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Abstract

In this thesis, I theoretically investigate normal-state properties of a gas mixture
of single-component Bose and Fermi atoms, with a tunable inter-species pairing
interaction associated with a hetero-nuclear Feshbach resonance. Including Bose-
Fermi hetero-pairing fluctuations associated with the inter-species interaction, I
clarify single-particle properties of the system above the Bose-Einstein condensation
temperature TBEC, from the weak-coupling regime to the strong-coupling regime. I
also examine strong-coupling effects on thermodynamic quantities.

After an overview of cold atom physics, I present my formulation. I point out
that the ordinary non-self-consistent T -matrix approximation (TMA), which has
extensively been used for the study of strongly interacting ultracold Fermi gases,
has room for improvement, when applied to a Bose-Fermi mixture. This is because
TMA uses the bare Bose Green’s function that does not satisfy the required gapless
Bose excitations at the TBEC, in evaluating self-energy corrections. To overcome
this, I improve TMA so that the gapless condition can be satisfied.

Using this improved T -matrix approximation (iTMA), I study single-particle
excitations near TBEC. Hetero-pairing fluctuations are shown to couple Fermi atomic
excitations with Bose atomic and Fermi molecular excitations. Although a similar
coupling phenomenon is known in the unitary regime of an ultracold Fermi gas,
while it causes the pseudo-gapped density of states in the latter Fermi system, such
a phenomenon is found to be absent in a Bose-Fermi mixture even at the unitarity.
A shallow pseudo-gapped density of state is only obtained in the strong-coupling
regime.

I also examine strong-coupling effects on thermodynamic properties of a unitary
Bose-Fermi mixture. To minimize ambiguity coming from approximate treatment of
hetero-pairing fluctuations, I employ a combined iTMA with exact thermodynamic
relations, where complicated iTMA calculations are only done to calculate Fermi
and Bose chemical potential. Various thermodynamic quantities are then evaluated
from the calculated chemical potential by using exact thermodynamic identities. I
find that the specific heat at constant volume is a useful quantity for the study of
strong-coupling properties of the system, because it is sensitive to hetero-pairing
fluctuations, to exhibit anomalous non-monotonic temperature dependence.

Finally I will summarize this thesis.

Keywords : Bose-Einstein Condensation (BEC), ultracold Bose-Fermi mixture,
hetero-nuclear Feshbach resonance, pseudogap, universal thermodynamics.





i

Contents

1 Introduction 1
1.1 Bose-Fermi Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hetero-nuclear Feshbach Resonance . . . . . . . . . . . . . . . . . . . 5
1.3 BCS-BEC Crossover Physics and Expected Analogous Phenomenon

in a Bose-Fermi Mixture with a Hetero-nuclear Feshbach Resonance . 9
1.4 Pseudogap Phenomenon: A Typical Many-body Phenomenon in the

BCS-BEC Crossover Region . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Universal Thermodynamics in Unitary Gas . . . . . . . . . . . . . . . 14
1.6 Purpose and Outline of this Thesis . . . . . . . . . . . . . . . . . . . 16

2 Non-self-consistent T -matrix Approximation (TMA) and Need for
Improved TMA 19
2.1 Model Hamiltonian and Single-particle Thermal Green’s Function . . 19
2.2 Non-self-consistent T -matrix Approximation (TMA) : Bose-Fermi Mix-

ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 TMA analysis on Pseudogap Phenomenon in an Ultracold Fermi Gas 24
2.4 Inadequacy of ordinary TMA in a Bose-Fermi Mixture . . . . . . . . 32
2.5 Improved T -matrix Approximation (iTMA) . . . . . . . . . . . . . . 36

3 Single-particle Properties of a Bose-Fermi Mixture above TBEC 41
3.1 Expressions for Density of States and Spectral Weight in iTMA . . . 41
3.2 Single-particle Density of States ρs(ω) at TBEC . . . . . . . . . . . . . 43
3.3 Single-particle Spectral Weight As=B,F(p, ω) at TBEC . . . . . . . . . . 45
3.4 Single-particle Spectral Weight above TBEC . . . . . . . . . . . . . . . 54

4 Universal Thermodynamics of a Bose-Fermi Mixture 57
4.1 Combined iTMA with Universal Thermodynamics . . . . . . . . . . . 57
4.2 Virial Expansion to Evaluate μs(T ) in the High Temperature Region . 61
4.3 Thermodynamic Properties of a Unitary Bose-Fermi Mixture . . . . . 63
4.4 Specific Heat at Constant Volume CV and Strong coupling Effects in

a Unitary Bose-Fermi Mixture . . . . . . . . . . . . . . . . . . . . . . 65

5 Summary 71

A Matsubara Summation Technique 75

B Condition for Gapless Bose Excitations 77



ii Contents

C Ultracold Gas Mixtures in the Strong-coupling Limit 79
C.1 Bose-Fermi Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.2 Two-component Fermi Gas . . . . . . . . . . . . . . . . . . . . . . . . 80

D Treatment of Singularity in Σ̃F(p, iω
F
n) at TBEC using Cubic Spline

Interpolation 81

E Calculation of Virial Expansion Coefficients Bij of a Bose-Fermi
Mixture 83



Chapter 1

Introduction

In this Chapter we introduce a Bose-Fermi mixture with a hetero-nuclear Feshbach
resonance. After a brief review of this system, we explain a tunable Bose-Fermi
inter-species attractive interaction associated with a hetero-nuclear Feshbach reso-
nance. In cold Fermi gas physics, a Feshbach-induced tunable pairing interaction
between Fermi atoms has enabled us to study system properties, from the weak-
coupling regime to the strong-coupling limit in a systematic manner. In particular
the so-called BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation)
crossover phenomenon has attracted much attention both experimentally and the-
oretically, where the character of the Fermi superfluid continuously changes from
the weak-coupling BCS type discussed in metallic superconductivity to the BEC of
tightly bound molecules, as one increases the strength of the Fermi-Fermi attractive
interaction by adjusting the threshold energy of a Feshbach resonance. We briefly
review this BCS-BEC crossover, and then discuss what is expected when an inter-
species pairing interaction is tuned by a hetero-nuclear Feshbach resonance in a
Bose-Fermi mixture. We also explain the universal thermodynamics, which is valid
for the system with diverging s-wave scattering length. At the end of this Chapter,
we present the purpose of this doctor thesis.

1.1 Bose-Fermi Mixture

In cold atom physics, a gas mixture of single-component bosons and single-component
fermions (Bose-Fermi mixture) [1–15] has attracted much attention as a counterpart
of two-component Fermi gases [16–22]. These quantum gases are experimentally re-
alized by trapping atoms (Fig. 1.1), such as 40K, 6Li, 7Li and 87Rb, by magnetic
and optical method, to cool down to ultracold low temperature region (T � O(μK))
where quantum effects are important. While they have no impurity as well as
background lattice, we can experimentally tune their various physical parameters,
such as temperature, number of atoms in the trap potential, and the strength of
interaction. In particular a tunable pairing interaction, associated with the Fesh-
bach resonance [23] has extensively been used in two-component 6Li Fermi gases
and 40K Fermi gases for the study of Fermi superfluid properties, from the weak-
coupling regime to the strong-coupling limit in a unified manner. This so-called BCS
(Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover physics is
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Figure 1.1: Schematic picture of (a) Bose-Fermi mixture, and (b) two-component
Fermi gas, in a harmonic trap potential produced optically and/or magnetically. For
the study of BCS-BEC crossover the same kind of (40K or 6Li) Fermi atoms in two
different atomic hyperfine states are trapped.

one of the central topics in cold Fermi gas physics [16–19]. The intermediate cou-
pling regime, which is also referred to as BCS-BEC crossover region, has particularly
attracted much attention because strong-pairing fluctuations dominate over the sys-
tem properties. Since such tuning of a pairing interaction is also possible in a Bose-
Fermi mixture by using a hetero-nuclear Feshbach resonance [7–10, 12–15, 23, 24],
comparative study of Fermi-Fermi and Bose-Fermi gases would be useful for study-
ing how the particle statistics (boson and fermion) affects strong-coupling properties
of quantum many-body systems.

Although a Bose-Fermi mixture has been studied from the viewpoint of physical
properties, this hetero-system has also been used to cool down a Fermi gas. To
explain this, we first briefly review the standard cooling method in cold atom physics.
As schematically shown in Fig. 1.2, we prepare beam of atoms by vaporizing metal
atoms in an oven. This beam is decelerated in a Zeeman slower, when atoms absorb
counter-propagating laser photons (radiation pressure). Then atoms are captured
in a magneto-optical trap (MOT), where atoms experience laser cooling as in the
Zeeman slower. However this cooling alone is not sufficient to achieve the quantum
degenerate regime, so that the so-called evaporative cooling is further imposed after
the laser cooling [25–27], where atoms with high kinetic energy is selectively removed
from the trap. Indeed this hybrid cooling method (laser and evaporative cooling)
succeeded in realizing the Bose-Einstein condensation (BEC) of dilute Bose gases
[28–30].

However, in contrast to the boson case, the naive evaporatively cooling does not
effectively work well for the (single-component) fermion case, because the s-wave
interaction, which is usually determined in a dilute gas, is forbidden between iden-
tical fermions due to Pauli’s exclusion principle, which is also referred as the Pauli
blocking effect. In this case, the Pauli blocking suppresses the re-thermalization
of the system by collision with the other atoms, during evaporative cooling which
remarkably decreases cooling efficiency.
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Figure 1.2: Schematic picture of standard cooling process used in cold atom
physics. (a) Metal is vaporized by an oven to produce atomic beam. (b) The
beam passes through a Zeeman slower, where atoms are decelerated by absorbing
counter-propagating laser photons. (Note that atoms again emit photons in random
directions, so that this emission process does not accelerate atomic motion on an
average.) (c) The atomic gas is then trapped by a magneto-optical trap (MOT),
where atoms are further cooled down by laser cooling (The basic cooling mechanism
is the same as that in a Zeeman slower.) (d) Evaporative cooling, where atoms with
high energy are selectively removed from the trap, to lower the temperature.

Thus, to effectively cool in Fermi gas keeping rapid re-thermalization, bosons are
added to the system, so as to produce collisions between fermions and bosons. (Note
that the Pauli blocking effect does not work between different species.) This cooling
method is sometimes referred to as the sympathetic cooling in literature [25, 26].

Figure 1.3 shows the observed density profiles of a 7Li (Bose)-6Li (Fermi) mixture
in a harmonic trap. Using sympathetic cooling technique this experiment [1] had suc-
ceeded in achieving the Fermi degeneracy for the first time. At T = 810 nK (T/TF =
1.0), both the Bose (7Li) and Fermi (6Li) gas clouds spread out, indicating that the
Pauli blocking effect does not work. However, as one enters the Fermi degenerate
regime (T < TF), while the Bose gas cloud shrinks reflecting that the system ap-
proaches Bose-Einstein condensation temperature (TBEC = 240 nK), the Fermi gas
cloud still spreads out even at T/TF = 0.25 because the Fermi statistics effectively
works like a pressure. Since this success, sympathetic cooling has also contributed to
further realization of simultaneous quantum degeneracy in a mixture of bosons and
fermions, as well as quantum degeneracy of atomic gases with unfavorable collisional
properties [2–5].

The above mentioned sympathetic cooling is an example of the application of
an interaction between bosons and fermions to research for a degenerate quantum
Fermi gas. On the other hand, such an inter-species interaction has also been studied
from the viewpoint of the stability of a Bose-Fermi mixture both experimentally [6]
and theoretically [31–34]. Figure 1.4 shows the density profiles of fermionic 40K
and bosonic 87Rb in quantum degenerate regime. Initially the BEC of 87Rb Bose
atoms coexists with a large amount of 40K Fermi atoms (left panel); however as the
BEC grows the Fermi density profile remarkably decreases, implying the collapse
of this component. This experimental result indicates the induction of an effective
interaction between the Fermi atoms via Bose-Fermi interaction [35, 36], leading to
drastic effects on the fermion component. The authors of this paper [6] also report
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Figure 1.3: Sympathetic cooling experiment on a mixture of bosons (7Li) and
fermions (6Li) [1]. Two-dimensional false color images of bosonic 7Li and fermionic
6Li clouds. The figures show spatial variation of atomic density, where the highest
density region is shown by red color. Both the clouds are simultaneously cooled
from T/TF = 1.0 (top) down to T/TF = 0.25 (down). The Bose gas component
(7Li) shrinks at T = 240 nK because the gas is close to Bose-Einstein condensation
temperature. On the other hand, the Fermi gas component (6Li) spreads out as
compared to the Bose condensed 7Li gas, because of the Pauli blocking associated
with Fermi-Dirac statistics. The number N6Li of

6Li atoms and the number N7Li of
7

Li atoms in the trap are (N6Li,N7Li) = (8.7×104, 2.4×105) (T = 810 nK), (1.3×105,
1.7 × 105) (T = 510 nK), and (1.4 × 105, 2.2 × 104) (T = 240 nK). [From A. G.
Truscott, K. E. Strecker, W. I. McAlexander, G.B. Partridge, and R. G. Hulet, “Ob-
servation of Fermi Pressure in a Gas of Trapped Atoms,” Science 291, 2570, (2001).
Reprinted with permission from AAAS. http://dx.doi.org/10.1126/science.1059318.]

that such a collapse does not occur when the number N40K of 40K Bose atoms is
smaller than 1.8× 104 in the harmonic potential.

We briefly note that effects of inter-species interaction have also been studied
from various viewpoints, such as chemical equilibrium among Bose atoms, Fermi
atoms and quasi-molecular fermions [37,38] discussing the phase-diagram of a Bose-
Fermi mixture, the formation of hetero-nuclear Feshbach molecules [11], and si-
multaneous Bose and Fermi superfluid in a gas mixture of one-component bosons
and two-component fermions [39–41]. Also, strong-coupling ordinary T-matrix ap-
proximation (TMA) has been applied to a Bose-Fermi mixture [42–46] to deal with
hetero-pairing fluctuations, as well as single-particle spectra in the strong-coupling
regime at T=0 [46].

Although this thesis deals with a Bose-Fermi mixture consisting of one-component
bosons and one-component fermions, we briefly note that, recently, a double con-
densate has been observed, in another kind of Bose-Fermi mixture, that is, one-
component 7Li bosons and two-component 6Li fermions as shown in Fig. 1.5. In
this experiment [39], Bose and Fermi superfluidity simultaneously occur in the same
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Figure 1.4: Density profile of a Bose (87Rb: back figures)- Fermi (40K: front figures)
mixture, showing collapse of Fermi gas [6]. The quantum degeneracy of the mixture
is reached by evaporative cooling process. Initially (left) the BEC coexists with a
large Fermi gas cloud. As the BEC grows at lower temperature, the Fermi gas is
moderately depleted (middle) due to inelastic collisions. Although the BEC contin-
ues to exist (right), Fermi gas is almost collapsed. In this experiment, he number
of 40K and 87Rb are O(104 − 105). The inter-species s-wave scattering length (aBF)
is estimated as aBF = −21.7 nm. Although the magnitude of the temperature is
not mentioned in this paper, it states that 87Rb gas is in the BEC phase. [From G.
Modugno, G. Roati, F. Roboli, F. Ferlaino, R. J. Brecha, and M. Inguscio, “Collapse
of a Degenerate Fermi Gas,” Science 297, 2240 (2002). Reprinted with permission
from AAAS. http://dx.doi.org/10.1126/science.1077386.]

trap potential, that are, respectively, confirmed with the shrinkage of bosonic den-
sity profile shown in Fig. 1.5, and the plateau structure of the density difference of
the two fermion components shown in the inset of this figure.

1.2 Hetero-nuclear Feshbach Resonance

An advantage of cold atom physics is that one can experimentally tune the strength
of interaction between atoms by using a Feshbach resonance. In particular, this
novel technique has extensively been used in a two-component Fermi gas consisting of
Fermi atoms, in different atomic hyperfine states (that are conveniently described by
pseudospin σ =↑, ↓), for the study of the so-called BCS-BEC crossover phenomenon
(which we will explain in Sec. 2.3). In this thesis, we deal with a Bose-Fermi mixture
with a tunable interaction between Bose and Fermi atom, keeping the existence of
the technique in mind.

Feshbach resonance is a kind of resonance scattering, where two atoms form a
quasi-molecule in the intermediate state and it dissociates into two atoms again. In
the case of two-component Fermi gas, (Fig. 1.6(a)), the so-called Feshbach (quasi)
molecule is bosonic in character because it is composed of two Fermi atoms. On
the other hand, in case of a Bose-Fermi mixture (Fig. 1.6(b)) which we consider in
the thesis, a fermionic molecule appears in the intermediate state. Conventionally,
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Figure 1.5: Density profile of fermionic 6Li (two-component Fermi gas) and bosonic
7Li component at 130 nK [39]. The bosonic component shows a sharp peak near
the trap center indicating the Bose-Einstein condensation phase. The inset shows
the 6Li fermion density profile in the presence of population imbalance. The den-
sity difference (solid diamonds) between the two exhibits a plateau near the trap
center indicates superfluid pairing there, while a fully spin-polarized Fermi gas in
the outer regime. [From I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier,
M. Pierce, B. S. Rem, F. Chevy, and S. Salomon, “A mixture of Bose and Fermi
superfluids,” Science 345, 1035 (2014). Reprinted with permission from AAAS.
http://dx.doi.org/10.1126/science.1255380.]

the initial (dissociated) states and the intermediate (paired) atomic states are called
open and closed channel, respectively.

In a Feshbach resonance, a crucial key is that the hyperfine interaction between
the electron and the nuclear spin also works in the scattering process, so that atomic
hyperfine states of atoms in the closed channel become different from those in the
open channel. This leads to difference of Zeeman energy between the open and
closed channel in the presence of an external magnetic field B, so that the resonance
level 2ν shown in Fig. 1.6(c) also depends on B.

Keeping this in mind, evaluating the scattering process shown in Fig. 1.6(a) and
(b) within the second order perturbation, we obtain a Feshbach induced effective
interaction Ueff between the atoms in the open channel as

Ueff = −g2
1

2ν
, (1.1)

where g is a Feshbach coupling constant, describing transfer matrix element between
atoms in the open channel and a Feshbach molecule. In obtaining Eq. (1.1) we have
assumed the low energy limit of initial atomic states. Equation (1.1) is valid for
both the Fermi-Fermi and Bose-Fermi cases. Near a Feshbach resonance field B0,
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Figure 1.6: Schematic picture of Feshbach resonance (a) Fermi-Fermi case. (b)
Bose-Fermi case. (c) Interaction potential V (r) with respect to the magnitude r of
relative co-ordinate of two atoms. In this panel, (1) and (2) shows V (r) that atoms
in the open-channel and closed-channel feel, respectively. 2ν shows the energy of a
Feshbach-resonance state, which is referred to as the threshold energy of a Feshbach
resonance.

one may write
2ν = α(B −B0). (1.2)

We also include a weak background residual interaction Ubg, then the effective in-
teraction near a Feshbach resonance field is expressed as

Ueff = Ubg − g2
1

α(B − B0)
. (1.3)

The tunability of this Feshbach-induced effective interaction has been confirmed by
measuring the scattering length as, as well as the scattering cross-section σ = 4πa2s
[23,47]. Here, the scattering length corresponding to the effective interaction in Eq.
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Figure 1.7: Observation of three hetero-nuclear Feshbach Resonances in a Bose
(87Rb)- Fermi (40K) mixture [8]. (a) The number NK of 40K atoms in a trap after
holding the mixture in a dipole trap for 1.08 s (filled circles). The peaks are due to
inelastic losses by an interaction with 87Rb. The open triangles shows the results
when 87Rb is absent. (b) The same as panel (a) where the result is magnified around
the magnetic field ∼ 545 G. [Reprinted figure with the permission from S. Inouye,
J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and D. S. Jin, “Observation of
Heteronuclear Feshbach Resonances in a Mixture of Bosons and Fermions,” Phys.
Rev. Lett. 93, 183201 (2004). Copyright (2004) by the American Physical Society.
https://doi.org/10.1103/PhysRevLett.93.183201.]

(1.3) has the form

as(B) = abgs

(
1− Δ

B − B0

)
, (1.4)

where Δ gives the width of the resonance and abgs is a background scattering length.
A Feshbach resonance with large (small) Δ is frequently called a broad (narrow)
Feshbach resonance, although there is no clear boundary between the two cases.

We briefly note that the quantum statistics of atom is not important in a Fes-
hbach resonance. (A Feshbach resonance occurs also between two Bose atoms.)
Usually in the case of fermion-fermion, as well as boson-boson, we simply use the
term “Feshbach resonance.” In the case of boson-fermion, we frequently use the term
“hetero-nuclear Feshbach resonance,” which we also use in this thesis.

Figure 1.7 shows the observation of three heteronuclear Feshbach resonances in a
87Rb-40K Bose-Fermi mixture [8]. Near a Feshbach resonance (2ν � 0), the effective
interaction in Eq. (1.3) becomes very strong, leading to the particle loss from the
trap. Thus, magnetic fields where sharp decrease of the number NK of 40K atoms
that occur in this figure are Feshbach resonance magnetic fields B0.

Figure 1.8 shows rf-tunneling current spectrum in a 40K-87Rb Bose-Fermi mixture
loaded in a 3D optical lattice [11]. The rf-spectroscopy can observe single-particle
excitations in a cold atomic gas. In this experiment, while the lower peak comes from
the ordinary single-particle excitations of unpaired 40K atoms, the upper peak corre-
sponds to 40K excitations being accompanied by dissociation of 40K-87Rb molecules



1.3. Expected Analogous Phenomenon in a Bose-Fermi Mixture 9

Figure 1.8: Observed rf-spectroscopy in a 40K-87Rb mixture loaded on a 3D
optical lattice [11]. The inset schematically shows the transition process used in
this experiment. The double peak structure indicates the presence of a 40K-87Rb
bound molecule, with a binding energy Eb. [Reprinted figure with the permission
from C. Ospelkaus, S. Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, and K.
Bongs, “Ultracold Heteronuclear Molecules in a 3D Optical Lattice,” Phys. Rev.
Lett. 97, 120402 (2006). Copyright (2006) by the American Physical Society.
https://doi.org/10.1103/PhysRevLett.97.120402.]

that are turned by strong attractive interaction associated with a hetero-nuclear
Feshbach resonance.

1.3 BCS-BEC Crossover Physics and Expected

Analogous Phenomenon in a Bose-Fermi Mix-

ture with a Hetero-nuclear Feshbach Reso-

nance

One of the most important achievements by using Feshbach resonance is the re-
alization of the BCS-BEC crossover phenomenon in a two-component Fermi gas.
In this section, we overview of this many-body quantum phenomenon, to see what
sort of similar phenomenon are expected when one tunes the strength of an inter-
species pairing interaction associated with a hetero-nuclear Feshbach resonance in a
Bose-Fermi mixture which we deal within the thesis.

In the BCS-BEC crossover, the character of a Fermi superfluid continuously
changes from the weak-coupling BCS-type discussed in metallic superconductivity,
to the Bose-Einstein condensation (BEC) of tightly bound molecular bosons that
have clearly been formed above the superfluid transition temperature Tc, with in-
creasing the strength of the pairing interaction [48–56]. In the weak-coupling regime,
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Figure 1.9: Condensate fraction N0 in a two-component 40K Fermi gas [16]. TF =
0.35 μK is the Fermi temperature. ΔB = B − B0 is the external magnetic field,
measured from a Feshbach resonance B0 = 202 G. In this experiment, the system
is regarded as a Fermi superfluid, when N0 �= 0. N is the number of atoms in the
trap. [Reprinted figure with the permission from C. A. Regal, M. Greiner, and D.
S. Jin, “Observation of Resonance Condensation of Fermionic Atom Pairs,” Phys.
Rev. Lett. 92, 040403 (2004). Copyright (2004) by the American Physical Society.
https://doi.org/10.1103/PhysRevLett.92.040403.]

thus Tc monotonically increases as one approaches the intermediate coupling regime
(which is referred to as crossover regime or unitary regime in the literature), reflect-
ing the increase of the binding energy of Cooper pairs [57]. On the other hand, the
superfluid phase transition temperature in the strong-coupling BEC regime is dom-
inated by BEC of tightly bound molecular bosons. Deep inside the BEC regime,
noting that the number NB of such molecular molecular bosons, equals half the
number NF of Fermi atoms, Tc in this regime can be evaluated from Tc of an ideal
gas of NB = NF/2 bosons with the molecular mass M = 2m (where m is the Fermi
atomic mass) as

T 0
BEC =

2π�2

2mkB

[
N/2

V ζ(3/2)

]
= 0.218TF, (1.5)

where ζ(3/2) � 2.612 is the zeta function, � and kB are the Planck and Boltzmann’s
constant, respectively. Equation (1.5) is independent of the interaction strength
between Fermi atoms. As a result, when the interaction strength is increased from
the weak-coupling BCS side, Tc first increases and then, approaches the constant
value in Eq. (1.5) in the strong-coupling regime. Although the physical situations
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in the weak- and strong-coupling regimes are very different from each other, they
continuously change from one to the other as one varies the strength of a pairing
interaction; thus this phenomenon is termed “crossover”.

Figure 1.9 shows the observation of a 40K superfluid Fermi gas in the BCS-BEC
crossover region. In this experiment [16], the strength of interaction between 40K
Fermi atoms in different atomic hyperfine states are tuned by adjusting the threshold
energy of a Feshbach resonance at B0 = 202 G, by tuning an external magnetic field
ΔB = B − B0. Thus ΔB > 0 and ΔB < 0 correspond to, respectively, the weak-
coupling BCS-side and strong-coupling BEC-side. The z-axis in Fig. 1.9 shows the
number N0 of Bose condensed Cooper pairs (with zero center of mass momentum),
and non-zero N0 is judged as the superfluid state in this experiment. Thus, the
sky-blue area in the T/TF −ΔB plane is regarded as Tc. Then, with decreasing the
external magnetic field ΔB or increasing the strength of the pairing interaction, Tc

is found to increase to become constant in the strong-coupling regime. The value of
Tc/TF = 0.17 is close to the predicted “BEC value” in Eq. (1.5). We briefly note
that the superfluid phase transition, as well as the BCS-BEC crossover phenomenon
has also been realized in a 6Li Fermi gas [17].

Since a crucial key of the BCS-BEC crossover phenomenon is the pair formation
by a tunable pairing interaction associated with a Feshbach resonance, a similar
many-body quantum phenomenon is also expected in case of a Bose-Fermi mixture,
when a Bose-Fermi inter-species attractive interaction is tuned by a hetero-nuclear
Feshbach resonance. To see this, we schematically show in Fig. 1.10 that pair forma-
tion affects system properties in the Fermi-Fermi case (a), as well as the Bose-Fermi
case (b). In this figure, we find that, although the “molecular character” becomes
more remarkable in the strong-coupling regime in both the cases, “the superfluid
phase transition” is expected to exhibit opposite tendency between the two. That
is, the number of bosons that can contribute to the superfluid phase transition grad-
ually increases with increasing the interaction strength, to become a maximum in
the strong-coupling regime of the Fermi-Fermi case, the maximum number of bosons
(that can contribute to the phase transition) is obtained in the weak-coupling limit
in the Bose-Fermi case. Thus, in the latter case the superfluid phase transition
is expected to decrease as one approaches the strong-coupling regime, which is in
contrast to the former. Indeed Ref. [44] theoretically predicts that the superfluid
phase transition temperature vanishes in a Bose-Fermi mixture when the interaction
strength exceeds a certain value (which we will also discuss in Chap. 2).

On the other hand, the situation in the intermediate coupling coupling regime
looks somehow similar to each other (see the middle pictures of Fig. 1.10(a) and
(b)). That is, in both the cases, the system may be viewed as a mixture of two kinds
of fermions and one-component bosons. However, while the mixture consists of two
kinds of Fermi “atoms” and one-component Bose “molecules” in the Fermi-Fermi
case, a Bose-Fermi mixture in the intermediate coupling regime is composed of one-
component Fermi “atoms”, one-component Fermi “molecules”, and one component
Bose “atoms”. Thus, it is an interesting problem, how this similarity and difference
affect the physical properties of a Bose-Fermi mixture in this regime, compared to
the properties of a two-component Fermi gas in the BCS-BEC crossover region. In
this thesis, we theoretically tackle this problem.
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Figure 1.10: Schematic picture of effects of tunable pairing interaction on (a) a
two-component Fermi gas, and (b) a Bose-Fermi mixture. While strong-coupling
regime is dominated by Cooper-pair bosons in (a), the strong-coupling regime in (b)
may be regarded as a gas of tightly bound molecular fermions.

1.4 Pseudogap Phenomenon: A Typical Many-

body Phenomenon in the BCS-BEC Crossover

Region

In the previous section, we presented Fig. 1.10 to simply grasp the similarity and
difference between a two-component Fermi gas and a Bose-Fermi mixture, in the
presence of a tunable pairing interaction associated with a (hetero-nuclear) Feshbach
resonance. However, this schematic picture is, strictly speaking, only valid for our
intuitive understandings, and we need to actually treat the meaning of “molecules”
in the intermediate coupling regime (middle pictures in Fig. 1.10(a) and (b)) more
carefully. Actually molecules in this regime are not stable, but fluctuating, that
is, pair formation and its dissociation repeatedly occur there. This so-called pair-
ing fluctuations is known to dominate over the normal-state properties near Tc in
the BCS-BEC crossover regime of an ultracold Fermi gas, and has attracted much
attention both theoretically [58–66], and experimentally [67–69].

The pseudogap is one of the characteristic phenomenon predicted in the BCS-
BEC crossover region of an ultracold Fermi gas. This many-body phenomenon is
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Figure 1.11: Intensity of photoemission spectra in a two-component Fermi gas when
(kFas)

−1 = 0.15 (BCS-BEC crossover regime) [68]. Panel (a) shows the result in the
superfluid phase, below superfluid transition temperature Tc, where a free particle
dispersion (black solid line), as well as a characteristic back-bending curve (white
solid line) are seen. Panel (b) shows the result in the normal state, where the back-
bending curve still remains in spite of the vanishing superfluid order parameter.
[Reprinted by permission from Macmillan Publishers Ltd: Nature Physics, J. P.
Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P. Pieri, and G. C.
Strinati, “Observation of pseudogap behavior in a strongly interacting Fermi gas,”
6, 569 (2010), copyright (2010). https://doi.org/10.1038/nphys1709.]

characterized by the appearance of a dip (pseudogap) structure in the single-particle
density of states around the Fermi surface, even in the normal state above Tc, in
spite of the vanishing superfluid order parameter there. According to the preformed
pair scenario, the pseudogap is related to fluctuating (preformed) Cooper pairs that
are formed in the normal state near Tc by strong pairing interaction [58–65]. The
pseudogap has been observed in the underdoped regime of the high-Tc cuprates
[70–72], however the origin in this case is still unclear because of the complexity of
this strongly correlated electron system. In contrast, an ultracold Fermi gas in the
BCS-BEC crossover region is dominated by pairing fluctuations, so that this dilute
gap would be useful for the assessment of the preformed pair scenario in terms of
the pseudogap phenomenon.

In the current stage of cold Fermi gas physics, although it is still difficult to
directly observe the density of states, as well as the pseudogap structure in it, a
phenomenon which is consistent with the existence of the pseudogap phenomenon
has been reported by a photoemission-type experiment on a 40K Fermi gas (Fig.
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1.11) [68].
In this spectral experiment, Fermi atoms in one of the two hyperfine states (that

are strongly interacting with each other in the crossover region) are excited to the
third atomic hyperfine state by radiating photons, from which we obtain information
about single-particle excitations in a Fermi gas. In the superfluid state shown in
Fig. 1.11(a) the observed spectral peaks (open circles) are well explained by the
lower branch of the well-known Bogoliubov single-particle dispersion

ω− = −
√
(ξFp )

2 +Δ2, (1.6)

where ξFp = εp − μF = p2/(2m)− μF is the kinetic energy measured from the Fermi
chemical potential μF and Δ is the ordinary BCS superfluid order parameter. (We

briefly note that the upper Bogoliubov branch ω+ = +
√
(ξFp )

2 +Δ2 is strongly

suppressed to be invisible in this experiment.) The spectral peak structure, which
is frequently referred to as the back-bending behavior of the spectral peak line in
this field, is still seen in the normal state above Tc as shown Fig. 1.11(b). This
implies that, although the superfluid order parameter no longer exists above Tc, the
single-particle dispersion still has a (pseudo) gapped structure,

ω± = ±
√
(ξFp )

2 +Δ2
pg, (1.7)

as predicted in the preformed pair scenario [58–66]. When the single-particle exci-
tations are given by Eq. (1.7), the corresponding single-particle density of states in
the normal state has a finite excitation gap

ΔEg = 2Δpg, (1.8)

around ω = 0, as expected from the standard BCS theory. (Δpg is sometimes called
the pseudogap parameter [58–60,62].)

Since the pseudogap in BCS-BEC crossover regime of an ultracold Fermi gas
originates from the formation of (fluctuating) preformed Cooper pairs, it is inter-
esting to explore a similar phenomenon caused by hetero-pairing fluctuations in a
Bose-Fermi mixture. In addition, while preformed Cooper pairs (or pairing fluctu-
ations) in a two-component Fermi gas are bosonic, hetero-pairing fluctuations in a
Bose-Fermi mixture are fermionic, in the sense that they eventually change to molec-
ular fermions in the strong-coupling limit. Thus, it is also an interesting problem
how this quantum-statistical difference is reflected in strong-coupling properties of
a Bose-Fermi mixture, especially in the intermediate coupling regime.

1.5 Universal Thermodynamics in Unitary Gas

While the high-tunability of various physical parameters, such as the interaction
strength, is an advantage of cold atom physics, the difficulty in measuring phys-
ical quantities compared with the field of condensed matter physics was a weak
part in th early stage of this field. However, great experimental efforts have grad-
ually overcome this difficulty, and various thermodynamic quantities have become
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Figure 1.12: Observed thermodynamic quantities in a unitary Fermi gas (filled
circles) [78]. A: Compressibility κ. B: Specific heat at constant volume CV . C:
Condensate fraction N0 (the number of Bose-condensed Cooper pairs). The figure
also shows theoretical results for a non-interacting Fermi gas (black solid line), as well
as results by the third-order virial expansion (blue solid line). The vertical dotted
line shows Tc. [From M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein,
“Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of
a Unitary Fermi Gas,” Science 335, 563 (2012). Reprinted with permission from
AAAS. http://dx.doi.org/10.1126/science.1214987.]

observable under various conditions [73–80], for example, the BCS-BEC crossover
region [75, 80]. Figure 1.12 shows example of such experimental development [78],
that is, the observed compressibility, specific heat at constant volume, as well as
the condensate fraction (the number of Bose-condensed Cooper pairs), in an ultra-
cold Fermi gas in the unitarity limit (which is just in the middle of the BCS-BEC
crossover region).

On the theoretical side, Ho [81] has pointed out that we can greatly simplify
thermodynamic analysis on an atomic gas with a contact-type interaction in the
unitarity limit. In this special case, because the s-wave scattering length as diverges,
the interaction parameter formally disappears. The resulting so-called universal
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thermodynamics has a similar theoretical structure to the thermodynamics in the
non-interacting case, in spite of the fact that a unitary gas is actually affected by a
strong pairing interaction.

Recently Ref. [82] proposed to combine a strong-coupling theory with the exact
thermodynamic identities, in order to calculate ground-state quantities of an ultra-
cold Fermi gas in the BCS-unitary regime. In this approach, complicated strong-
coupling calculations are only done to evaluate the Fermi chemical potential μF.
Other thermodynamic quantities, such as the internal energy, compressibility, as
well as Tan’s contact [83–85], are calculated from the calculated μF, by using exact
thermodynamic relations without carrying out further strong-coupling calculations.
The advantage of this approach is that, since the calculated quantities are all related
to exact identities, when one of them is experimentally confirmed, the correctness
of the others are also immediately verified, even if some of them are still experimen-
tally inaccessible in the current state of cold atom physics. Indeed using this hybrid
approach, Ref. [82] succeeds in explaining various experimental results on ultracold
Fermi gases in a unified manner.

In Ref. [82], thermodynamics is simplified by considering the zero-temperature
limit. Regarding this as mentioned in the above, thermodynamics can also be simpli-
fied in the unitarity limit. Thus, extending the approach in Ref. [82] to the unitarity
limit at finite temperature is promising for the study of strong-coupling effects on
thermodynamic properties of a unitary Bose-Fermi mixture. In this thesis, we em-
ploy this idea, to explore characteristic phenomenon associated with hetero-pairing
fluctuations in the limiting case.

1.6 Purpose and Outline of this Thesis

In this thesis, we theoretically investigate strong-coupling properties of a Bose-
Fermi mixture with a hetero-nuclear Feshbach resonance in the normal state above
the Bose-Einstein condensation temperature TBEC. In this thesis we deal with the
system, being composed of one-component Fermi atoms and one-component Bose
atoms, as the simplest Bose-Fermi mixture. With the accessibility of hetero-nuclear
Feshbach resonance [7–10,12–15,24] as well as the observation of hetero-nuclear Fes-
hbach molecules [11], study of this system has become absolutely necessary because
Bose-Fermi mixtures also appears in various systems, such as of nucleons, neutron
stars, and Quantum Chromodynamics (QCD). Study of Bose-Fermi mixture in cold
atom physics could help in understanding such systems.

For our purpose, we first construct a strong-coupling theory which enables us to
examine normal state properties of a Bose-Fermi mixture, from the weak-coupling to
the strong-coupling regime. As we will point out in Chap. 2 the ordinary non-self-
consistent strong-coupling T-matrix approximation (TMA), which has been exten-
sively used in an ultracold Fermi gas to successfully explain various strong-coupling
phenomenon in the BCS-BEC crossover region, does not work well when applied to
a Bose-Fermi mixture. Thus, in Chap. 2 we improve TMA so that this difficulty is
overcome.

Using this improved TMA (iTMA), we examine strong-coupling corrections to
single-particle properties of a Bose-Fermi mixture in Chap. 3, by explicitly evaluat-
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ing single-particle density of states, as well as the single-particle spectral weight, in
both the Bose and Fermi components, to clarify how strong hetero-pairing fluctua-
tions affect these quantities. We also compare our results on a Bose-Fermi mixture
with the case of a two-component Fermi gas, to clarify the origin of the difference
between the two.

In Chap. 4, we combine the above mentioned iTMA with universal thermody-
namics to study the normal-state thermodynamic properties of a Bose-Fermi mixture
in the unitarity limit (unitary Bose-Fermi mixture). We show that the specific heat
at constant volume CV exhibits an anomalous non-monotonic behavior near TBEC,
as a result of existing strong hetero-pairing fluctuations in a unitary Bose-Fermi
mixture.

We summarize this thesis in Chap. 5, where we also present future problems.
Throughout this thesis, we take � = kB = 1, and the system volume to be unity

(unless any confusion may occur), for simplicity.





Chapter 2

Non-self-consistent T -matrix
Approximation (TMA) and Need
for Improved TMA

In this chapter, we explain our theoretical formulation to deal with strong-coupling
properties of a Bose-Fermi mixture, consisting of single-component bosons and
single-component fermions. After presenting our model Hamiltonian, we review the
ordinary non-self-consistent T -matrix approximation (TMA), which has been ex-
tensively used to investigate effects of pairing fluctuations in a strongly-interacting
two-component Fermi gas [58–61]. TMA has also been recently applied to a Bose-
Fermi mixture [44–46]. We explain how TMA can describe the so-called pseudogap
phenomenon in the BCS (Bardeen-Cooper-Schrieffer)- BEC (Bose-Einstein conden-
sation) crossover regime of an ultracold Fermi gas. We then point out that TMA
gives unphysical results when applied to a Bose-Fermi mixture. To cure this we
present an improved version of this strong-coupling theory, to show that it can in-
deed eliminate this problem in the strong coupling regime which one encounters
while using ordinary TMA. We use this improved T -matrix approximation (iTMA)
in considering the strong-coupling properties of a Bose-Fermi mixture in Chap. 3
and 4.

2.1 Model Hamiltonian and Single-particle Ther-

mal Green’s Function

We consider an attractively interacting gas mixture of single-component fermions
and single-component bosons described by the model Hamiltonian [44,86],

H =
∑

p,s=B,F

ξspc
†
s,pcs,p − UBF

∑
p,p′,q

c†B,p+q/2c
†
F,−p+q/2cF,−p′+q/2cB,p′+q/2. (2.1)

Here, cs,p is the annihilation operator of a Bose (s = B) and Fermi (s = F) atom,
with momentum p and atomic massesmB andmF, respectively. The kinetic energies
of the atoms are given by,

ξs=B,F
p = εsp − μs =

p2

2ms

− μs, (2.2)
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Figure 2.1: Diagrammatic representation of Dyson’s equation for single-particle ther-
mal Green’s function. (a) Bose component, (b) Fermi component. Double wavy line
and double solid line represent the dressed Bose Green’s function GB(p, iω

B
n ) and the

dressed Fermi Green’s function GF(p, iω
F
n), respectively. Σs=B,F(p, iω

s
n) are Fermi

(s = F) and Bose (s = B) self-energies. The wavy line and solid line describe the bare
Bose Green’s function G0

B(p, iω
B
n ) and the bare Fermi Green’s function G0

F(p, iω
F
n),

respectively.

measured from the Bose (Fermi) chemical potential μB (μF). The second term
denotes a contact-type attractive inter-species interaction −UBF (< 0), which is as-
sumed to be tunable by adjusting the threshold energy of a hetero-nuclear Feshbach
resonance [23]. In this thesis, we ignore any other interactions such as Bose-Bose
interaction, (non-s-wave) Fermi-Fermi interaction, for simplicity. (Note, that an
s-wave interaction does not exist between fermions because of Pauli’s exclusion
principle.) Although a real Bose-Fermi mixture is experimentally prepared in a har-
monic trap [11], effects of this spatial inhomogeneity is not considered as we take the
simplest uniform case. In addition to those, although we explain our formulation in
the case of mB �= mF, we will take mB = mF(= m) in our strong-coupling theory.
Improving these simplifications remain as our future challenges.

As usual, our model Bose-Fermi mixture described by the Hamiltonian in Eq.
(2.1) involves the ultraviolet divergence associated with the contact-type interaction
−UBF. This singularity is conveniently eliminated by measuring the interaction
strength in terms of the inverse Bose-Fermi s-wave scattering length a−1

BF. The
scattering length aBF is related to the bare interaction UBF as [56],

2πaBF

mr

= − UBF

1− UBF

∑pc
p

2mr

p2

, (2.3)

where,

mr =
mBmF

mB +mF

, (2.4)

is the reduced mass and pc is a high-momentum cutoff.
To examine the single-particle properties of a Bose-Fermi mixture and effects of

strong inter-species interaction −UBF, it is convenient to consider the single-particle
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thermal Green’s function (s = B,F),

Gs(p, τ) = −〈Tτ [cs,p(τ)c
†
s,p(0)]〉. (2.5)

Here, Tτ is the time ordering operator in terms of the imaginary time τ , and

cs,p(τ) = eHτcs,p(0)e
−Hτ . (2.6)

In Eq. (2.5) 〈Ô〉 denotes the ordinary statistical average,

〈Ô〉 = 1

Z
Tr[e−βHÔ], (2.7)

where Z = Tr(e−βH) is the partition function. The single-particle thermal Green’s
function in the Matsubara-frequency representation is obtained from the Fourier
transformation [87–90],

Gs(p, iω
s
n) =

∫ β

0

dτeiω
s
nτGs(p, τ), (2.8)

where β = 1/T is the inverse of temperature T . ωB
n = 2nπT and ωF

n = (2n + 1)πT
(n = 0,±1,±2,±3, · · ·) represent the boson and fermion Matsubara frequencies,
respectively.

In the non-interacting case (UBF = 0) the single-particle Green’s function (≡ G0
s )

has the form [87–90],

G0
s (p, iω

s
n) =

1

iωs
n − ξsp

. (2.9)

Using this bare Green’s function G0
s , we can diagrammatically construct the dressed

Green’s function Gs, as shown in Fig. 2.1, which gives the Dyson equation,

Gs(p, iω
s
n) = G0

s (p, iω
s
n) +G0

s (p, iω
s
n)Σs(p, iω

s
n)Gs(p, iω

s
n). (2.10)

Here, the self-energy Σs(p, iω
s
n) conveniently describes interaction effects on single-

particle properties of the system. Equation (2.10) can be written as,

Gs(p, iω
s
n) =

1

[G0
s (p, iω

s
n)]

−1 − Σs(p, iωs
n)

=
1

iωs
n − ξsp − Σs(p, iωs

n)
, (2.11)

2.2 Non-self-consistent T -matrix Approximation

(TMA) : Bose-Fermi Mixture

In this section, we explain the theoretical framework of the ordinary non-self-consistent
T -matrix approximation (TMA) in case of a Bose-Fermi mixture. We will extend
this strong-coupling theory in Sec. 2.5.

In ordinary TMA, effects of strong-coupling corrections are conveniently incor-
porated into the theory via Bose (s = B) and Fermi (s = F) self-energies Σs(p, iω

s
n)
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Figure 2.2: Self-energy corrections in the ordinary TMA [44]. (a) Bose self-energy
ΣB(p, iω

B
n ), (b) Fermi self-energy ΣF(p, iω

F
n). (c) Bose-Fermi scattering matrix ΓBF

in TMA. The wavy line and solid line are the bare Bose Green’s function (G0
B) and

the bare Fermi Green’s function (G0
F), respectively. The dashed line is the attractive

inter-species interaction −UBF (< 0).

that are diagrammatically given in the Fig. 2.2 [44]. Summing up these diagrams,
we obtain

ΣB(p, iω
B
n ) = T

∑
q,ωF

m

ΓBF(q, iω
F
m)G

0
F(q − p, iωF

m − iωB
n )e

(iωF
m−iωB

n )δ, (2.12)

ΣF(p, iω
F
n) = −T

∑
q,ωF

m

ΓBF(q, iω
F
m)G

0
B(q − p, iωF

m − iωF
n)e

(iωF
m−iωF

n)δ, (2.13)

where δ is a small positive number. ΓBF(q, iω
F
m) is the Bose-Fermi particle-particle

scattering matrix, describing Bose-Fermi hetero-nuclear pairing fluctuations given
by the ladder-type diagrams in Fig. 2.2(c). The TMA expression for ΓBF(q, iω

F
m) is

given by

ΓBF(q, iω
F
m) = − UBF

1− UBFΠBF(q, iωF
m)

=
2πaBF

mr

1 + 2πaBF

mr

[
ΠBF(q, iωF

m)−
∑pc

p
2mr

p2

] , (2.14)

where we have replaced the bare interaction −UBF by the s-wave scattering length
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aBF using Eq. (2.3) in obtaining the second line in Eq. (2.14).

ΠBF(q, iω
F
m) = T

∑
k,ωB

n

G0
F(−k +

q

2
, iωF

m − iωB
n )G

0
B(k +

q

2
, iωB

n )

= −
∑
k

1− nF(ξ
F
k+q/2) + nB(ξ

B
−k+q/2)

iωF
m − ξFk+q/2 − ξB−k+q/2

, (2.15)

is the lowest order hetero-nuclear pair correlation function with

ns=B,F(ξ
s
p) =

1

eβξ
s
p ± 1

, (2.16)

being the Fermi (s = F, upper sign) and Bose (s = B, lower sign) distribution func-
tions, respectively. In obtaining the second line of Eq. (2.15) we have summed up
the Matsubara frequency (ωB

n ) summation, by using the complex integration method
explained in Appendix A.

We briefly note that the fact that particle-particle scattering matrix ΓBF(q, iω
F
m)

in Eq. (2.14) is a function of fermion Matsubara frequency ωF
m, reflecting the

fermionic character of Bose-Fermi hetero-pairing fluctuations.
We also note that the pair-correlation function ΠBF(q, iω

F
m) in Eq. (2.15) in-

volves the ultraviolet divergence, which is however canceled out by the last term∑pc
p 2mr/p

2, in the denominator in Eq. (2.14). Thus, using the second line in Eq.
(2.14), one actually does not meet this singularity in this theory.

In TMA, the Bose-Einstein condensation (BEC) transition temperature TBEC is
determined from the gapless condition for Bose excitations [44–46]. This condition
is achieved when the dressed Bose Green’s function GB(p, iω

B
n ) in Eq. (2.11) has a

pole at p = ωB
n = 0, which gives

μB = ΣB(q = 0, iωB
n = 0). (2.17)

Equation (2.17) may be viewed as an extension of the Hugenholtz-Pines condition
[91] for interacting bosons to the case of a Bose-Fermi mixture. (We explain this
extension in Appendix B.) We actually solve TBEC-equation in Eq. (2.17), together
with the equation for the number NB of Bose atoms,

NB = −T
∑
p,ωB

n

GB(p, iω
B
n )e

iωB
n δ, (2.18)

as well as the equation for the number NF of Fermi atoms,

NF = T
∑
p,ωF

n

GF(p, iω
F
n)e

iωF
nδ, (2.19)

to determine TBEC, μB(TBEC), and μF(TBEC) self-consistently. In the normal phase
above TBEC, we only deal with the number equations (2.18) and (2.19), to obtain
μB(T ) and μF(T ).

Before ending this section, we briefly note that a crucial character of TMA is that
bare Green’s functions G0

B and G0
F are used everywhere in the TMA diagrams, shown



24 Chapter 2. Need for Improved T -matrix Approximation (iTMA)

in Fig. 2.2. Because of this, even when the TMA dressed Bose Green’s function
satisfies the required gapless condition in Eq. (2.17) at TBEC, Bose excitations
are inconsistently treated as gapped one in the self-energies Σs=B,F, leading to the
underestimation of effects of Bose fluctuations on the single-particle excitations near
TBEC. In Sec. 2.4 we will find that this is the origin of the unphysical behavior of the
Fermi chemical potential in the intermediate coupling regime obtained in Ref. [44].
In Sec. 2.5 we will also explain how to overcome this weak point existing in TMA.

2.3 TMA analysis on Pseudogap Phenomenon in

an Ultracold Fermi Gas

In cold atom physics, TMA was first applied to an attractively interacting two-
component Fermi gas, to study strong-coupling properties in the BCS-BEC crossover
region [58–60, 66]. Although what we are dealing within this thesis is a Bose-Fermi
mixture, since we will compare our results with the “Fermi-Fermi” case in Chap.
3, we review TMA analysis on an ultracold Fermi gas in the BCS-BEC crossover
region.

A two-component Fermi gas is known to be well described by the BCS-type
Hamiltonian,

HF =
∑

p,σ=↑,↓
ξFpc

†
p,σcp,σ − UFF

∑
p,p′,q

c†p+q/2,↑c
†
−p+q/2,↓c−p′+q/2↓cp′+q/2,↑, (2.20)

where cp,σ is the annihilation operator of a Fermi atom with pseudospin σ =↑, ↓,
describing the two atomic hyperfine states. −UFF(< 0) is a contact-type s-wave
interaction, which is assumed to be tunable by using a Feshbach resonance. As in
the Bose-Fermi case explained in Sec. 2.1, the bare interaction is related to the
s-wave scattering length aFF as

4πaFF
m

= − UFF

1− UFF

∑pc
p

m
p2

. (2.21)

In TMA, the fermion self-energy ΣF(p, iω
F
n) is diagrammatically given in Fig.

2.2(b) and (c) where all the Bose Green’s function G0
B are replaced by the bare

Fermi ones G0
F. The resulting expression for TMA self-energy ΣF(p, iω

F
n) has the

form [58],

ΣF(p, iω
F
n) = T

∑
q,ωB

m

ΓFF(q, iω
B
m)G

0
F(q − p, iωB

m − iωF
n)e

(iωB
m−iωF

n)δ, (2.22)

where

ΓFF(q, iω
B
m) = − UFF

1− UFFΠFF(q, iωB
m)

=
4πaFF

m

1 + 4πaFF

m

[
ΠFF(q, iωB

m)−
∑pc

p
m
p2

] , (2.23)
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with

ΠFF(q, iω
B
m) = T

∑
k,ωF

n

G0
F(−k +

q

2
, iωB

m − iωF
n)G

0
F(k +

q

2
, iωF

n)

= −
∑
k

1− nF(ξ
F
k+q/2)− nF(ξ

B
−k+q/2)

iωB
m − ξFk+q/2 − ξF−k+q/2

. (2.24)

The particle-particle scattering matrix ΓFF(q, iω
B
m) in Eq. (2.23) describes fluctua-

tions in the Cooper channel. Because of the bosonic character of these fluctuations,
the boson Matsubara frequency appears in ΓFF(q, iω

B
m) (as well as in ΠFF(q, iω

B
m)).

We briefly note that the absence of “−” in the form of ΣF(p, iω
F
n) in Eq. (2.22)

which is seen in the Bose-Fermi case in ΣF(p, iω
F
n) in Eq. (2.13) is due to bosonic

outer loop in the self-energy diagram in Fig. 2.2(b).
The superfluid phase transition temperature Tc in the present Fermi-Fermi case

can be conveniently determined from the Thouless criterion [92], stating that the su-
perfluid instability occurs when the Fermi-Fermi particle-particle scattering matrix
ΓFF(q, iω

B
m) has a pole at q = ωB

m = 0, as

ΓFF(q = 0, iωB
m = 0)−1 = 0. (2.25)

In TMA, the Thouless criterion gives the Tc-equation as

1 = −4πaFF
m

∑
p

[
1

2ξFp
tanh

(β
2
ξFp

)
− m

p2

]
. (2.26)

As in the Bose-Fermi case, we actually solve the Tc-equation in Eq. (2.26), together
with the equation for the number NF of Fermi atoms,

NF = 2T
∑
p,ωF

n

GF(p, iω
F
n)e

iωF
nδ, (2.27)

to determine Tc and μF(Tc) in a consistent manner. Here, we have assumed a
population balanced Fermi gas (where the number N↑ of ↑-spin atoms equals the
number N↓ of ↓-spin atoms). Above Tc, we only solve the number equation in Eq.
(2.27), to determine μF(T > Tc).

Figure 2.3 shows the self-consistent solution for the TMA coupled Tc-equation
(2.26) with the number equation (2.27). In the weak-coupling BCS regime (kFaFF)

−1 �
−1, pairing fluctuations are weak, so that the Fermi chemical potential is close to the
Fermi energy εF (see Fig. 2.3(b)). In this regime, Tc is close to the weak-coupling
BCS result TBCS, given by [49,50]

TBCS � 0.614εFe
π

2kFaFF , (kFaFF)
−1 
 −1. (2.28)

However, Tc gradually deviates from TBCS, with increasing the interaction strength,
reflected by the enhancement of (Fermi-Fermi) pairing fluctuations. At the same
time, the Fermi chemical potential μF(Tc) gradually deviate from the Fermi energy
εF to be negative in the strong-coupling BEC regime (kFaFF)

−1 � 1. In the BEC
regime, it has been shown that the particle-particle scattering matrix ΓFF(q, iω

B
m) is
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Figure 2.3: Self-consistent solutions for the TMA coupled Tc-equation (2.26) with
the number equation (2.27) in the case of a strongly-interacting two-component
Fermi gas. (a) Tc, (b) μF(Tc). The interaction strength is measured in terms of
a−1
FF, normalized by the Fermi momentum kF. In this scale (kFaBF)

−1 � −1 and
(kFaBF)

−1 � 1 correspond to, the weak-coupling regime and strong-coupling regime,
respectively.εF = k2

F/2m is the Fermi energy. In panel (a), TBCS is the weak-coupling
result in Eq. (2.28). T 0

BEC is the BEC phase transition temperature of an ideal gas
with NF/2 Bose molecules. In panel (b) Ebind is the binding energy of a two-body
bound molecule in Fig. 2.31.

reduced to the molecular Bose Green’s function with the molecular mass M = 2m
as (For derivation see Appendix C.)

ΓFF(q, iω
B
m) � 8π

m2aFF
Gmol

B (q, iωB
m),

=
8π

m2aFF

1

iωB
m − ξmol

q

, (kFaFF)
−1 � 1. (2.29)
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Figure 2.4: Calculated intensity of the single-particle spectral weight A0
F(p, ω) (a),

as well as the density of states ρ0F(ω = 0) = mkF/(2π
2) (b), in a free Fermi gas at

T = 0. The intensity of panel (a) is normalized by ε−1
F .

Here, ξmol
q = q2/(2M) − μmol

B is the molecular kinetic energy, measured from the
molecular chemical potential,

μmol
B = 2μF + Ebind, (2.30)

with Ebind being the magnitude of the binding energy of the two-body bound state
given by,

Ebind =
1

ma2FF
. (2.31)

In addition, the number equation (2.27) in the BEC limit is reduced to [49,50],

NF

2
=
∑
q

nB

(
q2

2M
− μmol

B

)
, (2.32)

which is just the same as the number equation for an ideal Bose gas with NF/2
bosons. Physically Eq. (2.32) indicates that the system is dominated by tightly
bound Fermi-Fermi molecules. Indeed, one sees in Fig. 2.3(a) that as one enters
deep inside the strong-coupling BEC regime ((kFaFF)

−1 � 1), the calculated Tc in
TMA approaches

T 0
BEC =

2π

M

(
NF/2

ζ(3/2)

)3/2

, (2.33)

of an ideal Bose gas with N/2 bosons with the molecular mass M = 2m given by Eq.
(2.33). Here, ζ(3/2) � 2.612 is the zeta function. In addition, both the Thouless
condition for Eq. (2.29) and the BEC condition in Eq. (2.26) give

μF(Tc) = −Ebind

2
, (2.34)

which can be seen in Fig. 2.3(b) in the strong-coupling BEC regime.
An advantage of using TMA in an ultracold Fermi gas is that one can examine

single-particle spectral weight AF(p, ω) as well as single-particle density of states
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ρF(ω), over the entire BCS-BEC crossover region. These quantities are related to
the analytic continued TMA Green’s function GF(p, iω

F
n → ω + iδ) as

AF(p, ω) = − 1

π
Im
[
GF(p, iω

F
n → ω + iδ)

]
, (2.35)

ρF(ω) = − 1

π

∑
p

Im
[
GF(p, iω

F
n → ω + iδ)

]
=
∑
p

As(p, ω). (2.36)

We briefly note that the analytic continued thermal Green’s function GF(p, iω
F
n →

ω + iδ) is just the retarded Green’s function GR
F(p, ω).

The simplest non-interacting case at T = 0, one has

G0
F(p, iω

F
n → ω + iδ) = G0R

F (p, ω) =
1

ω + iδ − ξFp

= P

(
1

ω − ξFp

)
− iπδ(ω − ξFp ), (2.37)

where P means taking Cauchy’s principal value. Substituting Eq. (2.37) into Eqs.
(2.35) and (2.36), we obtain

A0
F(p, ω) = δ(ω − ξFp ), (2.38)

ρ0F(ω) =
∑
p

A0
F(p, ω)

=
m3/2

√
2π2

√
ω + εF. (2.39)

We plot these in Fig. 2.4.
Figure 2.5 shows the Fermi density of states (DOS) ρF(ω) in the BCS-BEC

crossover regime of an ultracold Fermi gas at Tc. Although the superfluid gap
vanishes at Tc, one sees in Fig. 2.5 a BCS-state like dip structure around ω = 0,
which develops as one passes through the unitarity limit ((kFaFF)

−1 = 0). This dip
structure is sometimes referred to as the pseudogap associated with strong-pairing
fluctuations existing in the BCS-BEC crossover region near Tc.

The corresponding anomaly is seen in the spectral intensity AF(p, ω), as shown
in Fig. 2.6. In contrast to the single spectral peak line along the free particle
dispersion ω = p2/2m− εF seen in Fig. 2.4(a), the splitting of the dispersion is seen
in Fig. 2.6, which becomes more remarkable for a stronger pairing interaction. Since
DOS is given by the momentum summation of the spectral weight AF(p, ω) (see Eq.
(2.36)), the suppression of the spectral intensity around ω = 0 in Fig. 2.6(b) and
(c) agrees with the suppression of ρF(ω) around ω = 0 in Fig. 2.5.

It has been shown that the above pseudogap phenomenon can be explained as
a particle-hole coupling effect caused by strong fluctuations in the Cooper channel
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Figure 2.5: Calculated Fermi density of states ρF(ω) in the BCS-BEC crossover
regime of an ultracold Fermi gas at Tc.

[58–60, 66]. Noting that the low energy and low momentum pairing fluctuations
described by the particle-particle scattering matrix ΓFF are enhanced near Tc (Note
that ΓFF(0, 0) diverges at Tc because of the Thouless criterion in Eq. (2.25)),

ΣF(p, iω
F
n) = T

∑
q,ωB

m

ΓFF(q, iω
B
m)G

0
F(q − p, iωB

m − iωF
n)e

(iωB
n′−iωF

m)δ

� TG0
F(−p,−iωF

n)
∑
q,ωB

m

ΓFF(q, iω
B
m)e

iωB
mδ

≡ −G0
F(−p,−iωF

n)Δ
2
pg, (2.40)

where
Δ2

pg = −T
∑
q,iωB

m

ΓFF(q, iω
B
m)e

iωB
mδ, (> 0) (2.41)

is sometimes referred to as the pseudogap parameter in the literature [58–60, 66].
Substituting Eq. (2.40) into the TMA Green’s function in Eq. (2.11), we obtain

GF(p, iω
F
n) =

1

iωF
n − ξFp − Δ2

pg

iωF
n+ξFp

. (2.42)

Equation (2.42) indicates that pairing fluctuations that are described by the particle-
particle scattering matrix ΓFF(q, iω

B
m) couple Fermi-particle excitations (ω = ξFp )

with Fermi-hole excitations (ω = −ξFp ), with the coupling constant Δ2
pg. When we

rewrite Eq. (2.42) as

GF(p, iω
F
n) =

iωF
n + ξFp

(iωF
n)

2 − (ξFp )
2 −Δ2

pg

, (2.43)
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Figure 2.6: Calculated intensity of TMA single-particle spectral weight AF(p, ω)
at Tc. (a) (kFaFF)

−1 = −0.5. (b) (kFaFF)
−1 = 0. (c) (kFaFF)

−1 = 0.5. The intensity
is normalized by ε−1

F .

we find that Eq. (2.43) has the same form as the diagonal component of the BCS
meanfield Green’s function [90],

GBCS
F (p, iωF

n) =
iωF

n + ξFp
(iωF

n)
2 − (ξFp )

2 −Δ2
, (2.44)

where Δ is the superfluid order parameter. As a result the approximate Green’s
function in Eq. (2.43) gives a BCS-state like gapped DOS with the energy gap being
equal to 2Δ2

pg. Actually, pairing fluctuations cause a finite lifetime of quasi-particle
excitations, that partially fills up the gap structure, leading to the pseudogap seen
in Fig. 2.5. Evaluating the single-particle dispersion from the analytic continued
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Figure 2.7: Calculated (a1)∼(d1) density of states ρF(ω), and (a2)∼(d2) intensity
of single-particle spectral weight AF(p, ω) in a Fermi gas at (kFaFF)

−1 = 0 above Tc.

Eq. (2.43), one has

ω = ±
√

(ξFp )
2 +Δ2

pg = ±Ep. (2.45)

Because Eq. (2.43) gives the spectral weight as

AF(p, ω) =
1

2

(
1 +

ξFp
Ep

)
δ(ω − Ep) +

1

2

(
1− ξFp

Ep

)
δ(ω + Ep), (2.46)

we can also qualitatively explain the splitting of the spectral peak seen in Fig. 2.6.
Figure 2.7 shows DOS ρF(ω), as well as the spectral weight AF(p, ω), above

Tc. As expected, the anomalies seen in these quantities at Tc gradually disappears
as one increases the temperature, reflecting the weakening of low-energy pairing
fluctuations.
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In the current stage of cold Fermi gas physics, the existence of the pseudogap
has not been experimentally confirmed yet, because there is no experimental tech-
nique to directly observe DOS in this field. However, the recent photoemission type
experiment on a 40K [67–69] Fermi gas has observed an anomalous spectral peak
in the unitary regime, which agrees with the calculated photoemission spectrum in
TMA.

2.4 Inadequacy of ordinary TMA in a Bose-Fermi

Mixture

In the previous section, we showed that TMA can describe the BCS-BEC crossover
behavior of Tc as well as the pseudogap phenomenon originating from strong-pairing
fluctuations, in an ultracold Fermi gas. In this section however, we point out that the
simple application of this strong-coupling approximation to a Bose-Fermi mixture
explained in Sec. 2.2 gives an unphysical result on the Fermi chemical potential,
implying the need for improvement of TMA [44].

Figure 2.8(a) shows the calculated Bose-Einstein condensation temperature TBEC

in a Bose-Fermi mixture, with NF = NB = N and mF = mB = m. To obtain this
result, we use TMA formalism in Sec. 2.2. In the weak-coupling regime ((kFaBF)

−1 �
−1), TBEC agrees with the BEC transition temperature T 0

BEC of an ideal gas with
N bosons, given in Eq. (2.33). With increasing the strength of the inter-species
pairing interaction (kFaBF)

−1, TBEC is found to monotonically decrease reflecting
the decrease in the number of Bose atoms that can contribute to BEC because
of the formation of preformed hetero-molecules. TBEC eventually vanishes in the
strong coupling regime when (kFaBF)

−1 � 1.62 [44]. The system in the stronger
coupling side (kFaBF)

−1 � 1.62 is considered to be dominated by composite Fermi
molecules. As mentioned previously, TBEC is determined from the gapless condition
in Eq. (2.17).

At a glance the behavior of TBEC shown in Fig. 2.8(a) seems justifying the
validity of TMA for a Bose-Fermi mixture. However, as shown in Fig. 2.8(b), the
calculated Fermi chemical potential μF at TBEC in TMA still takes a large value
(μF � 0.62εF), even at the interaction strength where TBEC vanishes. This indicates
that there are still many unpaired Fermi and Bose atoms even in the strong-coupling
regime ((kFaBF)

−1 > 0), where they can form two-body bound molecules.

In the strong-coupling limit, all the Fermi and Bose atoms would form composite
molecular fermions, forming the Fermi surface with the Fermi energy

EM
F =

p2F
2M

=
1

2
εF, (2.47)

where pF and εF are the Fermi momentum and Fermi energy of a free atomic
Fermi gas, respectively. Thus, noting that the binding energy of a two-body bound
molecule equals

Ebind =
1

ma2BF

, (2.48)
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Figure 2.8: TMA self-consistent solution for (a) TBEC, and (b) μF(TBEC) in a Bose-
Fermi mixture [44]. T 0

BEC is the BEC phase transition temperature in an ideal Bose
gas.

we expect the Fermi and Bose chemical potential should approach (For detailed
derivation see Appendix C.1.)

μB = μF = −1

2
(Ebind − EM

F )

� − 1

2ma2BF

, (2.49)

in the strong-coupling regime (kFaBF)
−1 � 1. At the critical interaction strength
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Figure 2.9: Bose (a) and Fermi (b) self-energy in the Hartree approximation. The
solid line and wavy line are the bare Fermi G0

F(p, iω
F
n) and Bose G0

B(p, iω
B
n ) Green’s

function, respectively. The dashed line is the attractive inter-species interaction
−UBF(< 0).

(kFaBF)
−1 � 1.62, we have

Ebind

εF
=

2

(kFaBF)2
= 5.25 � 1, (2.50)

so that the system is expected to be close to a gas of composite molecular fermions.
However, as mentioned previously, the positive chemical potential μF = 0.62εF at
the critical interaction strength in “TMA” (see Fig. 2.8(b)) indicates that there are
still many unpaired Fermi atoms (� 0.48NF) at T � 0 [93], despite of this large
binding energy in Eq. (2.50). In addition, the existence of unpaired Fermi atoms
also means the non-vanishing number of unpaired Bose atoms, that, however, do
not exhibit the BEC phase transition in TMA. (Note that TBEC = 0 at the critical
interaction strength (kFaBF)

−1 = 1.62.) These results are clearly unphysical against
the situation expected in the strong-coupling regime.

To cure (non-self-consistent) TMA, it would be useful to recall that the non-self-
consistent Hartree approximation always gives an unphysical result: The Bose (ΣH

B)
and Fermi (ΣH

F) Hartree self-energy are diagrammatic expressed as Fig. 2.9, which
gives

ΣH
B = −UBFT

∑
p,ωF

n

G0
F(p, iω

F
n)e

iωF
nδ = −UBFN

0
F, (2.51)

ΣH
F = UBFT

∑
p,ωB

n

G0
B(p, iω

B
n )e

iωB
n δ = −UBFN

0
B, (2.52)

where
N0

s=B,F =
∑
p

ns(εp − μs) (2.53)

The Green’s function in this approximation are then given by,

GB(p, iω
B
n ) =

1

iωB
n − (εp − μB − UBFN0

F)
, (2.54)

GF(p, iω
F
n) =

1

iωF
n − (εp − μF − UBFN0

B)
. (2.55)
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Figure 2.10: Fermi self-energy Σ̃H
F in the modified Hartree approximation.

G̃0
B(p, iω

B
n ) is given in Eq. (2.60).

In the non-interacting case (UBF = 0), we obtain μB = 0 and μF = εF at T = 0.
On the other hand, in the strong-coupling regime (UBF � εF) at T = 0 the coupled
number equations

NB =
∑
p

nB(εp − μB − UBFN
0
F), (2.56)

and
NF =

∑
p

nF(εp − μF − UBFN
0
B), (2.57)

unphysically give double-valued solutions,{
μB = 0,
μF = εF − UBFNB (< 0),

(2.58)

and {
μB = −UBFNF,
μF = εF.

(2.59)

For example, substitution of Eq. (2.58) into Eq. (2.53) gives N0
B = NB and N0

F = 0,
which is immediately found to satisfy Eqs. (2.56) and (2.57). The same discussion
also confirms the second solution in Eq. (2.59).

These two solutions in Eqs. (2.58) and (2.59) are very different from each other,
because one solution has a positive Fermi chemical potential (μF = εF) and the
other has a negative one (μF = εF−UBFNB). The TMA result shown in Fig. 2.8(b)
is somehow close to the second one in Eq. (2.59).

On the other hand, the above mentioned problem of double-valued solution can
be removed by replacing ΣH

F by Σ̃H
F shown in Fig. 2.10, where the Bose Green’s

function G̃0
B has the form,

G̃0
B(p, iω

B
n ) =

1

[G0
B(p, iω

B
n )]

−1 − ΣH
B

=
1

iωB
n − (εp − μ̃B)

. (2.60)

Here μ̃B = μB−ΣH
B is the effective Bose chemical potential. Equation (2.60) actually

equals the dressed Bose Green’s function GB(p, iω
B
n ), so that G̃0

B in Eq. (2.60)
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satisfies the gapless condition. When we use the Fermi self-energy Σ̃H
F , the Bose

number equation in Eq. (2.54) is slightly modified to become,

NB =
∑
p

nB(εp − μB − UBFN
0
F), (2.61)

and

NF =
∑
p

nF(εp − μF − UBFNB). (2.62)

Equations (2.61) and (2.62) gives the expected single-valued solution,

{
μB = 0,
μF = εF − UBFNB.

(2.63)

This result implies that a modification of the bare Bose Green’s function in the
TMA self-energies may be a key to solve the problem in TMA when applied to a
Bose-Fermi mixture.

2.5 Improved T -matrix Approximation (iTMA)

Based on the discussions in Sec. 2.4, we now improve the ordinary TMA which
we explained in Sec. 2.2, so as to meet our condition. To satisfy the gapless Bose
excitations at TBEC everywhere in the theory in a simple manner, we replace the bare
Bose Green’s function G0

B = [iωB
n − (εp −μB)]

−1 appearing in the TMA diagrams in
Fig. 2.2 with the modified one [86,94],

G̃0
B(p, iω

B
n ) =

1

iωB
n − (εp − μB)− Σ̃B(p = 0, iωB

n = 0)
. (2.64)

(In what follows, we only deal with the case withmF = mB = m, and NF = NB = N ,
for simplicity.) On the other hand, we retain the same bare Green’s function

G0
F(p, iω

F
n) =

1

iωF
n − (εp − μF)

, (2.65)

for fermion lines in Fig. 2.2. The resulting self-energy diagrams for our improved
T -matrix approximation (iTMA) is given as Fig. (2.11).

Summing up the diagrams in Fig. 2.11 as in the case of ordinary TMA we obtain
the iTMA Bose (Σ̃B) and Fermi (Σ̃F) self-energies, given by

Σ̃B(p, iω
B
n ) = T

∑
q,ωF

m

Γ̃BF(q, iω
F
m)G

0
F(q − p, iωF

m − iωB
n )e

(iωF
m−iωB

n )δ, (2.66)

Σ̃F(p, iω
F
n) = −T

∑
q,ωF

m

Γ̃BF(q, iω
F
m)G̃

0
B(q − p, iωF

m − iωF
n)e

(iωF
m−iωF

n)δ. (2.67)
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Figure 2.11: Self-energy corrections in our improved TMA (iTMA). (a) Bose self-
energy Σ̃B(p, iω

B
n ). (b) Fermi self-energy Σ̃F(p, iω

F
n). (c) Γ̃BF is the iTMA boson-

fermion scattering matrix. The wavy line and solid line are the Bose Green’s function
G̃0

B(p, iω
B
n ) in Eq. (2.64) and the bare Fermi Green’s function G0

F(p, iω
F
n) in Eq.

(2.65), respectively.

Here,

Γ̃BF(q, iω
F
m) = − UBF

1− UBFΠ̃BF(q, iωF
m)

=
2πaBF

mr

1 + 2πaBF

mr

[
Π̃BF(q, iωF

m)−
∑pc

p
2mr

p2

] , (2.68)

where the iTMA hetero-pair correlation function involves the modified Bose Green’s
function G̃0

B as

Π̃BF(q, iω
F
m) = T

∑
k,ωB

n

G0
F(−k +

q

2
, iωF

m − iωB
n )G̃

0
B(k +

q

2
, iωB

n )

= −
∑
k

1− nF(ξ
F
k+q/2) + nB(ξ̃

B
−k+q/2)

iωF
m − ξFk+q/2 − ξ̃B−k+q/2

. (2.69)

The resulting single-particle thermal Green’s function involves these iTMA correc-
tions as

Gs(p, ω) =
1

iωs
n − ξsp − Σ̃s(p, iωs

n)
, (2.70)

As in the ordinary TMA, BEC transition temperature TBEC is determined from
the condition of gapless Bose excitations,

μB = Σ̃B(p = 0, iωB
n = 0). (2.71)
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Figure 2.12: iTMA results for (a) TBEC,(b) μF(TBEC), and (c) μB(TBEC), in a
Bose-Fermi mixture. For comparison TMA results are also shown in this figure [44].

In this case, an advantage of iTMA is that the modified Bose Green’s function G̃0
B

in Eq. (2.64) also consistently satisfied this required at TBEC. This enables us to
remove the underestimation of effects of low energy Bose excitations (that are nearly
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gapless) near TBEC, in contrast to ordinary in Sec. 2.2.
We briefly note that G̃0

B(q−p, iωF
m− iωF

n) in the Fermi self-energy Σ̃F(p, iω
F
n) in

Eq. (2.67) exhibits a singular behavior at (q, iωF
m) = (p, iωF

n) in numerically eval-
uating TBEC in iTMA. In Appendix D, we explain how to avoid this singularity in
computation [95]. Figure 2.12 (a) shows self-consistent solutions for TBEC , μF(TBEC),
as well as μB(TBEC) in iTMA. Although the overall behavior of TBEC remains un-
changed, TBEC is suppressed more considerably, to vanish at (kFaBF)

−1 � 0.56,
the underestimation of hetero-pairing fluctuations in TMA is corrected in iTMA,
by using the Bose Green’s function G̃0

B satisfying the gapless condition in the self-
energies. In Fig. 2.12(b), the Fermi atomic chemical potential μF(TBEC) in iTMA is
found to monotonically decrease with increasing interaction strength, to eventually
vanish around when TBEC vanishes. This is just the expected behavior of μF as
one approaches the strong-coupling regime where the formation of composite Fermi
molecules occurs. Figure 2.12(c) shows that as the interaction increases the Bose
atomic chemical potential μB monotonically decreases and almost similar to that in
TMA.

Of course, iTMA still has room for improvement, that is, using the fully dressed
Green’s functions in evaluating the self-energies would give more improved results,
which remains as a future problem. However, Fig. 2.12 shows that our iTMA is a
minimal strong-coupling theory to correctly describe the Fermi chemical potential in
the strong-coupling regime, which the ordinary TMA cannot treat properly. In the
following two chapters, we examine the strong-coupling normal state properties of
a Bose-Fermi mixture with a tunable inter-species pairing interaction using iTMA.





Chapter 3

Single-particle Properties of a
Bose-Fermi Mixture above TBEC

In this chapter, we investigate the single-particle properties of a Bose-Fermi mixture.
Including Bose-Fermi hetero-pairing fluctuations within the framework of iTMA
discussed in the previous chapter, we calculate the single particle density of states
as well as the single particle spectral weight, in both the Bose and Fermi channels
above the BEC phase transition temperature TBEC. As shown in Sec. 2.3, strong
pairing fluctuations cause a pseudogap phenomenon in the density of states in the
BCS-BEC crossover regime of an ultracold Fermi gas. However, we find that such
a dip structure is not produced by Bose-Fermi hetero-pairing fluctuations in the
intermediate coupling regime around the unitarity ((kFaBF)

−1 = 0). A shallow dip
is only seen in the density of states in the strong-coupling regime. We explain this
difference between the Bose-Fermi case and the Fermi-Fermi case from the viewpoint
of coupling phenomenon among Fermi atomic excitations, Bose atomic excitations,
and Fermi molecular excitations, caused by hetero-pairing fluctuations in the former
case. We clarify that this coupling phenomenon strongly reflects detailed spectral
structure of the single-particle spectral weight.

3.1 Expressions for Density of States and Spec-

tral Weight in iTMA

In our iTMA, single-particle density of states (DOS) ρs=B,F(ω), as well as the single-
particle spectral weight (SW) As=B,F(p, ω), can be conveniently evaluated from the
analytic continued single-particle dressed Green’s function,

GR
s (p, ω) = Gs(p, iω

s
n → ω + iδ). (3.1)
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Figure 3.1: Fermi chemical potential μF(T ) (a), and Bose chemical potential μB(T )
(b) in the normal state of a Bose-Fermi mixture. Panel (c) shows the effective Bose
chemical potential μ̃B(T ) = μB − Σ̃B(0, 0). Note that μ̃B(TBEC) = 0.

As explained in Sec. 2.3 in the case of a two-component Fermi gas, the spectral
weight As(p, ω), as well as the density of states ρs(ω) are related to GR

s (p, ω) as,

As(p, ω) = − 1

π
Im
[
GR

s (p, ω)
]

= − 1

π

ImΣ̃s(p, iω
s
n → ω + iδ)

[ω − ξsp − ReΣ̃s(p, iωs
n → ω + iδ)]2 + [ImΣ̃s(p, iωs

n → ω + iδ)]2
,

(3.2)
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ρs(ω) = − 1

π

∑
p

Im
[
GR

s (p, ω)
]

=
∑
p

As(p, ω). (3.3)

In this thesis, we numerically carry out the analytic continuation in Eq. (3.1) by
using Pade’s approximation [96].

To evaluate As(p, ω) and ρs(ω) in Eqs. (3.2) and (3.3), we need to determine
μB(T ) and μF(T ), which is achieved by solving the coupled number equations

NB = −T
∑
p,ωB

n

GB(p, iω
B
n )e

iωB
n δ, (3.4)

and

NF = T
∑
p,ωF

n

GF(p, iω
F
n)e

iωF
nδ, (3.5)

where Gs=B,F(p, iω
s
n) is the dressed Green’s function in iTMA given by Eq. (2.70).

The BEC phase transition temperature TBEC is determined by solving Eqs. (3.4) and
(3.5) together with the gapless condition in Eq. (2.71). The resulting μF(T ≥ TBEC),
μB(T ≥ TBEC), as well as the effective Bose chemical potential μ̃B(T ≥ TBEC) =
μB−Σ̃B(p = 0, iωB

n = 0) (which works as the Bose chemical potential in the modified
Bose Green’s function in Eq. (2.64)), are summarized in Fig. 3.1. We will use these
numerical data in calculating single-particle quantities in Eqs. (3.2) and (3.3).

3.2 Single-particle Density of States ρs(ω) at TBEC

Figure 3.2 shows the density of states ρs=B,F(ω) in a Bose-Fermi mixture at TBEC.
With increasing the interaction strength, we find in panel (a1) that the lower edge
of the Fermi density of states ρF(ω) around ω = −εF gradually becomes obscure.
However, while ρF(ω) exhibits a pseudogap (dip) structure around ω = 0 in the
unitarity regime ((kFaFF)

−1 ∼ 0 see Fig. 2.5) in Fermi-Fermi case, such an anoma-
lous structure is not seen in the present Bose-Fermi case, even in the unitarity
limit (kFaBF)

−1 = 0. A shallow dip structure only appears in ρF(ω � 0) in the
strong-coupling side when (kFaBF)

−1 = 0.5, as shown in Fig. 3.2(a2). In the strong-
coupling limit (kFaBF)

−1 → +∞, the system is dominated by tightly bound molec-
ular fermions with a large binding energy Ebind = 1/(ma2BF). Since these composite
fermions are occupied to the molecular Fermi energy, EM

F = p2F/(2M) (M = 2m)
in Eq. (2.47), dissociation energy ω = |Ebind| − EM

F (> 0) would be necessary to
produce Fermi atomic and Bose atomic excitations. In this sense the shallow but rel-
atively large “pseudogap” structure appearing in the strong-coupling regime in Fig.
3.2(a2) is considered to reflect that the Bose-Fermi mixture gradually transforms
to a gas of composite Fermi molecules in this regime ((kFaBF)

−1 ≥ 0). Apart from
this, the absence of a dip structure in a unitary Bose-Fermi mixture indicates that
hetero-pairing fluctuations affects the Fermi single-particle excitations in a different
manner, compared to the Fermi-Fermi case in BCS-BEC crossover region.
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Figure 3.2: Calculated single-particle density of states ρs=B,F(ω) in a Bose-Fermi
mixture at TBEC. (a1), (a2) Fermi component ρF(ω). (b1), (b2) Bose component
ρB(ω). For clarity we show TBEC at each interaction strength in the uppermost
panel.

Figure 3.2(b1) and (b2) shows the Bose density of states ρB(ω) at TBEC in the
weak- and strong-coupling side, respectively. As the interaction strength is gradually
increased, ρB(ω) is found to be suppressed in the region ω/εF > 0. This tendency is
also consistent with the above mentioned molecular picture in the strong-coupling
regime, where one indeed needs finite dissociation energy to produce Bose atomic
excitations. In the strong-coupling side shown in panel (b2), the negative Bose
density of states ρB(ω) in the negative energy region (ω < 0) becomes remarkable,
especially just below ω = 0. The high peak structure of ρB(ω) in the negative energy
region when (kFaBF)

−1 = 0.5 implies the existence of strong Bose spectral intensity
in the low energy region, which we will examine in the next section.
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3.3 Single-particle Spectral Weight As=B,F(p, ω) at

TBEC

Since the spectral weight As(p, ω) may be interpreted as “momentum-resolved” den-
sity of states (see Eq. (3.2)), we can obtain more detailed information about strong-
coupling corrections to single-particle excitations from As(p, ω).

Figure 3.3 shows As=B,F(p, ω) in a Bose-Fermi mixture at TBEC. Starting from the
non-interacting case (panels (a1) and(b1)), the sharp peak line along the free particle
dispersion gradually becomes broad with increasing interaction strength indicating
finite lifetime of quasi-particles by the inter-species interaction. At the same time,
the spectral intensity below the free particle dispersion gradually grows, to give
an additional two peak structure in the strong-coupling regime (kFaBF)

−1 = 0.5 (a
relatively sharp upward peak line and broad downward peak structure). Apart from
the details, this tendency is seen in both the Bose (AB(p, ω)) and Fermi (AF(p, ω))
spectral weight.

To grasp the background physics of Fig. 3.3, it is convenient to rewrite the iTMA
Bose-Fermi scattering matrix Γ̃BF(q, iω

F
m) in Eq. (2.68) as,

Γ̃BF(q, iω
F
m) =

4πaBF

m

1 + 4πaBF

m

[
Π̃BF(q, iωF

m)−
∑pc

p
m
p2

]
� αBF

iωF
m − ξCF

q

, (3.6)

where

ξCF
q =

q2

2M
− μCF (3.7)

may be viewed as the kinetic energy of a composite Fermi molecule, measured from
the “molecular chemical potential” μCF (where M = 2m is the mass of a composite
molecule), and αBF is a constant. The expression in Eq. (3.6) is actually valid only
in the strong-coupling limit where the molecular dissociation does not occur and in
this regime αBF = 8π/(m2aBF) > 0 given by Eq. (2.29)(For detailed derivation see
Appendix C.1.). However, this simple approximation is very useful in understanding
the strong-coupling effects associated with hetero-pairing fluctuations in the strong-
coupling regime ((kFaBF)

−1 ≥ 0). Indeed when we determine the value of μCF as
the peak energy of the spectrum, −(1/π)ImΓ̃BF(p, iω

F
m → ω + iδ) at p = 0, the

resulting molecular dispersion ξCF
p well describes one of the additional peak struc-

tures in As(p, ω), as shown in Fig 3.3 (a6) and (b6), implying that the approximate
expression in Eq. (3.6) really contributes to the spectral weight As(p, ω), at least in
the strong-coupling regime.

Substituting Eq. (3.6) into Eqs. (2.66) and (2.67) and after summing up the
fermion Matsubara frequencies ωF

m we obtain,

Σ̃B(p, iω
B
n ) = αBF

∑
q

[
nF(ξ

F
q )

iωB
n − ξCF

p−q + ξFq
− nF(ξ

CF
q )

iωB
n + ξFp−q − ξCF

q

]
, (3.8)

Σ̃F(p, iω
F
n) = αBF

∑
q

[
nB(ξ̃

B
q )

iωF
n − ξCF

p−q + ξ̃Bq
+

nF(ξ
CF
q )

iωF
n + ξ̃Bp−q − ξCF

q

]
. (3.9)
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Figure 3.3: Calculated intensity of single-particle spectral weight at TBEC normal-
ized by ε−1

F (where, εF is the atomic Fermi energy). (a1)-(a6) AB(p, ω). (b1)-(b6)
AF(p, ω). The Bose spectral weight AB(p, ω) is negative when ω < 0, so that we
plot sgn(ω) × AB(p, ω) in the left panels. The dashed lines in panel (a6) and (b6)
shows the molecular dispersion ω = p2/(2M)− μCF, where M = 2m is a molecular
mass. The Fermi molecular chemical potential μCF is determined as the peak energy
of the spectrum, −(1/π)Im[Γ̃BF(p = 0, iωF

n → ω+ iδ)]. For clarity, we show TBEC in
the cases of (a2)∼(a6) and (b2)∼(b6) in the uppermost panel “A∼D and G”. The
spectral weight at “G” is separately shown in Fig. 3.4.
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To further simplify Eqs. (3.8) and (3.9), we note that the Bose distribution function
nB(ξ̃

B
q ) becomes very large around q = 0 near TBEC because of the gapless condition

at TBEC. In addition, when we consider the strong-coupling regime at (kFaBF)
−1 =

0.5 shown in Figs. 3.3(a6) and (b6), one finds that μF(TBEC)/εF 
 1 (see Fig.
2.12(b)). Using these, we can approximately set q = 0 in the denominator of the
first term in each Eqs. (3.8) and (3.9), as well as ignore the Fermi chemical potential
μF there. In addition, when composite Fermi molecules form the Fermi surface, one
may approximate the momentum q in the denominator of the second terms in Eq.
(3.8) and (3.9) to an “effective Fermi momentum” p̃CF

F of molecular fermions, where
|p̃CF

F | = √
2MμCF. These approximations give

Σ̃B(p, iω
B
n ) =

λF

iωB
n − ξCF

p

−
〈

λCF

iωB
n + ξF

p−p̃CF
F

〉
, (3.10)

Σ̃F(p, iω
F
n) =

λB

iωF
n − ξCF

p

+

〈
λCF

iωF
n + ξ̃B

p−p̃CF
F

〉
, (3.11)

where
λB = αBFN

0
B,

(
N0

B =
∑
p

nB(ξ̃
B
p )
)
, (3.12)

λF = αBFN
0
F,

(
N0

F =
∑
p

nF(ξ
F
p )
)
, (3.13)

λCF = αBFN
0
CF,

(
N0

CF =
∑
p

nF(ξ
CF
p )
)
, (3.14)

and the average 〈· · ·〉 is taken over the direction of the molecular Fermi momentum
p̃CF
F . Substituting Eqs. (3.10) and (3.11) into the iTMA Green’s function in Eq.

(2.70), we obtain, after taking analytic continuation (iωs
n → ω + iδ),

GR
B(p, ω) �

1

ω − ξBp − λF

ω − ξCF
p

+

〈
λCF

ω + ξF
p−p̃CF

F

〉 , (3.15)

GR
F(p, ω) �

1

ω − ξFp − λB

ω − ξCF
p

−
〈

λCF

ω + ξ̃B
p−p̃CF

F

〉 . (3.16)

Equation (3.15) and (3.16) clearly indicate that hetero-pairing fluctuations cause a
coupling phenomenon among Fermi atomic excitations (ξFp ), Bose atomic excitations

(ξ̃Bp ), and Fermi molecular excitations (ξCF
p ), with the coupling constants λs=B,F,CF

in Eqs. (3.12)-(3.14) [97]. This explains the appearance of the spectral peak along
the Fermi molecular dispersion, ω = ξCF

p = p2/(2M) − μCF, in Figs. 3.3(a6) and
(b6) (dashed lines).

On the other hand, λCF in Eq. (3.15) brings about coupling between Bose atomic
excitations (ω = ξBp ) and Fermi hole excitations (ω = −ξF

p−p̃CF
F
). In this regard,
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because of the average over the direction of p̃CF
F in Eq. (3.15), the contribution from

the hole excitations gives a broad spectral structure in AB(p, ω) such that,

−(p+ p̃CF
F )2

2m
≤ ω ≤ −(p− p̃CF

F )2

2m
. (3.17)

Here we are considering the strong-coupling case in Figs. 3.3(a6) so that we have
ignored μF, as μF 
 εF. Such a broad spectral structure in AB(p, ω) is indeed seen
in the negative energy region in Fig. 3.3(a6). We point out that this contribution as
well as the molecular contribution around p = 0 (where ξCF

p < 0), also explain the
negative Bose density of states (ρB(ω < 0)) with the negative peak structure seen
in Fig. 3.2(b2), when (kFaBF)

−1 = 0.5.

The last term of the denominator in the Fermi Green’s function in Eq. (3.16) also
contains the average over the direction p̃CF

F . This also explains the broad downward
spectral structure in the negative energy region of the Fermi spectral weight AF(p, ω)
in Fig. 3.3(b6).

At a glance, this spectral intensity and the spectral structure in the positive
energy region coming from the ordinary Fermi particle dispersion ω = ξFp may
appear to give a pseudogap structure in the density of states ρF(ω) around ω = 0,
as in the case of a two-component Fermi gas (where strong-coupling effects results
into pseudogap phenomenon due to particle-hole coupling near the Fermi surface).
However, the above-mentioned Fermi molecular dispersion, which passes through
ω = 0, increases the Fermi density of states ρF(ω) around ω = 0, so that ρF(ω)
actually does not exhibit such a dip structure in the unitarity limit ((kFaBF)

−1 = 0),
as shown in Fig. 3.2(a1). Because of the same reason, although a dip structure
appears in ρF(ω ∼ 0) when (kFaBF)

−1 = 0.5 (see Fig. 3.2(a2)), it is very shallow.

Figure 3.4 shows the interaction strength (kFaBF)
−1 dependence of spectral weight

As=B,F(p, ω) at a finite momentum p = 1.5kF corresponding to the Fig. 3.3. In Fig.
3.4(a) and (b) one can clearly see a sharp peak corresponding to the free-particle
dispersion ω > 0. Furthermore, one can also see that as the interaction strength
increases, two more peak structures corresponding to the composite fermion dis-
persion ω > 0 and broad Fermi hole (Bose) atomic dispersion ω < 0 are formed
corresponding to Bose (Fermi) spectral weight As=B,F(p, ω), shown in the inset of
Fig. 3.4(a) and (b), respectively. (Note that in Fermi spectral weight AF(p, ω)
composite fermion peak exists at unitarity, consistent with Fig. 3.3(b5).)

Figure 3.5 shows the spectral weight As=B,F(p, ω) at T ≈ 0 when (kFaBF)
−1 = 1.

In this figure, the spectral peak along the molecular ω = ξCF
p is invisible, in contrast

to the case at (kFaBF)
−1 = 0.5 in Fig. 3.3(a6) and (b6). As a result, we see a clear

gap-like structure around ω = 0 in each Bose and Fermi spectral weight in Fig. 3.5.
We note that the BEC phase transition vanishes in the strong-coupling regime when
(kFaBF)

−1 ≥ 0.56 (see Fig. 2.12(a)). In addition, when (kFaBF)
−1 = 1, the Fermi

chemical potential μF, as well as the effective Bose chemical potential μ̃B = μB −
ΣB(0, 0), are negative (see Fig. 3.1). Thus, in the case of Fig. 3.5 ((kFaBF)

−1 = 1
and T/TF = 0.0036 
 1), the Fermi distribution function nF(ξ

F
p ) = nF(εp + |μF|)

in Eq. (3.8) as well the Bose distribution function nB(ξ̃
B
p ) = nB(εp + |μ̃B|) in Eq.

(3.9), can be safely ignored, which gives Eqs. (3.15) and (3.16) with λF = λB = 0,
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Figure 3.4: Single-particle spectral weight at p = 1.5kF, as a function of energy ω.
We take (kFaBF)

−1 = 0.5. (a) Bose component. (b) Fermi component.

that is,

GR
B(p, ω) �

1

ω − ξBp +

〈
λCF

ω + ξF
p−p̃CF

F

〉 , (3.18)

GR
F(p, ω) �

1

ω − ξFp −
〈

λCF

ω + ξ̃B
p−p̃CF

F

〉 . (3.19)

This expression immediately explains the vanishing molecular spectral peak in Fig.
3.5. On the other hand, because the molecular fermions form a Fermi surface in the
strong-coupling regime, the molecular chemical potential μCF is positive in the case
of Fig. 3.5. Thus, the coupling constant λCF = αBFnF(ξ

CF
p ) does not vanish, leading
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Figure 3.5: Intensity of singe-particle spectral weight in the strong-coupling regime,
when (kFaBF)

−1 = 1 and T/TF = 0.0036. (a) Bose component AB(p, ω). (b) Fermi
component AF(p, ω). The intensity is normalized by ε−1

F .

to the non-vanishing spectral structure in the negative energy region of the spectral
weight there.

Estimating the (pseudo)gap energy ωB
gap in the Bose spectral weight AB(p, ω), as

well as the gap energy ωF
gap in the Fermi spectral weight AF(p, ω), from the peak-to-

peak energy at p = 0 in Figs. 3.5 (a) and (b), respectively, and we find that their
magnitudes are different as,

{
ωB
gap = 1.9εF,

ωF
gap = 3.7εF,

(3.20)

although they both originate from the dissociation of a Bose-Fermi molecule.

To explain the reason for this difference in a simple manner, the approximate
Green’s functions in Eqs. (3.18) and (3.19) are helpful. We obtain the two bosonic
eigen-energies ωB

± at p = 0 from the pole of the Green’s function

ω = ξBp=0 −
λCF

ω + ξF
p̃CF
F

, (3.21)
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which gives

ωB
± =

1

2

[
[|μB| − |μF| − εp̃CF

F
]±
√
(|μB|+ |μF|+ εp̃CF

F
)2 − 4λCF

]
. (3.22)

In the same manner, the pole equation of the Green’s function in Eq.(3.19)

ω = ξFp=0 +
λCF

ω + ξB
p̃CF
F

(3.23)

gives the two fermionic eigen-energies ωF
± at p = 0,

ωF
± =

1

2

[
[|μF| − |μ̃B| − εp̃CF

F
]±
√

(|μ̃B|+ |μF|+ εp̃CF
F
)2 + 4λCF

]
. (3.24)

Using these results, one obtains the bosonic energy gap ωB
gap = ωB

+ − ωB
−, and the

fermionic energy gap ωF
gap = ωF

+ − ωF
− as, respectively,

⎧⎨
⎩

ωB
gap =

√
(|μB|+ |μF|+ εp̃CF

F
)2 − 4λCF,

ωF
gap =

√
(|μ̃B|+ |μF|+ εp̃CF

F
)2 + 4λCF.

(3.25)

To estimate Eqs. (3.25) in the case of Fig. 3.5, we simply employ the strong-
coupling expression αBF = 8π/(m2aBF) in λCF = αBFN

0
CF, and assume that all the

atoms form Fermi molecules (N0
CF � NF). Substituting the iTMA values,⎧⎨
⎩

μF = −0.92εF,
μB = −1.59εF,
μ̃B = −0.51εF,

(3.26)

into Eq. (3.25), we obtain {
ωB
gap = 2.35εF,

ωF
gap = 3.56εF.

(3.27)

This rough estimation gives comparable gap sizes to Eq. (3.20).
Deep inside the strong-coupling regime ((kFaBF)

−1 � 1), the value of |μF|+ |μB|
would approach the binding energy Ebind = 1/(ma2BF) (� εF) of a tightly bound
molecule (Eq. (2.49)). In this extreme case, one may safely ignore other terms in
Eq. (3.25), which gives

ωB
gap = ωF

gap = Ebind, (3.28)

as expected.
Now we compare our results for a Bose-Fermi mixture with those in case of a

two-component Fermi gas. In the latter, following the same procedure as in the
case of Bose-Fermi mixture, we approximate the particle-particle scattering matrix
ΓFF(q, iω

B
m) in Eq. (2.23) to the Cooper-pair propagator,

ΓFF(q, iω
B
m) =

αFF

iωB
m − ξCB

q

. (3.29)
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Here,

ξCB
q =

q2

(2M)
− μCB, (3.30)

is the kinetic energy of a Cooper pair, where M = 2m is the molecular mass and
μCB is the chemical potential. The factor αFF = 8π/(m2aFF) in the strong-coupling
BEC limit [52], where aFF is the s-wave scattering length in terms of a contact-type
interaction −UFF between Fermi atoms. Using Eq. (3.29) we have the approximate
self-energy, given by

ΣF(p, iω
F
n) = αFF

∑
q

[
nB(ξ

CB
q )

iωF
n + ξFp−q − ξCB

q

+
nF(ξ

F
q )

iωF
n + ξFq − ξCB

p−q

]
. (3.31)

At the superfluid phase transition temperature Tc, the Cooper-pair chemical po-
tential μCB vanishes, according to the Thouless criterion [92], which leads to the
divergence of the Bose distribution function nB(ξ

CB
q ) at q = 0. Noting this, we

approximately set q = 0 in the denominator of the first term in Eq. (3.31). For
the second term in Eq. (3.31), we approximately replace q by the “effective Fermi
momentum” p̃F of Fermi atoms, in the denominator where |p̃F| =

√
2mμF. (We

consider the unitary regime, where the Fermi chemical potential is still positive, see
Fig 2.3.) Using these approximations, Eq. (3.31) reduces to

ΣF(p, iω
F
n) =

λCB

iωF
n + ξFp

+

〈
λF

iωF
n − ξCB

p−p̃F

〉
, (3.32)

and the TMA single-particle Fermi Green’s function with this approximate self-
energy in Eq. (3.32) has the form,

GR
F(p, ω) �

1

ω − ξFp − λCB

ω + ξFp
−
〈

λF

ω − ξCB
p−p̃F

〉 . (3.33)

Equation (3.33) shows that bosonic pairing fluctuations ΓFF couple Fermi atomic
dispersion (ω = ξFp ) with the hole dispersion (ω = −ξFp ) with the coupling constant
λCB = αFF

∑
q nB(ξ

CB
q ). When we only retain this effect, Eq. (3.33) reproduces

the “pseudo-gapped” Green’s function in Eq. (2.42), where λCB (> 0) plays the
role as the square of the pseudogap parameter Δpg in Eq. (3.33). In a Bose-
Fermi mixture, the corresponding coupling phenomenon is brought about by Bose
atomic excitations, being characterized by λB in Eq. (3.16). However, what is
coupled with the Fermi atomic dispersion by λB is the Fermi molecular dispersion
(ω = ξCF

p = p2/(2M) − μCF), passing through ω = 0. Thus, although the particle-
hole coupling phenomenon in a two-component Fermi gas suppresses the single-
particle density of states ρF(ω ∼ 0) (pseudogap phenomenon), the Fermi-molecule
coupling in a Bose Fermi mixture enhances ρF(ω ∼ 0).

The last term in the denominator in Eq. (3.33) corresponds similar to that in
Eq. (3.16). However, while the latter gives a broad spectral structure in the negative



3.4. Single-particle Spectral Weight above TBEC 53

Figure 3.6: Intensity of single-particle spectral weight above TBEC. (a1)∼(a4)
AB(p, ω). (b1)∼(b3) AF(p, ω). We take (kFaBF)

−1 = 0.5.

energy region of the spectral weight (see Fig. 3.3(b6)), the former in the Fermi-Fermi
case induces a spectral structure in the positive energy region around

(p− p̃F)
2

2M
≤ ω ≤ (p+ p̃F)

2

2M
(T = Tc). (3.34)

This broad spectral structure has not been so frequently discussed in cold Fermi
gas physics, because the spectral intensity in the positive energy region is usually
dominated by the strong peak intensity along the Fermi particle dispersion (ω = ξFp ).
However, it has been pointed out [98] that this particle dispersion becomes broad,
when it is in the region in Eq. (3.34), because of the coupling phenomenon described
by λF in Eq. (3.33).
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Figure 3.7: Intensity of single-particle spectral weight above TBEC. (a1)∼(a4)
AB(p, ω). (b1)∼(b3) AF(p, ω). We take (kFaBF)

−1 = 0.

3.4 Single-particle Spectral Weight above TBEC

Figures 3.6 shows the temperature dependence of the spectral weight As=B,F(p, ω)
when (kFaBF)

−1 = 0.5. In Figs. 3.6(a1)-(a4) (left panels) and (b1)-(b4) (right pan-
els) one sees that the coupling between the Fermi atomic, Bose atomic and composite
fermionic excitations are gradually suppressed, as one increases of temperature, as
expected. From the viewpoint of Eqs. (3.15) and (3.16), this behavior can be un-
derstood as the result of the fact that all the coupling constants λs=B,F,CB become
small because the chemical potentials μF, μ̃B, and μCF, decrease with increasing the
temperature (see Fig. 3.1). We briefly note that, this tendency is also seen in other
interaction strengths as shown in Figs. 3.7 and 3.8 at unitarity ((kFaBF)

−1 = 0) and
weak-coupling regime ((kFaBF)

−1 = −1.0), respectively. (Note that this behavior
appears at lower temperatures in weaker interaction strength because the coupling
between the excitations are weak.)
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Figure 3.8: Intensity of single-particle spectral weight above TBEC. (a1)∼(a4)
AB(p, ω). (b1)∼(b3) AF(p, ω). We take (kFaBF)

−1 = −1.0.

However, we see in Figs. 3.6(a1)-(a4) and (b1)-(b4) that the spectral structure
is still somehow different from the non-interacting case, even at T ∼ TF. Indeed
we see in Fig. 3.9 that the spectral weight As=B,F(p = 0, ω) exhibits a double peak
structure, as a function of the energy ω even at T/TF = 1 in AF(p = 0, ω), and at
T/TF = 0.6 in AB(p = 0, ω). Regarding these the photoemission-type experiment
developed by JILA group [67–69] can observe the occupied spectral weight, which is
given by the product of the spectral weight (Fermi or Bose) and the Fermi or Bose
distribution function, depending on the particle statistics. Thus, these anomalous
spectral structures in the negative energy region may be observable even at relatively
high temperatures by using this experimental technique.
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Figure 3.9: Single-particle spectral weight at p = 0, as a function of energy ω. We
take (kFaBF)

−1 = 0.5.



Chapter 4

Universal Thermodynamics of a
Bose-Fermi Mixture

In this chapter, we discuss thermodynamic properties of a unitary Bose-Fermi mix-
ture in the normal state above TBEC. To minimize the ambiguity coming from the
improved T-matrix approximation (iTMA), we only use this appropriate strong-
coupling theory to evaluate the Fermi (μF) and Bose (μB) chemical potential as
functions of temperature. Then, we calculate various quantities, such as internal
energy E, pressure P , entropy S, as well as the specific heat at constant volume
CV , by using thermodynamic identities, without further complicated iTMA calcu-
lations. In particular, we employ the so-called universal thermodynamics, which is
valid for a unitary gas (a−1

BF = 0), to simplify the latter part of our calculations.
We show that among the thermodynamic quantities calculated by this approach,
the specific heat at constant volume CV is strongly affected by hetero-nuclear pair-
ing fluctuations, to exhibit an anomalous non-monotonic temperature dependence
near TBEC. On the other hand, the other quantities (E,P, S) exhibit a monotonic
temperature dependence, even in the strongly interacting unitarity limit. We point
out that CV is a useful quantity to see how strong hetero-pairing fluctuations affect
system properties of a Bose-Fermi mixture at the unitarity. In this section we deal
with a uniform Bose-Fermi mixture described by the Hamiltonian Eq. (2.1) with
population balance (NB = NF = N) and mass balance (mB = mF = m).

4.1 Combined iTMA with Universal Thermody-

namics

In the previous chapter, we clarified that hetero-pairing fluctuations remarkably
modify single-particle Bose and Fermi excitations near the Bose-Einstein condensa-
tion temperature TBEC . Since thermal excitations of a Bose-Fermi mixture would
reflect detailed Bose and Fermi single-particle excitation spectra, it is an interesting
problem to examine thermodynamic properties of the system in the region where
hetero-pairing fluctuations are strong.

In considering strong-coupling effects on various physical quantities by using an
appropriate strong-coupling theory, one crucial problem is that, the reliability of
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this theory usually depends on what we examine. For example, in case of a two-
component Fermi gas, the Gaussian pair-fluctuating theory developed by Nozieres
and Schmitt-Rink (NSR) [49] is known to be able to correctly describe the so-
called BCS (Bardeen-Cooper-Schrieffer)- BEC crossover behavior of the superfluid
phase transition temperature Tc, which however, breaks down in considering the
single-particle density of states (DOS), because NSR unphysically gives negative
DOS in the crossover region near Tc. This problem is overcome in TMA [58], which
however, is known to unphysically give negative spin susceptibility [99]. The positive
susceptibility is restored by the so-called extended TMA (ETMA), however it has
been shown that ETMA still has some room for improvement in the presence of mass
imbalance [100, 101]. These examples means that, even when one of the calculated
quantities by a strong-coupling theory agrees with an experimental result, it does
not guarantee the reliability of the other calculated result by this theory.

Recently, to avoid this difficulty, in cold Fermi gas physics, Ref, [82] has proposed
to combine a strong-coupling theory with thermodynamic identities, to evaluate var-
ious thermodynamic quantities in a unified manner. In this approach, complicated
strong-coupling calculations to include strong-pairing fluctuations in the crossover
region are only carried out in order to determine the Fermi chemical potential μF.
Other various ground state quantities, such as the internal energy, compressibility,
Tan’s contact [83–85], are all derived from the calculated μF by way of exact thermo-
dynamic identities without relying on any approximate strong-coupling theory. An
advantage of this hybrid approach is that, because the calculated quantities are re-
lated to exact thermodynamic identities, experimental confirmation for one of these
results immediately mean the correctness of other quantities (even when they have
not been experimentally measured). On the other hand, when one meets discrepancy
between an experimental result and a calculated quantity, one may only improve the
strong-coupling theory, to repeat the above mentioned procedure. Indeed using this
approach, Ref. [82] succeeds in quantitatively reproducing experimental results on
various ground state quantities of a superfluid Fermi gas in the BCS-unitarity regime
in a unified manner.

In this chapter, we extend this previous work for an ultracold Fermi gas to a
Bose-Fermi mixture, to study thermodynamic properties of this system in the normal
state above TBEC. Regarding this, we point out that, in the case of Ref. [82] for an
ultracold Fermi gas, the suppression of the variable T by considering the ground
state has greatly simplified this approach in calculating various thermodynamic
quantities from the chemical potential. In our Bose-Fermi case at finite temperatures
T ≥ TBEC, although we can not use this idea, we can still simplify our approach
by restricting our target to a unitary Bose-Fermi mixture, because of the following
reason.

As discussed in Chapter 2, we actually do not use the bare inter-species inter-
action −UBF in Eq. (2.1), but the interaction strength is measured in terms of the
inverse s-wave scattering length a−1

BF, which is related to the bare interaction −UBF

as
4πaBF

m
= − UBF

1− UBF

pc∑
p

1

2εp

. (4.1)
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As usual, a−1
BF is normalized by the Fermi momentum kF of NF Fermi atoms, and in-

teraction effects are conveniently described by the dimensionless parameter (kFaBF)
−1

in theory. In this case in the unitarity limit, the diverging scattering length (|aBF| →
∞) naturally gives the vanishing “interaction parameter” (kFaBF)

−1 = 0, so that
the only relevant energy scales are T and μs=B,F, because the energy scale related to
inter-species interaction no longer exists, as in the non-interacting case. (Note that,
however the system itself is strongly affected by the inter-species interaction.)

The thermodynamics in this special case, which is frequently referred to as the
universal thermodynamics in the literature [81], allows us to use the following simple
expression for the thermodynamic potential Ω as a function of (T, μB, μF),

Ω =
TV

λ3
T

F (XB, XF), (4.2)

where V is the volume of the system, and

λT =

√
2π

mT
, (4.3)

is the thermal de-Broglie wavelength. In Eq. (4.1) F (XB, XF) is a dimensionless
function, involving the dimensionless variables Xs=B,F given by,

Xs=B,F =
μs

T
. (4.4)

Starting from the expression for the thermodynamic potential Ω in Eq. (4.1), we
construct a combined iTMA with universal thermodynamics, to investigate the ther-
modynamic properties of a normal-state “unitary” Bose-Fermi mixture ((kFaBF)

−1 =
0). In this regard, we briefly note that the unitarity limit is located in between the
weak-coupling limit (kFaBF)

−1 → −∞ (where an ideal gas mixture of bosons and
fermions are realized) and the strong-coupling limit (kFaBF)

−1 → +∞ (where the
system is dominated by ideal gas of Fermi molecules). In addition, as seen in Fig.
2.12, the unitarity limit is close to the critical interaction strength ((kFaBF)

−1 =
0.56) at which TBEC vanishes. Thus, although our approach based on universal
thermodynamics can only examine in the unitarity case, it is still useful to see how
the two limiting cases (kFaBF)

−1 → ±∞ are related to each other from thermody-
namic point of view.

The equation for the number Ns=B,F of atoms (s = B: boson, s = F: fermion) is
conveniently obtained from the thermodynamic potential Ω as,

Ns=B,F = −
(
∂Ω

∂μs

)
T,V,μ−s

= − V

λ3
T

(
∂F

∂Xs

)
X−s

. (4.5)

Here, the second line in Eq. (4.5) is obtained by using Eq. (4.2) and “-s” stands for
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the opposite component to “s”. We then obtain from Eq. (4.5),

dF (XB, XF) =
∑
s=B,F

(
∂F (XB, XF)

∂Xs

)
X−s

dXs

= −
∑
s=B,F

Nsλ
3
T

TV

[
∂μs(T )

∂T
− μs(T )

T

]
dT. (4.6)

In case of population balance which we are considering, one may take,

NB = NF = V
(2mεF)

3/2

(6π2)
(4.7)

where εF = k2
F/(2m) is the atomic Fermi energy. Substituting Eq. (4.7) into Eq.

(4.6), which is followed by integration over T ′ between [∞, T ], we have,

F (XB, XF) = −4ε
3/2
F

3
√
π

∑
s=B,F

∫ T

∞

dT ′

T ′5/2

[
dμs(T

′)
dT ′ − μs(T

′)
T ′

]
. (4.8)

We briefly note that the system approaches an ideal classical gas in the high temper-
ature limit T → ∞, wherein Ω ∝ T . Using this, we have taken F (XB, XF)|T→∞ = 0
in obtaining Eq. (4.8).

Once the dimensionless scaling function F (XB, XF) is determined, the pressure
P can be immediately obtained as,

P = −Ω

V
= − T

λ3
T

F (XB, XF). (4.9)

The entropy S can also be evaluated from the thermodynamic identity as,

S = −
(
∂Ω

∂T

)
V,μs

= V

(
∂P

∂T

)
μs

. (4.10)

Taking the derivative of P in Eq. (4.9) with respect to temperature T and using
Eq. (4.5) one can rewrite the expression to entropy S in Eq. (4.10) as,

S = − 5V

2λ3
T

F (XB, XF)− TV

λ3
T

∑
s=B,F

(
∂F (XB, XF)

∂Xs

)
X−s

(
∂Xs

∂T

)
μs

=
5

2

PV

T
− 1

T

∑
s=B,F

Nsμs. (4.11)

The internal energy E is then determined from the thermodynamic relation as,

E = −PV + TS +
∑
s=B,F

μsNs

=
3

2
PV. (4.12)

In obtaining the last expression in Eq. (4.12) we have substituted Eqs. (4.9) and
(4.11) into the first line in Eq. (4.12). Although Eq. (4.12) is just the same as the
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well-known formula in an ideal gas, we emphasize that is a result of the universal
thermodynamics for a unitary gas. Eq. (4.12) shows that one need not calculate
the entropy S, in evaluating the specific heat at constant volume CV , that is,

CV =

(
∂E

∂T

)
V

=
3

2
V
dP

dT
. (4.13)

The above approach based on the universal thermodynamics enables us to cal-
culate Ω, P, S, E, as well as CV , once the Bose and Fermi chemical potential are
determined as functions of temperature T .

In our combined strong-coupling iTMA with universal thermodynamics, we de-
termine μs=B,F(T ) in iTMA [86,94], as explained in Chapter 3, that is we determine
these from number equations (3.4) and (3.5). At the unitarity, the Bose-Fermi
scattering matrix Γ̃BF(q, iω

F
m) in Eq. (2.68), describing effects of hetero-pairing

fluctuations is reduced to, by taking (kFaBF)
−1 → 0,

Γ̃BF(q, iω
F
m) =

1

Π̃BF(q, iωF
m)−

∑pc
p

1
2εp

. (4.14)

Since the hetero-pair correlation function does not explicitly involve the scattering
length aBF, we can use the same expression as before (Eq. (2.69)),

Π̃BF(q, iω
F
m) = −

∑
k

1− nF(ξ
F
k+q/2) + nB(ξ̃

B
−k+q/2)

iωF
m − ξFk+q/2 − ξ̃B−k+q/2

. (4.15)

The determination for TBEC in a unitary Bose-Fermi mixture is also the same as
before

μB = Σ̃B(p = 0, iωB
n = 0). (4.16)

4.2 Virial Expansion to Evaluate μs(T ) in the High

Temperature Region

To determine the scaling function F (XB, XF) from Eq. (4.8), we need μB(T ) and
μF(T ) from TBEC to the high temperature region (T � TF). In principle, the Bose
and Fermi number equations (3.4) and (3.5) in iTMA are valid for this purpose.
However, because the system approaches to a classical gas at high temperatures, we
can actually avoid complicated strong-coupling iTMA calculations, thereby employ-
ing the high temperature virial expansion method [102–110].

The virial expansion for the thermodynamic potential Ω of a Bose-Fermi mixture
is given by, up to the second order,

Ω = −TV

λ3
T

∑
i,j

Bijz
i
Fz

j
B

= −TV

λ3
T

[
B01zB +B02z

2
B +B10zF +B20z

2
F + B11zFzB

]
, (4.17)
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Figure 4.1: (a) Calculated Bose (μB) and Fermi (μF) chemical potential in a unitary
Bose-Fermi mixture above TBEC (= 0.35TF, where TF is the Fermi temperature of an
N Fermi atomic gas). In this figure, “2nd virial” shows the result by the second-order
virial expansion method. (b) Calculated scaling function F (XB, XF) as a function
of temperature, which is calculated from Eq. (4.8). In this panel we also plot the
thermodynamic potential Ω in Eq. (4.2), as well as the prefactor TV/λ3

T in this
equation.

where
zs=B,F = exp

(μs

T

)
, (4.18)

is the Bose (s = B) and Fermi (s = F) fugacity. In Eq. (4.17), we implicitly assume
zs=B,F < 1, or μs=B,F < 0, expected in the high temperature classical regime (T �
TF, TBEC). Bij is the virial coefficient. In particular, the coefficient B11 involves the
effects of the inter-species interaction. Substituting Eq. (4.17) into the first line in
Eq. (4.5), we have

NB =
V

λ3
T

[
B01zB + 2B02z

2
B +B11zFzB

]
, (4.19)
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NF =
V

λ3
T

[
B10zF + 2B20z

2
F +B11zFzB

]
. (4.20)

Using the standard approach, the virial coefficients Bij is evaluated as⎧⎨
⎩

Bi0 = (−1)i+1i−5/2

B0j = j−5/2

B11 =
√
2.

(4.21)

We explain the outline of this derivation in Appendix E.
Figure 4.1(a) compares (μF(T ), μB(T )) in iTMA (Eqs. (3.4) and (3.5)) with

those calculated from the “2nd-order” virial number equations (4.19) and (4.20)
in a unitary Bose-Fermi mixture. The figure shows that the iTMA result is well
reproduced by the virial expansion method when T/TF � 3. Keeping this result in
mind, we use iTMA to calculate μs(T ) at TBEC ≤ T ≤ 3TF, and the 2nd-order virial
expansion when T ≥ 3TF.

This strategy gives the scaling function F (XB, XF) in Fig. 4.1(b). We briefly
note that, although F (XB, XF) exhibits a non-monotonic temperature dependence
near TBEC, the thermodynamic potential Ω in Eq. (4.17) itself shows the expected
monotonic temperature dependence, because of the T -dependent prefactor TV/λ3

T ∝
T 5/2 in Eq. (4.17). To explicitly confirm the monotonic behavior of Ω, we also plot
it in Fig. 4.1(b).

4.3 Thermodynamic Properties of a Unitary Bose-

Fermi Mixture

Figure 4.2 shows the calculated thermodynamic quantities P , E, and S in a unitary
Bose-Fermi mixture obtained from our combined iTMA with universal thermody-
namics (Eqs. (4.9), (4.11), and (4.12)). Here, we briefly note on the following two
issues. First, in the strongly-coupling limit, all the N atomic bosons and N atomic
fermions form N composite Fermi molecules. Thus, the total number of particles
changes from 2N to N , as one moves from the weak- to strong-coupling limit. Sec-
ond, the internal energy E in strong-coupling limit shown in Fig. 4.2(b) does not
involve the contribution from the binding energy of N composite fermions,

Ebind =
N

ma2BF

. (4.22)

That is, the correct internal energy Eg in the strong-coupling limit should be

Eg = E − N

ma2BF

. (4.23)

In each panel in Fig. (4.2), one finds that the temperature dependence is rather
similar to weak-coupling limit (“ideal Bose-Fermi mixture”), compared to the result
in strong-coupling limit (“ideal molecular Fermi gas”). Regarding this it is important
to recall that the formation of two-body bound Fermi molecules only appear when
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Figure 4.2: Calculated temperature dependence of thermodynamic quantities in
the normal state of a unitary Bose-Fermi mixture. (a) pressure P . (b) internal
energy E. (c) entropy S. In panel (b), the trivial contribution from the molecular
binding energy Ebind = N/(ma2BF) is subtracted from E. In this figure, “2nd virial
expansion” shows the result obtained using μs=B,F obtained from the coupled number
equations (4.19) and (4.20). For comparison, each panel also shows the result in
weak-coupling limit (“ideal Bose-Fermi mixture,” where TBEC = 0.44TF), as well as
that in the strong-coupling limit (“ideal molecular Fermi gas,” where BEC does not
occur).

a−1
BF ≥ 0. In the present system, there is competition between the Bose-Einstein con-

densation of atomic bosons and the formation of composite Bose-Fermi molecules,
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and the energetically favorable state depends on the strength of an inter-species
interaction. At the unitarity, hetero-pairing fluctuations are enhanced near TBEC;
however a clear molecular picture is still not valid, because of the vanishing binding
energy Ebind → 0 in Eq. (4.22), although the unitarity limit (a−1

BF = 0) is located
at the center of the weak-coupling limit (a−1

BF → −∞) and the strong-coupling limit
(a−1

BF → +∞).
In a unitary Fermi gas, strong-coupling corrections to the ground state energy

is characterized by the so-called Bertsch parameter [111], which is given by the
ratio of the internal energy of unitary Fermi gas to that in a non-interacting Fermi
gas. As an extension of this to a unitary Bose-Fermi mixture, it is interesting to
relate the internal energy Eunitarity of a unitary Bose-Fermi mixture to the internal
energy Efree of an ideal Bose-Fermi mixture. When we express the former energy as
Eunitarity = ηBFEfree, one finds, for example, at TBEC of the ideal Bose-Fermi mixture,

ηBF = 0.444. (4.24)

The measurement of this parameter would be useful for the estimation of interaction
effects in a unitary Bose-Fermi mixture, as well as the assessment of our theoretical
approach. Because the internal energy E is directly related to the pressure P (see
Eq. (4.9)), one can also evaluate ηBF, from the observation of the pressure P , by
using the combined Gibbs-Duhem relation with the local density approximation
developed in Ref. [112].

However, apart from this kind of quantitative analysis, Fig. 4.2 shows that it
is difficult to quantitatively discuss strong-coupling effects on the thermodynamic
quantities in this figure, because their overall behavior are very much similar to
those in the non-interacting case, as well as in the high temperature classical region.

4.4 Specific Heat at Constant Volume CV and

Strong coupling Effects in a Unitary Bose-

Fermi Mixture

Figure 4.3 shows the specific heat at constant volume CV . In contrast to P , E, and S,
one sees in this figure that CV exhibits a qualitatively different temperature depen-
dence from the non-interaction case, as well as in the case of strong-coupling limit.
That is, while CV monotonically increases (decreases) with the decreasing tempera-
ture in the non-interacting case (strong-coupling limit), it exhibits a non-monotonic
temperature dependence in the unitarity limit. Since, this low temperature behav-
ior cannot be explained by the virial expansion, it is considered to be a quantum
many-body phenomenon. We briefly note that, because the specific heat is physi-
cally related to energy fluctuations, it is considered to be more sensitive to pairing
fluctuations than the internal energy E (as well as P = (2/3)E/V ). Furthermore,
CV is also directly related to the temperature-derivative of entropy S, any change in
the latter is magnified in the former, leading to the high sensitivity of CV to pairing
fluctuations than S.

To explore the origin of the anomalous non-monotonic behavior of CV in Fig.
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Figure 4.3: (a) Calculated specific heat at constant volume CV in a unitary Bose-
Fermi mixture. “2nd virial expansion” shows the result by the virial expansion
method. “ideal Bose-Fermi mixture” shows the specific heat in the non-interacting
case. The result in the strong-coupling limit is shown as “ideal molecular Fermi
gas”. (b) To confirm that CV approaches the expected value, CV /(2N) = 1.5 we
show the result at higher temperatures.

4.3(a), we conveniently divide CV into the “free Fermi gas contribution”,

CF
V 0 =

d

dT

∑
p

εpnF(εp − μF), (4.25)
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Figure 4.4: Free Bose gas contribution CB
V 0 in Eq. (4.26) and free Fermi gas

contribution CF
V 0 in Eq. (4.25). The fluctuation contribution Cfluc

V ≡ CV −CB
V 0−CF

V 0

is also plotted.

“free Bose gas contribution”,

CB
V 0 =

d

dT

∑
p

εpnB(εp − μ̃B), (4.26)

and the remaining “fluctuation contribution”,

Cfluc
V = CV − CF

V 0 − CB
V 0. (4.27)

Here, μF and μ̃B = μB−Σ̃B(0, 0) are evaluated at the unitarity by iTMA. At a glance,
the up-turn behavior of CV near TBEC looks similar to the well known temperature
dependence of the specific heat in an ideal Bose gas near TBEC. However, as shown
in Fig. 4.4, the free Bose gas contribution CB

V 0 in Eq. (4.26) actually monotonically
decreases even near TBEC, so that it cannot explain the behavior of CV near TBEC.
This is because the number of “free Bose atoms”,

N0
B =
∑
p

nB(εp − μ̃B), (4.28)

as well as the number of “free Fermi atoms”,

N0
F =
∑
p

nF(εp − μF), (4.29)

gradually decreases with decreasing the temperature (see Fig. 4.5), due to the
growth of scattering states,

Nfluc = 2N −N0
B −N0

F, (4.30)
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Figure 4.5: The particle number N0
B (N0

F) of free Bose (Fermi) atoms, contributing
to specific heat CB

V 0 (CF
V 0).

reflecting the enhancement of hetero-pairing fluctuations at low temperatures, As
a result the ordinary monotonic increase of the specific heat with decreasing the
temperature in an ideal Bose gas is suppressed by the decrease in the number N0

B

of Bose atoms that can contribute to BEC.
Since the specific heat in a free Fermi gas monotonically decrease as one decreases

the temperature, the decrease of N0
F seen in Fig. 4.5 promotes this characteristic

behavior. Thus, the “free particle contribution”,

CV0 = CB
V0 + CF

V0, (4.31)

cannot explain the upturn behavior of CV in a unitary Bose-Fermi mixture near
TBEC.

On the other hand, the fluctuation contribution Cfluc
V in Eq. (4.27) is enhanced

near TBEC, reflecting the enhancement of Bose-Fermi pairing fluctuations. Thus, the
temperature (≡ Tdip � 0.5TF) where the specific heat CV exhibits a dip structure is
due to the fact that the enhancement of the fluctuation contribution Cfluc

V exceeds
the suppression of the free atomic contribution CV 0. In that sense, the dip tempera-
ture Tdip may be physically interpreted as a characteristic temperature below which
hetero-pairing fluctuations are important.

We briefly note that, in addition to the upturn behavior near TBEC, CV in a
unitary Bose-Fermi mixture also exhibits a hump structure around T/TF ∼ 2, as
shown in Fig. 4.3(b). Since, CV in a non-interacting case simply decrease with
decrease in temperature, this structure is considered to be coming from the inter-
species interaction. However, this hump structure appears in the classical region
(T/TF �� 1), this phenomenon essentially is different from quantum phenomenon.
Indeed, a similar structure is already obtained by the high temperature 2nd order
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Figure 4.6: “Non-interacting component” Nnon−int
F in Eq. (4.32) and “interacting

component” N int
F in Eq. (4.33), as function of temperature. The total number of

Fermi atoms N = Nnon−int
F +N int

F . We note that the same result is obtained in the
Bose case in Eq. (4.19).

virial expansion, as shown in Fig. 4.3(b). Regarding this, when we divide the
number equation (4.20) into the “non-interacting component”,

Nnon−int
F =

V

λ3
T

(
B10zF + 2B20z

2
F

)
, (4.32)

and the “interacting component”,

N int
F =

V

λ3
T

B11zFzB, (4.33)

we find that the latter remains up to a relatively high temperature regime (T/TF >
1), as shown in Fig. 4.6, indicating that we cannot ignore effects of the inter-species
interaction there.

As a future problem it is interesting to investigate the interaction dependence of
CV (T ) from weak-coupling to strong-coupling regime, passing through the unitarity
limit. In this case, when one moves from the weak-coupling side to the unitarity
limit, if the upturn behavior of CV once vanishes at an interaction strength (≡
ã−1
BF (< 0)), this anomalous behavior of CV in the region

ã−1
BF ≤ a−1

BF ≤ 0, (4.34)

can physically be regarded as effects of hetero-pairing fluctuations. Since the present
theory uses the universal thermodynamics [81], it is not applicable to the region away
from the unitarity limit. Thus, improving our theory to that which does not rely on
the universal thermodynamics is a crucial future challenge, in order to explore the
above-mentioned possibility.





Chapter 5

Summary

To summarize, we have investigated strong-coupling properties of a Bose-Fermi mix-
ture, consisting of a one-component Bose atoms and one-component Fermi atoms,
with a tunable inter-species pairing interaction associated with a hetero-nuclear Fes-
hbach resonance. To include strong hetero-pairing fluctuations in the normal state
above TBEC , we improved the ordinary non-self-consistent T-matrix approxima-
tion (TMA) by replacing all the bare Bose Green’s function appearing in the TMA
self-energy diagrams by a modified one so that the gapless condition for Bose exci-
tations at TBEC can be satisfied everywhere in the diagrams. We showed that this
improvement can successfully remove the unphysical behavior of the Fermi chemical
potential near the critical interaction strength at which TBEC vanishes.

Using this improved T-matrix approximation (iTMA), we calculated the single-
particle density of states ρs=B,F(ω), as well as the spectral weight As=B,F(p, ω) in
both the Bose and Fermi components of a Bose-Fermi mixture, to see how hetero-
pairing fluctuations affect single-particle properties of the system. From the calcu-
lated spectral structure of As=B,F(p, ω), we clarified that hetero-pairing fluctuations
lead to a coupling phenomenon among the Fermi atomic excitations, Bose atomic
excitations, as well as Fermi molecular excitations. A similar coupling phenomenon
is also known in the BCS-BEC crossover regime of a two-component Fermi gas,
where fluctuations in the Cooper channel couple Fermi atomic excitations with the
Fermi hole excitations. However, the coupling phenomenon in the latter leads to
a pseudo-gapped density of states, we found that it does not cause a dip structure
in ρF(ω), even in the unitary regime ((kFaBF)

−1 = 0) of a Bose-Fermi mixture. A
shallow dip structure only appears in ρF(ω) in the strong-coupling regime. On the
other hand, we showed that the coupling phenomenon in the case of a Bose-Fermi
mixture causes a triple peak structure in the spectral weight As=B,F(p, ω), reflecting
the coupling among Bose atomic, Fermi atomic and Fermi molecular excitations.
We emphasize that such a structure does not appear in the case of a two-component
Fermi gas, so that it is a unique feature of a Bose-Fermi mixture with a strong
inter-species pairing interaction. We also clarified that this coupling gives negative
Bose density of states ρB(ω) < 0 in the negative energy regime.

Besides single-particle excitations, we have also studied thermodynamic proper-
ties and strong coupling effects in a unitary Bose-Fermi mixture above TBEC. For
this purpose we combined our iTMA with universal thermodynamics developed by
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Ho, to evaluate the chemical potential μs=B,F(T ), internal energy E(T ), pressure
P (T ), entropy S(T ), as well as specific heat at constant volume CV (T ) as func-
tions of temperature at unitarity. Among them, we found that CV (T ) exhibits
non-monotonic temperature dependence, which qualitatively differs from the tem-
perature dependence in the weak-coupling and strong-coupling limit. We pointed
out that, this anomalous behavior of CV (T ) originates from the fluctuation correc-
tion to this quantity which is enhanced near TBEC. On the other hand, the other
quantities E(T ), P (T ), and S(T ) exhibit monotonic behavior as in the case of a
non-interacting Bose-Fermi case. In this sense, the specific heat CV (T ) is a useful
thermodynamic quantity for the study of strong-coupling effects in a unitary Bose-
Fermi mixture. (Note that this quantity has recently become observable in cold
atom physics.)

In this thesis, we have ignored mass difference between the Bose and Fermi
atoms, as well as effects of a harmonic trap, for simplicity. In addition we have
only taken into account a Bose-Fermi inter-species interaction, ignoring any other
intra-species interactions. Inclusion of these remains as our future problem. Since
a strongly-interacting Bose-Fermi mixture is a counterpart of an ultracold Fermi
gas, our results would contribute to the further understanding of strong-coupling
properties of a quantum system from a more general point of view.
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Appendix A

Matsubara Summation Technique

In this appendix, we show the Matsubara summation technique which has been used
in obtaining Eq. (2.15).

First, let us consider any complex function given by g(z) such that it has simple
poles z0 in the complex plane as shown in Fig. A.1. Now for instance, let us take
another arbitrary complex function H(z) given by,

H(z) = g(z)nB(z)

=
g(z)

exp(z/T )− 1
. (A.1)

Hence, this function H(z) has additional poles given by,

exp(z/T )− 1 = 0, (A.2)

which is at

z = iωB
n

= i2nπT, (A.3)

due to the presence of Bose distribution function nB(z). Here ωB
n = 2πnT is boson

Matsubara frequency and n = 0,±1,±2,±3, · · ·. Then, we can evaluate the complex
integral given below by taking any of the two contours C0 and C as shown in Fig.
A.1, given by

− i

2π

∮
dzH(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
z0

Res[g(z0)]

exp(z0/T )− 1
taking contour C0,

−T
∑
ωB
n

g(iωB
n ) taking contour C.

(A.4)

Thus, equating the terms on the right of Eq. (A.4) one obtains,

−T
∑
ωB
n

g(iωB
n ) =

∑
z0

Res[g(z0)]

exp(z0/T )− 1
(A.5)
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Figure A.1: C and C0 show two contours enclosing the poles of H(z), respectively,
along the imaginary axis given by iωB

n due to Bose distribution function nB(z) (red
crosses), and that enclosing the poles z0 due to complex function g(z) (blue crosses).

Hetero-nuclear pair correlation function ΠBF(q, iω
F
m) in the first line of Eq. (2.15)

can be written as,

ΠBF(q, iω
F
m) = T

∑
k,ωB

n

1

iωF
m − iωB

n − ξF−k+ q
2

1

iωB
n − ξB

k+ q
2

(A.6)

and using Eq. (A.5), one may rewrite Eq. (A.6) into,

ΠBF(q, iω
F
m) = −

∑
k

[ nB(ξ
B
−k+q/2)

iωF
m − ξFk+q/2 − ξB−k+q/2

+
−nB(iω

F
n − ξFk+q/2)

iωF
m − ξFk+q/2 − ξB−k+q/2

]
. (A.7)

Furthermore, one can take,

nB(iω
F
n − ξFk+q/2) =

1

−exp(−ξFk+q/2)− 1

= − exp(ξFk+q/2)

exp(ξFk+q/2) + 1

= −[1− nF(ξ
F
k+q/2)], (A.8)

where we have used exp(iωF
m/T ) = −1. Here, ωF

m = (2m + 1)πT is the fermion
Matsubara frequency where m = ±1,±2,±3, · · ·. Using Eq. (A.8), we reach

ΠBF(q, iω
F
m) = −

∑
k

1− nF(ξ
F
k+q/2) + nB(ξ

B
−k+q/2)

iωF
m − ξFk+q/2 − ξB−k+q/2

. (A.9)



Appendix B

Condition for Gapless Bose
Excitations

Here, we will show that the Hugenholtz-Pines condition [91] for interacting bosons
can be extended to the case of a Bose-Fermi mixture studied in this thesis. For this,
we consider the model Hamiltonian in Eq.(2.1) in the coordinate-space representa-
tion,

H =
∑
s=B,F

∫
drψ†

s(r)

[
−∇2

2m
− μs

]
ψs(r)−UBF

∫
drψ†

B(r)ψ
†
F(r)ψF(r)ψB(r), (B.1)

where ψ†
s=B,F(r) are the Bose (s=B) and Fermi (s=F) field operators. We add

a fictitious Hamiltonian to the system to discuss the Hugenholtz-Pines condition,
given as

H ′(λB) =

∫
dr
[
ψ†
B(r)λB + ψB(r)λ

∗
B

]
=

∫
drΨ̂†

B(r)Λ̂B, (B.2)

where

Ψ̂B(r) =

(
ψB(r)

ψ†
B(r)

)
, (B.3)

Λ̂B =

(
λB

λ∗
B

)
. (B.4)

Here, λB is a complex number which is taken to be zero at the end of this discussion.
In Eq. (B.2) H ′(λB) gives the phase of the uniform Bose superfluid order parameter
as,

ΔB = 〈ψB(r)〉, (B.5)

in the BEC phase. It is important to note that Eq. (B.5) becomes real such that
ΔB ≡ Δ0

B, when λB is chosen to be real (λB = λ∗
B ≡ λ0

B).
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Now, if we change the phase of λB in Eq. (B.4) from λ0
B by δφ 
 1, then one

obtains
λB = λ0

Be
iδφ. (B.6)

So, in order to reinstate the Hamiltonian H +H ′ to the original form, one needs to
perform the canonical transformation, such that

ψB(r) → ψB(r)e
iδφ. (B.7)

This transforms Eq. (B.5) and its conjugate as,(
ΔB

Δ∗
B

)
= eiδφτz

(
Δ0

B

Δ0
B

)
�
(

Δ0
B

Δ0
B

)
+ δΔ̂B, (B.8)

where τz is the Pauli matrix, and

δΔ̂B ≡ iδφΔ0
Bτz

(
1
1

)
. (B.9)

Equation (B.9) can also be obtained by evaluating the response of the BEC order
parameter ΔB to the perturbation,

δH ′ ≡ H ′(λ0
Be

iδφ)−H ′(λ0
B) = iλ0

Bδφ

∫
drΨ̂†

B(r)τz

(
1
1

)
. (B.10)

Using the standard linear response theory, we obtain [88]

δΔ̂B = ĜB(p = 0, iωB
n = 0)δΛ̂B

= iλ0
BδφĜB(p = 0, iωB

n = 0)τz

(
1
1

)
, (B.11)

where δΛ̂B transforms similar to Eq. (B.9). Here,

ĜB(p, iω
B
n ) =

1

iωB
n τz − ξBp − Σ̂B(p, iωB

n )
(B.12)

is the 2× 2-matrix single-particle thermal Bose Green’s function, with Σ̂B being the
2× 2-matrix self-energy. Equations (B.9) and (B.11) give

λ0
Bτz

(
1
1

)
= ĜB(0, 0)

−1τz

(
1
1

)
Δ0

B

=
[
μB − Σ̂B(0, 0)

]
τz

(
1
1

)
Δ0

B. (B.13)

Taking the limit λ0
B → 0 in the BEC phase (Δ0

B �= 0), we find that Eq. (B.13) is
satisfied when

[μB − Σ̂B(0, 0)]τz

(
1
1

)
= 0. (B.14)

This is just the same form as the Hugenholtz-Pines condition [91]. At TBEC, the
off-diagonal components of the matrix self-energy Σ̂B(0, 0) vanishes, so that the
(1,1)-component of Eq. (B.14) gives μB − Σ11

B (0, 0) = 0. Noting that Σ11
B (p, iωB

n )
equals ΣB(p, iω

B
n ) appearing in Eq. (2.12) at TBEC, we obtain Eq. (2.17). It is

important to note that this relation also holds for iTMA formalism shown in Sec.
2.5.



Appendix C

Ultracold Gas Mixtures in the
Strong-coupling Limit

C.1 Bose-Fermi Mixture

In the strong-coupling limit, all Bose and Fermi atoms combine to form tightly bound
composite fermions, so that both Bose and Fermi chemical potential are expected
to be negative μs=B,F → −∞. In this case, we can neglect both the Bose and Fermi
distribution function ns=B,F from Eq. (2.15), giving

ΠBF(q, iω
F
m) � −

pc∑
k

1

iωF
m − ξFk+q/2 − ξB−k+q/2

=
m

2π2
pc − m

4π

√
m
( q2

4m
− μF − μB − iωF

m

)
, (C.1)

where pc is a momentum cut-off. Here, we take mB = mF = m as in our thesis.
Substituting Eq. (C.1) into Eq. (2.14), we obtain

ΓBF(q, iω
F
m) =

1

m
4πaBF

+
[
ΠBF(q, iωF

m)−
∑pc

p
m
p2

] ,
=

4π

m

1

1
aBF

−
√
m
(

q2

4m
− μF − μB − iωF

m

)

=
4π

m

1
aBF

+

√
m
(

q2

4m
− μF − μB − iωF

m

)
1

a2BF
−m
(

q2

4m
− μF − μB − iωF

m

)

=
4π

m2aBF

1 +

√(
q2

4m
−μF−μB−iωF

m

)
Ebind

Ebind −
(

q2

4m
− μF − μB − iωF

m

) , (C.2)

where Ebind = 1/(ma2BF) is the binding energy of a Bose-Fermi molecule. Taking

μCF = μB + μF + Ebind, (C.3)
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one can rewrite Eq. (C.2) as

ΓBF(q, iω
F
m) =

4π

m2aBF

1 +

√(
Ebind+

q2

4m
−μCF−iωF

m

)
Ebind

iωF
m −
(

q2

2M
− μCF

)
=

8π

m2aBF

1

iωF
m − ξCF

q

, (C.4)

where we have used the fact Ebind � [q2/(2M)− μCF − iωF
m].

In Eq. (C.4), one finds that Bose-Fermi particle-particle matrix ΓBF(q, iω
F
m)

reduces to a molecular Fermi propagator with molecular mass M = 2m and ξCF
q =

q2/(2M) − μCF, where μCF in Eq. (C.3) works as the molecular Fermi chemical
potential. Equation (C.4) also holds for Γ̃BF(q, iω

F
m) in iTMA.

C.2 Two-component Fermi Gas

Proceeding similar to Appendix C.1, one can also reach the strong-coupling-limit
expression for the pair-correlation function ΠFF(q, iω

B
m) in a two-component Fermi

gas as,

ΠFF(q, iω
B
m) =

m

2π2
pc − m

4π

√
m
( q2

4m
− μF − iωB

m

)
. (C.5)

Using Ebind = 1/(ma2FF) as the binding energy of Fermi-Fermi bound molecule and
taking,

μCB = μF + Ebind, (C.6)

we can rewrite the bosonic particle-particle scattering matrix ΓFF(q, iω
B
m) into the

form,

ΓFF(q, iω
B
m) =

8π

m2aFF

1

iωB
m − ξCB

q

, (C.7)

where the relation Ebind � [q2/(2M) − μCB − iωB
m] has been used to obtain the

result.
In Eq. (C.7), ones sees that the particle-particle scattering matrix ΓFF(q, iω

B
m)

in a Fermi-Fermi case takes the form of a molecular Bose Green’s function with
molecular mass M = 2m and ξCB

q = q2/(2M)− μCB, where μCB in Eq. (C.6) works
as the molecular Bose chemical potential.



Appendix D

Treatment of Singularity in
Σ̃F(p, iω

F
n) at TBEC using Cubic

Spline Interpolation

In this appendix, we discuss the method for removal of singularity existing in Fermi
self-energy Σ̃F in our improved TMA (iTMA). In iTMA we replace the bare Bose
Green’s function G0

B appearing in all the self-energy diagrams by a modified one G̃0
B

in Eq. (2.64), to satisfy the gapless Bose excitations condition at TBEC. As a result,
the fermionic self-energy correction Σ̃F(p, iω

F
n) given in Eq. (2.67) has a singular

behavior at TBEC due to the presence of G̃0
B(q−p, iωF

m − iωF
n), which diverges when

(q, iωF
m) = (p, iωF

n) at TBEC.
In order to avoid this singularity in Eq. (2.67), we opt for change of variables in

momentum q − p = k,

Σ̃F(p, iω
F
n) = −T

∑
k,ωF

m

Γ̃BF(k + p, iωF
m)G̃

0
B(k, iω

F
m − iωF

n)e
(iωF

m−iωF
n)δ. (D.1)

Now, the singularity is removed from Eq. (D.1) at a finite momentum, but we
need to calculate the particle-particle scattering matrix Γ̃BF(k + p, iωF

m) for given
(p, iωF

n) in order to evaluate Σ̃F(p, iω
F
n) from Eq. (D.1). This is done using spline

interpolation technique, wherein we interpolate the function within a certain range
using the discrete known data points of the function in that range. In our case,
the function is the particle-particle scattering matrix Γ̃BF(k + p, iωF

m), required to
interpolate for all possible values of momentum k + p.

Spline is a “piecewise-defined function”, and the cubic spline is particularly pop-
ular due to easy implementation and only high derivative (third) is discontinuous.

Let us consider a function y = f(t) with (N + 1) data points defined as (tj, yj)
for j = 0, 1, · · ·, N . The cubic spline for the interval [tj, tj+1] is defined as,

Sj(t) = Aj(t− tj)
3 +Bj(tj+1 − t)3 + Cj(t− tj) +Dj(tj+1 − t). (D.2)

Since there are N interval in the known data set and four coefficients Aj, Bj, Cj, and
Dj per interval, so that a total of 4N constraints are required to be solved, in order
to determine them. First, we have two conditions defined in the interval [tj, tj+1] as,{

Sj(tj) = yj,
Sj(tj+1) = yj+1,

(D.3)
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which makes 2N conditions. Second, the derivatives{
S ′
j(tj) = S ′

j−1(tj),
S ′′
j (tj) = S ′′

j−1(tj),
(D.4)

give 2 × (N − 1) conditions more, and finally we consider “natural” cubic spline
(with fixed end-points), given as{

S ′′
0 (t0) = 0,

S ′′
N(tN) = 0.

(D.5)

Thus one can work with 4N constraint equations given in Eqs. (D.3), (D.4), and
(D.5), to determine 4N coefficients of cubic spline in Eq. (D.2).

Taking Eq. (D.2) as,

Sj(t) =
zj+1

6hj

(t− tj)
3 +

zj
6hj

(tj+1 − t)3 + Cj(t− tj) +Dj(tj+1 − t), (D.6)

where, zj is second derivative of yj, and one takes zj, Cj, and Dj such that,{
z′j = 0,
C ′

j = D′
j = 0.

(D.7)

After some manipulation (For details, see Ref. [95].), one obtains a set of tridiagonal
equations of the form,

uj = zjvj + hj−izj−1 + hjzj+1. (D.8)

Solving these tridiagonal equations in (D.8), one evaluates zj’s. Using them, one
an easily calculate the interpolating function Sj(t) for any arbitrary t within [t0, tN ]
from Eq. (D.6).

Strictly speaking, the Fermi self-energy Σ̃F(p, iω
F
n) in Eq. (D.1) is calculated as,

Σ̃F(p, iω
F
n) = −T

∑
k,ωF

m

[
Γ̃BF(k + p, iωF

m) + UBF

]
G̃0

B(k, iω
F
m − iωF

n)e
(iωF

m−iωF
n)δ

+ TUBF

∑
k,ωF

m

G̃0
B(k, iω

F
m − iωF

n)e
(iωF

m−iωF
n)δ

= −T
∑
k,ωF

m

[
Γ̃BF(k + p, iωF

m) + UBF

]
G̃0

B(k, iω
F
m − iωF

n)

− UBF

∑
k

nB(ξ̃
B
p ). (D.9)

The leading order in the third line in Eq. (D.9) is |iωF
m|−2 due to which the conver-

gence factor e(iω
F
m−iωF

n)δ is eliminated.



Appendix E

Calculation of Virial Expansion
Coefficients Bij of a Bose-Fermi
Mixture

In this appendix, we will derive the virial coefficients Bij in Eq. (4.21). B10 and B20

are the co-efficients which only depend on Fermi fugacity zF as given in Eq.(4.17).
Taking the case of a free Fermi gas [110], one obtains

ΩF = −T
∑
p

[
1 + e−ξFp/T

]
= −TV

λ3
T

∞∑
n=1

(−1)n+1

n5/2
znF. (E.1)

Now comparing Eq. (E.1) with the free Fermi part of Bose-Fermi thermodynamic
potential Ω in Eq. (4.17), one immediately finds

Bi0 = (−1)i+1i−5/2. (E.2)

Proceeding similarly, B01 and B02 are obtained from the virial expansion in the case
of a free Bose gas [110],

ΩB = T
∑
p

[
1− e−ξBp /T

]
= −TV

λ3
T

∞∑
n=1

1

n5/2
znB, (E.3)

where one obtains
B0j = j−5/2. (E.4)

To determine B11, it is convenient to substitute the expression for the second-
order virial expansion of the grand partition function,

Ξ = 1 +Q10zF +Q20z
2
F +Q01zB +Q02z

2
B +Q11zFzB, (E.5)

into thermodynamic potential

Ω = −T ln Ξ, (E.6)

which gives

B11 =
λ3
T

V
[Q11 −Q10Q01]. (E.7)
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Here,
Qnn′ = Trnn′ [e−H̄/T ] (E.8)

is a canonical partition function with n fermions and n′ bosons, where H̄ is given by
Eq. (2.1) with ξsp being replaced by εp = p2/(2m). Equation (E.7) indicates that
B11 is just the difference of the two-particle canonical partition function between
the interacting case (Q11) and the non-interacting case (Q10Q01). Now, changing
the variables of two particles from the relative one to the center of mass coordinate,
and taking into account the contribution from the s-wave scattering component of
the latter. We can rewrite Eq. (E.7) as

B11 =
λ3
T

V

∑
K

e−K2/(4mT )

[[∑
k

e−k2/(mT ) −
∑
q

e−q2/(mT )

]

+ eεb/T θ(aBF)

]
, (E.9)

where εb = −1/(ma2BF) < 0 is the s-wave bound state energy which exists only when
a−1
BF ≥ 0. Eq. (E.9) can again be written as,

B11 = 23/2
[∫ ∞

0

dp [ρ(p)− ρ0(p)] e
−p2/(mT ) + eεb/T θ(aBF)

]
, (E.10)

where ρ(p) and ρ0(p) are the momentum-space density of states in the interacting
and non-interacting case, respectively. Since the wave-function in the interacting
case behaves as,

Ψ(r) ∼ 1

r
sin(pr + δs(p)), (E.11)

(where δs is the phase shift associated with the inter-species interaction in Eq. (2.1)),
the interval Δp of the quantum states in momentum space is given by

Δp =
π

R +
∂δs(p)

∂p

, (E.12)

as a result of the wave-function boundary condition (where, R is the system size).
The density of states ρ(p) is then obtained as ρ(p) = Δp−1. The density of states

ρ0(p) in the non-interacting case is also obtained from Δp(0)
−1

such that,

Δp(0) =
π

R
. (E.13)

Substituting Eqs. (E.12) and (E.13) into Eq. (E.10), one has [110]

B11 = 23/2
[
1

π

∫ ∞

0

dp
∂δs(p)

∂p
e−p2/(mT ) + eεb/T θ(aBF)

]
. (E.14)

Noting the relation tan(δs(p)) = −paBF between the phase shift δs(p) and the scat-
tering length aBF in Eq. (4.1), we can further rewrite Eq. (E.14) as

B11 = 23/2
[
1

π

∫ ∞

0

dp
−aBF

1 + (paBF)2
e−p2/(mT ) + eεb/T θ(aBF)

]
. (E.15)
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Taking the limit from the weak coupling side in Eq. (E.15), we obtain B11 for any
arbitrary interaction strength a−1

BF as

B11 = 23/2

[
−sgn(aBF)

π

∫ ∞

0

dx
1

1 + x2
e−x2/(mT |aBF|2)

+ eεb/T θ(aBF)

]

= 23/2
[−sgn(aBF)

2
[1− erf(y)]ey

2

+ eεb/T θ(aBF)

]
. (E.16)

Here, erf(y) is the error function and y = 1/
√

(mT |aBF|2). Taking the unitarity
limit (a−1

BF = ±0) in Eq. (E.16), we obtain B11 as

B11 = 23/2
(
−1

2
+ 1

)
=

√
2, (E.17)

where we have used εb = 0, erf(y) = 0, and ey
2
= 1, at the unitarity.
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[50] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, Phys. Rev. Lett.
71, 3202 (1993).

[51] J. R. Engelbrecht, M. Randeria, and C. A. R. Sá de Melo, Phys. Rev. B 55,
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