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Abstract

Vortex methods are particle schemes that were first introduced as a tool to solve inviscid,
unbounded flow problems in two- and three-dimensional space. In this thesis we briefly
introduce the mathematical framework necessary to understand vortex methods and
their benefits. When one tries to extend the method to viscous or bounded flows,
however, one faces several additional problems. Our main contributions to the field
address three of the problems encountered.

Our first contribution is a new scheme to handle unbounded, viscous flows. Based on
the vorticity redistribution method, this scheme requires neither a frequent regridding
of the particle field, nor makes use of the viscous splitting. It can thus be used
with higher order time-stepping methods. Its consistency, stability, and conservation
properties are proven. Together with the new heuristics of reduced operators and small
neighbourhoods we demonstrate in numerical experiments that the method can be
implemented efficiently on computers. The numerical results are in good agreement
with the analysis.

As a second contribution we propose a new scheme to tackle the particle regularisation
problem in bounded domains. This problem refers to the task of obtaining a smooth
approximation of a function from a given particle field. To this end we construct
a new class of globally smooth finite element spaces and prove their approximation
properties. The global smoothness of these spaces will allow us to use them as test-
functions for particle approximations. The regularisation problem is then modelled
as a perturbation to a stabilised L2-projection onto fictitious domains. After proving
consistency, stability, and convergence of the method we show that optimal results are
obtained when choosing o ~ v/h, where o refers to the smoothing length and h to the
particle spacing. As a consequence the complexity of the velocity computation can be
reduced from O(h~%) to O(h~%?). Numerical experiments confirm the analysis and
that the derived error bounds are sharp.

Our third contribution are simple and efficient formulae to evaluate the Biot—Savart
integral on three-dimensional domains using tetrahedral meshes. The derived formulae
are exact for piecewise linear functions. Compared to the previously published formulae
by Suh, the presented approach is numerically more stable and reduces the number
of required arctangent evaluations from twelve to four. The increased stability is
demonstrated in a simple numerical example.

We finish this thesis with concluding remarks on the results and possible interesting
topics for future research.
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Preface

When I first came in contact with vortex methods during my exchange semester at Keio
University in 2012, I was immediately fascinated by the elegance of their underlying
ideas. Vortex methods are numerical schemes for solving the incompressible Navier—
Stokes equations. But instead of using their usual formulation in terms of velocity
and pressure, vortex methods make use of their equivalent formulation in terms of
vorticity. Using the vorticity as the primary variable comes with several benefits: the
equations take the form of a transport equation from which the pressure variable and the
solenoidal condition have been eliminated. By retrieving the velocity from the vorticity
using the Biot—Savart law, this equation can be solved in a semi-analytical manner.
This is done by discretising the vorticity field using ‘particles’ which are then convected
with the flow. It is this natural treatment of convection which makes vortex methods
so physically appealing and renders them essentially free of any artificial viscosity.
This makes vortex methods ideal candidates for the direct numerical simulations of
turbulence.

In many flows of practical interest, such as bluff body flows, the velocity field has
global support. Conventional flow solvers based on the Navier—Stokes equations in their
velocity—pressure formulation invariably need to artificially restrict the computational
domain and have to introduce potentially non-physical boundary conditions. The
vorticity, on the other hand, usually vanishes outside of a bounded region. Vortex
methods make use of this fact, as only this bounded region needs to be discretised. The
use of the Biot—Savart law then automatically guarantees that the far-field condition is
fulfilled exactly.

Despite these apparent advantages vortex methods are not in widespread use today.
The reason for this is twofold. The application of the Biot—Savart law to the particles
leads to an N-body problem, for which the obvious direct summation approach leads to
a computational complexity of O(N?). This made the method prohibitively expensive
for all but the smallest problems. Thus vortex methods remained an academic curiosity
and the amount of research carried out on them was fairly limited. This changed with
the development of fast summation techniques such as the Barnes—Hut treecode or
Greengard and Rokhlin’s fast multipole method in the late 1980ies, which addressed
this problem in a satisfactory manner.

Vortex methods excel in the simulation of unbounded flows and in avoiding artificial
viscosity; it is in this area that the theory behind vortex methods has reached its greatest
maturity. On the other hand, the treatment of physical viscosity and solid boundaries
remain problematic for both practical and theoretical reasons. Most commonly used
viscous schemes rely on a frequent regridding of the particles and/or on the so-called
viscous splitting. While regridding reintroduces artificial viscosity, the splitting limits

xi



Preface

the method’s accuracy in time to first order. In the treatment of solid boundaries
one faces two problems: boundary conditions in terms of the vorticity are typically
unavailable and need to be determined in a separate computation. But the perhaps
even bigger problem lies in the need to regularise particles near boundaries, which
has also been pointed out by Cottet and Koumoutsakos in the introduction of their
monograph.

Vortex methods are intimately linked to the vorticity equation and make use of
analytic solutions where they are available. This gives them an advantage compared to
the commonly used general purpose methods. It is my belief that vortex methods thus
have the potential to become a new standard tool in computational fluid dynamics,
next to other well established methods such as finite volumes. But in order for this to
happen, the aforementioned problems need to be solved in a theoretically as well as
practically satisfactory manner first. During my time as a doctoral student I therefore
focused on finding solutions for a small subset of the problems involved. It was my
target to develop solutions which have both a solid mathematical foundation, while
at the same time being practical and efficient to implement. This thesis is the result
of this effort, and I hope that its contents will be useful in the future development of
vortex methods.

Yokohama, August 2017.
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Chapter 1
A Brief History of Vortex Methods

Modern vortex methods and particle methods in general are unique in the sense that
they use highly irregular objects—Dirac delta distributions—to approximate smooth
flows. On first sight, this might seem unintuitive. Much to the contrary, however,
particle methods predate the modern distribution theory and are in fact deeply based
on physical intuition. Before moving on to the mathematical details in the next chapter,
we therefore try to give an outline of the history of vortex methods here. It is our
intention to highlight developments that we believe are of particular importance. Such
a review is necessarily biased and incomplete, and we want to apologise to those authors
we omitted. To at least partly accommodate for them we included several references to
extensive reviews of the particular eras.

1.1 Origins (1858-1973)

Vortex methods were first proposed in 1931 by Louis Rosenhead to predict the unstable
behaviour of vortex sheets in inviscid flows. In modern terms such flows correspond to
solutions to the Euler equations whose vorticity is only defined in the sense of certain
surface functionals, i.e., a special class of distributions. Similarly, the first vortex
methods discretised such vortex sheets using point functionals; an even more irregular
class of distributions. To understand the motivation behind the study of such irregular
flows it is necessary to go back in time to the very beginning of the study of vortical
flows. From a modern perspective it is interesting to study the old papers, as they
treat highly irregular mathematical objects—distributions—with great elegance and
physical intuition; objects that were only rigorously defined and formalised about a
century later.

1.1.1 Advent of Vortex Dynamics

The beginning of the investigations on vortical flows can be pinpointed exactly: Hermann
Helmholtz—who only later became to be known as Hermann von Helmholtz— published
his landmark article on vortex motion in 1858 [1]. At this point the Euler equations
had already been known for a century [2]. The influence of viscosity, however, had only
recently been studied independently by Navier, Poisson, Saint-Venant, and Stokes [3];
the number of these independent works can be seen as an indicator that they were not
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well known at the time. Unaware of these works, but well aware of the importance of
friction, Helmholtz wanted to advance the field in the area [1, pp. 25f]:

Der Einfluf} der Reibung auf Fliissigkeiten konnte bisher noch nicht mathe-
matisch definirt werden, und doch ist derselbe in allen Féllen, wo es sich
nicht um unendlich kleine Schwingungen handelt, sehr grof3, und bringt die
bedeutendsten Abweichungen zwischen der Theorie und der Wirklichkeit
hervor. [..] In dieser Beziehung schien mir daher eine Untersuchung der
Bewegunsformen, bei denen kein Geschwindigkeitspotential existirt, von
Wichtigkeit zu sein.

The influence of friction on liquids could not yet be defined mathematically,
yet it is very large in all cases, except for those of infinitely small oscillations,
and cause of the greatest discrepancies between theory and reality. [..] In
this way it seemed to me that an investigation of those forms of motion for
which there is no velocity potential would be of importance.

This work introduced the vorticity vector and gave the derivation of its evolution
equation, as well as the Biot—Savart law for obtaining the velocity from a given vorticity
field in the whole-space. In modern notation these results read respectively:

w:=V xu, (1.1)

Ow
N +(u-Vw=(w-V)u, (1.2)
u(x) = —% /W ﬁ « w(y)dy. (1.3)

Until Helmholtz, the primary research focus was on potential flows: all known forces
of nature were conservative and had a potential of their own; and it can be shown that
such forces can only induce potential flows in inviscid fluids. Thus the question arose
how a fluid at rest could possibly develop rotational flow patterns. To this end he
also introduced vortex lines (‘Wirbellinien’), vortex filaments (‘Wirbelfiaden’, literally
vortez threads), and vortex sheets (‘Wirbelflichen’, literally vortex surfaces). The latter
refers to a surface S of discontinuity in the flow field, where the velocity’s components
normal to the surface are continuous, but the tangential components may jump. He
showed that such a discontinuity corresponds to a flow whose vorticity is concentrated
on the surface. In modern terminology such a vorticity field is a distribution w € D’
such that:

woph= [ws @dS Ve D= (CRERY), (1.4)

where wg is a smooth function defined on the surface S. For its corresponding velocity
field one subsequently obtains:

uG) = [ oY () dS(y). (1.5)



1.1 Origins (1858-1973)

Helmholtz then went on and introduced the famous Loffel-Experiment (from German
Léffel, ‘spoon’). In this thought experiment one stirs a liquid with an idealised, infinitely
flat spoon. Due to the stirring motion, the tangential velocity components on both
sides of the spoon differ. If one then abruptly pulls the spoon out of the fluid a vortex
sheet remains and thus vorticity has entered the flow. Nowadays this experiment is
often called Klein’s Kaffeeloffel, after a 1910 article of Felix Klein [4], even though
he clearly attributes it to Helmholtz. (Klein, however, was the first one to define the
liquid as coffee.) Subsequently the study of the motion of vortex sheets was the next
major step.

1.1.2 Kelvin—Helmholtz Instability

Eleven years later, in 1869, Helmholtz’ observations on the instabilities of vortex
sheets were published [5]. He thought about the flow at the exit of an organ pipe,
where a jet of air enters the surrounding air at rest, similar to the case depicted in
figure 1.1. Similarly, Sir William Thomson—who would later become to be known as
Lord Kelvin—discussed the instability of water surfaces subject to winds in 1871 [6].

Here we will briefly discuss Helmholtz’ example. Because of the absence of friction,
the tangential components of the jet and its surroundings differ, while their normal
components are both zero and thus continuous. In other words, a vortex sheet develops
between the jet and its surroundings. Using experiments with smoke, Helmholtz
observed that the slightest disturbances to such a sheet would cause the flow to become
unstable and would result in the sheet to roll up, resulting in the archetypical smoke
rings nowadays known from tobacco smokers, as seen in figure 1.2. The question
was now whether the previously derived equations for the evolution of the vorticity
would also predict such a behaviour. Because there is no closed-form solution of these
equations, the answer to this question has proven to be a formidable challenge.

Later Lord Rayleigh published his findings [7] on the linearisation of the two-
dimensional version of these equations. The analysis of these linearised equations
showed that small disturbances were amplified exponentially over time and thus seemed
to confirm the validity of the Euler equations. Subsequently the phenomenon became
known as the Kelvin—Helmholtz instability. However, this very same prediction also
means that the linearisation quickly ceases to be accurate. Thus the question remained
whether the original non-linear equations would correctly predict the vortex sheet’s
roll-up.

1.1.3 Rosenhead’s Vortex Method

It was the question about the evolution of vortex sheets that in 1931 lead Louis
Rosenhead to his numerical experiments [9]. To the best of our knowledge, his
numerical approach is not only the first manifestation of vortex methods, but also of
all particle methods in general.

To simplify matters, Rosenhead considered a vortex line subject to a small sinusoidal
disturbance in a two-dimensional, periodic setting. He divided the line into segments of
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Figure 1.1: An illustration of the organ pipe’s flow into surroundings at rest. Taken
from Kelvin’s work on what became to be known as the Kelvin—Helmholtz
instability [8]. Copyright expired according to Japanese law, author died
more than 50 years ago in 1907.

Figure 1.2: An example of vortex sheet roll-up: smoke rings by a smoker.
Copyright © 2008 Andrew Vargas. ‘wheres the 277,
https://www.flickr.com /photos/45665234@N00,/2891056110.
Licensed under the Creative Commons BY license version 2.0:
https://creativecommons.org/licenses/by/2.0/legalcode.
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Figure 1.3: Rosenhead’s results from his vortex particle method [9]. The results suggest
that vortex sheets roll up as expected. Copyright © 1931 Louis Rosenhead.
The Royal Society, publisher of the original work, allows reproduction of
up to five figures from works published more than 70 years ago without
need of seeking permission.

equal length h, and approximated these segments by replacing them with point vortices
at their centres carrying all of that segments vorticity. This effectively corresponds to
approximating the line-integral resulting from the Biot—Savart law with the mid-point
quadrature rule. The Biot—Savart law then reduces to a finite sum which can be
computed manually. In modern terms this corresponds to an approximation of the
vortex line with a sum of weighted Dirac deltas:

N
W~ Wy 5:ZFi5(X_Xi)7 (1.6)
i=1

where the I'; is the amount of vorticity on segment ¢, and x; denotes its centre.
His approach was then to move the x; according to the resulting velocity field, i.e.,
modifying the x; according to dd’;i = u(x;(t),t), where u is obtained from wy, by use
of the Biot—Savart law. For this he used a Runge-Kutta method. Performing his
computations by hand, he was limited to fairly small numbers of such particles. His
computations suggested that vortex sheets do indeed roll up like observed in nature,
as depicted in figure 1.3. Later repetitions of Rosenhead’s method, however, lead
to inconclusive results. Birkhoff and Fisher, for example, reported chaotic particle
movement [10]. Subsequently his method received criticism and its convergence was
questioned.

There are several reasons for these inconclusive results. For once, due to the instability

rounding errors would also be amplified exponentially over time. Illustrations on the




Chapter 1 A Brief History of Vortex Methods

influence of this error were for example later given by Krasny [11, Figures 1 and 3|, who
compared computations in single and double precision arithmetic. On the other hand,
vortex particles are significantly more irregular than vortex lines or sheets: they induce
singular velocity fields with velocity values approaching infinity close to particles. In
modern mathematical terms this is reflected in the class of test-functions permitted for
such functionals: for a vortex sheet the test-function only needs to possess a well-defined
trace on the surface, while a vortex point requires its test-function to be continuous in
the classic, point-wise sense. This loss of regularity can cause simulations to ‘blow up.’

1.1.4 Particle-in-Cell Methods

In the second half of the 1950ies Harlow independently developed the Particle-in-Cell
method [12, 13]. In the latter reference the compressible Euler equations in their
velocity—pressure formulation are considered for a simple, box-shaped domain. The
box is subdivided into cubical cells of equal size o; within each cell velocity, pressure,
and energy are assumed to take constant values. Particles representing fluid mass
are then placed into each cell. Mathematically this means that the fluid density p
is discretised using a particle field pp, where h denotes the average distance between
neighbouring particles. In order to obtain a density value for a cell, the mass of all
particles in that cell is summed up and divided by the cell’s volume. This corresponds
to a regularisation step, as a piece-wise constant approximation p, is obtained from a
particle field pp, which is only defined as an irregular distribution.

We can thus for the first time differentiate between a particle approximation pp and
a regularised approximation p, on the cells. Although not emphasised in these early
works, this regularisation step and its interplay with the other quantities on the cells
would prove to be crucial in the modern analysis of particle methods.

Convection of mass is then again modelled by moving the particles, while the
other flow equations are solved using a conventional finite difference schemes. This
is probably the first hybrid method combining particle methods and conventional
mesh-based solvers. In Appendix II for the first time particles are identified as Dirac
delta distributions. Subsequent improvements of the particle—grid regularisation scheme
lead to the name Cloud-in-Cell method [14].

1.1.5 Further Reading

A very extensive review of the beginnings of vortex dynamics was written by Meleshko
and Aref [15]. Slowly but surely, with the development of Prandtl’s boundary layer
theory [16], the importance of viscous effects in the generation of vorticity became
generally accepted. Subsequently, in the later development, the study of vortex sheets
took a back seat and most authors studied more regular, viscous flows. For an overview
over the later developments of vortex sheet theory we thus refer the interested reader
to Chapter 9 of Majda and Bertozzi’s book [17]. Much later Krasny’s computations
using a regularised vortex method clearly confirmed the roll-up of vortex sheets [18].
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1.2 Blobs, Cells, and Early Analysis (1973-1985)

The year 1973 saw the publishing of two influential articles which would have a lasting
impact on the further development of vortex methods. Christiansen [19] applied the
Clound-in-Cell approach to the vorticity equation, resulting in what is now known
as the first Vortex-in-Cell method. Chorin [20], on the other hand, introduced blob
functions to regularise the particle field as well as the first scheme to handle viscosity
and solid boundaries in vortex methods. His blob method allowed for the first rigorous
proofs of convergence of his method in certain cases.

1.2.1 Vortex Blob Methods

It is hard to overestimate the impact Chorin’s 1973 article [20] had on the development
of vortex methods. His method already contains all of the essential ingredients of
modern vortex methods. He considered slightly viscous flows past a cylinder in the
plane and his approach introduced several novelties at once:

1. Based on physical arguments, Chorin argued that one should consider vortex blobs
(s of core-width ¢ instead of point vortices. These blobs correspond to smooth
approximations of the Dirac delta function. Alternatively, this can be interpreted
as particular regularisation of the vortex particle field: w, = wp x {,, where %
denotes convolution. An approximate velocity field would then be computed
according to the Biot—Savart law u, = K % (, x wy and the particles would be
convected according to this smooth, approximate velocity.

2. Viscous and inviscid effects would be treated separately. First, one would ignore
viscosity, and advance the approximation in time according to the inviscid
equations. In a second step viscous effects would be accounted for in the absence
of convection. This approach is nowadays called viscous splitting.

3. Again based on physical intuition, viscosity was modelled as a Brownian motion
of the particles. This was implemented by randomly altering the particle positions
according to a specified probability distribution. This approach came to be known
as random walk.

4. The inviscid, no-through boundary condition on the cylinder was enforced using
a boundary element method. The resulting slip on the boundaries could then
be cancelled by placing a vortex sheet on the boundaries, which was again
approximated using particles.

In numerical experiments his method correctly predicted the typical Karman vortex
street observed in flows past cylinders at certain Reynolds numbers. The success of his
method attracted the interest of several researchers and its various new components
created a whole set new questions: how should the blob-function (, look like? How
should one choose the blob size ¢ in relation to the particle spacing h? How large is
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the error introduced by the viscous splitting? How accurate is the simulated Brownian
motion? And ultimately: what is the method’s order of convergence?

These questions could only later be answered by means of rigorous analysis. Until
such results became available, different authors tried different choices. Based on
physical arguments, for example, Chorin [20] as well as Chorin and Bernard [21] chose
o = h/2n, while Milinazzo and Saffmann [22] chose o = h/50.

1.2.2 Early Analysis

Under the term early analysis we refer to a class of convergence proofs that heavily rely
on the properties of individual particles’ trajectories. Convergence proofs of this type
were the first to become available for simplified versions of Chorin’s method. These
proofs have in common that they are very involved and complex.

The first attempt at such an analysis is due to Dushane [23], who studied the inviscid
method in the two-dimensional whole space case, i.e., in the absence of boundaries.
Hald and Del Petre later spotted an error in his analysis and gave the first proof of
convergence for limited times [24]. Hald then later significantly improved this result
and showed convergence for all times [25]. His proof showed that the blob function (,
should fulfil moment conditions. These conditions state that for all polynomials p up
to a fixed order the blob function (, should behave exactly like the Dirac delta, i.e.,
[ ¢o(x)p(2) dz = p(0). Interestingly, his result showed that one should choose o ~ v/,
similar to the result of chapter 4 later in this work.

Beale and Majda gave proofs of convergence for three-dimensional, inviscid vortex
methods [26, 27]. Due to the additional vortex stretching term of the three-dimensional
equations, their analysis is significantly more complex. They make use of the fact
that in unbounded domains the mid-point quadrature rule is of infinite order and
conclude that one then can choose o ~ h. Numerical experiments and an improvement
in the treatment of the stretching term then quickly followed [28, 29]. Hald then later
combined all these results, in what may be seen the pinnacle of these early analysis
techniques [30].

Greengard and Anderson also analysed the effect of the time discretisation on the
method [31]. Their analysis showed that the time-step does not need to fulfil any
constraint depending on h or ¢ to ensure stability; a clear advantage to conventional
grid-based methods. The effect of the viscous splitting was analysed by Beale and
Majda [32], who showed that the approach converges with first order with respect
to the time-step. The convergence of the random walk approach was first proven by
Goodman [33]; his result was later improved by Long [34], who showed that the method
converges only very slowly. More advanced viscous schemes will be discussed later in
chapter 3 of this work.

1.2.3 Vortex-in-Cell Methods

Around the same time as Chorin experimented with vortex blobs, Christiansen applied
the Clound-in-Cell approach to the vorticity equation [19]. He considered the inviscid
equation in a two-dimensional box, and discretised the vorticity field w by a set of
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particles wy,. Similar to the Partile-in-Cell approach, a smoothed approximation w, is
obtained on the cells by means of a suitable interpolation procedure. Unlike vortex blob
methods, the velocity is retrieved from the vorticity by solving the Poisson equation
— AV, = w, for the stream function ¥, using a conventional finite difference scheme.
This gives the method an advantage over Chorin’s blob method, because such Poisson
solvers are significantly faster than the evaluation of the Biot—Savart law. Velocity
values at the particle locations were then retrieved by differentiation of the stream
function, again using finite differences. He presented the results of several numerical
experiments, which seemed to confirm the validity of his approach.

Due to the various sources of error in the method—interpolation, Poisson solver,
finite difference differentiation formulae—rigorous analysis of his scheme was difficult
and we are unaware of any complete proof of the ‘early analysis’ type. Later authors
applied the method to vortex sheets [35], improved the particle-mesh interpolation
scheme [36], and extended it to three-dimensional flows [37].

1.2.4 Further Reading

In 1980 Leonard [38] gave an excellent review of the various vortex methods in use at
the time. He also discusses vortex filament methods, a different extension of vortex
particle methods to three-dimensional space. In these methods one considers line
segments of vorticity. They have some benefits compared to three-dimensional particle
methods, but because of the increased cost to track line segments they are less common
today. Leonard later also gave a review of these methods [39].

‘Smoothed particle hydrodynamics’ are particle methods that were developed com-
pletely independently of vortex methods in 1977 by Gingold, Monaghan, and Lucy [40,
41]. Tt is remarkable that these methods also regularise particles by blobs—exactly
like Chorin [20]—while coming from a completely different background.

1.3 Modern Analysis and Fast Algorithms (since 1985)

The second half of the 1980ies brought both practical and theoretical advances for
vortex methods. On the practical side the development of so-called fast algorithms like
the treecode [42] and its subsequent improvement, the fast multipole method [43, 44]
allowed the handling of huge particle numbers. On the theoretical side the works of
Raviart [45] and Cottet [46] significantly simplified analysis and allowed for an entirely
new interpretation of vortex methods.

1.3.1 Fast Algorithms

In vortex blob methods the velocity induced by the particle field is evaluated using the
Biot—Savart law u, = K x(, xwp, where K denotes the Biot—Savart kernel, (, the blob
function, and wy, the particle approximation of the vorticity. Setting K, := K (,, this
yields the representation u,(x) = YN, K, (x — x;)I';. Subsequently, evaluating this
sum at all N particle locations to advance wy, in time yields a complexity of O(N?).
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Until the development of the fast algorithms, this prevented the use of large particle
numbers and gave vortex-in-cell methods with their mesh-based Poisson solvers a clear
advantage.

The treecode [42] and the fast multipole method [43, 44] reduced this complexity to
O(Nlog N) and O(N), respectively. The practical implications of these algorithms are
dramatic: they would allow computers to handle billions instead of just thousands of
particles, as before. For an example of such large scale simulations we refer the reader
to the works of the group of Yokota [47].

1.3.2 Modern Analysis

In 1985 Raviart’s lecture notes on particle methods were published [45]. Assuming the
velocity field would be known, the inviscid vorticity equation forms a linear transport
equation. He realised that moving the particles according to the known velocity then
corresponds to the analytic solution of the underlying transport equation. The stability
of solutions to the transport equation in turn depends on the smoothness of the velocity
field, and can be analysed without explicitly looking at particle trajectories. In vortex
blob methods, the accuracy and smoothness of the approximate velocity in turn depends
on the choice of the blob function (.

This lead to the greatly simplified analysis by Cottet [46], who realised that the error
of the method can be split into two parts: the first part is the particle error, resulting
from the discretisation of the vorticity field. The other part is the error introduced by
the regularisation with the blob functions. His approach clearly distinguished between
these two sources of error, and also allowed for simplified analysis of the stretching
term and of vortex-in-cell schemes.

1.3.3 Further Reading

In 2000 Cottet and Koumoutsakos published their monograph on vortex methods [48].
This work contains many more references, as well as practical and analytical results. A
slightly more recent review is given by Koumoutsakos [49].

While the practical implications of the development of fast algorithms were huge,
they did not change the underlying structure of vortex methods. For a more detailed
treatment of the topic we thus refer the reader to the literature, for example to Pettitt
and Kurzak’s review [50].

1.3.4 Open Problems

A common feature of all the previously mentioned analysis results is that they assume
the whole-space case or periodic boundary conditions. We are unaware of any complete
convergence results in the presence of solid boundaries. In fact, all particle methods
face severe difficulties at boundaries, as the commonly used blob functions fail to yield
accurate regularisations in this case.

Another problem is the unavailability of boundary conditions for the vorticity,
especially in the viscous case. The difficulty of boundary conditions and the treatment
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of viscosity in vortex methods will be discussed in more detail in the following chapter.
As we will see, the viscous term completely changes the character of the solutions to
the equations.

After having introduced the necessary mathematical framework, we will see that
several of the problems encountered can be considered in isolation. We will describe
these problems in greater detail at the end of the next chapter. Our main contributions
in this work will be a new scheme for viscous unbounded flows in chapter 3, a truly
general solution to the regularisation problem in bounded domains in chapter 4, as
well as analytical formulae for the integration of the Biot—Savart integral in chapter 5.

11






Chapter 2
Vortex Methods

In this chapter we describe vortex methods and their underlying mathematical ideas in
greater detail. In order to understand these schemes, we need to introduce the necessary
mathematical framework first. We begin by introducing the equations of incompressible
flow in both their primitive variable and vorticity—velocity formulations and discuss
the necessary boundary conditions. In the following two sections we separately discuss
the kinematic and dynamic aspects of the equations. In the inviscid case we will see
that the solution to the dynamic part of the equations can be given by tracking fluid
particles to their original locations. This motivates the introduction of particle fields
as a discretisation method in the following section. We end this chapter by outlining
a generic vortex particle method and briefly describe the steps involved. For the
mathematical notation used throughout this thesis we refer the reader to appendix A.

2.1 Flow Equations

In this section we briefly introduce the incompressible Navier—Stokes equations in their
primitive variable formulation. Their saddle-point structure makes the elimination of the
pressure variable desirable, which can be achieved by using the vorticity equation. The
resulting set of equations is called the vorticity—velocity formulation, which consists of
a dynamic and a kinematic part, which will be discussed in further detail in sections 2.2
and 2.3, respectively. We end this section with a brief discussion of boundary conditions.

2.1.1 Primitive Variable Formulation

Many treatises in the field of computational fluid mechanics start with an introduction
of the Navier—Stokes equations, and this one shall be no different. We will restrict
ourselves to incompressible flows, which already pose significant challenges, while still
accurately describing a wide variety of flows of practical interest. To this end, we
assume that we are given a domain D C R%, d € {2,3}, which may but does not
need to be bounded. This domain D will be called the physical domain. In two- and
three-dimensional space and in the absence of any external forces such as gravity, the
Navier—Stokes equations read in their simplest form:
Ou 1

a1 +(u-Viju= pr + vAu, D 2.1)
V-u=0,

13
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Here and throughout this work we will use boldface letters to refer to vector quantities,
such as the velocity u. The first line is a vector equation describing the conservation of
momentum. In there p refers to the fluid’s density, which by definition is constant in
incompressible flows. The scalar field p is the pressure and the parameter v > 0 refers
to the fluid’s kinematic viscosity, which is also assumed to be constant throughout
this work. The symbol A refers to the vector Laplacian. The second line is called the
continuity equation and describes the conservation of mass.

For a given domain D C R?, d € {2,3}, and a set of suitable boundary conditions,
these seemingly simple equations already form a complete description of incompressible
flows with constant viscosity, and it is widely believed that they model complex
phenomena such as turbulence and boundary layers correctly. The majority of available
flow solvers are based on this formulation in the variables velocity and pressure, which
are also called the primitive variables.

2.1.2 Vorticity—Velocity Formulation

The continuity equation V -u = 0 does not contain the pressure variable, giving the set
of equations (2.1) a saddle-point structure. This means that the pressure is only given
implicitly; the continuity equation is a constraint to the momentum equation and the
pressure variable acts as a Lagrange multiplier. This causes significant difficulties in
their numerical and theoretical treatment. One is therefore interested in eliminating
the pressure variable from these equations.

This can be achieved by instead looking at the vorticity. In three-dimensional space
the vorticity vector is defined by w := V x u. In two-dimensional space the vorticity
reduces to a scalar, which further simplifies matters: w := 0,,u2 — Oz, u1, where uy
and wuo refer to the Cartesian components of the velocity vector. Intuitively, the
vorticity describes the tendency of a fluid particle to rotate around its own centre. In
three-dimensional space the vorticity vector points in the direction of the rotational
axis, in two-dimensional space this is the axis normal to the plane.

Taking the curl of the momentum equation, one then obtains with help of the
continuity equation V- u = 0 as well as the vector calculus identities V - (V x (o)) =0
and V x (V(e)) = 0 the vorticity equation in two-dimensional:

%: + (u- V)w = rvAuw, (2.2)

as well as in three-dimensional space:

(?;; +(uVw—-—w-Vu=rAw. (2.3)
The term w - Vu is called vorticity stretching and is of major importance in the
understanding of turbulence. The fact that it is missing in the equations for the plane
is the main reason why three-dimensional flows are fundamentally more complex than
their two-dimensional counterparts. This is further underlined by the fact that in the
plane the vorticity is a only a scalar.

14



2.1 Flow Equations

Together with the continuity equation and the definition of the vorticity, we obtain
the vorticity—velocity formulation of the Navier—Stokes equations in two:

ow
— -V)w =rA
g T Vw=rhe bR (2.4)
V-u=0, Oy us — Opu1 =w,
and three dimensions:
Oow
— Vw—-—w-Vu=rA
g P Vw-w-Vu=vAw, ) ps (2.5)

V-u=0, VXxu=uw,

In this formulation, the Navier—Stokes equations naturally split into two separate
parts. The vorticity equation in the first line describes the dynamics of the system:
assuming the velocity field u is known we are given a convection—diffusion equation
for the evolution of the vorticity. The second line describes the system’s kinematics:
conversely assuming we are given some vorticity field w or w, respectively, we are
given a closed system for obtaining the corresponding velocity u. There are specialised
approaches for the solution of each these problems when considered in isolation; it is
their coupling which makes the resulting system so complex. We will further discuss
the kinematic and dynamic parts of this system in sections 2.2 and 2.3, respectively.

2.1.3 Conditions on the Domain and the Vorticity

Before we continue our discussions, we will need to impose certain conditions on the
physical domain D. We will assume that D is simply connected. This for example
excludes flows around doughnut shaped objects in three-dimensional space. In two-
dimensions the restriction is more severe, as it excludes external flows past any bounded
object such as an aerofoil. The reason for this restriction lies in the fact that in simply
connected domains every curl-free vector field is conservative, i.e., it is the gradient of
a scalar potential ¢: Vxu =0 <= u = Vy. In multiply connected domains the
implication only holds the other way around. As a consequence the kinematic part of
the Navier—Stokes equations would only allow for a unique solution if one prescribes
additional boundary conditions. The Kutta condition for two-dimensional flows past
an aerofoil is an example of such an additional condition. While in principle vortex
methods may be extended to multiply connected domains, it makes sense to restrict our
discussion to this simple case, which—as we will see—already poses several challenges.

The following assumptions will allow us to run numerical simulations on computers,
which in principle can only handle bounded objects. We will assume that the domain’s
boundary 0D has a finite a finite area (or length if d = 2). This includes the
possibility D = @ and thus also D = R?, but it excludes cases like the half-space.
This condition will allow us to carry out integrations over the domain’s boundary in
computer simulations.

For the sake of simplicity, we will assume that the vorticity field is compactly
supported. This allows us to limit discretisations to bounded domains 2, such that
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suppw C clos C clos D and 9D C 9€. In practice it will be sufficient for w to vanish
sufficiently fast outside such a domain §2. This is not a severe restriction, as even in
many external flows of practical interest the vorticity does essentially vanish outside
of a bounded region. The domain 2 will be called the computational domain. This
restriction will furthermore allow us to avoid various technicalities in the ongoing
discussion, for example when measuring errors in the L?(Q)-norm. The boundary
conditions will still be considered on 0D only.

2.1.4 Boundary Conditions

In order to solve the Navier—Stokes equations in either of their formulations, we need
to prescribe certain boundary conditions at the domain’s boundary dD. The type of
these conditions differs for the inviscid (v = 0) and viscid case (v > 0). If we consider
external flows such that the physical domain D extends to infinity, we furthermore
need to prescribe far-field conditions, corresponding to ‘boundary conditions at infinity’
As a concrete example we will consider the flow past a fixed ball B C R? in space, such
that the physical domain is given by D = R?\ B. Periodic boundary conditions will
not be considered in this work, and we refer the interested reader to the book of Majda
and Bertozzi [17].

The Far-field Condition

In external flows one needs to prescribe a far-field velocity u., with zero curl and
divergence. In other words, uy needs to be a potential flow. Given such a velocity
field, the far-field condition then reads:

u(x) — us(x)] = O(x|'™),  [x| = co. (2.6)

In external flows it is common to set uy, to a constant ‘free-stream velocity’. In the
following discussion we will usually include the far-field velocity uy in the resulting
mathematical expressions. The formulas remain valid for the case of bounded domains
by setting us, = 0.

Inviscid Boundary Condition

If one thinks of physical boundary 9D as the surface of some impermeable body in the
flow, one quickly arrives at the no-through boundary condition:

U N = Upegy - N on 0D, (2.7)
T
where n denotes the exterior normal vector of the surface dD. This condition ensures
that the liquid may not enter the surface of the body. In the case of a stationary body
like our ball B one would consequently prescribe u-n =0 on 0D = 0B. Due to the
absence of friction, in inviscid flows (v = 0) the fluid may slip along the body’s surface.
We thus do not prescribe the tangential values of the velocity.
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In bounded domains D the function g needs to fulfil a compatibility condition. By
the continuity equation V - u = 0 one obtains with the help of the divergence theorem:

O:/ V-udx:/ u-ndS = gdS. (2.8)
D oD oD

Viscous Boundary Condition

In viscous flows (v > 0) the presence of friction prevents the liquid from slipping
alongside a body’s surface. Here one thus additionally prescribes the tangential
components of the velocity at the boundary of the body. In summary one thus
prescribes the entire velocity vector:

U = Upody on 0D. (2.9)

In the case of a body at rest as in our example of a flow past a sphere, one would thus
prescribe u = 0 on 9D.

Some Remarks

There also is a mathematical reason for different nature of the viscid and inviscid
boundary conditions. In the inviscid case the vorticity equations (2.2) and (2.3) which
describe the dynamics of the system are transport equations, i.e., hyperbolic. The
viscous equations, on the other hand, contain a diffusion term and are parabolic.
The mathematical theory behind hyperbolic and parabolic equations is fundamentally
different, resulting in the change of boundary conditions. To avoid the additional
complexity that comes with the no-slip condition, in the development of viscous schemes
one often first considers the whole-space D = R%, such that there are no boundaries
oD = .

The question if and under which additional conditions these boundary conditions
allow for a unique solution of the Navier—Stokes equations is an open problem. In fact,
even the question of the mere existence of smooth solutions for the three-dimensional
whole-space space case D = R3 remains unanswered as of the time of writing; it is one

of the famous seven Millenium Prize Problems.!

2.2 Kinematics

The kinematic part of the Navier—-Stokes equations is given by the systems
V-u=0, puy — Opu; =w in D C R? (2.10)

for the two-dimensional case, and:

V-u=0, Vxu=winDCR? (2.11)

'See http://www.claymath.org/millennium-problems.
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for the three-dimensional case. In this section we discuss the solution of these systems
for a given vorticity. In the three-dimensional case, due to the vector calculus identity
V - (V x (e)) =0, this given vorticity must fulfil V-w = 0 in D. We are thus looking
for a vector field u with prescribed curl and divergence. This is a classical problem
from potential theory.

Note that this problem is independent of the viscosity v, and thus the same will be
the case for its solution. In particular, the solution will be uniquely determined by
the far-field condition and the velocity’s normal component on the boundary dD. The
additional tangential velocity components supplied in the viscous case are in fact a
condition on the given vorticity field: because the solution to the kinematic equations
is uniquely determined by the inviscid boundary condition, the supplied vorticity field
must be such that this solution also fulfils the conditions on the velocity’s tangential
components at the boundary. A vorticity field that fulfils this condition is called
admissible.

2.2.1 The Biot—Savart Law

We first consider the whole-space case D = R? together with the far-field velocity
Us = 0. For a given vorticity field, we will denote the solution of this problem by u,,
or uy,, respectively. The unique solution to this problem is given by the Biot—Savart
law. For the two-dimensional case we define the kernel function K as:

K(x) = _27r|1x|2 (_”C;) . (2.12)

The Biot—Savart law then reads u, = K *w, where the symbol x denotes convolution:
w0 = [ Kx=y)u(y)dy. (2.13)

It is sufficient to only integrate over the bounded computational domain 2 C D,
because we previously introduced the assumption that w vanishes outside this region.
In the three-dimensional case the Biot—Savart law is given by the matrix kernel:

1 0 —I3 xI9
K = 0 - 2.14
(x) 4 |x|3 " z (:)El ’ ( )
1

and u, = K x w, respectively.

2.2.2 General Solution

Because the kinematic equations form a linear system, one may add any solution of the
homogeneous equations V-u = 0,V x u = 0 to u,; the resulting function will then still
fulfil the original set of equations (2.10) and (2.11). In the whole-space case D = RY
the general solution of the kinematic equations that fulfils the far-field condition (2.6)
is thus given by u = uy + u,.
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Let us finally consider the case that 9D # () and that we are given inviscid boundary
data u-n = g on dD. We then need to find a solution u, of the homogeneous equations,
i.e., a potential flow, such that u, -n =g — (U + uy) - n on 9D. Setting u, := Vo,
in the three-dimensional case, for example, this amounts to finding the scalar potential
i that solves:

Ap=0 in D,
Veo-n=g— (ux+uy) -n ondD,
()] = (x| ™) x| = oo, (219
Volx)| = O(x|?) x| = co.

This is the classical Neumann problem for the Laplace equation, which is known to be
well-posed. In particular, it uniquely determines ¢. In the case of a bounded domain D
the far-field conditions need to be omitted and ¢ then is only unique up to a constant.
The resulting velocity u,, however, remains unique. This analogously holds in the
two-dimensional case.

The solution of this system can be written in terms of a boundary integral over
0D. For example, in the three-dimensional case, ¢ may be written as a double layer
potential:

1 X—Yy)'n
o0 =)= - [ B0 Buy)asy)  xep, (210)
where the scalar function p is the searched-for surface density, which usually can only
be determined numerically. This can be done with so-called boundary element methods,
which only require a mesh of the surface dD. A very rigorous and detailed treatment
of boundary element methods is given in the book by Sauter and Schwab [51].

A variety of different representations of the same function ¢ and the resulting
velocity u, are available. Setting for example v := V X (un), one may also write the
velocity as a boundary integral involving the Biot—Savart kernel K:

w00 = [ Kx-yny)dsy) xeD. (2.17)

This gives rise for the interpretation of v as a boundary layer which has shrunken to
thickness zero, i.e., a vorter sheet.

Independent of the particular representation of u,, the unique general solution to
the kinematic equations (2.11) is then given by u = u + u, + uy,, and the analogous
expression holds in the two-dimensional case. Because 0D and €2 are assumed to
be bounded, all of these integrals can—at least in principle—Dbe evaluated using a
computer.

2.2.3 Explicit Representation for the Viscous Case

Let us now consider the case of viscous boundary conditions, i.e., the entire velocity
vector u is prescribed on the boundary 0D. As briefly mentioned in the introduction
of this section, the additional tangential components are in fact conditions on the given
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vorticity field. We therefore consider the case where such an admissible vorticity field
is given. In this case the velocity u, can be given explicitly in terms of the boundary
values. This can be achieved with the help of the Helmholtz decomposition. For reasons
of brevity, we will again only consider the three-dimensional case.

PROPOSITION 2.1 (HELMHOLTZ DECOMPOSITION). Let D C R3 be a domain in three-
dimensional space and let Uy denote a potential flow. Then any sufficiently smooth
vector field u : D — R? that satisfies the far-field condition (2.6) can be written in
terms of a scalar potential @ and a vector stream function W as:

U=1Us —Vo+VxWT, (2.18)
where p and ¥ are given by:
L [ Vy-ufy) 1 / n-(u—ux)(y)
= — [ —~dV - — dS(y), 2.19
o) = - [ vl - [ RREREasy), 1)
1 Vy xu(y) 1 nx (u—ue)(y)
v :—/yidv ——/ dS(y), 2.20
=11 P ™= Lo P (¥) (2.20)

where n denotes the surface normal exterior to D and the symbol Vy signifies that
the derivative shall be taken with respect to the y variable. In the case D = R3 the
boundary integrals vanish. In bounded domains one has Uy = 0.

Remark 2.2. There is a is a bewildering amount of different versions of this statement, a recent
review of more than a hundred articles is given by Bhatia et al [52]. Sauter and Schwab give a
rigorous treatment of the boundary integrals involved and many references in the first three
chapters of their book [51]. A sketch of the proof in the context of vortex methods is also given
by Cottet and Koumoutsakos [48, pp. 281f].

Substituting (2.11) into (2.18) to (2.20), one obtains an explicit representation formula
for the velocity u, which naturally splits into far-field, boundary, and volumetric terms:

u = Uy + ugp + Uy, (2.21)

where u,, is the velocity from Biot—Savart law from subsection 2.2.1 and the boundary
term ugp is given by

dS(y).

(2.22)
This expression only depends on the boundary values of u. Because the solution of the
kinematic equations (2.11) is unique, by comparing the terms we obtain that uspp = u,.
Let us now briefly consider the case that the entire velocity vector is prescribed, but
that the vorticity field is inadmissible. In this case the problem (2.11) has no solution.
However, the velocities upp and u, are still well defined, and in this case we have
uyp # u,. The difference between the two may then be seen as some sort of measure
of the inadmissibility of w.

upp(x) = ! /aD (x—y)[(u—ux) n]+(x-y) x [(u-ux) xn]

4 x—yp

20
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2.2.4 Properties of the Biot—Savart Integral

In a numerical scheme that uses the vorticity as its primary unknown, one can only
assume the availability of an approximation w, of the exact vorticity w, where o
refers to a discretisation parameter. In general, this approximate vorticity field cannot
be assumed to be admissible. Thus, the question arises what is known about the
corresponding approximate velocity K x w, .

The first question we will address is that of the existence and boundedness of the
Biot—Savart integral. With help of the Calderén-Zygmund inequality [53, 54] one can
show that for all w € (LP(Q))?’, p € (1,00), one has:

K *wllyrq) < Cllwlze@)- (2.23)

Here and throughout this thesis the symbol C' will refer to a generic positive constant
that is independent of the functions involved. This inequality analogously holds for
the two-dimensional case. In a nutshell, it tells us that the velocity field u,, and its
first derivatives continuously depend on the given vorticity, and that this vorticity
only needs to be an LP(Q)-function. In particular, this inequality also holds true for
vorticity fields that are not admissible or do not fulfil V - w = 0. Now, noting that the
Biot—Savart law is linear in the vorticity, we obtain:

1K % — K x wollwinio) = 1K * (@ = wo)llwis@) < Cllw —wollio).  (2:24)

This means that a good vorticity approximation will also lead to a good velocity
approximation, even if it is not admissible. Also note that K*w = V x A, with A
corresponding the volume integral in equation (2.20). By the vector calculus identity
V- (V x (e)) =0, we obtain that velocity fields u,, induced by the Biot—Savart law
always fulfil the continuity equation V - u, = 0. We cannot, however, assume any more
that one also has V x (K xw,) = w,-.

2.3 Dynamics

In the previous section we assumed we were given a prescribed vorticity and showed how
to obtain the corresponding velocity u. In this section we will consider the opposite
case: at any time we are given a velocity field u that satisfies V - u = 0 and ask
for the evolution of the vorticity. It is determined by the solution of the vorticity
equations (2.2) and (2.3) for the two- and three-dimensional cases, respectively. As
mentioned before, the theory for the viscous and inviscid versions of these equations
differs significantly, and will thus be discussed in separate sections.

2.3.1 Inviscid Case
In this section we will briefly discuss equations of the form:

(?,;: +(u-Vw—bw=f inD, (2.25)
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where u is a sufficiently smooth velocity field that satisfies V-u = 0 and u-n = 0 on 0D,
and b and f are sufficiently smooth functions. The two-dimensional, inviscid vorticity
equation (2.2) is of this type with b = f = 0. The three-dimensional equation (2.3)
corresponds to a system version of (2.25), with a matrix function B = (Vu)' and
right-hand side vector f = 0. Such equations describe transport phenomena. For this
reason in the inviscid case equation (2.2) is also called the vorticity transport equation.

For the solution of this equation let us consider some imaginary ‘particle’ at some
point x € D at some time t. Here, by particle we mean an infinitesimal flow volume.
We are interested in how this particle changes its position over time as it follows
the flow u. The curve that this particle moves along is called its trajectory, in the
mathematical literature this curve is called a characteristic. We will write X(7;x,t)
for the trajectory of the particle that was at position x at time t. The parameter 7 will
then give us the position of that particular particle at any other time 7. With these
definitions we obtain the following ordinary differential equation for the trajectory of

that particle:
dX
T rxt) = u(X(rix, ), 7),
X(t;x,t) = x.

(2.26)

For Lipschitz continuous u, this system always has a unique solution, and thus X is
uniquely determined. The unique analytic solution of the transport equation is then
given by [48, Theorem A.2.1]:

w(x,t) = w(X(0;x,t),0) exp </Ot b(X(1;%,t),7) d7'>

+ /Otf(X(T;X,t),T) exp(/T

The solution of the system in three dimensions can be derived in a similar way. Thus,
at any time ¢ > 0, the solution of equation (2.25) at position x € D can be obtained
by tracking that particle along its trajectory to its initial position at ¢ = 0. Because
we assumed the no-through condition on 0D, this position is guaranteed to be within
the interior of D. Because V - u = 0, no two particles ever collide, such that this
‘backtracking’ can always be done. As a consequence, the solution of the transport
equation requires only initial values and no boundary conditions. This confirms that the
inviscid boundary conditions described in subsection 2.1.4 are in deed of the correct
type. The observation that the solution depends on the trajectory of imaginary particles
is crucial to the idea of particle methods, in which this tracking of particles is done in
an explicit manner.

t b(X(s;x,1), s) ds> dr. (2.27)

2.3.2 Viscous Case

In the case of viscous flows (v > 0) the vorticity equations (2.2) and (2.3) are (a system
of) second order differential equations. Unlike in the inviscid case, the solution of these
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equations can generally only be determined numerically. We thus focus on a special
case in order to highlight the differences between the viscous and inviscid equations.

The mathematical nature of convection diffusion equations is determined by the
highest order spatial derivative, i.e., the viscous term vAw. Let us thus consider the
case D = R? and u = 0. In this special case, we obtain the so-called heat equation in
the whole space:

%: = vAw in R?, (2.28)

or the equivalent vector version for w in the case d = 3. For this particular case an
analytic solution can be given. Defining the heat kernel H:

1 2
H(x,7) = ————exp (—""), (2.29)
T
the solution of (2.28) is given by w(x,t) = H(-,vt) xw(-,0) :

w(x,t) = /]Rd H(x —y,vt)w(y,0)dy, t>0. (2.30)

Already here one can see major differences when compared to the inviscid case. The
solution is now given by a convolution with a kernel function, similar to the Biot—Savart
law in subsection 2.2.1. Especially note that the solution at some fixed point in space
depends on the initial data at every point in space. It is thus no longer sufficient
to ‘track’ imaginary particles back to their origins. One also says that in parabolic
equations the information spreads at an infinite speed: an initially compactly supported
w will immediately evolve into a function with global support, though exponentially
decaying as x| — oo.

If the domain D has boundaries, one will need to prescribe boundary conditions
for w on dD. One can for example either prescribe w itself, i. e., Dirichlet data, or its
normal derivative Vw - n, i.e., Neumann data. In Robin type boundary conditions
one prescribes a mix of the two. This remains true for the general case when u # 0:
then we still are given a parabolic equation, and the unique solution of such equations
always requires boundary conditions.

This is problematic in flow problems, where vorticity boundary values are usually
unavailable and furthermore vary with time. As described earlier in section 2.2, the
prescribed tangential components of the velocity vector at the boundary 0D are
essentially a condition on the vorticity field to remain admissible. One is thus faced
with the task of finding the right boundary condition on w, such that the vorticity field
remains admissible. One may try to find the corresponding Dirichlet conditions on w,
but the more common approach is to find the Neumann data. The reason for this is
that finding the Neumann data is equivalent to determining the vorticity generation
at the wall, and thus allows for a natural interpretation. In an initially irrotational
flow field the boundaries are the only source of vorticity. One way to obtain this
Neumann data is to look at the difference of the velocities upp and u, as introduced
in subsection 2.2.3. A detailed explanation of this process can be found in section 6.3.3
of Cottet and Koumoutsakos’ book [48].
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2.3.3 Some Remarks on Turbulent Flows

Many flows of practical interest are turbulent. Such flows can be characterised by their
high Reynolds number, which corresponds to velocity values that are large compared
to the kinematic viscosity: |u| > v > 0. In this case the vorticity equations remain
strictly parabolic, but in large areas of the domain its solutions behave like solutions
to the inviscid, hyperbolic equations.

At the boundaries, however, inviscid flows may slip, while viscid ones may not.
For this reason one observes boundary layers in turbulent flows, which ensure that
the no-slip condition can be fulfilled. With shrinking viscosity the thickness of the
boundary layers decreases, eventually collapsing to vortex sheets « or + in the inviscid
limit, corresponding to a potential flow like u, in section 2.2. On the other hand,
the no-slip condition is the only source of vorticity: without the no-slip condition an
initially irrotational flow will remain so for all times.

One thus faces a dilemma: in large portions of the domain the flow behaves like an
inviscid one, for which particle schemes are a natural approach. On the other hand
viscosity is required in order to understand turbulence and boundary layers. Viscous
effects can well be handled with mesh based methods and it is not immediately obvious
how this can be achieved with particle schemes. Mesh based methods on the other
hand typically face severe problems when dealing with transport phenomena. The
questions that arise here are: how can viscous effects be efficiently modelled in particle
methods? How can particle methods be coupled with a mesh based method? These are
questions of ongoing research and we hope that this work forms a small contribution in
this direction. For further information on mesh based methods and parabolic equations
in general we refer the interested reader to the book of Thomée [55].

2.4 Quadrature Rules and Particle Fields

In the previous sections we have discussed mathematical properties of the flow equations.
We have seen how the inviscid equations can be solved by tracking imaginary particles
and how the velocity can be computed from the vorticity with help of the Biot—Savart
integral. It is thus natural to ask how such particles can be modelled in a computer
and how integrals can be approximated numerically. In this section we introduce
quadrature rules and we will see that they allow for a natural interpretation as particle
fields.

A quadrature rule for a computational domain Q C R? is a set of finitely many nodes
x; € RY i =1,..., N, with associated weights w; € R, such that for sufficiently smooth
functions f it holds that:

N
/ f(x)dx ~ ) wif(xi). (2.31)
@ i=1

For m € Ny, let P,,, denote the space of polynomials on R? of total degree not greater
than m. One says a quadrature rule has exactness degree m, if it is exact for all
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feP,:
N
/Qf(x) dx =S wif(x;)  VfeP, (2.32)
=1

In the remainder of this section we will discuss how such quadrature rules can be
constructed, their accuracy, and their relation to particle approximations.

2.4.1 Meshes

In general, finding good quadrature rules for arbitrary domains Q@ C R? is a hard
problem. Instead one typically considers a very limited set of reference domains T,

which are then mapped to physical domains 7' = ®(7T") by help of mappings ® and the
transformation theorem:

/ A fdx:[(fo®)|detq>/\d>z. (2.33)
o(T) T

For affine maps ®, the resulting quadrature rules for T" have the same exactness
degree as the quadrature rule for the reference domain T. The classical and well
established example of quadrature rules for the reference interval T = [—1,1] are the
Gaufi—Legendre formulae [56], which have positive weights w; > 0 and the optimal
exactness degree m = 2N — 1. For triangles and tetrahedra the theory is less complete.
Efficient quadrature rules with positive weights have for example been published by
Zhang, Cui, and Liu [57].

A very common strategy encountered in practice is to subdivide the domain €2 into
several disjoint simplices, i.e., into intervals, triangles, or tetrahedra, for d = 1,2, 3,
respectively. This process is commonly called meshing. The resulting subdivision
G = {T1,T>,...} is called a mesh, grid, or—in the case that all of the T; are simplices—a
triangulation. The elements of a mesh G are also referred to as cells. Simplices have
the advantage that they can always be transformed to a reference simplex T with the
help of affine maps .

Exactly decomposing a domain into simplices is of course only possible if it is a
polytope, e.g., a polyhedron in three-dimensional space. There are approaches to use
curved, so-called ‘iso-parametric’ cells, which further complicate the analysis. But even
with the help of such cells, meshing and integrating over arbitrary domains remains
a hard problem for which there is no panacea. In practice one will thus usually need
to be satisfied with, e. g., polyhedral approximations of the domain of interest. For
such polyhedral domains there are powerful mesh generators available, for example
Gmsh [58] or TetGen [59].

In the rest of this thesis we will only consider shape-regular, quasi-uniform triangula-
tions. For a precise definition of these terms we refer the reader to Brenner and Scott’s
book on finite elements [60, Definition (4.4.13)]; in essence they mean that all cells of
a triangulation are of approximately the same size and have a comparable diameter,
which is commonly labelled h. We will write Gy, for a mesh of a domain € whose cells
are of size h. These conditions also ensure that the cells remain reasonably well-shaped,
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e.g., in two-dimensional space, triangles have a height comparable to their diameter
and do not collapse to line segments as h — 0.

2.4.2 Interpretation as Functionals

For a given domain €2, the integral can be interpreted as a linear operator I, that maps
an integrable function f to a real number I(f):

I:IYQ) =R, f|—>/fdx. (2.34)
Q

A linear operator that maps an element of a vector space to a scalar is commonly called
a functional. Like the integral operator itself, a quadrature rule of exactness degree m
can be interpreted as a functional I,,:

=1

Note that this functional requires its argument to be at least a continuous function.
This is necessary, because otherwise the function evaluation at the quadrature nodes
x; would not be well-posed. The integral operator I, on the other hand, requires its
argument only to be integrable; it is, for example, also well-posed for functions that
contain jumps.

The so-called Dirac functional § evaluates a function at the origin:

5:0Q) =R,  fe f(0), (2.36)

that is 0(f) := f(0). For notational convenience we will write d(x — x;) for the
functional that evaluates a given function f at x;, i.e., §(x —x;)(f) := f(x;). With
the help of this definition, quadrature rules may equivalently be written as:

I, = % w0 (x — x;). (2.37)
i=1

2.4.3 Error Bounds

For quadrature rules with positive weights and exactness degree m, classical error
bounds are typically of the form:

< Chm °f (&), 2.38
< ohax | max |07 (6] (2.38)

N
[ £ dx = S wisix)
T i=1

where h := diam T denotes the diameter of the cell T and « is a multi-index. We
can already see here that high-order approximations typically require equally high
smoothness of the function f.

The problem with these estimates is that they do not fit well into the framework
of Sobolev spaces, as they require the function f to be strongly differentiable. We
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therefore now consider functions f € W™+L1(Q), m € Ny. In order for the application
of quadrature rules to be well defined, we will additionally need to require that f € C(Q),
i.e., that f is at least continuous. Due to the Sobolev embedding theorem, this is
automatically fulfilled for any f € W™+tL1(Q) whenever m + 1 > d. One has the
following result:

THEOREM 2.3. Let T € Gy, be a cell from a shape-regular, quasi-uniform triangulation
of the domain Q of mesh width h. Let I, denote a quadrature rule of exactness degree m
for the cell T with positive weights. One then has for m +1 > d:

[ £ )| < ey, 00)

Proof. Because of the Bramble-Hilbert lemma [60, Lemma (4.3.8)] there exists a
polynomial Pf of total degree less than m + 1 such that:

|f = Pflwray < CR™ P flypmaray  VIENy, I<m+ 1. (2.40)
Noting that I, integrates P f exactly one obtains:
[ ax—nu(p| =| [ (r =P ax— (s P (2.41)
By the properties of P f one immediately obtains | [ (f — Pf)dx| < Ch™ ! | flwm+11 1y

For the other part one has with Holder’s inequality, the Sobolev embedding, and again
the properties of P f:

N
7 = PO =[S wilf — P ) < (X i) max(f — P o)
=1 =1
—|T|~hd
< ChYIf = Pflloay < CRf = Pflwaary < CH™ P flypmirair). (2.42)

O

By summing over the individual cells 1" one obtains an analogous bound for the
composite quadrature rule of the entire domain 2.

2.4.4 Particle Fields

A particle field uy, is a quadrature rule for integrating sufficiently smooth functions ¢
against an underlying, sufficiently smooth function wu; that is:

N
Up = Z UZ(S(X — Xi), (2.43)
such that:
N
/Q wpdx ~ up () = 3 Usp(x,). (2.44)
=1
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The reason for the name particle field will become clear in the next subsection, where
we discuss the solution of the vorticity equations for a given velocity field and a particle
field approximation wy of the vorticity w. When seen as particle fields, quadrature
rules I, may be interpreted as an approximation of the constant function u = 1. One
can thus see that the weights U; are not function values.

We need to note here that the Biot—Savart kernels K from equations (2.12) and (2.14)
are not smooth functions. Applying a particle approximation for an underlying vorticity
field to the Biot—Savart kernel will result in a function that is singular at the particle
locations x;.

Particle fields can be constructed with help of quadrature rules I,,, as shown below.
For the approach based on radial basis functions, we refer the reader to the work of
Barba [61].

THEOREM 2.4. Let p € [1,00| and let q denote the index conjugate to p, such that
1=1/p+1/q. Let m + 1 > max{d/p,d/q} orm+1>difp=1orp=occ. Let
T € Gy, denote a cell from a quasi-uniform, shape-regular triangulation of the domain €2
and let I, denote a quadrature rule of exactness degree m with positive weights for the
cell T. For a given function u € W™H(T) let uy, == YN | wiu(x)8(x — x;) denote
the particle field approxzimation defined by the weights w; and nodes x; of I,,. One then
has for h > 0 small enough the following error bound:

lu = unlly—cmsagry < CR™Hullwmsracn. (2.45)

Proof. The proof is similar to that of theorem 2.3. Let ¢ € W™TLP(T) be arbitrary
but fixed. Because of the Sobolev embedding theorem both u and ¢ are continuous,
such that the particle field uj, € W=("+1:4(T) is well defined. Furthermore one obtains
by Hoélder’s inequality that ug € W™H1(T). By the Bramble-Hilbert lemma there
thus exists a polynomial Pug of total degree less than m + 1 such that:

lup — Puglyriry < Chm+1*l|uap\wm+1,1(T) VieNg, [ <m+1. (2.46)

Because I, integrates Puy exactly one has:

/Tugp dx — Im(ugo)‘ = ‘/T (up — Pup) dx — Ly (up — Pup)|. (2.47)

For the first term we obtain with the properties of Puy and Holder’s inequality:
| Jr (wp = Pup) dx| < Ch™ Hugplymira iy < CR™ Hullymsrae [ ollwmsrery. Re-
member that Puy is a polynomial and thus a smooth function. Furthermore, because
both u and ¢ are continuous so is their product and we may write again using Holder’s
inequality:

N

Ln(up — Pup)| < ( wz-) lug — Pugllow < |Tllug — Puglom.  (2.48)

=1
:‘T‘th
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Let us first consider the case m + 1 > d. In this case we can apply Sobolev embedding
theorem to the product wp as in the proof of theorem 2.3 and obtain:

I T|l[up = Pugllory < Ch¥lup = Pugllwaizy < CH™Hlullwmerai) lellwmerner)
(2.49)
which yields the desired result. Let us now consider the case that m + 1 < d such
that we cannot apply the Sobolev embedding. In this case we obtain with help of the
triangle inequality and the trivial estimate ||up|cr) < l|ullo)llellor):

Ch¥up — Pugllcoir) < Ch(|lulleimllellom) + Pugllcr))- (2.50)

Now we can apply the Sobolev embedding to |lu||c(ry and [|¢||¢(r) separately. For the
remaining term note again that Pu¢ is a polynomial on T, so we can make use of the
following inverse estimate [60, Lemma (4.5.3)]:

IPugllcory = [Puelpeeiry < Ch™ [ Pug| 1 (7). (2.51)

With this we obtain with the properties of Pu:

|Pupll iy < llup — Pupllpiry + lupl o
< Chm+lHUHW’"H#Z(T)HSOHWT”H’P(T) + HWPHLl(T)- (2.52)

It remains to show that [luep||p1 (1) < C’hm+1||u|]Wm+1,q(T)||g0HWm+1,p(T). For this note
that the cell T' is bounded so that we can make use of the continuous embedding
L>(T) c LY(T). Thus:

lull oy < ITHlwpll ooy < CRJlulloqnyllelleor).- (2.53)

Again applying the Sobolev embedding to u and ¢ separately yields the result. O

By summing over the all the cells T' of the mesh Gy, one obtains an analogous estimate
for the error bound of the composite particle field of the entire domain. What is
noteworthy about this result is that the smoothness requirements are smallest for the
important case p = ¢ = 2 where we only require m + 1 > d/2. This in particular means
that for d € {2,3} we can chose m = 1.

2.4.5 Particle Dynamics

In section 2.3 we repeatedly used the word ‘particle’; although in a more intuitive and
less rigorous meaning. Then, in the previous subsection, we introduced particle fields
as quadrature rules for integrating smooth functions ¢ against an underlying function
we are aiming to approximate. The connection between the two concepts becomes clear
when looking at particle solutions to the inviscid vorticity equations. The theory of
such weak solutions is too vast to be treated here in detail. Here, we will only give
the key results. For details we refer the reader to chapter 8 of Majda and Bertozzi’s
book [17] or Appendix A of the book of Cottet and Koumoutsakos [48].
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We will again assume that we are given a smooth, divergence free velocity field u
that satisfies the no-through condition on dD. Let wy(0) = 2N, I'id(x — x;) be a
particle field approximation of the initial vorticity field in the two-dimensional case. In
the three-dimensional case we correspondingly have wy,(0) = SN | T;6(x — x;). We are
then looking for the solution of the inviscid vorticity equation:

8(;? + (u-V)w, =0in D C R?, (2.54)
in the two-dimensional case and:
0
%+(u-V)wh—wh~Vu:01nDCR3, (2.55)

in the three-dimensional case. The analytic solutions of these equations are then given
by modifying the particle locations and strengths according to the following set of
ordinary differential equations (ODEs) [48, Theorem A.2.5]:

dXi

& (t) = u(x;(t),1),
T i=1,...,N, (2.56)
‘() =0
i) =0,
in the two-dimensional case and:
Xm'
(1) = u(xi(t), 1),
i=1,...,N, (2.57)

dr;
dt

(1) = Vu(xi(t), 1) - T4(t),

in the three-dimensional case. In other words the nodes x; are convected with the
flow, just like the imaginary particles from section 2.3. It is this natural treatment
of convection that renders vortex methods essentially free of any numerical diffusion.
Also note that the solution remains to be a particle field for ¢ > 0. In practice these
systems of ODEs can be discretised using explicit Runge-Kutta or multistep methods.

These results can be extended to inhomogeneous equations with right-hand sides. In
particular, let us assume that we are given a particle field f,(t) = 32N, Fi(t)6(x —x4(t))
or an equivalent vector valued version fj, where the particle locations x; are the same
as for the vorticity field wy. Then the analytic solution to the inhomogeneous, inviscid
vorticity equation:

Owp,

-+ (w-V)wp, = fp in D C R?, (2.58)

is given by the modifying x; and I'; according to the following set of ODEs:

dXi
(1) = u(xi(t), 1),

dr;
L) = Fi(e),

i=1,...,N. (2.59)
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Analogously, the solution to the three-dimensional inviscid vorticity equation:

8;? +(u-V)wy —wp - Vu=f, in DCR3 (2.60)

is given by modifying x; and I'; according to:

dXZ‘

dt
dT’;

dt

(t) = u(xi(t), 1),

(t) = Vu(xi(t), 1) - T'i(t) + Fi(t),

i=1,...,N. (2.61)

2.5 Putting Things Together

We have now introduced the basic framework which is necessary to understand vortex
methods. In section 2.1 we introduced the Navier—Stokes equations in the vorticity—
velocity formulation and discussed which boundary conditions need to be prescribed.
The solutions to the kinematic and dynamic parts of the equations were discussed in
sections 2.2 and 2.3, respectively. In section 2.4 we described how functions can be
approximated using particle fields and how the dynamic part of the flow equations
can be analytically solved for particle field approximations. The basic algorithm for
inwiscid vortex particle methods can now be summarised as follows:

1. Given a computational domain Q C D C R? and an initial vorticity field, obtain
a particle field approximation wy(0) ~ w(0) (d = 3) or wy(0) =~ w(0) (d = 2),
respectively.

2. Obtain a smooth approximation of the particle field w, ~ wp or w, =~ wy,
respectively.

3. Obtain a corresponding smooth velocity field u, using the methods described in
section 2.2. That is, evaluate the Biot—Savart integral for the smooth vorticity
approximation and, if 9D # (), compute the potential flow u, to account for the
no-through boundary condition.

4. Use the velocity approximation u, and apply, e. g., a Runge-Kutta scheme to
advance wy, one step in time to equation (2.57). For the case d = 2 analogously
advance wy, in time according to equation (2.56).

5. Return to step 2.

The different schemes which are currently in use differ in the implementation of the
individual steps. Step 1 can for example be realised using quadrature rules on quasi-
uniform, shape-regular triangulations G;, of the computational domain as described
in section 2.4.

Step 2 is called particle regularisation. This step is crucial and lies at the core of all
modern vortex methods. It is required to apply the Calder6n—Zygmund estimate (2.23)
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in order to ensure stability and convergence of the method. In the whole-space case
one can mollify the vortex particle field with certain blob functions (, of blob width o
and set wy, 1= (5 * Wp.

Step 3 can be carried out analytically in special cases only, as for example in vortex
blob methods in the whole-space or periodic setting. In this case one can make use
of the fact that the convolution operator is associative: one has u, = K x (, * wy,.
The corresponding smoothed kernel K, := K x (, can often be computed analytically
and then be applied to the particle field wy directly. In this case there are rigorous
convergence proofs for vortex methods available, for example in section 2.6 of Cottet and
Koumoutsakos’ book [48]. Their analysis confirms that such inviscid vortex methods in
d = 2 are free of numerical dissipation and conserve mass, linear momentum, angular
momentum, and kinetic energy exactly. In the three-dimensional case the analysis of
the conservation properties is significantly harder due to the additional stretching term,
but numerical experiments confirm the excellent conservation properties also in this
case.

2.6 Open Problems

The generic vortex method of section 2.5 consists of several steps. The current
approaches for some of these steps, however, fail to yield accurate results in the
presence of boundaries. In the vorticity—velocity formulation of the Navier—Stokes
equations, one can clearly distinguish between a kinematic and a dynamic part. As a
consequence some of the steps above can be considered in isolation. This comes with
the benefit of a simplified analysis of the individual steps.

The regularisation problem (Step 2) has so far only been adequately solved in special
cases like the whole-space, where one can use blob functions. Because these blobs
do not adapt to the geometry’s shape, they fail to give accurate regularisations near
boundaries. The regularisation problem itself can be considered independent of both
the kinematic and dynamic parts of the Navier—-Stokes equations and may be seen as a
link between them.

The solution of the kinematic equations (Step 3) for a given admissible vorticity
field is only known analytically in the whole-space case. This problem depends on the
type of regularisation used in Step 2, but is independent of the dynamical parts of
the equations. Solutions for this problem can thus be used for both the viscous and
inviscid equations.

In the presence of boundaries one faces with two additional problems: the Biot—Savart
law is taken over a domain §2 of problem dependent shape, and can in general not be
integrated analytically. Current blob methods effectively integrate over the whole-space
and make use of the symmetry of the blob functions. Furthermore, the no-through
boundary condition needs to be enforced by means of a boundary element method.

Alternatively, one may follow the approach of Vortex-in-Cell methods, and try to
solve the Poisson equation —AW = w for the unknown stream function ¥, such
that u = V x ¥. In three-dimensional space one then faces the problem that the
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boundary conditions on W cross-couple its individual components, thereby making an
implementation on general domains difficult.

As mentioned before in section 2.3, it is not immediately clear how to handle the
viscous case in a particle method. For the basic heat equation a particle approximation
immediately gets ‘smeared out’ to a smooth C'™ function and thus ceases being a
particle field. In the presence of boundaries one faces the additional problem that
boundary conditions for the vorticity are in general not available and need to be
obtained in an additional, separate step.

In this thesis we try to address some of these problems. Because many of them may
be considered in isolation, the subsequent three chapters of this thesis may also be read
separately. In chapter 3 we describe a new approach how to handle the viscous term.
In order to avoid the additional complexities involved in the treatment of boundaries,
we only consider the case D = R2. In chapter 4 we describe a general approach to
tackle the regularisation problem in arbitrary bounded domains. To the best of our
knowledge, this is the first truly general approach to the problem. In chapter 5 we
describe simple, efficient, and accurate formulae for the evaluation of the Biot—Savart
law on tetrahedra. These can be seen as a contribution to the implementation of Step 3,
and improve previously known formulae. We conclude this thesis with conclusions and
an outlook.
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Chapter 3
Vorticity Redistribution

In this chapter we describe a general technique to approximate the application of linear
differential operators to particle fields. For simplicity, we will restrict ourselves to the
two-dimensional plane D = R?. As an important concrete example, we will apply
the technique to the Laplacian, which is needed to model viscous effects. We begin
with a review of some of commonly used viscous schemes and discuss their benefits
and drawbacks. We then give a theoretical description of the vorticity redistribution
method and prove its consistency and stability. Following the theoretical treatment,
we discuss implementation issues, which are crucial for obtaining an efficient method.
We conclude this chapter with numerical experiments and an outlook.

3.1 Introduction

Vortex methods were first introduced as tools to simulate inviscid, unbounded flows in
two-dimensional space. As illustrated in section 2.4 this can be done by means of a
particle approximation wy, of the vorticity field w:

N
BESTRINES Zf‘i(t)d(x —x;(t)), (3.1)
i=1

where I'; € R denotes the weight of particle ¢ and x; refers to that particle’s position.
For the remainder of this chapter I'; will also be referred to as the circulation of that
particle An exact solution of the inviscid vorticity equation is then obtained if one
evolves I';(t), x;(t) according to the following set of ordinary differential equations, for
t=1,...,N:

X u(tx),
where u refers to the exact flow velocity. In other words, particles are moved with
the flow and keep their circulation. It is this natural treatment of convection that
renders vortex methods essentially free of artificial viscosity. In practice, u will of
course need to be replaced with an approximate velocity u,, obtained for example
from the Biot—Savart law and a regularised vorticity w, as in section 2.2. But even
in this case one can often show that the resulting scheme conserves circulation, linear
momentum, angular momentum, and energy exactly. Due to the properties of the
Biot—Savart integral as described in subsection 2.2.4, the continuity equation and

=0, (3.2)
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thereby the conservation of mass is even fulfilled in a strong, pointwise sense. Many
different approaches on how to handle the viscous case have been suggested in the
literature, and we will give a brief review of some of the most commonly used schemes
here.

3.1.1 Viscous Splitting Algorithms

Many of the earlier approaches for handling physical viscosity belong to the class of
viscous splitting algorithms. The core idea is to split each time step into two sub-steps.
In the first sub-step one ignores viscous effects and convects particles under the absence
of viscosity. In the second sub-step one then considers a pure diffusion problem and
ignores convection. The advantage of this idea lies in the fact that one can now apply
different approaches to each of the sub-steps and only needs to focus on the respective
phenomena involved.

Practice has shown that the viscous splitting can have a stabilising effect on the
discretisation; the convergence of this approach has been proven by Beale and Majda [32].
However, unless one employs more sophisticated splits, its rate of convergence is only
of first order O(vAt), where At refers to the step-width and v to the fluid’s kinematic
viscosity. Note that this result holds regardless of the time-stepping schemes used
for each sub-step, underlining that splitting the equation is unnatural: diffusion and
convection do happen simultaneously and thus should not be treated one after another.

Random Walk Methods

One of the earliest approaches for a pure diffusion scheme are so-called ‘random walk’
methods, as introduced by Chorin [20]. These methods are based on the physical
intuition that viscosity is caused by molecule collisions, which in turn result in a
Brownian motion of the fluid’s particles. Consequently, the idea is to randomly move
particles according to a specific probability distribution. Due to the random nature
of this process, these methods are called indeterministic. A detailed description and
a proof of its convergence can for example be found in Beale and Majda’s book [17,
Chapter 6]. While being intuitive, these methods generally suffer from very slow
convergence rates.

Core Spreading Methods

Core spreading methods rely on a particular approach for regularising a given particle
field wy. In so-called blob methods this regularisation is achieved by mollifying the
particle field wy, with a carefully chosen blob-function (,, where o refers to the size
of the blob’s core. The smoothed vorticity field is then given by w, = wp x {,. This
effectively corresponds to replacing ¢ in equation (3.1) with {,. If one chooses so-called
Gaussian blobs, (, corresponds to a scaled heat kernel, i.e., a solution to the heat
equation. Advancing this solution in time then corresponds to increasing o. The
original approach has been shown to be inconsistent [62], but this could later be fixed
by Rossi [63].
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The gradual increase of ¢ causes the solution to get more and more blurred over
time and thus further increases the problems blob methods are already facing in the
presence of boundaries. Some kind of regridding scheme is required to prevent ¢ from
becoming too large to capture the flow’s details.

Vorticity Redistribution Method

The vorticity redistribution method (VRM) by Shankar and van Dommelen [64] can
be interpreted as a computed finite-difference stencil which solves the heat-equation for
a given time-step At. This approach makes no assumptions on the particle geometry
or the regularisation scheme used. If necessary, new particles are inserted in to the
flow in areas without enough particles. For this a suitable heuristic needs to be used.
The fact that stencils are computed on-the-fly makes the method completely mesh-free.
Our approach described in this chapter will build on this idea.

3.1.2 Integral Based Algorithms

The approaches described in this subsection are based on the assumption that the
particle field was initialised with the help of a quadrature rule as described in section 2.4.
Keeping the quadrature weights w; fixed, one may expect that a slight change in the
positions of the quadrature nodes x; will still yield a good quadrature rule for the
computational domain. The idea of the following approaches is based on this assumption.
As the particles get convected with the flow, this assumption will cease to hold after
some limited amount of time. Subsequently the approaches presented here rely on a
frequent reinitialisation of the particle field, which introduces considerable amounts of
artificial viscosity.

Analytic Solution Approach

The first of these approaches [48, Section 5.3] also belongs to the class of viscous
splitting algorithms and is based on the fact that in the whole-space case an analytic
solution of the heat equation is available, namely:

w(t+ At,x) = , H(vAt,x —y)w(t,y)dy, (3.3)
R

where H is the heat kernel:

2
H(r,x—y) = ﬁ exp (_|x47y\)’ (3.4)
which is smooth for 7 > 0. By replacing w with wy in the above formula, one then
obtains a smooth approximation of the diffused vorticity at the next time-step. This
smooth approximation can then be turned into a particle field by reusing the weights
w; used in the original quadrature rule with the updated current particle positions x;.
In addition to the need to frequently reinitialize the particle field, due to the viscous
splitting this scheme is also limited to first order accuracy in time.
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Particle Strength Exchange

In the method of particle strength exchange (PSE), the Laplace operator itself is
approximated by an integral, instead of a solution of the heat equation [48, Section 5.4].
This results in a smooth approximation of the Laplacian of the particle field. This
smooth approximation can then in turn be turned into a particle field by reusing the
original quadrature weights w; with the updated particle locations x;. This frees the
method of the viscous splitting and potentially allows for arbitrary order discretisations
in time. As mentioned before, frequent reinitialisation is required to ensure the method’s
accuracy.

An approach which potentially bypasses this necessity has recently been published
under the name discretisation corrected particle strength exchange (DC-PSE) [65].
This approach requires the solution of small scale systems for each particle to account
for the distortion of the particle field, and is in some ways similar to the approach we
will follow here. It lacks, however, a proof of its stability.

3.1.3 Discussion and Outline

With the exception of the DC-PSE;, all off the above approaches either require a frequent
particle reinitialisation or make use of the viscous splitting. The DC-PSE on the other
hand, is similar in nature to the vorticity redistribution method, but lacking a stability
proof.

In this chapter we describe a method for approximating the application of linear
differential operators to particle fields, in a manner similar to the vorticity redistribution
method (VRM). As a concrete example we will analyse its application to the Laplace
operator to simulate diffusion. This allows us to avoid the viscous splitting and to
treat both diffusion and convection simultaneously. The spatial consistency of our
method is proven. We then consider the case of pure diffusion in combination with
the forward Euler method and derive sharp a-priori and a-posteriori bounds on the
step-width. This analysis in the absence of convection is justified, as the convective
part of the equations is known to be stable independent of the step-width [31]. The
resulting a-priori bound is—apart from a constant—identical to the classical stability
condition for the five-point central-difference stencil, underlining the interpretation of
our method as a computed finite-difference method. Finally, we show that the method
conserves circulation, linear, and angular momentum.

In the original description of the VRM it was suggested to ignore particles in the
diffusive process if their circulation was below a certain threshold. Choosing a low
threshold does yield accurate discretisations, however, the choice of its value seemed
rather arbitrary. We propose a new strategy preventing excessive growth in the number
of particles while maintaining the order of consistency. Based on results by Seibold [66,
67], we further introduce the new concept of small neighbourhoods which significantly
reduces the computational cost of the method. The resulting scheme keeps all of
the benefits of the original VRM while not relying on viscous splitting or arbitrary
thresholds. We conclude with numerical examples illustrating efficiency and convergence
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of the method in the purely diffusive, as well as in the convective case.

3.2 Derivatives of Particle Fields

Let L denote a linear differential operator with constant coefficients, e.g., L = A
for the Laplacian, or L = Id for the identity. The application of such operators to
particle fields wy, can then be defined using the concept of distributional derivatives [68,
Section 1.60]. The distribution Lwy, is defined by:

(Lwn, @) = {wn, L*¢) Vo € C°(R?). (3.5)

Here, L* denotes the so-called formal adjoint of L. The Laplacian and the identity
operators are symmetric and in this case we have L = L*.

In section 2.4 the error of particle approximations was quantified with the help of
negative index Sobolev norms || - ||y —m.q(r2). It thus makes sense to replace ¢ € C§°(R?)
with the larger test-space WJ'toP(R?) = W™+oP(R?), where p € [1,00] is the index
conjugate to ¢, such that 1/p+ 1/¢ = 1, and o denotes the order of the differential
operator L, i.e., o = 2 for the Laplacian, and o = 0 for the identity.

Our aim is now to find a particle field approximation Ljwy:

N
Lywy, = Z Aid(x — x;) (3.6)
i=1
of Lwy, such that:
(Lnwn, ) = (wn, L*p) Vo € WTHOP(R?), (3.7)

The question that then automatically arises is how to choose the weights \; such
that the above assertion holds. For the case p = co and ¢ = 1 this question will be
answered in the following two sections. The key observation is that under certain
additional assumptions on the weights \;, a converging scheme is obtained if one enforces
(Lwp, ) = (Lpwp, @) for all polynomial test-functions ¢ of degree o. Enforcing the
relation for polynomials of higher degrees will then increase the convergence order.

As a side note we point out that the particle field Lpw, may—but does not have
to—use the same particle locations as the original field wy. The latter option could
for example be used in areas where too many particles have clustered together, like
stagnation points. Setting L = I, and wy, to a collection of ‘superfluous’ particles, one
may try to approximate this set with help of the remaining particles.

Reducing the number of particles is primarily an efficiency concern and not a question
of stability or accuracy. We will thus focus on the Laplace operator in the rest of this
chapter. Choosing the same particle locations for Lpwy and wp then naturally fits
into the framework of subsection 2.4.5: viscous flows may be simulated by setting the
right-hand side to fj, := vApwy,.
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3.3 Description of the Method

3.3.1 Preliminaries

We assume that we are given a particle approximation wy = Zf\il I0(x — x;) of a
vorticity field w € W™ 1(R?), satisfying an error bound of the form |wj, — w/||yy—m.1 <
Ch™||w||yyma for some integer m > 1. The test functions ¢ € W™>(R?) and all of
their derivatives up to order m — 1 are bounded and continuous. These functions
actually fulfil the even stronger notion of Lipschitz continuity [60, Exercises 1.x.14 and
1.x.15] and thus particle approximations are well defined.

For later reference, note that the norm of such a particle approximation may be
upper bounded by ||(T;)]];:

N
N T .
ol = o Mol o D)
pEWm,o0 [ wrm oo PpEWm,o0 lelle (3.8)
Il S, IT |
< Cemb SUp = Cemb”(r’i)Hllv
pEW ™m0 lelle
where (-, -) refers to the dual pairing, || - ||¢ is the supremum norm and Cepp denotes

the Sobolev embedding constant. This inequality will allow us to infer stability in the
W—"1.norm by bounding the /*-norm of the circulations later on.

If we additionally assume that the particle field stems from a quadrature rule
of exactness degree m — 1 with positive weights as described in section 2.4, the
quantity ||(T';)||; allows for a natural interpretation: it is the quadrature approximation
of the L-norm of the vorticity, i.e., ||w||z1 = [|(Ts)]];-

3.3.2 Moment Conditions

Our aim is to approximate the Laplacian of wy with a particle field using the same
particle locations. We thus chose the following ansatz:

N N
Apwp =YY fiTid(x — x;). (3.9)

i=1j=1

Here f;;I'; may be interpreted as the rate at which circulation is diffused from particle
i to particle j. The question that then needs to be answered is how the values of f;;
need to be chosen such that this is an accurate approximation. The conditions that the
fij need to fulfil are called the moment conditions and are described in this section.

In order to specify these conditions, we will define be particle neighbourhoods. The
neighbourhood N; of particle 7 is defined as follows:

Ni={jel,...,N:rh<|x; —x;] < Rh} U {i}. (3.10)

where R > r > 0 are fixed, user-defined parameters. The original VRM formulation
does not include the lower bound 7. In our analysis we show that both bounds are
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required to control the error: the upper bound limits the cut-off error of the expansions
used, while the lower bound is needed for stability. For j € N the values f;; are chosen
such that certain moment conditions are fulfilled. For j ¢ N; we define f;; = 0.

As will be seen later on, depending on the geometry of the particle locations, these
moment conditions do not always have a solution. This is for example the case for an
essentially empty neighbourhood N; = {i}. Note, however, that we can always add new
particles of zero strength to the field: adding a new particle ¢ with I'; = 0 to wy, leaves
the particle field unchanged. For such empty particles of zero strength one obviously
has I'; = 0 = f;;I; = 0, i.e., the value of f;; is arbitrary and can safely be defined as
zero, too. We will make use of this fact and insert new particles according to a certain
heuristic, which will be described later in this chapter. This way we can assume that
the moment conditions always allow for a solution. Circulation will then be diffused
from particles to their potentially empty neighbours and thereby be spread out in
space, which also is in accordance with the physical intuition of diffusive processes.

At the core of our method lies the computation of the values f;; for every ¢ and
j € N;. The test functions ¢ can be approximated by suitable polynomials. For a
consistent approximation we will then require that for all constant, linear, and quadratic
polynomial test-functions ¢ the error vanishes. For greater accuracy one may require
corresponding higher order polynomials to vanish. A detailed derivation of the resulting
equations is given in section 3.4.1.

As will be seen later on, non-negativity of stencils is a sufficient criterion to ensure
consistency and stability. In addition to that, such stencils possess many more desirable
properties, as described by Seibold [66, 67, 69]. A stencil is called non-negative if
it fulfils f;; > 0 for all j # 7. Somewhat less precise, such stencils are also called
positive. Unfortunately, as will also be shown in the analysis section 3.4.5, non-negative
stencils cannot fulfil the moment equations of fourth order. Unless one gives up on
non-negativity and the resulting guarantees, the method’s accuracy is hence limited to
second order.

The moment conditions are most easily expressed using multi-index notation. Defin-
ing the vector r;;:

rij = Xj — X, (311)

Y

and denoting its Cartesian components by rj; and i, respectively, for O(h™) accuracy,

we pose the following conditions:

N N N
Z f,;jrfjrfj = 2, Z fijr?jr?j = 2, Z fijr%r'?j = 0, (312)
j=1 j=1 j=1
and for all other error terms with multi-index a:
N
S furdi=0,  0<l|o|<m+1, |of #2. (3.13)
j=1
Because we have r;; = 0, only the equation for ae = (0,0) depends on f;;, yielding:
fi == fij- (3.14)
J#i
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If one chooses for example m = 1 or m = 2, we consequently have to solve a system
consisting of five or nine moment conditions, respectively. Together with the positivity
constraint, for every particle 4, this linear system can be rewritten in matrix—vector
notation:

Vif; =b, f; > 0. (3.15)

Here, f; is the vector of coefficients f;;, ¢ # j, b is the vector that contains only
zero entries except for the two ‘2’-entries at a = (2,0) and a = (0,2), and V; is the
Vandermonde matrix, with rows for each multi-index 1 < |a| < m + 1 and columns j
for each particle j € N;\ {i}:

Va,j = 1. (3.16)

In order to obtain scaling independent of h, for a numerical implementation it is
beneficial and straightforward to rewrite these conditions for the normalised vectors
rij/h. In section 3.5 we describe how to solve these equations and how to ensure that
non-negative stencils exist.

3.3.3 A One-dimensional Example

In order to illustrate the meaning of the moment conditions, we will consider the
following one-dimensional example. Using a linear combination of particles at positions
z = —h,0, and h, we wish to approximate %5(30), i.e., we want to find coefficients
a,b, and c such that:

;;5(;3) ~ ad(x + h) +bS(x — h) + ci(x). (3.17)

In other words, for every smooth test-function ¢ one should have:

©"(0) = ap(—h) + bp(h) + cp(0). (3.18)

Expanding ¢ as a Taylor series around 0 one obtains:

2 92
o-h) ~ o0) — h220) + TT%q),
0) = ),

7,2 92
pHh) ~ 90 + B0 + DT 0)

From this we obtain the following conditions on the coefficients:
e a+b+c=0in order for the term ¢(0) to vanish.
e hb— ha = 0 for the term first order derivative, and
h2

e Sa+ %Qb =1 for the second order derivative.
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This system of equations is the one-dimensional equivalent of the moment equations
described above. In this particular case it has a unique solution:

2 2

= ~ b= -—nr, =—(a+0). 3.19
TRk e ¢ latd) (3.19)

Let us now for example assume that one would have i = (1 + ¢)h. In this case the
number € can be seen as a measure of the asymmetry of the particle distribution. The
upper and lower bounds Rh and rh from the definition of the particle neighbourhoods
in the previous section enforce that this number remains bounded. Including higher
order terms in the Taylor expansions, one obtains:

¢"(0) — (ap(—h) + bp(h) + cp(0)) = O(eh + h?). (3.20)

Thus—strictly speaking—the resulting method is first order accurate with respect to
h. For small values of € one may however expect the higher order term to be dominant
and actually observe second order convergence for practical choices of h.

3.4 Analysis

3.4.1 Consistency

We begin by deriving certain key properties of positive stencils.

LEMMA 3.1. Let (fij) be a positive stencil that satisfies the moment conditions (3.15).
One then has the following sharp estimates:

fii=— me <0, 4(Rh)_2 < me < 4(7“h)_2. (3.21)
J#i J#i

Proof. The first equality directly follows equation (3.14) and the fact that for positive
stencils f;; > 0 for i # j. Now note that one obtains };; ri;|2fij = 4 by adding
the moment equations for « = (2,0) and « = (0,2). By the definition of the particle
neighbourhoods N; one furthermore has rh < |r;j| < Rh. We thus obtain with
help of the positivity: 4 = 3, [ri;|*fij > (rh)* X, fij- The lower bound follows
analogously. O

The upper bound is crucial for the consistency and stability proofs below and cannot be
obtained from the moment conditions without any further assumptions on the stencils,
such as positivity.

THEOREM 3.2 (CONSISTENCY). Let Apwy, be defined as in equation (3.9), where the
fij form a positive stencil satisfying the moment conditions as defined above. One then
has:

R 2
|8 = gy < C (1) (BRI,

where the constant C is independent of h and wy,.
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Proof. For arbitrary ¢ € W2 one has with the help of Holder’s inequality:

N
(Awp—Apwn, @) ZF (ASD (xi) wa‘? (x5) >< (T HlluA‘P (xi) ZfijSO(Xj)HZOO'
— =
(3.22)
Let us thus consider the value of the || - ||;c-part on the right. Due to the definition
of the particle neighbourhoods N, for each i the sum Z;-V:l fijp(x;) only evaluates
¢ within the ball Brp(x;) of radius Rh centred at x;; for the particles outside this
sphere one has by definition f;; = 0. According to the Bramble-Hilbert lemma [60,
Lemma (4.3.8)], there exists a polynomial Py of total degree less than m + 2 such that:

& = Polwioo (B o)) < CRR) ™7 olwmizoo(Bpyx)) € Noyl <m+2. (3.23)
Because Py is a polynomial, it equals its Taylor series around x; and we obtain:
r&
Polx)= Y “SDPy(x,). (3.24)
|| <m41 7

Using this relation, one quickly sees that the moment conditions were chosen such that:

APop(x;) Z fijPo(x;) (3.25)
j=1

for all polynomials Py of total degree less than m + 2. Thus:

N
Ap(xi) =Y fije(x)) = Alp — Pp) (x:) wa o — Pp)(x;). (3.26)
- =

By the Bramble—Hilbert lemma we then obtain:

CRR™ | @llwmszc, (3.27)
C(RR)™2 | pllwmszco.  (3.28)

1A(p = Po)(x:)| < Clo = PolwacoBanx)) <
‘(80 - P‘P) (Xj)‘ <Clp— ,P‘p‘WO’oo(BRh(Xz‘)) =

Using lemma 3.1 and Holder’s inequality we then obtain:

N
> fij(p = Po) (%) < C(RR)™ 2| pllyyme2o0(rey [l (i)l

=1

R 2
< (B RO lplraeizay. (329

Thus for each ¢ one has:

N 2
R m
Al = 3 Fielo)| < O () (B plmsoe, (3.30)
j=1
with a constant C' independent of ¢ and h and the claim follows. O
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3.4.2 Stability for the Heat Equation

In our next step we investigate the stability of Euler’s method in combination with
our spatial discretisation. As we introduced an approximation for the viscous term, it
makes sense to ignore convective effects and assume u = 0. We thus consider the heat
equation with a positive diffusion coefficient v > 0:

ow

— = vAw. 3.31
5 (3.31)
For a given particle approximation wy, this leads to the semi-discrete system:
Gwh
— = vApwp, 3.32
A (332

with Ay as defined before. Following subsection 2.4.5 with f; = Apwy and u = 0 the
solution of this system then can then be given by:

dr
dt

) N
c=Y fuly,  i=1,...,N. (3.33)
j=1

We will discretise this system of ordinary differential equations using Euler’s method.
This method is only first order accurate in time, but higher order schemes can be
constructed by combining several Euler steps, as for example in so-called SSP-stable
schemes [70]. The classical Runge-Kutta method (RK4) is not such a scheme, but our
numerical experiments at the end of this chapter showed no instabilities.

Introducing the vector I € RY with components I';, and the matrix F € RV*N
consisting of components f;;, the resulting scheme can be written as:
Mt = (1 + vAtFT) ", (3.34)
—_——
=:C

Here, At > 0 is the step width, | is the identity matrix, and n and n + 1 denote
time-steps n and n+ 1, respectively. The fact that C involves the transpose FT of F is a
reminder of the transposed operator L* from the definition of particle field derivatives
in section 3.2. Although the Laplacian is a symmetric operator, due to the typically
asymmetric particle distributions the matrix F will usually not be symmetric.

As shown in theorem 3.2, the consistency error can be bounded by Ch™||I||;. In
order to bound ||I'||; for all times it is therefore sufficient to require that ||Cl|; < 1.
Note that due to equation (3.8), this implies that ||wp|/y/—m,1 remains bounded as well.
The following theorem will show that positive stencils are not only sufficient but also
necessary to obtain a scheme that fulfils ||C||; < 1.

THEOREM 3.3 (STABILITY). Let fi; denote a stencil that satisfies the moment con-
ditions (3.15). Then the matriz C as defined above satisfies ||C|l1 = 1 if and only if
the stencil is positive: fi; <0, fi; >0 (i # j), and the time-step satisfies the bound
VAt < —fizl foralli=1,...,N. For larger At or non-positive stencils one always
has ||C||y > 1.
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Proof. One has:

N
ICll = max Y _ [Ciy| = max |1 + vAt fi;| + vALY | fial. (3.35)
= J i#]
Thus ||C|li < 1 = f;; < 0. Let us consider the case that (1 + vAtf;;) > 0, i.e.,
vAt < —f]gl. After substituting f;; = —>_,; fji we obtain for each j:

N
S IC; =1 = vALY " fii+vALY | fiil. (3.36)
i=1 i#] i#]
Thus, we have ||C||; < 1 if and only if for all j:
Z |fjl| < Zfﬂ < fji > 0. (3.37)
i#] i#]

For positive stencils both sides are equal, and thus ||C||; = 1.
In the opposite case we have (1 4+ vAtf;;) <0, i.e., vAt > — j_jl. After using the
same substitution for f;; we then obtain for each j:

N
Z |C¢j‘ = -1+ vAt Z(fU + |fUD (3.38)
i=1 i#j
Assume we would have ||C|[; < 1. We then would have for all j:
2
. ) < 2 )
S+ il < a (339)
i#]
But note that we have:
S (i + 1fi5l) = 2D fig = 2fi5, (3.40)
i#]j i#j
and thus: 5
-1
2fjj < AL = vAt < — §j (3‘41)
which is a direct contradiction to our assumption on the time-step. (I

Theorem 3.3 gives us an easy a-posteriori bound which can readily be implemented.
This allows us to optimally choose the step-width in a computer program. In higher-
order Runge-Kutta schemes it is hard to predict the values f;; for intermediate stages.
Thus, again employing Lemma 3.1, the following a-priori bound is useful:

(rh)?

v
Note that this closely resembles the classical stability condition for the five-point
finite-difference stencil, highlighting the similarity between the two methods. The
fact that we can only achieve ||C|[; = 1, as opposed to ||C||; < 1, can be seen as a
consequence of the fact that our method conserves circulation, as will be shown in the
next section.

At <

(3.42)

46



3.4 Analysis

3.4.3 Conservation Properties for the Navier—Stokes Equations

The excellent conservation properties of vortex methods have always been one of their
strong points. While the conservation of mass is usually fulfilled in a strong, point-wise
sense due to the Biot—Savart law, vortex methods usually also conserve circulation,
linear as well as angular momentum. In this section we will show that this is also
applies in the viscous case when we apply the vorticity redistribution method. We
will thus consider the following semi-discrete system of coupled ordinary differential
equations:

dXi

dt = Ugs Xi)7

dr; N (3.43)
T ijzzl fiil'j,

where the fractions f;; depend on the particle positions. The velocity field u, is
obtained from the vorticity after an appropriate smoothing process. In unbounded or
periodic flows it is customary to smooth the particle field wy, with a blob function (, by
mollification. Setting w, := (, *wp, and assuming u,, = 0 the approximate velocity can
then be obtained using the Biot—Savart law: u, = K x w,, where K is the Biot—Savart
kernel from equation (2.12). Noting that the convolution operator is associative, this
can be rewritten as u, = K x (, xwp = Ky *wp,, with K, := K % (,. Thus:

N
U, (Xz) = Z Kg (rji)Fj- (344)
7=1

For the commonly used radial blob functions (,, the resulting smoothed kernel K, is
an odd function that is orthogonal to its argument:

K;(rij) = - Ky(rji), Kg(rij) - -ri; =0. (3.45)
With the help of these properties, we are going to investigate the following quantities:
« Circulation: Ipi= fgew dx=YN T
o Linear Momentum: I := [powx dx = Zf\il I'ix;,
o Angular Momentum: I := [p» wx?dx = N, [ix3.
The conservation laws for these quantities read [17, 71]:

dJ, dI dr
dlo _ o dli _ g dl>

Note that these quantities are moments of vorticity and thus are closely linked to the
moment conditions (3.13) and (3.12). This close link will allow us to show that the
semi-discrete equations (3.43) fulfil the conservation laws (3.46) exactly.
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THEOREM 3.4 (CONSERVATION OF MOMENTUM). Let the smoothed Biot-Savart ker-
nel K, be an odd function that is orthogonal to its argument, and let f;; be a stencil
that satisfies the moment conditions (3.15). Then vorticity field described by the system
of ODEs (3.43) conserves circulation as well as linear and angular momentum.

Proof. The proof is similar to the inviscid case [48]. For circulation we immediately
obtain:

dI N dl“l N N
i Z dt z:lz fiil'y _VZF Zfﬂ_o (3.47)

=1 j=1
=0

For linear momentum we have:

dIl i Z xz . (3.48)

For the first part we use the oddity of the kernel K, (r;;) = —K,(r;;) and obtain after
an exchange the order of summation:

N dXi N N N N
Z FZW = Z Z Ka(rji)FiFj = — Z Z Ka(rji)FiFj' (349)
i=1 i=1j=1 1=1j=1

Thus, this part of the sum equals its negative and therefore is zero. For the second
part we have using the moment conditions:

VZZf]ZF jXi = VZF (Z fiirji +%; nyz) =Uu. (3.50)

i=17=1

=0 =0
Lastly, for the angular momentum we obtain:
dIQ N N eri
—_— = 2I°; . 3.51
at ; gt Z Y (3:51)
For the first sum we have:
N N
2 > TiTK, (rj) - X (3.52)
i=1j=1

By writing x; = %(xZ +x5)+ %(xz — x;) this sum again splits up into two parts. Using
the oddness property of K, and exchanging the indices as above, the first part is zero.
For the second part we use that K, is orthogonal to its argument K,(r;;) - r;; = 0.
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Finally, we have x; = r3; + 2x{x% 4 2x}x¥ — x5 and thus:

T 7]
N N N
dr;
Soxt g =Y filxt =
i=1 i=1j=1
N N N N
v Z L Z fjir]zl- +2x7 Z fiixi +2x Z fiix? —xj2. Z fﬁ-) =
7j=1 i=1 - =1 - i=1 - i:lo
N
vy Ty =4vly. (3.53)
i=1 N

Due to the non-linear coupling of I'; and x; in I; and Io, these quantities are generally
not exactly conserved when the system of ODEs (3.43) is discretised using Euler’s
method. Here, one can only verify Iy to be conserved exactly. Our experiments at the
end of this chapter, however, show that all of these properties are conserved very well
in practice.

We lastly give a brief remark about the conservation of kinetic energy. In the whole-
space case the velocity usually does not decay fast enough for its classical definition
E = 3 [g2 [ul?>dz to be well defined, even if us, = 0. An alternative definition which
coincides with the classical one whenever it is well defined is given by E = % Jr2 W dx,
where v is the stream function from the Helmholtz decomposition. In both cases one
can see that the energy is related to a double integral over a square of the vorticity,
which is not reflected by the moment conditions. We thus cannot expect the scheme to
conserve kinetic energy exactly.

3.4.4 Reduced Operator

In this section we describe a simple technique that may be used to reduce the number of
particles that need to be considered for diffusion. If we apply the method as described
above, also particles that carry negligible amounts of circulation are redistributed. For
this reason, Shankar and van Dommelen [64] suggest to only diffuse particles carrying
more circulation than a prescribed threshold. In their work, they set this threshold
to the machine epsilon for single-precision floating-point arithmetic, i. e., round about
5.96 - 1078.

While choosing a threshold near machine accuracy does produce accurate results,
this remains an arbitrary choice. It would be preferable to have an adaptive, problem
dependent threshold that guarantees accuracy of the resulting discretisation. Our
analysis of the error may be extended to allow for the exclusion of particles from
diffusion. To this end, let Z C {1,..., N} denote a set of particles that are not diffused
and let A, refe to the corresponding ‘reduced’ approximation of the Laplacian:

N
Ahwh = Z Z I‘Zfzjé(x - Xj). (354)

igT j=1
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Chapter 3 Vorticity Redistribution

The error of this reduced operator can be analysed with the help of the techniques
introduced above.

THEOREM 3.5. The reduced operator Ay, satisfies the following error bound:
(AR = Ap)wnlyy—ms2a < Clrh)7||(Ts)iezllp- (3.55)
Proof. Let o € W™*2% be arbitrary but fixed. We then have with Holder’s inequality:

N
(AR = Ap)wn, @) = DD Tifise(x;)]

1€l j=1

N
< |Ta)iezlln] O fii0(%5)) sezllioe-

J=1

(3.56)

Applying the triangle-inequality, Lemma 3.1 and the Sobolev embedding yields the
result. O

It makes sense to require the magnitude of this additional source error to be of the
same order as of the error of the full scheme. Introducing a new user defined constant
Caif we thus require:

I(Ta)iezlln < Caiwh™ 2(|(Ti)illn- (3.57)

To minimise the number of diffused particles we can then employ the following greedy
strategy. First, the particles are sorted in ascending order by the magnitude of their
circulation. One then continues adding particles to Z from the beginning of this list,
until the bound (3.57) is reached. Using the same methods as above, it is easily
verified that the thereby defined reduced operator does conserve circulation and linear
momentum, however, it does not conserve angular momentum.

3.4.5 Limitations

We want to finish this section by some remarks on the limitations of the method. First,
unlike claimed by Shankar and van Dommelen [64] the vorticity redistribution method
does not extend to arbitrary orders of accuracy. The consistency and stability proofs
rely on the fact that the stencils are non-negative. While other stable stencils might
and probably do exist, we are not aware of any stability proof. As mentioned by
Seibold [66, 67], any third or higher order method needs to fulfil the moment conditions
for |a| = 4. A simple linear combination of these equations yields:

Zfij\rij|4 = O, (358)
J#i
which due to the non-negativity constraint can only be fulfilled for f;; = 0. The zero
stencil, however, is inconsistent with the moment conditions for |a| = 2. On the other
hand, similar restrictions apply to the stability proof for the method of particle strength
exchange (PSE): it assumes a positive kernel function, which equally limits the method
to second order accuracy [48].
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Secondly, we point out that the matrix F discontinuously depends on the particle
positions: as they move around, they may enter and leave each other’s neighbourhoods,
allowing for jumps between zero and non-zero in the corresponding entries f;;. In fact,
in general, the solution to the moment equations is not even unique. It is thus hard to
analyse the effect of higher-order time-stepping schemes on the method’s accuracy.

These restrictions may be seen as a consequence of the lack of structure in particle
approximations. The Laplacian is an elliptic, symmetric operator, which leads to
positive definite matrices in grid-based schemes. These additional structures allow
for stability proofs for higher order schemes. In particle field approximations this
symmetry can usually not be maintained.

3.5 Implementation

It has been claimed that the VRM is a slow algorithm, especially when compared to
the PSE scheme, e. g., by Cottet and Koumoutsakos [48]. On the other hand, Schrader
et al. [65] report that their DC-PSE method also takes up as much as 90% of total
CPU time, and compare its computational speed with that of the VRM. We believe
that the computational cost associated with the VRM has been greatly overestimated;
mostly due to implementation issues. In this section we discuss some of these issues
and illustrate a heuristic which can further speed up the method significantly. In our
final implementation the velocity computation took about three times longer than the
evaluation of the discrete Laplacian.

3.5.1 Solution of the Moment Equations

Equation (3.15) is a classical ‘phase I problem’ of the Simplex algorithm for linear
programming problems. When we use an insertion scheme such as the one described in
section 3.5.2 this system is underdetermined, with a fixed, small number of rows n =5
or n =9, corresponding to the number of moment conditions, and a variable number
of columns, corresponding to the size of the neighbourhood N; \ {i}.

The theory of simplex algorithms is to vast to be treated in detail here, such that we
can only give a some key remarks and refer to the literature, e. g., Fletcher’s book [72],
for further details. Assuming that the moment conditions do have a solution, phase
I of the algorithm always returns one with n non-zero entries corresponding to a
certain subset of particles in the neighbourhood. These non-zero entries are called basic
variables. Setting the fractions f;; for the remaining particles to zero, the solution can
be obtained by solving an n x n linear system. The simplex algorithm is a systematic,
iterative way of finding a valid set of basic variables. In every iteration of the algorithm
an n X n system consisting of varying sets of columns of V; needs to be solved, typically
by means of an LU decomposition, which is of O(n?®) complexity [73].

The efficiency of the method thus crucially depends on the number of rows of V;,
which should be kept as small as possible. Shankar and van Dommelen [64] use
a different linear programming problem, aiming to minimise the maximum norm
of the solution. By doing so, they solve a problem involving 4n rows, effectively
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making each iteration 64 times more expensive. One should thus keep the original
formulation (3.15). Furthermore, optimising the solution with respect to some target
value forces to algorithm to enter phase II, which further increases its cost without
improving the method’s order of convergence. One might try to optimise the error
constant by choosing an optimisation criterion that favours close particles. However,
in regard of the later introduced heuristic of small neighbourhoods in section 3.5.3, it
is not immediately clear if this additional optimisation step is cheaper than choosing
smaller values of h.

Note that the two possible values of n are very small and fixed. An efficient
implementation should thus make use of this fact: all loops of the LU decomposition
can be unrolled, enabling compilers to perform aggressive optimisations. The LAPACK
routines, on the other hand, were optimised for larger problems with dynamic, varying
sizes [74].

There are several approaches to avoid a from-scratch computation of the LU de-
composition in every iteration of the method. Updating LU decompositions instead
of recomputing them, however, typically is only effective for larger values of n: the
Fletcher-Matthews update, for example, is reported to be effective for n > 10 [75].

Note that the matrix V; is fully populated and—as the number of neighbours is
typically limited—of small to moderate size. On the other hand, most available
implementations of the Simplex algorithm as well as a substantial part of the available
literature focus on large-scale, sparse problems. In other words, they are optimised
for the opposite case and thus cannot deliver good performance for our problem.
Implementing an efficient, dense simplex method is essential for the overall performance
of the VRM. As this task is not straight forward, some authors, e.g., Lakkis and
Ghoniem [76], prefer to solve the non-negative least-squares problem instead:

min |V;f; — b;|?, (3.59)
f;>0

where |- | refers to the Euclidean norm. This problem can be solved using the algorithm
due to Lawson and Hanson [77], which solves an unconstrained least-squares problem
in each iteration. However, the size of this unconstrained problem varies in every
iteration, making it harder to unroll loops a priori. Additionally, these problems are
typically solved using QR or LQ decompositions, which are more expensive than the
LU decomposition. We therefore do not further pursue this approach.

3.5.2 Insertion of New Particles

In order to ensure that non-negative stencils exist, particles need to have sufficiently
many neighbours which also need to fulfil certain geometric conditions. Seibold [66,
67] gives the exact conditions for the first order case m = 1 as well as the following
sufficient condition: seen from the centre of the neighbourhood, the angle between two
adjacent particles may be no more than 45°. Assuming a given maximum hole-size in
the particle cloud, he also gives a sufficient upper bound Rh for the neighbourhood
size. These conditions could in principle be implemented in a VRM scheme, resulting
in a strong guarantee that positive stencils always exist.
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Figure 3.1: Illustration of a particle neighbourhood and the insertion strategy. Each of
the eight segments except for the shaded one contained at least one particle.
In the shaded segment a new particle is inserted on the centre line at radial
position 1.5h. No particle can be closer than 0.5h to the newly inserted
particle: the circle of that radius is indicated using a dashed line and is
completely included in the previously empty segment.

However, as he points out, these conditions are often too strict. We thus pursue
a different approach. Instead of directly checking the angles between each pair of
adjacent particles, we subdivide the neighbourhood into eight segments of 45° each,
as illustrated in figure 3.1. In order to avoid wasting computational resources, we
do not want to insert new particles that would violate the lower bound in (3.10) for
any other particle. However, we also want to avoid small values of r, to prevent the
time-step constraint (3.42) from becoming too strict. As a compromise we choose r = %
and R = 2 and apply the following insertion strategy: if any neighbourhood segment
contains no particles, a new particle is inserted on the segment’s centre line at radial
position 1.5h. As illustrated in figure 3.1, this ensures that the newly inserted particle
does not violate any other particle’s lower bound on its neighbourhood.

This insertion strategy ensures that particles are at most spaced 2h apart. According
to theorem 6.11 of Seibold’s thesis, choosing the upper bound of the neighbourhood
size as R > 5.23 then guarantees the existence of positive stencils. However, in our
numerical experiments, such a large choice was not necessary and all computations
worked well with R = 2. Experiments conducted with a slightly rotated reference frame
indicated that the results of this strategy do not significantly depend on the coordinate
system used.

Unlike claimed by Cottet and Koumoutsakos [48], insertion of empty particles is
different from remeshing: it leaves the vorticity field wy unchanged, thereby introducing
no error and it does not rearrange existing particles. For this reason the VRM is a
truly mesh-free method.

3.5.3 Small Neighbourhoods

As pointed out in section 3.5.1, the simplex method systematically determines a
subset of particles leading to a non-negative solution of the moment equations. One
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can consequently lower iteration counts by reducing the number of particles in the
neighbourhood. In most cases a non-negative solution exists if there is just one particle
in every 45°-segment of the neighbourhood. This leads us to the following approach: for
every particle neighbourhood, choose the closest particle of each segment. We call the
resulting subset the small neighbourhood. We then apply the simplex method to this
small neighbourhood. By choosing the segments’ closest particles, we aim to locally
reduce R, thereby minimising the error constant. Only if no non-negative solution
was found, we retry with the complete neighbourhood. In our numerical examples,
depending on h, this only happened in a negligible (less than a hundred) number of
cases.

This approach has the advantage that all matrices and vectors involved in the
simplex algorithm can be statically allocated, avoiding the overhead of dynamic memory
allocation and further enabling the compiler to unroll more loops. In our experiments
in section 3.6.2, the use of these small neighbourhoods instead of the complete ones
lead to a threefold speed-up.

Note that after the assembly of the Vandermonde matrices V;, this approach leads
to a set of completely decoupled, small problems of fixed size. We thus have an
embarrassingly parallel problem, making it ideally suited for computations on many-
core processors, such as GPUs or the Intel Xeon Phi.

3.6 Numerical Experiments

As Shankar and van Dommelen point out in their work [64], the Lamb-Oseen flow is
an ideal test-case for vortex particle methods: its initial condition is a single Dirac
delta distribution:

w(0,x) =T0(x), (3.60)

and can thus be exactly represented in a vortex particle method. The analytic solution
is infinitely smooth and valid for the heat-equation (3.31) as well as the vorticity
equation (2.2):

x|

T
w(t,x) = 47wte_ i (t>0). (3.61)

The corresponding velocity field is given by:

u(t,x) = 2:‘}(’ (1 — exp(—‘iﬂi))@, (3.62)

where @ refers to the unit vector in circumferential direction at position x. In the
following, we will describe several numerical experiments carried out on this flow.
Mimicking Shankar and van Dommelen’s case of Re = 50, we chose m =1, I' = 27,
Caig=1,v= %. We choose higher resolutions, however, and stop time-integration at
t=1.
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3.6.1 Convergence with respect to h

We consider the cases with and without convection, corresponding to the Navier—Stokes
equation and the heat equation, respectively. In the case of the heat equation, we use
Euler’s method to advance the solution in time and choose a fixed time step:

1 (rh)?

At = =
8 4v

(3.63)

As mentioned previously, in vortex methods in unbounded or periodic flows it is
common practice to smooth the vorticity field with a radial blob function {, of blob-
width o. This corresponds to replacing the singular Biot—Savart kernel K with a
regularised one K,. We use the following second order kernel obtained after Gaussian
smoothing:

K, (x) :—W<l—exp(—‘z 2)), x = (z,y)".

Our particle insertion strategy guarantees that particles are at most spaced 2h apart.
Here we follow the common practice and choose o proportional to h; to ensure sufficient
overlap we choose o = 3h. A fast multipole method (FMM) similar to that of
Dehnen [44] of order p = 16 and multipole acceptance criterion § < 0.8 is used to speed
up the velocity computation.

Practical experience has shown that higher order time-stepping methods are required
to accurately maintain linear and angular momentum in the case of enabled convection.
Like Shankar and van Dommelen, we choose the classical Runge-Kutta method (RK4)
in this case. In order to resolve particle movement accurately, the time-step is adaptively
chosen as the minimum of (3.63) and the following CFL-type condition:

At < é ~min h (3.64)

=1,...,.N ]uz\
We want to stress that this second bound is not required to ensure stability: experiments
without this restriction showed no instabilities and gave reasonable results, however,
the errors in linear and angular momentum were larger.

As it is difficult to compute Sobolev-norm || - ||j37—m.1 explicitly, we try to approximate
the L?-error of the corresponding velocity. As the system contains infinite energy,
we need to limit the area of integration. We define our computational domain as
Q = [~1.5,1.5], as all particles were contained within this region. By means of
numerical quadrature we then evaluate:

ey = [u— uoHLQ(Q), (3.65)
lullz2(o)

where u, stands for the velocity field which is obtained from the particle approximation
using the smoothed kernel K.
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Figure 3.2 shows the observed error estimates for various values of h. Even though
the expected convergence rate was m = 1, we actually observe second order convergence
behaviour. This is similar to the observations by Seibold, who explains this using a
symmetry argument: the classical five-point finite-difference stencil achieves second
order accuracy due to the symmetry of the particle locations. However, the insertion
strategy and the definition of the particle neighbourhoods preclude extreme cases of
asymmetry, which might result in the observed second order convergence. Seibold,
however, does not exclude particles according to equation (3.57). It is thus comes as a
surprise that even the reduced operator exhibits this behaviour. As both curves form
a nearly straight line and essentially coincide, we suspect that the smoothing error
dominates for this choice of parameters.

Figure 3.3 shows the number of particles in the final time-step of the computation. It
increases approximately as O(h~2), as one would expect in a grid-based computation.
This again is surprising, as bound (3.57) gets stricter for decreasing h. Due to the
convection in the Navier—Stokes case, more particles need to be inserted as they move
around. In our simulation, this caused an increase in the number of particles of a
nearly constant factor 1.6.

As shown in section 3.4.4, the reduced operator conserves circulation and linear
momentum exactly. In the case of the heat equation this remains the case when a
time-stepping scheme is applied: the error in Iy and I; was of the order of the machine
accuracy. For the Navier—Stokes equation this is only true for the circulation. For all
choices of h the error in linear momentum varied between O(107) and O(10~7). We
believe this to be a result of the limited accuracy of the FMM code that was used
for the velocity computation and the error introduced by the Runge—Kutta method.
Figure 3.4 shows the error in angular momentum I». The values for the heat equation
decrease at a rate of O(h?), similar to the bound (3.57). In the convective case the
error decays somewhat faster, in a less clear-cut manner. We believe this to be a result
of the increased number of particles. We thus conclude that for the chosen values
of h, the error in angular momentum induced by using the reduced operator (3.54)
dominates that of the FMM and the time-stepping scheme.

Figure 3.5 shows the velocity at the particle locations for A = 0.04 at t = 1 with
enabled convection. Despite the asymmetry in the particle locations caused by the
convection, one can see that the velocity field remains quite symmetric. The reduced
operator prevents the creation of particles that would carry insignificant amount of
circulation. For this reason, the particle cloud takes the shape of a circle around the
origin: vorticity decays exponentially with the distance to the origin. At ¢ = 3h = 0.12
the resolution is not high enough to accurately represent steep velocity gradient at
the centre of the flow. However, due to the good conservation properties, we obtain a
qualitatively good solution already at this under-resolved computation.

3.6.2 Computational Speed

In order to assess the speed of the method, we measured the time needed to evaluate
the velocity and the Laplacian for h = 0.01. For the Laplacian, we compared the
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Figure 3.2: Error estimates for the heat and Navier—Stokes equations for varying values
of h at t = 1. Their values essentially coincide and exhibit an O(h?)
convergence behaviour.
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Figure 3.3: The number of particles in the final step of the computation for the heat
and Navier—Stokes equations. The curves show a particle growth that
scales as O(h™2), despite the fact that equation (3.57) is getting stricter for
decreasing mesh-sizes. The ratio between the two curves’ values remains
approximately fixed at around 1.6.
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Error in Angular Momentum
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Figure 3.4: Error in angular momentum at the final time-step for the heat and Navier—

Stokes equations. The error decays at a rate of O(h?), the same exponent
as in condition (3.57). In case of the Navier—Stokes equations, the error
decreases even faster, in a less clear-cut manner.

u Magnitude

Figure 3.5: Plot of the smoothed velocity u, at the particle locations for h = 0.04
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at t = 1. Despite the asymmetric particle distribution, caused by the
convection, the velocity field remains very symmetric. The particle cloud
takes the shape of a circle. Even in this under-resolved case, the method
yields qualitatively good results.
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Computational Speed
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Figure 3.6: Required CPU time for the VRM with the full and small neighbourhoods
in comparison to the FMM. The computations were performed on an
Intel Xeon E5-1650v3, a six-core processor running at 3.5 GHz. The line
corresponding to the FMM is jagged due to the task-based parallelism used
in the implementation. The VRM computation can be greatly accelerated
using small neighbourhoods, it is then about three times faster than the
corresponding velocity computation.

performance of two codes: the first code uses LAPACK to decompose the arising linear
systems in each simplex iteration and takes the complete particle neighbourhood into
account. The second code uses small neighbourhoods as described in section 3.5.3 and
an implementation using completely unrolled loops in the LU decomposition. The code
was parallelised using OpenMP, where task based parallelism was used for the FMM.

In an inviscid vortex method the velocity evaluation takes up almost all of the
computational time, even when fast algorithms like the FMM are used. Many of the
viscous schemes that rely on frequent remeshing, like the method of particle strength
exchange (PSE), are so efficient, that the time needed for them is also negligible
compared to the velocity evaluation. On the other hand, Schrader et al. [65] report that
their DC-PSE method takes up as much as 90% of the total CPU time, and compare
its computational speed with that of the VRM. To illustrate that this is not necessarily
true, and to show that the VRM is a computationally feasible scheme, we compare the
time needed for it with that of the FMM.

Figure 3.6 shows the required time for each computation depending on the number
of particles involved. One can see that all computations scale linearly with IV, however,
with different constant factors. The code using small neighbourhoods performs about
three times faster than the corresponding code using the complete ones. This clearly
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highlights the benefit of trying small neighbourhoods first. It also performs about three
times as fast as the corresponding FMM code. Further measurements showed that,
in the case of small neighbourhoods, only about one third of the time was used for
the actual simplex solver, while the remaining time was spent finding neighbourhoods
and inserting new particles. A hash based algorithm was used for this, causing the
resulting curve to be jagged due to caching effects.

Note that these numbers cannot be directly compared to those reported by Shankar
and van Dommelen: they compare a single VRM computation to that of a convective
step performed using the Runge-Kutta method, i.e., involving four velocity compu-
tations. In this setting, their VRM computation takes about 25% longer than the
convective step, i. e., five times longer than a single velocity evaluation. In comparison
to the respective FMM codes, our VRM computation thus is about 15 times faster.

3.7 Conclusion and Outlook

We have introduced a splitting-free variant of the vorticity redistribution method (VRM).
Using the new concept of small-neighbourhoods, its speed compared to the original
method can be greatly accelerated and typically is below that of the corresponding
velocity computation. Equation (3.57) allows us to efficiently and consistently reduce the
number of diffused particles. We have illustrated that the method can be implemented
efficiently and that previous claims on the slow speed of the VRM are probably due to
implementation issues. The large number of small, independent, fixed-size problems
involved makes it an ideal candidate for parallelisation on coprocessors such as GPUs
or the Intel Xeon Phi. We conclude this text with a few possible extensions on the
method.

In light of the quadratic time-step bound (3.42), an interesting topic for future
research might be the application of implicit time-stepping schemes in periodic flows.
As the convective part of the equations is non-stiff, this seems to be an ideal use-case
for IMEX multistep schemes [78]. After having convected the particles, F could then
be readily assembled, leading to a linear system. As Seibold discusses in his work [69],
due to the positivity and sparsity of the stencils, such systems can effectively be solved
using algebraic multigrid methods.

The definition of a particle’s neighbourhood in equation (3.10) excludes particles that
are too close to that particle. In order to save computational resources, it may thus
be desirable to remove particles in areas where they get too close to one another. As
described in section 3.2 instead of approximating the Laplacian, one can apply the same
methodology to approximate the identity operator using a particle’s neighbours. This
way, a particle can be redistributed to its neighbours and subsequently be removed.
Lakkis and Ghoniem [76] successfully applied a similar procedure and reported a
significant reduction in the number of particles.
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Chapter 4
Particle Regularisation

In this chapter we introduce a new method to regularise particle fields in general
bounded domains Q C RY, d € {2,3}. We begin this chapter by recapitulating the
particle regularisation problem which lies at the core of all modern vortex methods.
We then describe some commonly used strategies to tackle this problem and their
drawbacks. Our new approach is based on two main ingredients: a certain class of
smooth approximation spaces and a stabilised variational formulation. We will carefully
define these spaces and analyse the variational formulation in the subsequent sections.
Our analysis will in particular show that our approach is optimal, in the sense that
the regularised vorticity fulfils the same asymptotic error bound as the given particle
approximation. Practical experiments will confirm the analysis and illustrate the
practicality of the approach.

4.1 Introduction

In order to understand the problem of particle regularisation and its fundamental
importance to vortex methods, let us reconsider the simple case of an inviscid, two-
dimensional flow in a bounded domain Q = D C R2. In this case the transport equation
for the scalar vorticity w reads:

0
& u-Vw=0  inQ (4.1)
ot
Let us for the moment consider that the velocity field u would be known and would
satisfy a no-through condition on the domain’s boundary 0€2. In vortex methods one

then discretises the vorticity field with particles:
N
w(t=0) =~ wy(0) = ZFi5(X —x;(0)), (4.2)
i=1

where I'; and x; denote the circulation and position of particle i, and J is the Dirac
delta function. For such particle discretisations one typically has error bounds of the
form |[w — wp[y-entn.2(0) < Ch™ H|w|lwm+12(), m > 1, as for example shown in
theorem 2.4. The reason for choosing this particular form of discretisation lies in the
fact that for such particle fields wy, an analytic solution of equation (4.1) is available:
one simply modifies the particles’ positions according to d(ﬁi =u(t,x;(t)),i=1,...,N.
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This is the exact solution, thus no additional error is introduced. In particular, at any
time ¢t > 0, the error can be bounded by the initialisation error.

In practice, however, the velocity field is of course not known and needs to be
retrieved from the vorticity as described in section 2.2. Let us for simplicity assume
that the velocity fulfils u = 0 on 02, such that we can ignore the boundary integral
term uyp. In this case the velocity is simply given by the Biot—Savart law as described
in subsection 2.2.1:

u=Krw, Kx)=———2"1 (4.3)

where x denotes convolution. As explained in subsection 2.2.4, we have the following
classical estimate due to Calder6n and Zygmund [53]:

1K * w2 < Cllwll 2@, (4.4)

where here and throughout this text the symbol C' refers to a generic positive constant
which is independent of the functions involved. The problem is that the particle
approximation wy, ¢ L?(Q) is not smooth enough to apply this estimate; applying the
Biot—Savart law to the particle field directly yields a singular velocity field. The question
we try to answer in this chapter is how to obtain an accurate, smooth approximation
wy € L2(Q) from the particle field wy,, where o refers to a smoothing length, which will
be defined precisely later. This is the particle regularisation problem.

Closing our discussion of the introductory example, once a suitable smooth ap-
proximation w, has been obtained, one sets u, := K x w, and evolves the particle
locations according to d&fj = u,(t,x;(t)), instead. One can then show that the resulting
method converges, and due to its natural treatment of convection is essentially free of
artificial viscosity—one of the main draw backs of conventional grid based methods [48,
Section 2.6]. All extensions to this scheme, e.g., three-dimensional or viscous vortex
methods also rely on the availability of such a regularisation procedure.

The most common approach to the regularisation problem is to mollify the particle
field with a certain, radially symmetric blob-function (,: ws ‘= wp *x(,, where o denotes
the radius of the blob’s core [48, Section 2.3]. Many commonly used blob-functions
have infinite support, effectively extending w, from € to R? and blurring the domain’s
boundaries. Additionally, instead of evaluating the Biot—Savart integral as K x w,,
one usually first computes K, := K x {, explicitly and then evaluates the equivalent
expression u, = K *wy. This complicates the application of fast summation algorithms
such as the fast multipole method, which rely on series expansions of the kernel function.
Such expansions are available for K, but this is typically not the case for the smoothed
kernel K, .

There are approaches to use blob-functions with varying shapes near boundaries
[76, 79] or to use image particles outside of the domain [48, Section 4.5.2]. These
approaches assume that the boundaries are flat and usually fail in the presence of sharp
corners or kinks. Another approach is to interpret the particles’ circulations as weighted
function values I'; = w;w(x;), where the w; are weights from an underlying quadrature
rule. While this is strictly speaking only the case during the initialisation stage, the
approach is then to create a triangulation of the domain using the particles’ positions
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as grid nodes and to use these values to construct a piecewise linear approximation [80].
This requires a mesh to be regenerated at every time-step, which is problematic as
the particle field gets distorted over time. In Vortex-in-Cell (VIC) schemes one uses
interpolation formula to obtain a grid-based approximation of the vorticity field. In the
vicinity of boundaries these formulae need to be specifically adapted to the particular
geometry at hand and cannot be used for general domains [81]. In summary it can
be said the regularisation problem causes significant difficulties, and as Cottet and
Koumoutsakos point out in the introduction of their book [48]: ‘To our knowledge there
is no completely satisfactory solution for general geometries, in particular because of the
need to regularize vortices near the boundary’ Marichal, Chatelain, and Winckelmans
come to a similar conclusion in their recent review of regularisation schemes [82]:
‘None of the schemes above truly succeeds in the generation of accurate particle—or
grid—values around boundaries of arbitrary geometry’ The implications of this
observation are severe: without an adequate regularisation procedure, vortex methods
cannot be applied to flows in bounded domains.

In this chapter we try to address this problem with the help of a finite element
formulation. The non-smooth W~ (m+1:2_nature of particle field approximations forces
us to use shape functions that are globally at least W™ +!:2-smooth, which is not the
case for the classical, piecewise linear elements. The partition of unity finite element
method (PUFEM) by Melenk and Babuska is a generalisation of the classical finite
element method (FEM), which can be used to obtain such smooth spaces. Even though
already mentioned in their introductory paper [83], there seems to have been little
research in this direction. Duarte et al. [84] describe an approach which only works for
certain triangulations in two dimensions.

The generation of globally smooth shape functions on general meshes in higher
dimensions is a well-known, hard problem. We instead consider simple Cartesian
grids, on which the construction of smooth shape functions is easier. We then apply a
fictitious domain approach to deal with general geometries. This typically results in
instabilities in the cut elements. Under the name ghost penalty Burman [85] presented
an effective and accurate stabilisation strategy for this problem, which has for example
been successfully applied to several other flow problems with cut elements [86, 87,
88, 89]. We use a similar, higher-order approach inspired by Cattaneo et al. [90] as
well as Burman and Ferndndez [91] to achieve accuracy and stability of the resulting
discretisation.

The rest of this chapter is structured as follows. In section 4.2 we define and
construct smooth PUFEM spaces and analyse some of their important properties. In
section 4.3 we introduce a stabilised variational formulation and prove its stability
and convergence. The regularisation problem is then treated as a perturbation to this
variational formulation. Similar to the approach with blob-functions as mentioned
above, the resulting error can be split into regularisation and quadrature error parts
which need to be carefully balanced. The analysis will show that the smoothing
parameter o should be taken proportional to the square-root of the particle-spacing h
and that this choice is in a certain sense optimal. In section 4.4 we perform numerical
experiments, confirming our analysis. As a consequence of the quadratic relation
between h and o, the computation of the velocity field only has a computational
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complexity of (’)(lf%), enabling the use of particle numbers on desktop workstations
which were previously only possible on super computers. We finish this chapter with
some concluding remarks and an outlook to possible future extensions.

4.2 Smooth Partition of Unity Finite Element Spaces

In this section we are going to introduce smooth PUFEM spaces, which are necessary
for the application of the particle approximation wy, to be well defined. We investigate
their approximation qualities and give an explicit construction for such spaces which
can be used in a computer implementation. We conclude this section with inverse
estimates, which will be needed in the analysis of the variational formulation in the
next section.

4.2.1 Basic Theory

We begin this subsection by defining smooth partitions of unity, similar to Melenk and
Babuska’s theory [83].

DEFINITION 4.1 (SMOOTH PARTITION OF UNITY). Let Q C R? be a bounded domain
and let {Q;} be an open cover of Q satisfying a pointwise overlap condition:

IMeN: Ve eQ: card{i|z € Q;} < M. (4.5)

Let {¢;} be a Lipschitz partition of unity subordinate to the cover {;} satisfying

supp ¢; C clos €, (4.6)
ngl(:c) =1onQ, (4.7)
|<,0¢|Wk,oo(Rd) < C(k)(diam Qi)_k k € Ny, (4.8)

where the C(k) are positive constants and the symbol | - lwr.p(may Tefers to the Sobolev
Semi-noTrms:

1/p
(Z|a:k laalez;J(Rd)> pE [17 OO)? (49)

max|q (= [|0%f || oo (ra) p = oo.

| lwe(ray :

Then, {@;} is called a smooth partition of unity subordinate to the cover {;}. The
sets §; are called patches.

Using these functions {¢;}, we can define the spaces for the partition of unity finite
element method (PUFEM).

DEFINITION 4.2 (PUFEM SPACES). Let {¢;} be a smooth partition of unity subordin-

ate to the open cover {§;}. For P,k € Ny, p € [1,00] we define polynomial enrichment
spaces VE Cc WkP(Q N Q) :

Vi¥ := span{x®||a| < P}, (4.10)
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and the PUFEM spaces V.F'(Q) c WFP(Q) :
VUP := span{p;v; | v; € ViP} (4.11)

where o := max; diam $2; refers to the mazrimum patch diameter.

Assumption 4.3. We will assume that the shapes of the domain € and the patches {;} are
such that we can apply the Bramble-Hilbert lemma [60, Lemma (4.3.8)]. In particular, we will
assume that for all w € WETLP(Q N Q;), p € [1, 0], there exists a v; € V,I' such that:

|U — ,Ui|Wk,p(Qin) S CO’P+17k|U‘WP+1,p(Qin) Vk S N(), k S P + ]., (412)
where the constant C' is independent of o and wu.

We then have the following estimate, which is a straightforward generalisation of the
result of Melenk and Babuska [83, Theorem 2.1].

THEOREM 4.4. Let VP () be as in definition 4.2 and let assumption 4.3 be fulfilled.
Then for any u € WPTLP(Q), p € [1,00], there exists Pu € V.F(Q) such that:

| — Pulyroig) < CoP ™ lulypiinq) Yk € No, k< P+1, (4.13)
where the constant C is independent of o and .

Proof. Here, we will only consider the case p € [1,00); the proof for the case p = oo is
analogous. With v; € ViP as in assumption 4.3 we set Pu := Y, ¢;v;. We may then
write for any multi-index o with |a| = k:

0= Pl 0y = 0° Sl vl —||zz<)aﬂgp,-aa—ﬂ(u_wgm)

B<a 1
(4.14)
Considering the absolute value of the expanded derivative on the right, we obtain using
Hoélder’s inequality:

P p
Z Z < ) P00 P (u—v;)| <C(a,p) Z Z P ;00" (u—v;) (4.15)
B<a 1t B<a’
and thus:
10°(u = Pu)|[ iy <C D 11D P00 P (u — v Wie @) (4.16)

B<a 7
Now, using the fact that for every point z € Q) there are at most M non-zero terms in
the sum over ¢, we obtain by again using Holder’s inequality:

p
> 0700 P (u — vy)

< O(M,p) Y |0%0i0* P (u — vy)|” (4.17)

After inserting this in the previous relation we may exchange the order of summation.
Using the fact that ¢; = 0 outside €2; we obtain:

0% = Py < O S 107007 (= ) gy (415)
i B<a
Applying (4.8), (4.12), and the finite overlap condition (4.5) yields the claim. O
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Wi

Qj

Q;

Figure 4.1: An illustration of the Cartesian grid. On the left a grid node x; together
with its associated patch-core w; and patch €2;. On the right another grid
node x; with its associated element @;.

4.2.2 Construction of a Smooth Partition of Unity

In this subsection we are going to construct such a smooth partition of unity using
mollification. We will make use of the following two definitions.

DEFINITION 4.5 (FRIEDRICHS' MOLLIFIER). The function:

. > 1
Kl exp (—1=7=) else, (4.19)
K ~0.221996 908 084 039 719,

C:R—=[0,K!

is called Friedrichs’ mollifier in one-dimensional space. The constant K was obtained
numerically, such that ||(||p1r) = 1. For spatial dimensions greater than d = 1 we
define Friedrichs’ mollifier using the product:

d

C:Rd%[O,de], (ml,...,xd)HHC(xi),

i=1
where under a slight abuse of notation, we reused the symbol (.

It is well known that ¢ € COOO(Rd), and thus also ¢ € WkP(RY), k € Ny, p € [1,00].
Furthermore, we have supp ¢ = [—1 3 2] which leads to the following definition.

DEFINITION 4.6 (CARTESIAN GRID). Given o > 0, we define Cartesian grid points
x; € R, i € Z%, x; := (iy0, ..., iq0). With each grid point we associate a patch Q; and
a patch-core w;:

((iq — 1) (zd + 1) ), (4.20)
((iq — (ig + 3)o). (4.21)

An illustration of these definitions is given in figure 4.1. It is obvious that the patches
{Q;} form an open cover of R? with M from definition 4.1 being equal to 2¢. The
patch-cores {w;} are pairwise disjoint and their closures form a (non-open) cover of
R?. Using these definitions, we are now ready to construct smooth partition of unity
functions {¢;},4 € Z%.
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LEMMA 4.7. For a given ¢ > 0 and i € Z% let o; be the convolution of the char-
acteristic function x., of the patch-core w; with the scaled Friedrichs’ mollifier

Co(x) =079 (x/0):

£i(%) == (X + )0 = [ Golx—y)dy, (4.22)
One then has:
@i € C°(RY) and supp p; = clos Q;, (4.23)
Y pi(x)=1 xeRY (4.24)
iezd
|0il e (ray < C(k)o¥P=* ke Ny, pell,o] (4.25)

Proof. The first property directly follows from the classical properties of mollifica-
tion [68, sections 2.28 and 2.29]. For the second property we immediately obtain:

> pilx) = Z/

i€z iczd 7 Wi

Gx=y)dy = [ Glx—y)dy=1.  (20)

For the last property we obtain with the help of Young’s inequality for convolutions
for every multi-index a with |a| = &:

X *8a<0||LP(Rd) < ||XwiHLp(Rd)HaaCaHLl(Rd) = Ud/pikHaaCHLl(Rd)‘ (4.27)
(Il

Remark 4.8. There is no closed-form expression for the functions {¢;} available. However, it
is important to notice that we have:

X —X;

%®—¢( ) ﬂ@:z?@fkw®~ (4.28

g

Furthermore, ¢ inherits the product structure of (. In a computer implementation it is thus
sufficient to tabulate values for ¢ corresponding to the case d = 1. We can then efficiently
approximate ¢ using, e. g., cubic Hermite splines. The graph of this function can be seen in
figure 4.2.

4.2.3 Reference Element and Inverse Estimates

In this subsection we illustrate that the smooth partition of unity constructed in
subsection 4.2.2 leads to spaces that can be treated in a manner similar to conventional
finite element spaces. In particular, we can subdivide R? into elements:

Qi = (i10, (i1 + 1)o) x ... x (iq0, (ig + 1)o), i€ Z% (4.29)
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Figure 4.2: An illustration of the one-dimensional partition of unity function ¢.

Every Q; may then be seen as the image of the reference element Q = (0,1)% under
the transformation ®; : Q — Q;, X — x; + oX. In every element ); we have a fixed
set J; of 2¢ overlapping patches €2;. Introducing:

w52

—_——
=:gj,a(x)

la| < P}, jez? (4.30)

as bases for the enrichment spaces Vjp , one quickly sees that within each element Q;
the basis functions g; . can be expressed in terms of mapped reference functions gy, q«:

gj,oz(x) = (gm,a o q);l)(x)a X Ec Qia J€E Tis (4'31)

where m is the index of the node in the reference element that corresponds to x;. Due
to remark 4.8, the same holds true for the partition of unity functions ¢;. This allows
us to infer the following classical result, which follows from a scaling argument and the
norm-equivalence of finite-dimensional spaces [60, Lemma (4.5.3)].

LEMMA 4.9 (INVERSE ESTIMATES). Let V. (Q), 0 > 0, P € Ny be defined as above.
Then, for any element Q; C Q contained in the domain and every v, € V.F(Q) one has:

Vo llwir(gy < Co™ vollwrng,y: P €L, k1N, k<1, (4.32)

where the constant C is independent of o and 1.

4.3 Stabilised Variational Formulation

In this section we will introduce a stabilised variational formulation with the aim
of mimicking of the L?(£2)-orthogonal projector onto V.F'(€2). As the inverse estim-
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ates (4.32) are not available for elements @Q; cut by the boundary 912, we will employ a
fictitious domain approach. In order to ensure coercivity of the resulting bilinear form
on the entire fictitious domain, we will add a stabilisation term in the cut cells. Once
consistency and stability of this formulation have been established, we will model the
regularisation process as a perturbation to this variational problem.

4.3.1 Basic Definitions and Conditions

We will restrict ourselves to Hilbert spaces (p = 2), due to the rich theoretical framework
available for this case. We will assume that the shape of the domain 2 is such that we
may apply the Stein extension theorem [68, Section 5.24], i.e., there exists a bounded
linear extension operator & : W*2(Q) — WH*2(R9) for any natural number k. We
explicitly wish to include functions that do not vanish on the boundary 9€2. For this
reason, for any domain 00 C R? we will denote by W=%2(0) := W*2(0)’ the dual
space of W*2(0). (Opposed to the convention W~%2(0) = Wéc’z(D)’).

We will need certain geometrical definitions. To this end, let o > 0 be arbitrary but
fixed. We define the fictitious domain €2, as the union of all elements that intersect
the physical domain €. Furthermore we define cut and uncut elements QL and Q2,
respectively:

Q, :=int U{clos Q; | measqy(Q; N Q) > 0},
QL ==int | J{closQ; | Qi € Qo A Qi ¢ O}, (4.33)
Qg ==int | J{closQ; | Qi € U A Q; C O},

with @; as in (4.29). Here, we write under a slight abuse of notation @Q; € QL if
Q; C QL. These domains obviously fulfil 22 C Q C Q,, 2, = int(clos Q2 Uclos QL), and
Q°NQL = (. Two elements Q; and Q' will be called neighbours if they share at least one
node on the Cartesian grid. We will make the following somewhat technical assumption:
for every Q; € QL there is a finite sequence of elements (Q; = Q;1,Qi2,---, Qi) C QL
with the following properties: the number K is bounded independent of o, every pair
of two subsequent elements are neighbours, and @); x has a neighbour in 7. This
condition means that one can always reach uncut elements from cut elements in a
bounded number of steps. For sufficiently fine Cartesian grids this condition is often
fulfilled with K = 1; if necessary it can be enforced by moving additional elements
from QS to QL.

4.3.2 Introduction of a Higher-order Stabilization Term

The basic idea of the ghost penalty method is to control the norm of cut elements
by relating them to neighboring uncut elements. In the aforementioned articles [86,
87, 88|, for example, this is done by controlling the norms of the gradient-jumps at
element boundaries. However, as our PUFEM spaces are globally smooth, they do not
contain such jumps. Burman and Ferndndez [91] and Cattaneo et al. [90] instead use
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i YQ
@

Figure 4.3: A cut element Q; € QL sharing a node #* with an uncut element Q’ € Q2.

the Brezzi-Pitkéranta stabilisation [92]. We will use a higher-order variant of this idea
and define the following bilinear form:

i (Ug, vg) = o 2P Z Z / )(0%v,) dx (4.34)

Qi€ |a|=P+1

such that j(ugs,us,) =0 2(P+1) |ua\WP+1 2(0r)" We then obtain the following result:

LEMMA 4.10. Let u, € VX(Q,). One then has with constants ¢ and C independent of
o and the position of Q) relative to the Cartesian grid:

C”“UH%Q Qo) = HUUHL2 (Q2) + 7 (Uo, uo) < CHUUHL2 Qo) (4.35)

Before moving on to the proof of this lemma, let us remark that the stabilisation
term is necessary. Look for example at the configuration shown in figure 4.3. The
partition of unity function corresponding to the node of @); opposite to x* vanishes on
Q2. Thus its L?(£2,)-norm cannot be controlled by looking at 2 only, unless one adds
a stabilisation term.

Proof. The second inequality directly follows from the inverse inequalities (4.32). For
the first inequality, let us first consider the case K = 1, i.e., a cut element Q; € QL
and an associated uncut element @; € Qf which share a Cartesian grid point x*,
as for example illustrated in figure 4.3. This configuration can be mapped to one of
P22d = 49— 9% reference cases with reference elements Q and Q’ using the transformation
# = ® Y(x) := (r—2*)/0, such that £* = 0. For an arbitrary function v, € V.7 (Q;UQ})
one obtains with ¢ := (v, 0 ®) € VF(QU Q'):

HUUHB (Q:UQ)) = Ud”'UH 2(QUO’) (4.36)

We claim that the following expression constitutes a norm on V¥ (Q ugQ ):

HU||2 = HU||L2(Q/ + |@|12/VP+1,2(Q)' (4.37)
It suffices to show that [|0|x = 0 = © = 0. From ||?]|? = 0 we obtain 0 = 0

L2(Q")
on Q" and due to the global smoothness of ¢ also %9(2*) = 0 for all multi-indices

a € Nd. From |U|WP+1’2(Q) = 0 we obtain 90 = 0, |a| = P4+ 1 on Q. Together with

70



4.3 Stabilised Variational Formulation

9*0(2*) = 0 this implies © = 0 on Q as well. Thus || - ||+ is indeed a norm. After
employing the norm-equivalence of finite-dimensional spaces, we can transform back to

Qi U Q) and obtain:

o111 guen < Colol? = Cllvolltaigy + o™ Vlvoliyrinag,y).  (438)

The case K > 1 with sequences of cells (Q; = Qi1,Qi2,...,Qix = Q) follows by

induction. Now, summing over all elements and using the finite overlap condition
M =24, the claim follows. U

Note that the proof crucially depends on the global smoothness of the spaces V.. In
particular, this stabilisation does not work with the conventional finite element spaces.
As an example consider the case depicted in figure 4.3, and set v, := 0 on @, and
vy := (z — x*) -y on Q;, where y € R? is an arbitrary non-zero vector.

4.3.3 Stability and Convergence

As described before, we are aiming to mimic the L?(f2)-orthogonal projector. To this
end, we introduce the bilinear forms a and A:

a: L) x IX(Q,) — R, (u,v)H>/muvdx, (4.39)
)
A WEPR2(Q) x WPTL2(Q,) — R, (Ug,V5) = a(tg, Vo) + €J(Ug,v5), (4.40)

where € > 0 denotes a user-defined stabilisation parameter. We define the variational
problem as: given any u for which the following makes sense, find u, € V. (€,) such
that:

A(Uug,vy) = / uvy da Yo, € VE(Q,). (4.41)
Q

We then obtain the following two results.

THEOREM 4.11 (STABILITY). The bilinear form A as defined above fulfils with a
constant C(e) independent of o, uy, and the position of S} relative to the grid:

A(ug, ug) > C(e)|uol20,) Vio € V(). (4.42)
Proof. For any u, € V' (,) one has with the help of (4.35):

Ao, ug) = HUUHQLZ(Q) + ej (g, ug) >
HUUH%Z(Q;’,) + ej(to, us) > C(@H“a”%?(gay (4.43)
O

THEOREM 4.12 (CONVERGENCE). Let u € WP*TL2(Q,). The solution u, € V,F'(Q,)
of the variational problem (4.41) then satisfies the following error bound:

luw — ullz2@,) < O™ ullyri ), (4.44)

where the constant C(g) is independent of o, u, and how the boundary OS2 intersects
the grid.
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Proof. According to theorem 4.4, there exists Pu € V,F'(Q,) such that:
[Pu— ulyr2q,) < CJP+1_k|U|WP+1,2(Qg) keNg, k<P+1. (4.45)
We may write:
luo = ullz2(0,) < llue — Pullz2(q,) + 1Pu — ull 120, (4.46)

For the second term we can apply relation (4.45). For the first term we obtain with
theorem 4.11 and the fact that u, solves (4.41):

1P — w720,y < C)A(Pu — ug, Pu — ug) =

C(e) ((Pu —u, Pu — UU)LQ(Q) + ej(Pu, Pu — ua)) <

o) (HPU — ull 2, P — o 20 + 5P, P2 (Put — g, P — ug)lﬂ),
(4.47)

where we used the Cauchy—Schwarz inequality in the last step. Noting that by the
inverse estimates (4.32) we have:

J(Pu — ug, Pu — up)? < C||Pu — Ug | 12(0,) (4.48)
and together with (4.45):
j(Pu,Pu)Ug S CUP+1H7DUHWP+1,2(QG) S CJP+1HUHWP+1,2(QU). (4.49)

After dividing both sides by [|[Pu — us||z2(q,) we thus obtain:

1Pu= uellzan < CEO(IPu = ulzzay + 0™ ullwrazgy ) (150)
Again applying (4.45) to the first term yields the claim. O

4.3.4 Influence of the Quadrature Error

In vortex methods we are only given a particle field, i. e., a quadrature rule for integrating
smooth functions against the underlying vorticity we are aiming to approximate.
Furthermore the bilinear form A can usually only be computed approximately, using
numerical quadrature. In this subsection we are analysing the influence of these
additional sources of error.

We will assume that the bilinear form j can be computed exactly. This is justified
as it is sufficient to perform computations on the reference element Q, which can be
done up to arbitrary precision a priori. As for the bilinear form a, we will assume the
availability of quadrature rules I,,, satisfying error bounds of the following form:

/Qfdx — Im(f)‘ < Ch™ M flwmeraggy f € WmHHL(Q). (4.51)
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Error bounds of this form arise for example from composite quadrature rules of exactness
degree m on quasi-uniform meshes of mesh width h, see theorem 2.3. Note that due to
the global smoothness of the PUFEM spaces, these quadrature rules do not need to be
aligned with the Cartesian grid. We will write ap,(uq, Vs) := I (usvs) for the resulting
approximate bilinear form. For u,,v, € V,F'(Q,) one then obtains with the help of
Holder’s inequality and the inverse estimates (4.32):

la(Ug,v5) — ap(Ue,vs)| < C’hm+1|uovglwm+1,1(gg) <

crmt oy Z@) 107us8* s 110, <

|a)|=m+1 B<La
m o _
chm Z Z <5> ”8'8“0||L2(ﬂg)||aa BUUHLQ(QU) <
|a]=m+1 B<a

Ch™ o™ D g || 120, 1|22,y (4.52)

This will require us to couple h and ¢ through a relation like h = ¢®, for some s > 1.
We then obtain coercivity of Ap(us,vs) := ap(te,vs) + J(Ue, Vg):

Ah(uayuo) = A(ucr’ua) - (a(ucraua) - ah(uoa ua)) >
(Cle) = Ch™ o™ M D) lug 120y > Cle)lluclloiq,), (453)

where the last constant C'(g) is independent of o, u, and the position of 9 relative to
the Cartesian grid, for ¢ > 0 small enough, h = o*, s > 1.
For the particle field u;, we will assume an error bound of the following form:

Jun — UHW*(mH)Q(Q) < Chm“”“”wm%?(ﬂ)a (4.54)

which is the typical form arising in vortex methods, see for example theorem 2.4.
Again, the particle field does not in any way need to be aligned to the Cartesian grid.
Collecting all of the previous results, we are ready to prove the main result of this
chapter.

THEOREM 4.13. Let h = 0°, s > 1, and denote k := max{P,m}. Let u € WF*+12(Q)
and let the particle approzimation uy, € W~ "1D:2(Q) satisfy the error bound (4.54).
Then for o > 0 small enough the solution u, € V. (Qy) of the perturbed variational
problem:

Ap (g, ) = (up,v5) Y, € VP (Qy) (4.55)

satisfies the following error bound:
lu = ol 2@ < CE) (@™ + B o) fullyi (e, (4.56)

where the constant C(e) is independent of o, u, and the position of 02 relative to the
Cartesian grid.
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Proof. Let v, € V,P'(Q,) denote the solution of the unperturbed variational prob-
lem (4.41), with u extended to Eu by the Stein extension operator. With the help of
the coercivity of Ap one then obtains:

|lue — v0||%2(90) < C(e)Ap(ue — Vo, Ug — Vy) =
C(e) ((uh — Uy Uy — Vo) + A(Vg, U — Vo) — Ap (Ve Us — va)>. (4.57)

Application of the error bounds (4.54) and (4.52) as well as the inverse estimates (4.32)
yields:

Hua — UUH%2(Q0) < 0(6) (hm—i-lg_(m—i-l)||u||Wm+1,2(Q)||ug — ’UUHLQ(QU)—F

W™ g | 2, e — voll2(,) - (4:58)

and thus:

hm+107(m+1) (‘

[ue — vollL2(0,) < C() [ullywmi1200) + vl L2(0,))- (4.59)

Nothing that [|vs|[z2(q,) < C(e)[lullyrr12(q) We obtain:
||’LLU - UUHLQ(QU) < C(S)hm+10_(m+1) HUHW’“"'LQ(Q)’ (460)
Now, by the triangle inequality:

[ue — ullz2) < lue — vollrz(o) + v — ullL2(q) (4.61)

the claim follows by applying theorem 4.12 and the boundedness of £ to the second
term. 0

The part 0P+1|\u||Wk+1,2(Q) is called the smoothing error; o roughly corresponds to
the blob-width in conventional vortex particle methods. The second part is called the
quadrature error; choosing s =1+ T]Z—'_H balances both terms. In the next section we
will illustrate that the choice P = m does not only ‘feel natural’, but also yields optimal

results in a certain sense. In this case we obtain with s = 2 an overall convergence rate

of O(aP+1) = O(h2 D),

4.3.5 Optimality of the Smoothed Solution

In this subsection we will assume that we can apply the bilinear form A exactly, i.e.,
A;, = A. Furthermore we assume P = m. We will show that the smoothed solution
u, then satisfies the same asymptotic error bound as uy. We will need the following
corollary of theorem 4.12.

COROLLARY 4.14. The solution operator S to the problem (4.41) is bounded:

HSUHWP‘H’Q(QG) S C(E)HUHWP‘H’?(QU) Yu S WP—H’Z(QU). (4.62)
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Proof. One has [|Sullyrii2q,) < [|Su— ullwriizq,) + ullwriizq,). Using P as
defined above, we furthermore obtain: [|Su — ullyri12(q,) < [|[Su—Pullyriizq,) +
|Pu — ullyri12(q,). The second term can be bounded by C|lullyri12(q,) due to
the boundedness of P. The first term can be bounded by first applying the inverse
estimates (4.32) followed by estimate (4.50). O

THEOREM 4.15 (OPTIMALITY). Let the conditions of theorem 4.13 be fulfilled. Fur-
thermore assume that A, = A, P = m, and s = 2. Then the smoothed solution uy

fulfills:

e = ully-p4n.2(0) < CER  ullwrirzg). (4.63)

Proof. Let ¢ € WF+12(Q) be arbitrary but fixed. One has with P and £ as defined
above:

/Q (ug —u)pde = /Q (ug —u)(p — PEp)dx + /Q (ug —u)PEp da. (4.64)

For the first term we obtain with the Cauchy—Schwarz inequality, theorem 4.4, and the-
orem 4.13:

LOw—uxw—P&mdeHu—wwmmww—P&Nmm>
< C(e)a® P lullyrirzoll@llwrizg. (4.65)

For the second term one has:

/ (ug —u)PEpda = A(uy, PEp) — / uPEpdx — ej(us, PEp) =
Q Q
(up, — u, PEY) — ej(uq, PEp) <

+ e P lug ||y pi12gq, ) IIsoleH,Q(m) '

(4.66)

¢l = uly-oenqeylelhrrago

It remains to show that [lue|lyri12(q,) < C(e)|ullwrii2(q). To see this, note that we
have:

o llwe+iz,) < [SEullwriiz,) + llue — S€ullyriizg,) <
C(E)HUHWP+1,2(Q) + HU’U — S(‘;UHWP+1,2(QU). (467)

Applying inequality (4.60) to the second term, collecting all the terms, and noting that
o = Vh yields the result. O

4.3.6 Conservation Properties

In the introduction we mentioned the conservation properties of vortex methods as
one of their highlights. In this section we make some brief remarks on some of these
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properties under the assumption that A, = A. For brevity, we will focus on the
two-dimensional case, but remark that all of the results we present here analogously
hold in three-dimensions.

The conserved quantities circulation, linear momentum, and angular momentum are
given by Iy = [ 1 - wdz, I} = [ (22, —z1)Twdz, and I, = Jo |7|?w dz, respectively [17,
Section 1.7]. Noting that the stabilisation term j vanishes if one of its arguments is a
polynomial of total degree less than P, one obtains for the solution w, of (4.41) with
right-hand side wy,: (wo, %) 2(q) = wp(z®) for all |af < P. For P =1 we consequently
conserve Iy and I, for P = 2 one additionally conserves angular momentum Is. This
is important, because in vortex methods body forces are often computed using the

relation F = —p%, where p denotes the fluid’s density.

4.4 Numerical Experiments

We have now established the necessary results to return to our original motivation.
Given a particle approximation w;, € W=(m*t1:2(Q) of the vorticity w that satisfies
an error-bound of the form [|wy — wllyy-m+1)2(0) < Ch | wllym+1.2(q), we want to
obtain a smooth approximation w,, such that we can compute the corresponding
induced velocity field using the Biot—Savart law u, = K % w,. One can then use this
approximate velocity field to advance wy, in time by convecting the particles according
to Ui (t) = uy(t, ;(t)).

In section 4.2 we introduced the spaces V,I'(Q) that can be used as test-spaces
for the particle field wy. In section 4.3 we modelled the regularisation problem as a
perturbation to a stabilised L?-projection onto the spaces VUP (©). The analysis indicated
that one should choose P = m and o = v/h, resulting in an a-priori error estimate of
lwe — wllz2() < CO’P+1||OJ||WP+1,2(Q). The Calderén—Zygmund inequality (4.4) then
tells us that one may expect [[u, — ul[y12(q) < Colwllyrrizq) for the resulting
velocity field u, := K x w,. This analogously holds in the three-dimensional case.

In this section we perform several numerical experiments. We will first describe the
experimental setup. We then perform experiments on a scalar particle field and confirm
the results of our analysis. In particular, the experiments will show that the common
practice of choosing o proportional to h instead of v/A does not lead to convergent
schemes. We will then illustrate the practicality of our scheme, by approximating a
vector-valued vorticity field, computing its induced velocity field, and measuring the
error. We finish this section with experiments on the condition number of the resulting
systems and its dependence of the stabilisation parameter e.

4.4.1 Setup

We define our computational test domain as Q = (—31, 3)3. While this is one of the
simplest cases for mesh based methods, due to its sharp corners and edges it is one of
the hardest for conventional vortex blob methods. In order to obtain quadrature rules

which are not aligned to the Cartesian grid, the mesh generator Gmsh [58] was used to
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4.4 Numerical Experiments

obtain a tetrahedral mesh of the domain, consisting of 24 tetrahedra with maximum
edge-length h = 1. The quadrature rules are obtained by applying the mid-point rule
to this mesh and its subsequent uniform refinements from level I = 0 down to level
[ = 8, corresponding to h = 27® ~ 0.004 and N = 402653 184 quadrature nodes.

Preliminary experiments showed good results for a stabilisation parameter of ¢ =
0.001, which we will use for all of our computations. We will use degree P =1 for the
PUFEM spaces, set o := Ch'/*, and experiment on various choices of C' and s = 1, 2.
For the integration of the bilinear form A; we use the following approach: if in a pair
of basis functions one of them has cut support, we use the same quadrature rule as
for the particle field. Otherwise precomputed values from the reference element Q
are used. The resulting systems of equations are solved using the conjugate gradient
method, where we apply a simple diagonal scaling as preconditioner. The iteration
was stopped when a relative residual of 107!? was reached. This was usually the case
after less than 100 iterations, with some exceptions for coarse refinement levels [ and
the case C' = 0.5,s = 1.

4.4.2 Scalar Particle Field

The common practice to choose the smoothing length ¢ proportional to A may in special
cases be justified with the analysis of Cottet and Koumoutsakos [48, Section 2.6]. They
assume that the quadrature rules used are of infinite order, essentially corresponding
to the case m = oo. Such rules, however, typically only exist in very special cases, such
as a cube with periodic or zero boundary conditions. To show that this approach does
not work in a more general setting, we aim to approximate the following function:

)3. (4.68)

N[

)

D=

u(x) = cos (4rxy) x € (-

This function does not vanish at the boundary. The application of conventional blob-
methods would thus blur the boundaries and lead to only slowly converging schemes.
We define the particle field as uy, := SN wsu(x;)8(x — x;), with § denoting the Dirac
Delta, and x; and w; being the positions and weights of the mid-point quadrature rule
applied to the tetrahedra of the mesh at various refinement levels as defined above.
Figure 4.4 shows the error |[u — us||z2(q) for o = Ch for various choices of C at
different refinement levels. Choosing C' = 0.5 results in approximations with large
errors, which do not decrease significantly under mesh refinement. The case [ = 8 was
not computed due to the large memory requirements. The other curves exhibit similar
behaviour: in the beginning and intermediate stages the error decreases, however,
only at an approximately linear, not quadratic rate. This rate further decreases
and approaches zero under mesh refinement, confirming the predicted bound of the
quadrature error O(h™+1g=(m+1) = O(1). Choosing larger values C' somewhat delays
but does not prevent this effect, at the cost of larger errors on coarse refinement levels.
Figure 4.5 shows the corresponding error for the case ¢ = C'v/h. All choices of C
lead to convergent schemes which approach the predicted convergence rate of O(h).
In our experiments, smaller choices of C' lead to smaller errors; however choosing C
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Figure 4.4: L?-Error of the smoothed approximation u, in the case o = Ch.

too small causes larger errors in the coarser cases. In our test case a choice somewhere
between C' = 0.25 and C = 0.5 seems to be optimal.

4.4.3 Vector-valued Particle Field and Velocity Evaluation

In this section we show that our scheme can drastically reduce the cost of the compu-
tationally most expensive part of vortex methods, the velocity evaluation. To this end,
we prescribe:

Z2

u(x) = [ - exp( 1) XG(—%,

_ 3, 4.69

DO

This velocity field is smooth and fulfils V-u = 0. It was chosen such that it vanishes at
the boundaries, so that it can be retrieved from the vorticity field w := V x u through
the Biot—Savart law without any boundary integral terms:

1 X—y
=— [ ——— dy. 4.70
u(x) 47I_Q‘x_y|3><w(Y)y (4.70)

Analogous to the previous section, we define the particle approximation:
N
wp = Zwiw(xi)é(x —X;). (4.71)
i=1

Experiments in the previous section suggested a choice of ¢ = Cvh, with C' between
0.25 and 0.5. We consequently choose C' = 0.375 and obtain after applying the method
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Figure 4.5: L>-Error of the smoothed approximation u, in the case o = C'v/h.

to each component a smoothed approximation w, with an anticipated convergence rate
of O(0?) in the L?-norm. In order to evaluate the Biot-Savart law for this vorticity
field, we chose the coarsest level [ such that the corresponding mesh width 27 is smaller
than 0. We then compute the orthogonal projection of w, onto the standard finite
element space of piecewise linear functions on that level. The Biot—Savart integral can
then be computed by summing over the tetrahedra, for which the analytic formulae
from chapter 5 can be used. We couple these formulae with a fast multipole method [43,
44] for the far-field evaluation. The resulting velocity field is approximated by taking
the nodal interpolation onto the standard finite element space of piecewise quadratics
to obtain an approximate velocity field u,.

This scheme was chosen for its simplicity and speed. Most conventional schemes
apply the fast multipole method directly to the particle field, leading to a complexity
of O(N) = O(h~9), with a large hidden constant. Note that in our case the method
is applied to the coarser smoothed approximation, leading to a complexity of only
(’)(h_g). Due to the interpolation onto the standard space of piecewise quadratics,
however, the resulting approximate velocity u, does no longer fulfil V- u, = 0. We
will further comment on this issue on the concluding remarks of this chapter.

Figure 4.6 shows the L2-errors in the approximate smoothed vorticity field w, and
the velocity field u,. The smoothed vorticity field converges at a rate of O(c?) = O(h)
as expected. With the Calderén—Zygmund inequality (4.4) we obtain that the same
error bound holds for the velocity in the Wh2-norm. As the results indicate, in the
L?-norm the error seems to reduce by one power in o faster, resulting in a rate of

O(h).
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Figure 4.6: L?>-Error of the smoothed vorticity approximation w, and the resulting
finite-element approximation of the corresponding velocity u,-.
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Figure 4.7: Condition number of the diagonally scaled system matrix D~1Ay,.
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4.4.4 System Condition Number

In this section we investigate the effect of the stabilisation parameter € on the condition
number of the system matrix. In subsection 4.4.2 we observed instabilities on the coarse
levels [ in the case C' = 0.25,s = 2. We therefore chose this particular configuration
for our experiments. We used the following set of functions as our basis for the spaces

VGP(QU):
BF .= {¢(x;f)

We may assign a numbering Z = {1,...,n} to this set, and subsequently refer to its
members as B > ¢, k € Z. We can then define the system matrix A, € R"*" via the
relation:

Qi € Qo |af < P}. (4.72)

e Aner = Ap(Vr, 1) = an (Y, i) + 5 (Vr, P1), Vk,l €T, (4.73)

where e, € R" refers to the k-th Cartesian basis vector, and the approximate bilinear
form aj, is defined as described in the numerical setup (subsection 4.4.1). We are
then interested in the condition number of the diagonally scaled matrix D~1A;,, where
D := diag Ay.

Figure 4.7 shows the condition number of D~!A;, for various refinements levels [ as
a function of €. In the case | = 2 the quadrature error is so large that the resulting
matrix Ay ceased being positive definite for ¢ = 1073, and is even singular for € = 0.
This explains the large error observed in subsection 4.4.2 for this case. But even
then a sufficiently large choice of ¢ results in a well conditioned system. For the finer
refinement levels a choice of € between 1072 and 10~! seems to be optimal and reduces
the matrix’ condition number below 100. The effect becomes slightly less pronounced
with increasing [. We can thus conclude that for such a choice of € the stabilisation
removes the ill-conditioning of the system, especially in the presence of moderate
quadrature errors.

4.5 Conclusions and Outlook

We have presented a new method to tackle the particle regularisation problem, based on
a stabilised fictitious domain formulation with smooth shape-functions. Our approach
enjoys all the benefits of the conventional blob-methods: the resulting smoothed
approximations are C'*° functions and conserve all moments up to order P. On top
of that, our approach can accurately handle general geometries. The evaluation of
the smoothed approximations is cheap and straightforward and does not require a
summation over all particles as in the case of blob functions. Also note that the
so-called ‘point-location problem’ is trivial for the spaces defined in this chapter: given
any point x € () finding the cell @; 3 x that contains this point is trivial and amounts
to a division of the point’s Cartesian coordinates by ¢. This problem is significantly
harder for conventional meshes.
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The fact that we can only achieve a convergence rate of O(hmTH) as opposed to
O(h™*1) might seem disappointing, but is intrinsic to the smoothing problem at hand.
This can be illustrated in a simple one-dimensional example: given an interval of length
h on the real line, the m-node Gaussian quadrature rule will have an error bound of
O(h?™). With m function values, however, we can only construct an interpolation
polynomial of degree m — 1, having the halved error bound O(h™). Theorem 4.15 shows
that the smoothed approximation is essentially just as accurate as the particle field.
Also note that in a computer implementation handling particle fields is significantly
simpler than handling conventional meshes: because of the lack of connectivity between
particles, one only needs to store the particle locations and strengths in an array. This
way even low-cost desktop computers can manage hundreds of millions of particles in
memory. Subsequently i can be chosen much smaller than in mesh based approaches.

Because the smooth approximations w,, fulfil the same asymptotic error bound as the
given particle field, they can be used for a variety of purposes. As a simple example, w,
could be used to reinitialise overly distorted particle fields. But even more important,
the smooth approximations allow for a coupling of particle methods with mesh based
methods, similar to Vortex-in-Cell schemes (VIC). This opens the door to a variety
of hybridisation possibilities: one could for example solve the diffusion problem using
w, and a finite element based method, while relying on the particle field wy, for the
treatment of the convection.

A further consequence of the relation h ~ o2 is that the smoothed vorticity field w,
has much greater length-scales than the particle spacing. As a consequence the velocity
evaluation—usually the most expensive part of vortex methods—can be drastically
sped up. In our numerical experiments we gave an example of a mesh based scheme
for this, which was chosen for both its simplicity and speed. We believe that this
scheme can be further improved. For example, we know that K*xw =V x A, with A
corresponding to the volume integral in (2.20). The curl spaces V x (V.F'(Q)?) would
thus be natural candidates for ansatz spaces for the velocity approximation. These
spaces would be divergence free in the strong, point-wise sense and thus maintain this
desirable property of the Biot—Savart law.

It is not clear whether the exact variational formulation (4.41) is actually unstable
without stabilisation. A result by Reusken [93, Theorem 5] indicates that a rescaling
might be sufficient to achieve a stable formulation. On the other hand, this result
assumes that the bilinear form a can be computed exactly. The experiments of
subsection 4.4.4 indicate that stabilisation is especially beneficial in the presence of
quadrature errors.

Our current approach uses a uniform grid size ¢ and a fixed polynomial degree P.
The partition of unity approach, however, is general enough to be extended to adaptive
grids and varying polynomial degrees. For the future, experiments with o-, P-, or
o P-adaptive schemes are another interesting field for further research.
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Chapter 5
Evaluation of the Biot—Savart Law

In this chapter we describe how the Biot—Savart law from subsection 2.2.1 can be
approximated using a quasi-uniform triangulation G, of the computational domain 2.
When used together with a particle regularisation scheme such as that from chapter 4
this enables us to approximate the velocity induced by a given particle approximation
of the vorticity.

5.1 Introduction

In the previous chapter we described a particle regularisation scheme for general
bounded domains Q C R?. Let us for example consider the case d = 3. Given particle
field approximations wj we can thus obtain corresponding smooth approximations w,
that satisfy optimal error bounds of the form [w, — w||r2(q) < CGP+1|]w||Wp+1,2(Q),
with A ~ ¢2. These smooth approximations no longer arise from mollifications of
a particle field with a radially symmetric blob-function (,, as it is the case for the
conventional vortex blob methods. There thus no longer is a smoothed kernel K, such
that the Biot—Savart law can be evaluated as K, *x wy,.

In the three-dimensional case we now are faced with the task of evaluating integrals
of the form:

= e e V() (51)
and analogously (2.13) for the two-dimensional case. For x € Q the integrand of these
integrals becomes singular, and the standard quadrature approaches from section 2.4
for smooth functions fail to give good results. The evaluation of such singular integrals
thus requires special care.

Similarly to the problem of integrating smooth functions, evaluating singular integrals
over arbitrary domains is a hard problem. As described in subsection 2.4.1, a common
strategy to tackle this problem is to consider quasi-uniform, shape-regular triangulations
Gy of mesh-width ¢ of the domain Q. This way the task of evaluating (5.1) can
be reduced to integrating over tetrahedra, or triangles in the two-dimensional case,
respectively. Similar to quadrature rules for smooth functions, one then aims to find
formula that integrate all polynomial w, of a specified maximum degree P over cells
T exactly. In this chapter we will cover the case P = 1. Extensions to higher order
polynomials are possible in principle, however significantly more involved.
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The two-dimensional case has already received considerable amount of study. For-
mulae for triangular cells and P = 1 have for example been published by Russo and
Strain [80] in the context of their triangulated vortex method. The three-dimensional
case seems to have received much less attention. The only formulae for the case P =1
known to us are those by Suh [94]. They require the evaluation of six logarithms and
twelve arcsines. While correct, they have the disadvantage that they depend on the
coordinate system used. Additionally, they discontinuously depend on the position of
the field-point relative to the source tetrahedron. In particular, they contain a factor «
that jumps from 47 to 0 as the field-point x moves from outside the tetrahedron to
its inside. On the boundary its value depends on whether x coincides with one of
the tetrahedron’s nodes or lies on one of its edges or faces. Thus, finding the correct
« is difficult if floating-point arithmetic is used and x lies very close to or on the
tetrahedron’s boundary. This is quite unsatisfactory, as the resulting function u is in
fact continuous. Problems with the formulae of Suh have also been reported by Li and
Vezza [95].

In this chapter we illustrate how the Biot—Savart integral can be expressed by single
layer potentials over the tetrahedron’s faces. These integrals can then evaluated using
the formulas of van Oosterom [96]. The resulting expressions are simpler, numerically
stable, and cut the number of inverse trigonometric function computations from twelve
to four.

5.2 Reduction to Single Layer Potentials

Let T C R3 be a non-degenerate tetrahedron and let x € R3 be an arbitrary but fixed
point in space. Denote r = r(y) =y — x, r = |r|, and let F; and n;, i € {1,2,3,4},
denote the faces of T and their respective exterior unit-normals. Furthermore, let w be
a vector-valued function, where each component is a polynomial of total degree P =1
or less. The Biot—Savart law u = K x w with the kernel K from equation (2.14) can
then equivalently be written as:

u(x) = _417r/TV(1) x wdV(y), (5.2)

r

where here and throughout this chapter the derivative is taken with respect to the y
coordinate. Applying the vector calculus identity:

P (£) - T2 59

r r

one obtains with help of the divergence theorem:

u(x) = — (/T VX9 gy 4+ [ 9 dS(y)), (5.4)

C Arw r 9T T

where n = n(y) denotes the unit exterior normal on 7. For the remaining volume
integral note that V x w is a constant and may be taken out of the integral. Noting
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that:
% ~V. <:) (5.5)

we then obtain for linearly varying w by again employing the divergence theorem:

1 w)lr-n
/ VX v (y) :/ 2V Xw)r-m) oo (5.6)
T r oT r
And thus:
B | LV xw)(r-n)+wxn;
u(x) = ; - /F . - ds(y). (5.7)

Note that for each face the enumerator now is a linearly varying function of y. Denoting
these functions with o we have thus reduced the task to the evaluation of four single
layer potentials over planar triangles. This will be the topic of the next section.

5.3 Evaluation of the Single Layer Potentials

Under the term single layer potential over a surface S we understand the following
function:

($0)00 = 1= [ 7 as(y). (5.5)

where o is a given surface density. This function is one of the key building blocks of most
boundary element methods; the boundary integrals in the Helmholtz decomposition
in proposition 2.1 are also of this type. For this reason the evaluation of this integral
has been the subject of many papers and we can make use of such previously published
results. We will make use of the formulae of van Oosterom [96], which are compact
and were explicitly derived with stability concerns in mind.

Let F' C R3 be a non-degenerate, planar triangle in space. We want to evaluate the
following integral for a linearly varying function o:

! / 7 48(y). (5.9)

47 Jp r

Let y1, yo, and y3 denote the corners of F' and for notational convenience set y4 := y1
and y5 := yo2. Let ¢; = |y;+1 — yi| denote the lengths of the triangle’s edges and let
e; = (yi+1 — yi)/ei; denote its normalised edge-vectors. Furthermore let o; denote the
value of o at node y;, let |F| denote the area of F' and let n denote its unit normal
vector, pointing in the direction of e; x e;4;. Finally, letting r; = y; — x, 7; = |r;| as
before, we have:

1 o 3 o; €
E/ de(y) = Z Fu Tl <[ri+1,ei+1,n]A — €41 - B) (510)
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Here [, -, -] denotes the scalar triple-product and:

3 3
A= (Z[ri)eivn]Li> - dQFv B = ZMieiv (511)

i—1 i=1
Qp = 2atan2([ry,ra, 3], ri7rars + r1(re - r3) + ro(ry - r3) + r3(ry - r2)). (5.12)

Qp is the solid angle of the triangle F' subtended at x and d := r - n is the signed
distance of the point x to the plane of F. atan2 refers to the arctangent function
with two arguments. Note that as x approaches the plane of I, d tends to zero. As
long as atan2 is defined to take finite values if both of its arguments are zero, these
expressions are numerically stable. This is the case for its commonly used definition
from IEEE 754 [97].

The numbers L; and M; correspond to edge integrals which are independent of o, n,
and the orientation of the edge. Thus, their values need to be computed only once for
each edge and can be reused for the other face of T' sharing this edge. They are given
by:

Ti + T
4€i

(ri1 +ei)? — 17
i — (i —e)?
The expression for L; becomes numerically unstable when the field point x approaches
the line the edge lies on. As van Qosterom points out and demonstrates with numerical
experiments in his paper [96], a simple, numerically accurate, and efficient way to avoid
this problem in a computer implementation is to replace it with:

M; = €7 + (rixs —74)%] + 3lri x ei° Ly, (5.13)

Li:ln

(5.14)

L;=In (7;1‘+1 + )’ _Téz +67
17— (ri—e)?+e

(5.15)

where € denotes the machine epsilon.

5.4 Numerical Example and Conclusion

In order to illustrate the benefits of the new formulation, as an example we take the
tetrahedron defined by the nodes y; =0,y2 =%, y3 =3, y4a = l?:, let w; = (1,0,0), and
set the remaining w; = 0. In figure 5.1 we plot the absolute value of the resulting velocity
along two parallel lines with a distance of one machine epsilon. The computations
were performed using double precision floating-point arithmetic. In the first case the
line runs along one of the tetrahedron’s faces and both methods produce identical
results. The second line runs through the tetrahedron’s inside, but very close to the
same face. Numerical difficulties in determining the correct value of v cause seemingly
unpredictable errors in the method of Suh, while the formula of van Oosterom remain
accurate and yield the correct result.

We conclude that the presented formula are simpler, cheaper to evaluate, and
numerically more stable than the previously published approach.
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Figure 5.1: On the left is a plot of the velocity magnitude along the axis (x,0.25,0).
The results of both methods coincide. On the right is a plot along the
axis (z,0.25,¢). Difficulties in determining the correct value of « cause the
results of Suh’s method to jump seemingly unpredictably.
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Chapter 6
Conclusions and Outlook

This work was originally driven by the desire to extend vortex methods to viscous flows
in bounded domains, while at the same time maintaining their mesh-free character.
After some further investigations into the theory of these methods, this turned out to
be a mammoth task. Fortunately, several aspects of this task can be considered in
isolation. In this work we looked at some of these aspects and proposed new approaches
to their solution. In this chapter we present our conclusions and give an outlook for
possible future research.

6.1 Conclusions

In chapter 3 we introduced a viscous scheme for the whole-space case which requires
neither frequent remeshing nor the viscous splitting. The splitting-free vorticity
redistribution scheme shows that one can apply truly mesh-free particle methods to
such flows.

The treatment of bounded flows, however, turned out to be a significantly more
difficult topic—even in the inviscid case. In vortex methods all we are given is a
quadrature rule wy, for integrating smooth functions against the underlying vorticity
we are trying to approximate. In chapter 4 we proposed a new scheme for the problem
of particle regularisation and proved its optimality and stability. This approach has all
the benefits of the conventionally used on blob functions; in particular it conserves all
moments up to a user defined order. Due to its formulation as a stabilised fictitious
domain method, this approach works for a very general class of bounded domains.
To the best of our knowledge, this is the first regularisation scheme that works for
such a general class of domains while only requiring quadrature rules to be available.
The scheme maps particle approximations wy, to smooth functions w, and tells us to
choose o proportional to vh. As a direct consequence the velocity evaluation could
be drastically sped up. We believe that this scheme finally opens the door for the
application of vortex methods in domains with boundaries, and we discuss some lines
of possible future research in the following section.

6.2 Outlook

As an alternative to the evaluation the Biot—Savart law using the formulae from
chapter 5, one could also consider inverting the kinematic system (2.11) by using mesh
based Poisson solvers on the equation —AW¥ = w. They have the advantage of being
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very fast, however, typically cannot handle the far-field condition accurately. On the
other hand, such solvers could again use a fictitious domain formulation and work on
w, directly. Boundary conditions could for example be enforced weakly with the help
of Nitsche’s method [98].

Viscosity has a mollifying effect on the vorticity field, and can thus only further
increase its length scales. It thus makes sense to hybridise the method and solve the
viscous effects using w, instead of wj. This could for example be done using a mesh
based solver, which are well known to handle viscous effects and boundary conditions
accurately. A natural approach would be to again use a fictitious domain formulation.
One then furthermore requires a scheme that maps the resulting smooth functions w,,
back to the particle field, to handle convection and stretching.

A simple approach to obtain a particle approximation from such a smooth function
would be to reinitialise the particle field using the available quadrature rules. This would
correspond to a remeshing at every time step and effectively destroy the Lagrangian
character of vortex methods. Instead one could try to compute quadrature rules
for the domain using the particle locations as prescribed nodes. This amounts to
determining new quadrature weights w;. Strain successfully used such an approach for
the two-dimensional inviscid equations [99]. Additionally enforcing positivity of the
weights yields phase I problems with Vandermonde matrices that closely resemble the
ones encountered in chapter 3.

What also remains to be answered is how to couple mesh and particle based solvers in
a time-stepping scheme and how to treat the no-slip condition. A popular approach [76,
100, 101] is to first prescribe homogeneous Neumann conditions on the vorticity and
advance the solution one step in time. This boundary condition is usually incorrect
and the vorticity field becomes inadmissible. In a second step one then corrects this
error by diffusing the resulting ‘spurious vortex sheet’, which effectively corresponds
to the difference of upp and u, as described in subsection 2.2.3. This approach can
be seen as a discretised version of the continuous algorithm by Cottet and Koumout-
sakos [48, Section 6.3.3]. It represents a viscous splitting for the vorticity creation at
the boundaries and thus limits the time accuracy of the method.

An interesting topic for future research would thus be the question how vorticity
boundary conditions can be handled with more advanced time-stepping schemes and
a hybrid vortex method. Of particular interest are the IMEX methods [78]. These
time-stepping schemes handle the viscous, stiff part of the equation using an implicit
scheme and use explicit methods for the remaining non-stiff parts, while still achieving
high order accuracy in time. Such a scheme could potentially combine the best parts
of both worlds: the implicit time discretisation combined with a mesh based solver
for the viscous term could accurately handle diffusive effects and boundary conditions
without restrictive time-step constraints. The convective parts of the equation would
be solved using explicit methods on the particle field and benefit from he resulting lack
of artificial viscosity. Whether or not it is possible to implement such a method in
practice remains to be seen.
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Appendix A
Sobolev Spaces

The analysis of the methods presented in this book are based on the notion of Sobolev
spaces. The theory of these spaces is too vast to be treated in detail here, and the
unfamiliar reader is referred to the literature, for example to the book of Adams and
Fournier [68]. They especially describe and prove several embedding properties of these
spaces, which are of importance in this thesis. There are several differing definitions of
these spaces, which often—Dbut not always—can be shown to be equivalent. In order to
avoid confusion in these cases, we will briefly define the necessary spaces encountered
throughout this thesis.

Under the term domain we understand an open, connected subset D of R?, d € {2, 3}.
By subset we will always refer to the weaker notion D C R?, such that D may equal
R?. We will always use the symbol ‘C’ instead of ‘C’; for a proper subset we will write
D C R?%. We will always assume that such domains are reasonably well shaped, such
that we can apply the Sobolev embedding theorem and other important results from
analysis. This is for example the case for Lipschitz domains, and it can essentially be
always assumed for domains from engineering applications. For such domains we can
define spaces of the Lebesgue integrable functions LP(D), for p € [1, 0]

LP(D) :={f: D = R||[fllL(p) < 00}, (A1)

where the corresponding Lebesgue norms are defined as:

_Upliran)? i pe1,00),
I fllze(py = {ess supsep |F(@)] if p = oo (A.2)

We will consider two functions f,g € LP(D) to be equivalent if | f — gl[z»(p) = 0.
This means that f and g may only differ on a subset of D that has zero measure. In
this case we will write f = g. Thus, strictly speaking, the LP(D) spaces consist of
equivalence classes of functions, which only differ on a subset of D of measure zero.
For brevity we will write LP instead of LP(D) if the domain in question is clear. All
of these spaces are Banach spaces; L?(D) is a Hilbert space under the scalar product
(f,9)2py :== [p fgdx.
For k € Ny we define C*¥(D) to be the space of k times continuously differentiable
functions on D, with the additional property that the following norm is finite:
1fllox(py := max sup [D f(x)]. (A.3)
|<kzeD

laf<
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Here, « is a multi-index and the symbol D refers to the conventional, strong derivative.
This norm is also called the supremum norm. Equipped with this norm, the spaces
C*(D) are Banach spaces. We will simply write C(D) for the space of continuous
functions, i.e., the case k = 0.

The support of a function f: D — R is defined to be the closure of the set of those
x € D for which f does not vanish:

supp f :=clos{z € D| f(z) # 0}. (A.4)

We say a function f is compactly supported if its support is compact and a subset of the
domain: supp f CC D. In this case we will write f € C§(D). Because D is open and a
compact set is always closed, this automatically means that f € C§(D) = supp f C D.
This especially implies that f and all of its derivatives vanish at the domain’s boundary
0D. Equipped with the supremum norm as defined above, the spaces C(’)“(D) are also
Banach spaces.

Let f € LP(D) and let a be a multi-index. If there exists a function g € LP(D) such
that:

/ goda = (—1)l / fo%pds Ve e CR(D), (A.5)
D D

then g is called the ath weak derivative of f and we write % f := ¢. If a weak derivative
exists it is unique. Furthermore, if f is also differentiable in the strong, conventional
sense, the weak and strong derivatives coincide. With the help of this, we can define
the Sobolev spaces W*P(D), k € N, p € [1,00]:

WD) .= {f € LP(D)| || fllwnn(p) < oo}, (A.6)

where the Sobolev norms are defined by:

(Z|o¢\§k Haafnip([)))l/p lfp € [1’ OO)’

o . (A.7)
max|o|<k [|0%f|Le(p)  if p = o0.

Hf||Ww(D) = {

Additionally, we set W%P(D) := LP(D), p € [1,00]. All of these spaces are Banach
spaces. Under the scalar product (f,g)w2(p) == Z‘algk(ﬁo‘f, 0%g)r2(p) the spaces
W*2(D) become Hilbert spaces. We briefly remark that due to the Meyers-Serrin
theorem [102], many of the various definitions of the Sobolev spaces found in the
literature yield the same spaces, with the important exception of the case p = oo.
Analogously to the space C§(D) one can define I/VéC P(D) to be the space of those
functions f € W*P(D), that have a compact support and vanish at the boundary 0D.
One can furthermore show that Wé’p(Rd) = Wkp(RY).

In the study of numerical schemes it is often useful to look at the norm of the highest
order derivatives of the functions in question. To this end we also introduce the Sobolev
semi-norms:

(Z|a|:k Haaf”iP(D))l/p ifpe [15 OO),

. (A.8)
max|q|= 0% fllee(p)y  if p=oc.

’f‘WkJ’(D) = {
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Particle approximations wy, can best be understood to be approximations for integ-
rating a given sufficiently smooth function against an underlying function w that we are
trying to approximate. Thus, a particle approximation maps a given smooth function
to a real number. A mapping that maps an element of a vector space to a scalar is
commonly called a functional. The space of all bounded functionals on a vector space
is called the dual space.

Let WkP(D), k € N, k # 0, p € [1,00] be a given Sobolev space. We then define
W~k4(D) to be its dual space, where ¢ is the so-called Hélder conjugate to p. It is
defined such that for a given p we have 1 =1/p+1/q; ¢ = 1 if p = oco. This definition
of negative index Sobolev spaces is in accordance with the one used by Scott and
Brenner [60, Chapter 1]. Note that, for example, Adams and Fournier define the
negative index spaces differently [68]; the resulting spaces usually do not coincide with
the spaces defined here.

Dual spaces spaces come with a natural norm. For a functional f € W=%4(D) this
norm is defined as:

flw-rapy = sup AP (A9)
eewrr (D) |@llwrs ()
The notation (f, ¢) refers to the application of the functional f to the function ¢; another
way of writing this is f(y). Under this norm the spaces W~%4(D) become Banach
spaces. The symbol (-, -) is called the dual pairing. The definition of this norm is such
that for any function ¢ € W*P(D) we always have |f ()| < | fllw—#.a(oyllellwen (-

We remark that for any f € L9(D) we can define a corresponding functional on

WkP(D), k€N, p € [1,o]:

(f, ) = /ngpdx, o e WhP(D), f e LI(D). (A.10)

In this way, the notation (-,-) for the dual paring is reminiscent of the L?(D) scalar
product. However, the converse is generally not true: not every functional f € W4
has a corresponding function in L?(D) such that it can be written in the above form.
This is for example the case for the Dirac delta functional §, which evaluates a given
function at the origin: (9, ¢) := ¢(0).

The Dirac delta functional is maybe the most important notion in the field of vortex
methods. In order for this functional to be well defined, we will need to assume that ¢
is at least continuous on a domain D that contains the origin, i.e., ¢ € C(D). Under
certain mild conditions on the boundary 0D of the domain, the Sobolev embedding
theorem guarantees that this can for example always be assumed if p € W*P(D),
k>d/p, p€[l,00], orif k > d if p=1. In this case there exists a unique continuous
function in the equivalence class of ¢. The Dirac delta functional is then defined to
evaluate this continuous function at the origin, and one can show that ||0||;—x.¢ < Cemb,
with the Sobolev embedding constant Cepp, which may depend on the domain as well
as k, d, and p.
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