配糖体は、グルコースなどの糖部分と糖ではない部分が共有結合で連結した構造を有する化合物である。配糖体のうち、もっとも一般的な化合物はO-配糖体と呼ばれる化合物である。O-配糖体は糖部分と糖ではない部分が炭素ー酸素結合で連結されている。O-配糖体は、さまざまな有用な生物活性を示す化合物が存在する。しかし、生体内ではO-配糖体は酸やグリコシダーゼによって容易に加水分解され、元の生物活性を失ってしまう。一方、C-配糖体と呼ばれる種類の配糖体は、糖部分と糖ではない部分が炭素ー炭素結合で連結されており、酸やグリコシダーゼによる加水分解を受けない。このため、Cー配糖体は生体内でも分解され難く、代謝安定性が高い。このようなCー配糖体の特徴を利用し、近年近年、糖尿病治療薬イプラグリフロジン(SGLT2 阻害薬)など、C−配糖体構造を持つ医薬品が開発されてきた。しかし、C−配糖体の従来の合成法は毒性の高い試薬を用いる必要があった。本研究ではC−配糖体の新しい環境調和型合成法の開発に取り組み、毒性の低い試薬を用いたC-配糖体の合成法の開発に成功した。
Glycosides possess structures in which a sugar moiety such as glucose and a non-sugar moiety are covalently linked. Among the glycosides, the most common compounds are O-glycosides, in which the sugar part and the non-sugar part are linked by a carbon-oxygen bond. O-glycosides possessing a variety of useful biological activities have been reported. However, in vivo, O-glycosides are easily hydrolyzed by acids or glycosidases and lose their original biological activity. On the other hand, in a type of glycoside called a C-glycoside, a sugar portion and a non-sugar portion are linked by a carbon-carbon bond and are not hydrolyzed by acids or glycosidases. Therefore, C-glycosides are not easily decomposed even in the living body and have high metabolic stability. Taking advantage of these characteristics of C-glycosides, in recent years, drugs having a C-glycosides structure such as ipragliflozin (SGLT2 inhibitor) for treating diabetes have been developed. However, conventional synthetic methods for C-glycosides require the use of highly toxic reagents. In this study, we worked on the development of a new environment-friendly synthetic method for C-glycosides, and succeeded in developing a synthetic method for C-glycosides using reagents with low toxicity.
|