ンを押 します。 Save direCtoryで 指定 した場所 に、 ECDフ ァイルが保 存

され ます。 これは、ECDDataFileメ ソ ッ ドのsaveOと 等価です。

デ-タ 記 録 方 式(Logger Po-iCy)の 設 定

…靉

艱

モデル によっては、E-CellSEの デフ ォル トのデ■ タ記録 方式が不適切な場合が あり

ます。デ ータ靈が過剰、あ るいは少 なすぎて問題が生 じるとい ったケースです。

Logger Policyを 変 更するこ とで、任意 のデータ記録方式 を設定 することができま

す。Logger Policyを 変更する には、 メニ ューバ-か ら、 Preferences→Logging

180 Append市x-4 セ ッシ ョンモニタ マニ ュアル

Policyを 選 び ま す 。 下 の ウ ィ ン ドウ が 現 れ ます 。 こ の 操 作 は 、 LoggerStubメ ソ ッ

ドのsetLoggerPoricy()と 等 価 で す 。

ピ鋤勢痴瀬葡嶺蘇

幕覊 疆

設 定 は 「LOgging frequency」 「ACtlon ifdiskspaCe runs out. fDiskspace

to be used forone logger.;の3つ の 部 分 に分 か れ て い ま す 。

LoggingfrequenCyで は、デ-タ を記録 する頻度を設 定 します。まず、 ラジオポ タ

ンで、Log after every[]{steps/seconds}.のstepsま たはsecOndsの いず

れかを選択 します。

stepsを 選択 した場 合、上段のボ ックスに正の整数 プを入力 して くだ さい。 Logger

は、 シミ ュレータが ブステ ップ進む毎 に1回 、データを記録 します。これは、

setLoggerPolicyUの 第1引 数で最小 ステ ップ数を指定する のと等価 です.

secondsを 選択 した場合 、下段のボ ックスに正 の実数xを 入 力 して ください。

Loggerは 、 シミュ レータがX秒 進む毎に1回 、デ-タ を記録 します(厳 密 にはX

秒 よりもやや大き くな ります)。 これは、setLoggerPolicyOの 第2引 数で最小

時間間 隔を指定するの と等価 です。

ACtion ifdisk spaCe runs outで は、デ ィスク の記憶容 量を使い切 って しまった場

合の対処 方法を決め ます。Throw exceptionを 選択 した場合、 デ ィスク容量がな く

な るとセ ッシ ョンモニ タは例外 を発生 して停止 します。Overwrite earliest dataを

選択 する と、も っとも早 い時刻 のデータを新 しいデータで上書き して いきます。これ

は、setLoggerPolicyOの 第3引 数 の設 定に相当 します。

Disk space to be used forone山oggerで は、 Loggerひ とつ あたりに割り当てる

デ ィスク容量を設定 します,No Limitで は無制限です,, Maximum[lkilobyte

で は、 設定 した容量(キ ロバ イ ト単位)がLoggerひ とつ あたりの最大デ ィスク使用

量 と して設定され ます。 これは、setLoggerPoliCYOの 第4引 数 の設定 に相当 し

ます。

Appendix-4セ ッシ ョンモニ タマニ ュア ル 181

難…

設定が終 了したら、OKを 押 して保存 します。 設定 した内容 は、次 回以降セ ッション

モニタを起動 した際 にも引 き継 がれます、,

Logging frequenCyとdata interval

LoggerPoliCyで 設 定するLoggingfrequenCyと 、 Loggerウ ィン ドウで設定す

るdata intervalは 異 なるものです。 Logging PolicyのLoggingfrequencyは 、

Loggerに よる記録 の間隔を設定 しますので、これを大き い値 に設 定すると、シ ミュ

レー シ ョン結果 の多 くが、記録 されずに捨て去 られ ます。Loggerウ ィン ドウで設定

す るdata interva-は 、 Loggerに 記 録されたデ-タ のうちどれだ けを ファイル に保

存す るかというdata intervalを 設定 するものなので、 Loggerに はファイル に保存

する データ以外 も記録 され ている場合があ ります。

大量 のLoggerを 作成 する と、デ ィスク容 董を圧 迫 した り、計算速度 が低 下する場合

があ ります。これ らを軽減 するためには、LoggerPo山1Cyを 変更 して ください。

Loggerウ ィン ドウのdata intervalの 設 定 は、 シミュ レ■シ ョンの実行速度や、

Loggerが 消費 するデ ィスク容量 に影響 しません。

難
182 Appendix-4 セ ッシ ョ ンモ ニタマ ニ ュアル

黷

Appendix-4セ ッシ ョンモニタ マニ ュアル 183

執 筆

 高橋恒一

 内藤泰宏

 小泉守義

協 力

 牛尼翔太

 熊本博美

 佐野 ひとみ

 武内麻里亜

 西野 泰子

 宮部碧

 山田一翔

謝 辞

E-Cellシ ステム の開発 の一部 は、独立行政 法人 科学技術振興機構 戦略 的創造研 究推

進事業の研究領域 「シミ ュレー ション技術 の革新 と実用化基盤 の構 築 」2004年 度採

択研究 「システ ムバイオ目ジー のため のモデ リング ・シミ ュレーシ ョン環境の構築」

(研究代表者-慶 應 義塾大学 環境惰報学 部、同 先端生命科学研究所 冨田 勝 教授 〉

によ って実施 されま した。 また、本書 の執 簗 ・出版 に関わ る費用 の一部も同事業の助

成を受 けて います,.

本書の表紙 ・裏 表紙はDavid S Goodsel-博 士 がpubliC useに 提供 して いるイラス

トレー シ ョンをベース に制作 しま した。

本書 の1～7章 は、以下の文書 を翻 訳 ・改変 ・加筆 したものです。

E-CellSimulation EnvironmentVersion 3.

by KoichiTakahashi

Copyright O 2002-2008 Keio University

.107User's Manual(Draft:Dec.13,2007)

Permission is gr∂nted to copy, distribute and/or modify chapter 1-フofthis document

underthe terms ofthe GNU Free Documentation License, Version LZ or any later

version pub-ished by the Free Software FOundatlOn;with nQ In>ariant SeCt一〇ns, no

Front-CoverTexts, and no Back-CoverTexts. A copy ofthe license is included in the

section entitled"GNUFree Documentation License"

本 書 の1～7章 を 、Free Software Foundationが 発 行 のGNUFree

DocumentatiOn L1Cense(バ-ジ ョン1.2ま た は そ れ 以 降)が 定 め る 条 件 の 下で 複

製 、 頒 布 、 あ る い は改 変 す る こ とを 許 可 し ま す。

184

E-Cell Fundamentals

発行 日 2010年3月15日

著 者 慶應義塾 大学湘南藤沢 キャンパス 先端生命科学研究会

編 集 内藤 泰宏

発行所 慶應 義塾 大学 湘南藤沢学会

印刷所 株式 会社 ワキ プリン トピア

ISBN978-4-87762-233-6

SFC-RM2009-004

