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Abstract
The dynamics of an oscillating bubble in an acoustic field has been employed in a

wide range of engineering and medical applications. The key mechanism is an activity

of bubble oscillations interacting with an external driving sound pressure. The behav-

ior of oscillating bubbles is interpreted as a coupled dynamical system of nonlinear

oscillatiors, indicating that individual bubbles are mutually coupled with neighboring

bubbles and surrounding wall boundaries via an acoustic radiation. Therefore, there is

a need to understand the coupled bubble dynamics for effective and advanced operation

of oscillating bubbles in practical applications. The main aim of this thesis is to inves-

tigate the coupled bubble-bubble and bubble-wall dynamics in an acoustic field. The

present thesis contains nonlinear modal analysis of bifurcation structures of coupled

two-bubble oscillation, experiment and modeling of translational dynamics of oscillat-

ing bubble cluster and coupled fluid-structure simulation of bubble oscillations near an

elastic boundary.

Nonlinear modal analysis of coupled oscillation of two spherical bubbles is pre-

sented on the basis of the method of multiple scales. Analytical expressions of nonlinear

normal modes (NNMs) and steady-state oscillations are derived and underlying bifurca-

tion structures are discussed. For the case of equally-sized bubbles, symmetry-breaking

bifurcations arise in the neighborhood of NNMs, leading to energy localization in the

steady-state oscillations.

Translational motion of an oscillating bubble cluster is experimentally observed by

a high-speed imaging technique. The trajectory of the cluster motion is computation-

ally calculated from the recorded images, and the classical theory of the translational

dynamics of a single bubble is extended to the bubble cluster and compared with the

experimental result. For a millimeter sized bubble cluster observed in the present exper-

iment, the translational dynamics of the bubble cluster is described by the force balance

between the classical expression of the secondary Bjerknes force and the cluster inertia

from the mass of liquid in the cluster and the added mass of the cluster.



vi

Coupled dynamics between an oscillating bubble and an elastic wall with a finite

thickness is numerically explored, and effect of the wall thickness are discussed. As-

suming that the ambient fluid undergoes a potential flow in an axisymmetric two di-

mensional domain, a set of boundary integral equations for use of boundary element

formulation is derived. Eigenvalue analysis of the linear elastodynamics of a circu-

lar elastic plate is performed to obtain eigenfunctions and eigenfrequencies of normal

modes. The equation of motion of the normal modes (i.e., the equation of motion of the

wall surface) is derived. A numerical method to solve the previously presented coupled

fluid-structure model is summarized in the following section. The boundary element

method with boundary tracking of the bubble wall is employed to solve the moving

boundary problem of the bubble dynamics. The elastodynamics of the elastic wall is

formulated by the finite element method with Newmark’s time stepping. The results are

compared with the case of a rigid boundary. The results shows the translation velocity of

the oscillating bubble substantially decreases as the wall surface oscillates in phase with

the bubble oscillations. This indicates that the surface wave needs to be incorporated

in the model of an elastic boundary for accurately describing the translational bubble

dynamics.
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ωN Adiabatic natural frequency of an unbounded bubble [rad/s]
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ωi Partial natural frequency of ith bubble [rad/s]

ωLi Modal natural frequency of the LNMs rad/s

Ωi Oscillation phase of free oscillation [-]
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Chapter 1

Introduction

1.1 Motivation

The role of bubble oscillation has extended to a wide range of engineering and medi-

cal applications such as ultrasonic cleaning, food processing, ultrasound imaging and

therapy. Since the bubble activities are essentially a pressure fluctuation propagating

in the surrounding liquid medium, cavitation techniques offer great advantages such

as chemical-free reaction (Sochard, Wilhelm, and Delmas, 1998), medical non-invasive

operation (Hill and Ter Haar, 1995) and acceleration of ultrasonic cleaning ability (Sato,

Hubbard, English, Sievers, Ilic, Czaplewski, and Craighead, 2003).

In the application of mega-sonic cleaning, high-speed observation of the micro-

pattern damaging process by Kim et al. (Kim and Kim, 2014) indicated that chaotic

oscillation and splitting of microbubble clusters (rather than the liquid jet formation due

to an asymmetric bubble collapse) are the main part of cleaning ability. Tanimura et al.

(2010) also pointed out that the translation of bubbles contributed to cleaning action as

well as bubble oscillation in the cleaning process at 28 kHz ultrasound sonication. It

is clear from the above observation that the geometrical structure of solid boundaries

affects the dynamical stability of nonlinear bubble oscillations.

In an acoustic field, an oscillating bubble acts as a sound source (not just a scatterer),

radiating secondary pressure wave to the surroundings, and the bubble volume responds

to an oscillating sound pressure that is due to a primary sound source. There there-

fore arise two types of secondary interactions; the radiated sound pressure exerted on
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neighboring bubbles leads to coupled dynamics among the oscillating bubbles (bubble-

bubble interaction), while the bubble reacts against the reflected pressure wave from

boundaries (bubble-boundary interaction). The main purposes of this thesis is to ex-

plore coupled nonlinear bubble oscillations in a stationary sound field. In what follows,

relevant studies of coupled bubble dynamics are summarized.

1.2 Studies of bubble oscillations

1.2.1 Coupled bubble-bubble dynamics

Small cavitation bubbles repeatedly change their volume in an oscillating pressure field,

accompanied frequently with jetting and splitting into fission fragments (Brennen, 2002)

and subsequent coalescence. Such continuous response of the oscillating bubbles is re-

ferred to as stable acoustic cavitation (Brennen, 2013), which is employed in many

engineering applications such as ultrasonic cleaning (Kim, Kim, Choi, and Kim, 2009),

ultrasound imaging (Emmer, Van Wamel, Goertz, and De Jong, 2007; Helfield and Go-

ertz, 2013) and therapy (Coussios and Roy, 2008). The interactions between sound and

cavitation bubbles have been extensively investigated since the resonant phenomenon

of the bubble oscillation is an important mechanism of the above applications.

The external acoustical energy is continuously localized to oscillating bubbles and

subsequently released to surroundings as the secondary radiation pressure which, in

turn, drives the neighboring bubbles, leading to the mutual interaction of the oscillating

bubbles. We can consider the bubbles as nonlinear oscillators coupled by the radiation

pressure, and readily analyze the motion of the bubble walls on the basis of fairly math-

ematical treatments: that is to say the spherical bubble dynamics with time-varying radii

Ri(t). As the dynamical behavior of the bubble population is practically of importance

to improve the validity of ultrasonic techniques, the coupled oscillation of resonant bub-

bles has been studied intensively for many years.
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At the outset of the theoretical studies on the coupled bubble oscillation (Zabolot-

skaya, 1984; Takahira, Akamatsu, and Fujikawa, 1994), solid mathematical conse-

quences have been offered by linear modal analyses. Zabolotskaya (1984) analyzed

linear normal modes (LNMs) of two gas bubbles pulsating in a liquid based on the

Lagrangian formalism, and showed that the linear normal frequencies depend on the

separation distance between the two bubbles. Takahira et al. (Takahira, Akamatsu, and

Fujikawa, 1994) provided a general derivation of coupled N bubble dynamics account-

ing for the translational motion and deformation of the bubbles on a basis of a potential

solution. The resulting eigenvalue problem concluded that the eigenfrequency of the

fundamental normal mode is much smaller than that of an unbounded single bubble.

However, in contrast to linear systems, extremely complex behaviors are encountered

in nonlinear systems (Kerschen, Peeters, Golinval, and Vakakis, 2009). Although non-

linear spherical dynamics of a single bubble and its bifurcation structures such as sub-

harmonic generation, period-doubling bifurcation and chaotic oscillation have been ex-

plored (Parlitz, Englisch, Scheffczyk, and Lauterborn, 1990), little is known about the

bifurcation structures of the coupled bubble dynamics; most of the studies (Takahira,

Yamane, and Akamatsu, 1995; Macdonald and Gomatam, 2006; Chong, Quek, Dza-

harudin, Ooi, and Manasseh, 2010; Dzaharudin, Suslov, Manasseh, and Ooi, 2013;

Carroll, Calvisi, and Lauderbaugh, 2013) have employed numerical techniques.

The numerical study of Takahira et al. (Takahira, Yamane, and Akamatsu, 1995)

demonstrated the period-doubling bifurcation and accompanying chaotic oscillation of

interacting multi-bubble systems. The fundamental feature identified in the analysis is

that equal-sized bubbles with the same initial radii arranged in a symmetrical config-

uration all take on the same behavior similar to that of an unbounded bubble, whereas

bubbles in a cluster with different initial equilibrium radii cannot oscillate independently

from one another but experience a collective behavior. Macdonald and Gomatam(2006)

also reported numerical results of the same collective behavior in the multi-bubble in-

teraction of ultrasound contrast agent microbubbles.

Herein, this thesis explore nonlinear localization (Kerschen, Peeters, Golinval, and
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Vakakis, 2009; Vakakis, Manevitch, Mikhlin, Pilipchuk, and Zevin, 2008; Ikeda, Harata,

and Nishimura, 2013) or symmetry-breaking bifurcation (Kozłowski, Parlitz, and Lauter-

born, 1995) of the mutual bubble interaction in which the total vibrational energy of the

system is confined to some bubbles due to the nonlinearity of the bubble oscillation

even though they are equally-sized and arranged in a symmetric configuration. Sim-

ilar nonlinear phenomenon has been theoretically investigated as spatial resonance in

a damped and periodically driven chain and oscillator arrays with a periodic bound-

ary condition (Geist and Lauterborn, 1988; Geist and Lauterborn, 1991), and experi-

mentally observed in micromechanical systems (Sato, Hubbard, English, Sievers, Ilic,

Czaplewski, and Craighead, 2003; King, Aubrecht, and Vakakis, 1995). This symmetry-

breaking property is one of the distinctive feature of the localized oscillation considered

in this study. The assumption of the symmetrical arrangements and equal-sized as-

sumption have been used in numerical investigation of the effects of bubble sizes and

spatial arrangement on the coupled bubble dynamics (Chong, Quek, Dzaharudin, Ooi,

and Manasseh, 2010; Dzaharudin, Suslov, Manasseh, and Ooi, 2013; Carroll, Calvisi,

and Lauderbaugh, 2013; Ooi and Manasseh, 2005). However, the fundamental bifurca-

tion structure of the coupled bubble dynamics has not been addressed because most of

the above studies are based on numerical investigation.

The linear modal analyses have been definitely powerful tools for interpreting the

underlying linear system. However, they are still inadequate to describe properly the

complicated nonlinear phenomena. For a general survey of the bifurcation structure

of the coupled bubble dynamics, analytical investigation of nonlinear normal modes

(NNMs) (Kerschen, Peeters, Golinval, and Vakakis, 2009; Vakakis, Manevitch, Mikhlin,

Pilipchuk, and Zevin, 2008; Li, Ji, and Hansen, 2006) is an essential approach to a

greater insight on the structural nature of the multi-bubble dynamics. At the first at-

tempt of NNMs, Rosenberg (Rosenberg, 1960; Rosenberg, 1962; Rosenberg, 1966)

extended straightforwardly the concept of LNMs to nonlinear vibration systems and

defined a NNM as a vibration in unison where all mass points in the system display

periodic motions with the same period. In the definition, all displacements pass through
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their equilibrium points and reach their extreme values simultaneously. It should be

also noted that NNMs inherit the invariance property of LNMs (i.e., motions that depart

from the NNM confined in it for all time), which is exploited to derive the NNMs in the

perturbation analysis of this study.

There have been a few studies which used a perturbative method to obtain the steady-

state solution of bubble oscillation. Prosperetti (1974) presented a second order steady-

state solution of Rayleigh’s equation of motion for the bubble wall by means of an

asymptotic expansion method. The analytical result enabled it evident to predict the

multivalued solution of the nonlinear oscillation and the unstable region of subharmonic

resonance as well as their hysteresis behavior. Francescutto (Francescutto and Naber-

goj, 1983) used an asymptotic method of multiple scales to obtain explicit and simpler

formulas for the second order approximate solution. Nevertheless, nonlinear resonance

of the vibration modes among multiple bubbles are still unclear since these results are

for a single bubble. We employ the method of multiple scales (Li, Ji, and Hansen, 2006;

Nayfeh and Mook, 2008) to derive NNMs of the coupled bubble oscillation and investi-

gate the internal resonance (Li, Ji, and Hansen, 2006) of the steady-state amplitude and

the phase shift.

In the present study, we will restrict the analysis to a resonant pair of two bubbles.

In order not to limit the generality, the bubble sizes are allowed to be different in the

perturbation analysis (Section 3), but assumed to be similar so that the two uncoupled

natural frequencies of isolated bubbles have a slight difference by the order of O(ε2)

where ε is a dimensionless oscillation amplitude. Since the aim of this paper is to in-

vestigate the bifurcation structure of the radial dynamics of a resonant pair of bubbles,

the separation distance of the bubbles is assumed to be unchanged by the translational

instability (Koch, Kurz, Parlitz, and Lauterborn, 2011) due to Bjerknes forces, while

it is important to account for the transient response and hysteresis property for a full

understanding of the bubble structure dynamics (Barbat, Ashgriz, and Liu, 1999). The

circumstances of a fixed bubble distance is not improbable but achieved in the case of

surface cavitation bubbles attached on a solid surface (Bremond, Arora, Ohl, and Lohse,
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2006; Bremond, Arora, Dammer, and Lohse, 2006). Because of the adhesion between

the bubble and wall surface the bubble mobility is decreased, and the bubble distances

tends to remain almost fixed. Additionally, the effect of the wall boundary is replaced

with a mirror image of the real bubble. This allows the dynamics of the hemispherical

bubble to be well described by the Rayleigh–Plesset equation for a spherical bubble in

an unbounded space.

1.2.2 Bubble cluster oscillation and translation

Growth of gas bubble nuclei under pressure fluctuations of the surrounding liquid and

the subsequent oscillations are termed acoustic cavitation (Apfel, 1984; Neppiras, 1984;

Brennen, 2013) and the subsequent dynamics of nucleated cavitation bubbles plays an

important role in many applications such as ultrasonic cleaning. This is due to the fact

that inputted acoustic energy is effectively converted, through bubble oscillations in vol-

ume and translational instability of fissioned bubbles (Brennen, 2002; Delale and Tunç,

2004), into mechanical energy within localized spots (Krefting, Mettin, and Lauterborn,

2004; Kim and Kim, 2014). Since oscillating and translating bubble clusters are accom-

panied frequently with violent collapses (Lauterborn and Bolle, 1975; Kreider, Crum,

Bailey, and Sapozhnikov, 2011), cavitation can give rise to undesired disruptive damage

to surrounding solid materials (i.e., the so-called cavitation erosion).

Hydrodynamic interactive forces acting on oscillating bubbles were first studied by

Bjerknes (Bjerknes, 1906). In the classical theory, two synchronously oscillating bub-

bles are subject to mutual attractive force, while two bubbles oscillating out-of-phase

experience mutual repulsion. These kinds of mutual forces are known as secondary

Bjerknes force and distinguished from the primary Bjerknes force that results from in-

teraction with an external sound source. The magnitude of the secondary Bjerknes

forces is proportional to the intensities of radial oscillation of each bubble and decays

inversely with the square of the separation distance between the bubbles. It follows from

the classical description that the secondary Bjerknes effect is mathematically equivalent
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to translational motion of one oscillating dipole subject to monopole radiation of the

other.

More complicated behaviors of oscillating bubbles have been demonstrated theoret-

ically by extending the classical theory of Bjerknes. One of earliest studies of Crum

(Crum, 1975) assumed linear bubble oscillation and derived a simple expression of the

secondary Bjerknes force after time-averaging over one oscillation period of the im-

posed sound frequency. Barbat et al. (Barbat, Ashgriz, and Liu, 1999) modified Crum’s

formula by accounting for damped oscillation of spherical bubbles. The resulting phase

shift between two resonant bubbles allowed a stable equilibrium point at which the sign

of the secondary Bjerknes force changes. Oguz and Prosperetti (1990) developed a set

of ordinary differential equations for the coupled nonlinear dynamics between trans-

lational motion and bubble pulsation in a potential flow. Subsequently, Harkin et al.

(Harkin, Kaper, and Nadim, 2001) classified patterns of translational motion of a couple

of oscillating bubbles for the case of linear or weakly nonlinear forcing by means of the

dynamical analysis of Oguz and Prosperetti (1990), drawing a conclusion that the clas-

sical theory was valid only for a large separation distance and weakly forced bubbles.

Near-field interaction between bubbles is often results in nonspherical bubble deforma-

tion and there is thus a need to handle it using the boundary element method (Pelekasis

and Tsamopoulos, 1993a; Pelekasis and Tsamopoulos, 1993b). Further extensions to

the discussion on the secondary Bjerknes force between single bubbles have been pro-

posed by several authors, which consider viscous liquid (Pelekasis, Gaki, Doinikov, and

Tsamopoulos, 2004), high-intensity sound pressure (Doinikov, 2002), multipole inter-

action or higher spherical harmonics (Doinikov and Zavtrak, 1995), drag and history

forces on an oscillating bubble (Kang and Leal, 1988; Magnaudet and Legendre, 1998;

Reddy and Szeri, 2002) and decoupling of the radial dynamics from the translational

motion (Krefting, Toilliez, Szeri, Mettin, and Lauterborn, 2006).

Validity of the time-averaged secondary Bjerknes force has been experimentally in-

vestigated for single bubbles in early works of Crum (1975) and Barbat et al. (1999),

and more recently in the ultrasonic frequency range by Yoshida et al. (2011) and Jiao et
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al. (2015). The coupled radial and translational model developed by Doinikov (2002)

was extended to microbubble-wall interaction by Xi et al. (2012). However, studies on

the translational motion of an oscillating bubble ”cluster” are rather limited, despite its

practical importance. While the translational dynamics of cavitation clouds was recently

investigated by Nowak and Mettin (2014) and Johnston et al. (2014), in an ultrasonic

frequency range, the cluster dynamics could not be resolved in detail because of limita-

tion in temporal and spatial resolution of the optical imaging. In this work, we aim to

propose an experimental technique to resolve the dynamics of a translating bubble clus-

ter under sonication and analyze the experimental observation with extended theory.

The goal of this study is to show the validity of the classical Bjerknes theory to a

spherical cluster oscillation interacting with solid boundaries. In doing so, we develop

a lower frequency vibration system (Jameson and Davidson, 1966; Baird, 1968; Sudo

and Hashimoto, 1988) in order to resolve the entire picture of bubble cluster activities

subject to a stationary sound field after the example of Nyborg and Rodgers (1976) and

Crum (1975). In what follows, we explain the experimental method and high-speed

imaging of cluster events (bubble fission, clustering, cluster oscillation and translation,

interaction with solid boundaries), present the temporal evolution of cluster size and

translation, and finally analyze the translational dynamics with extended Bjerknes the-

ory.

1.2.3 Interaction with boundaries

For translational dynamics of an oscillating bubble near a boundary, a temporal evo-

lution of the pressure boundary data and its distribution are of necessity because the

hydrodynamics force due to the secondary sound wave (i.e., secondary Bjerknes force)

is given by a product of the pressure gradient at the bubble position and the volume

of the oscillating bubble; the translational motion of bubble is driven by the radiation

pressure wave reflected from neighboring wall boundaries interacting with the bubble

volume oscillation. A schematic of an oscillating bubble near a wall boundary is shown



1.2. Studies of bubble oscillations 9

in Fig. 1.1. The phase difference between the reflected wave and the bubble oscillation

should therefore be well quantified for accurately describing the bubble translational

dynamics. Thus, it is a need to consider the structural dynamics of the deformable

boundary coupled with the fluid dynamics of the bubble oscillation.

In the early stage of studies of the bubble-wall interactions, one of primary con-

cerns of these studies has been growth and collapse dynamics of a transient cavitation

bubble. Formation of a re-entrant jet and following topological change of a collapsing

bubble have been numerically explored for the case of a rigid boundary (Wiedemair,

Tukovic, Jasak, Poulikakos, and Kurtcuoglu, 2014; Plesset and Chapman, 1971; Blake,

Robinson, Shima, and Tomita, 1993; Blake, Taib, and Doherty, 1986; Zhang, Duncan,

and Chahine, 1993; Wang, 2014) and the case of a free surface (Wang, Yeo, Khoo,

and Lam, 1996; Blake, Taib, and Doherty, 1987; Dommermuth and Yue, 1987; Peleka-

sis, Tsamopoulos, and Manolis, 1992; Robinson, Blake, Kodama, Shima, and Tomita,

2001; Li, Sun, Zong, and Dong, 2012). The basic feature identified in these studies is

the direction reversal of the bubble motion at collapse phase; the re-entrant jet directed

toward (rigid boundary) or away (free surface) from the boundary due to the difference

of the dynamical boundary condition at the wall. However, further complex phenomena

have been numerically demonstrated for the case of an elastic wall boundary, and some

experimental evidences were also provided (Shima, Tomita, Gibson, and Blake, 1989

and Gisbon and Blake, 1980). Rigid and free boundaries are particular examples of a

general compliant boundary.

There have been two common numerical methods for the modeling of a compli-

ant wall dynamics. In the first case, a spring-backed membrane (Duncan and Zhang,

1991; Farhangmehr, Aghdam, Shervani-Tabar, Parvizi, Ohl, and Khoo, 2014; Gisbon

and Blake, 1980; Gibson and Blake, 1982) is used for the reduced model of a compliant

wall boundary. In the second case, the compliant boundary is modeled as an elastic

fluid (Ohl, Klaseboer, and Khoo, 2009; Klaseboer, Turangan, and Khoo, 2006; Wang,

Zhang, Liu, and Zeng, 2013; Yu, Lin, Xu, Liu, and Shen, 2015; Yang and Church, 2005;

Klaseboer and Khoo, 2004). A direct numerical simulation of the elastic body by the
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Primary sound wave

Pressure radiation

Secondary sound wave

Oscillating bubble

Elastic wall

FIGURE 1.1: A schematic of bubble-wall interaction.

finite element method (FEM) is a comprehensive and straightforward approach (Dun-

can, Milligan, and Zhang, 1996; Miao and Gracewski, 2008; Kalumuck, Duraiswami,

and Chahine, 1995), and also offers verification of other reduced wall models. An im-

age method (Hsiao et al., 2013; Soh, 1992) is also used to develop a potential solution

which satisfies the dynamics boundary conditions on the wall surface.

One of the reason for the success of the two common models are simplicity and

explicitness of the numerical implementation and efficiency of computation. However,

in view of the structural dynamics of elastic boundaries, both of the models are limited

in determining physically proper parameters. In this thesis, an eigenvalue analysis of

a circular elastic plate is performed to obtain eigenfunctions and their eigenvalues of a

spring-backed membrane model, which describes the unknown parameters used in the

model.

1.3 Contribution and outline

The main contributions of this thesis are:
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• Development of nonlinear normal modes of coupled oscillation of two spherical

bubbles

• Experimental observation of an oscillating bubble cluster and modeling of the

translational dynamics with the classical Bjerknes theory.

• Formulation of linear normal modes of a circular elastic plate, and derivation of

the equation of motion of the elastic body surface coupled with an oscillating

bubble dynamics

• Numerical implementation of the coupled dynamics of an oscillating bubble and

a compliant wall, and quantification of the effect of the thickness and the rigidity

the elastic layer.

Nonlinear modal analysis of coupled oscillation of two spherical bubbles is pre-

sented in Chapter 2. Analytical expressions of nonlinear normal modes (NNMs) and

steady-state oscillations are derived and underlying bifurcation structures are discussed.

Chapter 3 is devoted to experiment and modeling of translational dynamics of an os-

cillating bubble cluster. The classical theory of the translational dynamics of a single

bubble is extended to the bubble cluster and compared with the experimental result.

Chapter 4 presents an analytical model and the basic equation for the coupled nonlinear

dynamics of an oscillating bubble near an elastic wall. A numerical method to solve

the fluid-structure coupled model presented in the previous section is summarized. Nu-

merical results of the coupled bubble-wall dynamics are shown to discuss the effect of

the thickness of the elastic wall on the translational dynamics of the oscillating bubble.

Concluding remarks and suggestions for future work are summarized in Chapter 5.
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Chapter 2

Nonlinear modal analysis of coupled

two-bubble oscillation

In this chapter, nonlinear modal analysis of acoustically-coupled two-bubble oscillators

is presented to explore the bifurcation structure of the steady-state dynamics and under-

lying nonlinear normal modes. Bifurcation structures of coupled nonlinear oscillation

of two spherical gas bubbles subject to a stationary sound field is explored by means

of nonlinear modal analysis. The goal of this paper is to describe an energy localiza-

tion phenomenon of coupled two-bubble oscillators, resulting from symmetry-breaking

bifurcation of the steady-state oscillation. Approximate asymptotic solutions of NNMs

and steady state oscillation are obtained based on the method of multiple scales. It is

found that localized oscillation arises in a neighborhood of the localized normal modes.

The analytical solutions of the amplitude and the phase shift of the steady-state os-

cillation are compared to numerical results and found to be in good agreement within

the limit of small-amplitude oscillation. For larger amplitude oscillation, a bifurcation

diagram of the localized solution as a function of the driving frequency and the separa-

tion distance between the bubbles is provided in the presence of the thermal damping.

The numerical results show that the localized oscillation can occur for a fairly typical

parameter range used in practical experiments and simulations in the early literatures.
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2.1 Model equation

2.1.1 Rayleigh–Plesset equation

Suppose that two gas bubbles are separated by a fixed distance in a liquid driven by a

stationary sound field sketched in Fig. 2.1. The wave length is assumed larger enough

for the two bubbles to experience the equal driving pressure. Bubble oscillations are

inertially controlled by periodic pressure change in the far field, and develop a secondary

sound field without distorting each others’ sphericity. The radiation pressure induced

by one of the bubbles, bubble 1, measured at the center of the other bubble, bubble 2, is

pr (d, t) =
ρL

4πd

d2V1(wt)

dw2
t

∣∣∣∣
wt=t− dc

(2.1)

where ρL is the undisturbed liquid density, V1 is the time-varying volume of bubble 1,

d is the separation distance between the bubble centers which is enough larger than the

wave length for the bubbles to remain spherical with the time-varying radii R1(t) and

R2(t), respectively, and c is the (constant) speed of sound. The radiation pressure is

evaluated in the retarded time-frame, wt = t−d/c, due to the finite speed of sound. Eq.

(2.1) is exerted on the neighboring bubbles as an additional driving pressure, and their

resulting spherical dynamics are coupled with each other.

Herein, the liquid is assumed to be cold, and the vapor pressure is omitted from

the bubble contents, while the linear thermal damping (Devin Jr, 1959; Chapman and

Plesset, 1971) was used in the numerical simulation (Section 4). The contribution of

the translational motion is higher-order correction and can be neglected in the following

perturbation analysis in Section 3. The model limitation of neglecting the translational

dynamics is given in Appendix A based on a scale analysis. Shape and dissolution in-

stabilities (Koch, Kurz, Parlitz, and Lauterborn, 2011; Hilgenfeldt, Lohse, and Brenner,

1996) are neglected while they are generally needed to account for lifetimes of oscillat-

ing cavitation bubbles. The bubble fission (Brennen, 2002) and rectified diffusion (Eller

and Flynn, 1965) are also not taken into account because the scope of this study is to
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FIGURE 2.1: Schematic of two oscillating bubbles.

identify the bifurcation structure of the spherical bubble oscillators.

2.1.2 Equations of radial motion

For spherical dynamics of an oscillating bubble of radius Ri(t), we use a modified form

of the coupled Keller–Miksis equation (Keller and Miksis, 1980) which accounts for

the liquid compressibility to the first order. Adding the radiation pressure, pr(d, t), as a

secondary driving term into the external driving pressure and neglecting coupling terms

of higher order (Parlitz, Englisch, Scheffczyk, and Lauterborn, 1990; Prosperetti and

Lezzi, 1986) lead to the equation of radial motion of bubble 2 (Mettin, Akhatov, Parlitz,

Ohl, and Lauterborn, 1997):

(
1− Ṙ2

c

)
R2R̈2 +

(
3

2
− Ṙ2

2c

)
Ṙ2

2 =
1

ρL

(
1 +

Ṙ2

c

)[
p2(R2, Ṙ2)− p0 − pex(t)

]
+
Ṙ2

ρLc

d

dt

[
p2(R2, Ṙ2)− pex(t)

]
−R

2
1R̈1 + 2R1Ṙ

2
1

d

∣∣∣∣∣
wt=t− dc

(2.2)

where dots denote time differentiation, ρL is the equilibrium density of the liquid, p0
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is the hydrostatic pressure in the far field, pex(t) = pa sinωt is the external driving

pressure, and p2(R2, Ṙ2) is the liquid pressure at the bubble wall. Note that the coupling

terms are evaluated with respect to the retarded time (Doinikov, Manasseh, and Ooi,

2005), t∗ − τ ∗, where τ ∗ = d∗/C is the dimensionless retardation time.

It is assumed that the behavior of the gas in the bubble is approximately polytropic

and set

p2 =

(
p0 +

2S

R20

)(
R20

R2

)3κ

− 2S

R2

− 4µLṘ2

R2

(2.3)

where R20 is the equilibrium radius of bubble 2, S is the surface tension, κ is the poly-

tropic index, and µL is the liquid viscosity. The equations for bubble 1 is obtained by

exchanging the indices 1 and 2 in Eqs. (2.2) and (2.3). The adiabatic natural frequency

of an uncoupled bubble of R0 in radius at rest in an unbounded space is given by

ωN =
1

R0

[
3γp0

ρL
+

2(3γ − 1)S

ρLR0

] 1
2

(2.4)

where γ is the ratio of specific heats.

2.1.3 Dimensionless form

In the following perturbation method, it is convenient to nondimensionalize the equa-

tions of motion. Substituting R1 = R10(1 + ∆x), R2 = R20(1 + ∆y) and t = ω−1
N t∗,

the equations motion of the two bubbles are reduced to

(
1− ∆̇x

C

)
(1 + ∆x) ∆̈x+

3

2

(
1− ∆̇x

3C

)
∆̇x

2

=

(
1 +

∆̇x

C

)[
p∗1(∆x, ∆̇x)− Eu(1 + A∗ sinωf t

∗)
]

+
∆x

C

d

dt∗

[
p∗1(∆x, ∆̇x)− EuA∗ sinωf t

∗
]

−R
∗3

d∗

[
(1 + ∆y)2∆̈y + 2∆̇y

2
(1 + ∆y)

]∣∣∣∣
wt=t∗− dc

, (2.5)
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(
1− R∗∆̇y

C

)
(1 + ∆y) ∆̈y +

3

2

(
1− R∗∆̇y

3C

)
∆̇y

2

=

(
1 +

R∗∆̇y

C

)[
p∗2(∆y, ∆̇y)− Eu

R∗2
(1 + A∗ sinωf t

∗)

]
+
R∗∆y

C

d

dt∗

[
p∗2(∆y, ∆̇y)− Eu

R∗2
A∗ sinωf t

∗
]

− 1

d∗R∗2

[
(1 + ∆x)2∆̈x+ 2∆̇x

2
(1 + ∆x)

]∣∣∣∣
wt=t∗− dc

(2.6)

where ∆ symbolizes small perturbation of the corresponding variables and p∗1(∆x, ∆̇x)

and p∗2(∆y, ∆̇y) are the dimensionless liquid pressures at the bubble walls given by

p∗1 =

(
Eu +

2

We

)(
1

1 + ∆x

)3κ

− 2

We
1

1 + ∆x
− 4

Re
∆̇x

1 + ∆x
, (2.7)

p∗2 =

(
Eu
R∗2

+
2

WeR∗3

)(
1

1 + ∆y

)3κ

− 2

WeR∗3
1

1 + ∆y
− 4

ReR∗2
∆̇y

1 + ∆y
. (2.8)

Here, all the dimensionless parameters are defined with respect to R10 and ωN as

R∗ =
R20

R10

, d∗ =
d

R10

,

A∗ =
pa
p0

, ωf =
ω

ωN
, C =

c

ωNR10

,

Eu =
p0

ρLω2
NR

2
10

, We =
ρLω

2
NR

3
10

S
, Re =

ρLωNR
2
10

µL
(2.9)

where R∗ is the ratio of the initial radii, d∗ is the dimensionless separation distance,

A∗ is the driving pressure normalized by the static pressure in the far field, ωf is the

ratio between the sound frequency and the adiabatic natural frequency of an isolated

bubble, C is the speed of sound in the liquid normalized by the characteristic bubble

wall speed, and Eu, We and Re are Euler, Weber and Reynolds number, respectively.

Since the temporal time is nondimesionalized using the natural frequency of an isolated

bubble, the order of the velocity and that of the acceleration of the bubble wall do not

change after time differentiation, given that the excitation frequency is near the natural
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frequency of the bubble (ωf ≈ 1). Therefore, the order of ∆ẋ and that of ∆ẍ are

assumed the same as that of ∆x in the primary resonance considered in this study.

Throughout the perturbation analysis, we can assume small amplitude oscillation and

set the order of ∆x, ∆y and their derivatives to be a small but finite dimensionless

quantity ε.

2.1.4 Linear normal modes

Linear truncation of Eqs. (2.5) to (2.8) with respect to ∆ leads to

∆̈x+ cx∆̇x+ ω2
x∆x = −ex (1 + ∆x) sinωf t

∗ − µx∆̈y+µxτ
∗ ...
∆y, (2.10)

∆̈y + cy∆̇y + ω2
y∆y = −ey (1 + ∆y) sinωf t

∗ − µy∆̈x+µyτ
∗ ...
∆x (2.11)

where ωi (i = x, y) is the partial natural frequency of the individual bubbles, ci is the

damping coefficient due to the viscous and radiation effects, µi is the strength of the

acceleration’s coupling term which is inversely proportional to the separation distance,

and ei is the driving amplitude of the acoustic pressure. Here, the third order derivatives

in Eqs. (2.10) and (2.11) are approximated by linear solution:

...
∆x ≈ −cx∆̈x− ω2

x∆̇x− exωf cosωf t
∗, (2.12)

...
∆y ≈ −cy∆̈y − ω2

y∆̇y − eyωf cosωf t
∗. (2.13)

Substituting Eqs. (2.12) and (2.13) into Eqs. (2.10) and (2.11) yields

∆̈x+ cx∆̇x+ ω2
x∆x =− ex (1 + ∆x) sinωf t

∗ − µx (1 + τ ∗cx) ∆̈y − µxτ ∗ω2
x∆̇y

− µxτ ∗exωf cosωf t
∗, (2.14)

∆̈y + cy∆̇y + ω2
y∆y =− ey (1 + ∆y) sinωf t

∗ − µy (1 + τ ∗cy) ∆̈x− µyτ ∗ω2
y∆̇x

− µyτ ∗eyωf cosωf t
∗ (2.15)
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Eq. (2.14) and (2.15) are given in a vector form:

Mẍ + Cẋ + (K− F sinωf t
∗)x = 0 (2.16)

where inhomogeneous terms with respect to x= (∆x,∆y)T are dropped out. Expres-

sions for these parameters and matrices M, C, K and F are listed in Appendix A.2.

Eq. (2.16) is a damped Mathieu-type equation driven by a harmonic excitation, and the

fourth term on the left hand side gives rise to parametric instability when the driving

amplitude and frequency satisfy specific conditions. However, we can neglect this para-

metric resonance term in the small amplitude approximation.

In general, a N degrees-of-freedom linear oscillation system can have N natural

frequencies and corresponding LNMs which are derived from the eigenvalue problem

of M−1K. We denote by ωL1 and ωL2 the modal natural frequencies of the LNMs of the

system as

ω2
L1 =

ω2
x + ω2

y −
√

(ω2
x + ω2

y)
2 − 4ξω2

xω
2
y

2ξ
, (2.17)

ω2
L2 =

ω2
x + ω2

y +
√

(ω2
x + ω2

y)
2 − 4ξω2

xω
2
y

2ξ
(2.18)

where

ξ = 1− µxµy (1 + cxτ
∗) (1 + cyτ

∗) . (2.19)

In the absence of the retarded effect (τ ∗ = 0), Eqs. (2.17) and (2.18) are identical

with that of Zabolotskaya (1984) termed as the partial natural frequency in the paper.

Particularly for equally-sized two bubbles, the above equations become

ωL1 =
ωN√

1 + d∗−1
, (2.20)

ωL2 =
ωN√

1− d∗−1
. (2.21)
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The corresponding oscillations are in-phase and out-of-phase, respectively. The corre-

sponding LNMs are described in Fig. 2.2 where the dimensionless parameters used are

for case given in Table 2.1. The LNMs are uniquely specified by the ratio between the

inertia and stiffness of the system and invariant with respect to the state of motion; L1

and L2 are depicted as a straight vertical line in Fig. 2.2 which indicates that the LNMs

are not functions of the oscillation amplitude. Note that the forced oscillation of a two

degree of freedom system has two resonance points in the neighborhood of the LNMs.

Therefore, it is worth exploring normal modes and their normal natural frequencies for

understanding the global dynamics of the coupled oscillating system. In the next sec-

tion, we readily extend the concept of LNMs to the nonlinear modal analysis of the

two-bubble oscillators.

2.2 Perturbation analysis

2.2.1 Small-amplitude approximation

In order to construct perturbative solutions based on a Taylor series expansion, we ap-

proximate Eqs. (2.5) to (2.8) by truncated equations considering terms to O(ε3)

∆̈x+ cx∆̇x+ ω2
x∆x =− b (1−∆x) ∆̇x

2 − βxx∆x2 − βxxx∆x3 − ex sinωf t
∗ − µx∆̈y

− µxτ ∗ω2
x∆̇y, (2.22)

∆̈y + cy∆̇y + ω2
y∆y =− b (1−∆y) ∆̇y

2 − βyy∆y2 − βyyy∆y3 − ey sinωf t
∗ − µy∆̈x

− µyτ ∗ω2
x∆̇x (2.23)

where βxx, βyy, βxxx and βyyy are parameters associated with the nonlinear terms (see

Appendix A.2). The other parameters associated with the linear terms are the same as

Eq. (2.16) except that b = 3/2 is a constant.

For the sake of the perturbation analysis, we assume that the damping coefficients,

ci, and the coupling strength, µi, are of the order of O(ε2), and the sound amplitude, ei,



2.2. Perturbation analysis 21

is of the order of O(ε3) so that all the terms in Eqs. (2.22) and (2.23) are of the order of

O(ε3) and set

ci = ε2ĉx, µi = ε2µ̂i, ei = ε3êi. (2.24)

Since the retardation time is assumed to be small compared to the driving period (τ ∗ �

2π) in the derivation (Doinikov, Manasseh, and Ooi, 2005), the order of τ ∗ is set at

O(1). This indicates that the following analysis is restricted to relatively small separa-

tion distance (d∗ � 2πC) with the presence of the retarded effect.

2.2.2 Perturbation solution

To obtain the approximate solution of Eqs. (2.22) and (2.23), we use the method of

multiple scales (Nayfeh and Mook, 2008; Nayfeh, 2008). Instead of using the driving

frequency, ωf , as a control parameter, we use a detuning parameter, σ = ε2σ̂, which

indicates the deviation of ωf from ωx such that

ωf = ωx + ε2σ̂. (2.25)

Here, we consider nearly equal-sized bubbles and denote the difference of the natural

frequencies of the bubbles by α = ε2α̂ in the form

ωy = ωx + ε2α̂. (2.26)

On the basis of the method of multiple scales, we introduce three time scales t0 = t∗,

t1 = εt∗ and t2 = ε2t∗. Accordingly, the total derivative is d/dt∗ = D0 + εD1 + ε2D2

where Dk = ∂/∂tk denotes partial differentiation with respect to tk. The approximate

solution of ∆x and ∆y as functions of these multiple time scales are assumed in the
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form

∆x (t0, t1, t2) = εx1 + ε2x2 + ε3x3 + · · · , (2.27)

∆y (t0, t1, t2) = εy1 + ε2y2 + ε3y3 + · · · (2.28)

where successively determined xi and yi are the solution of the εi order. After substitut-

ing Eqs. (2.24) to (2.28) into Eqs. (2.22) and (2.23) and collect terms of same powers

of ε, we find a set of partial differential equations.

O(ε) :

D2
0x1 + ω2

xx1 = 0, (2.29)

D2
0y1 + ω2

xy1 = 0. (2.30)

O(ε2) :

D2
0x2 + ω2

xx2 = −2D0D1x1 − b (D0x1)2 − βxxx2
1, (2.31)

D2
0y2 + ω2

xy2 = −2D0D1y1 − b (D0y1)2 − βyyy2
1. (2.32)

O(ε3) :

D2
0x3 + ω2

xx3 = −D2
1x1 − 2D0D2x1 − 2D0D1x2

− 2b(D0x1)(D1x1) + 2b(D0x1)(D0x2) + bx1(D0x1)2

− ĉxD0x1 − µ̂xτ ∗ω2
xD0y1 − 2βxxx1x2 − βxxxx3

1

− µ̂xD2
0y1 − êx sinωf t

∗, (2.33)
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D2
0y3 + ω2

xy3 = −D2
1y1 − 2D0D2y1 − 2D0D1y2

− 2b(D0y1)(D1y1) + 2b(D0y1)(D0y2) + by1(D0y1)2

− ĉyD0y1 − µ̂yτ ∗ω2
xD0x1 − 2βyyy1y2 − βyyyy3

1 − µ̂yD2
0x1 − êy sinωf t

∗

− 2ωxα̂y1. (2.34)

The general solutions of Eqs. (2.29) and (2.30) are

x1 = Ax(t1, t2)eiωxt0 + cc, (2.35)

y1 = Ay(t1, t2)eiωxt0 + cc (2.36)

where Ax and Ay are the complex amplitude, and cc stands for the complex conjugate

of the preceding terms on the right hand side. Substituting Eqs. (2.35) and (2.36) into

Eqs. (2.31) and (2.32) yields

D2
0x2 + ω2

xx2 = −2iD1Axe
iωxt0 + bA2

xe
2iωxt0 − βxxx2

1, (2.37)

D2
0y2 + ω2

xy2 = −2iD1Aye
iωxt0 + bA2

xe
2iωxt0 − βyyy2

1. (2.38)

The first terms on the right hand side of Eqs. (2.37) and (2.38) produce secular terms

in x2 and y2, respectively, which make the solution grow unboundedly in time. To

eliminate the secular terms, we exert solvability conditions:

D1Ax(t1, t2) = 0, (2.39)

D1Ay(t1, t2) = 0. (2.40)



24 Chapter 2. Nonlinear modal analysis of coupled two-bubble oscillation

Solving Eqs. (2.39) and (2.40), Ax and Ay turn out to be a function of only t2. The

solutions of Eqs. (2.37) and (2.38) are given by

x2 = −βxx − bωx
3ω2

x

A2
xe

2iωxt0 − βxx + bω2
x

ω2
x

|Ax|2 + cc, (2.41)

y2 = −βyy − bωx
3ω2

x

A2
ye

2iωxt0 − βyy + bω2
x

ω2
x

|Ay|2 + cc. (2.42)

Similarly, substituting Eqs. (2.35), (2.36), (2.41) and (2.42) into Eqs. (2.33) and (2.34)

leads to solvability conditions so as to eliminate the secular terms in x3 and y3:

2iωxD2Ax + iωxĉxAx + iωxµ̂xτ
∗ω2

xAy − ωxKxAx|Ax|2 − ω2
xµ̂xAy −

iêx
2

eiσ̂t2 = 0,

(2.43)

2iωxD2Ay + iωxĉyAy + iωxµ̂yτ
∗ω2

xAx − ωxKyAy|Ay|2 − ω2
xµ̂yAx −

iêy
2

eiσ̂t2

+ 2ωxα̂Ay = 0

(2.44)

where

Kx = −3βxxx +
10

3
ω2
x

(
β2
xx + bω2

xβxx
)

+ ω2
x

(
4

3
b2 + b

)
, (2.45)

Ky = −3βyyy +
10

3
ω2
x

(
β2
yy + bω2

xβyy
)

+ ω2
x

(
4

3
b2 + b

)
. (2.46)

To solve Eqs. (2.43) and (2.44) for Ax and Ay, we transform complex functions Ax and

Ay into the polar form

εAx(t2) =
1

2
ax(t2)ei[φx(t2)+σ̂t2], (2.47)

εAy(t2) =
1

2
ay(t2)ei[φy(t2)+σ̂t2] (2.48)

where ax, ay, φx and φy are real functions of t2. Substituting Eqs. (2.47) and (2.48) into

Eqs. (2.43) and (2.44), and separating the results into real and imaginary parts, a set of
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amplitude equations for the oscillation amplitude and the phase shift are obtained.

dax
dt∗

= −cx
2
ax −

µxτ
∗ω2

x

2
ay +

ωxµx
2

ay sin (φy − φx) +
ex

2ωx
cosφx, (2.49)

dφx
dt∗

= −σ − Kx

8
a2
x −

ωxµx
2

ay
ax

cos (φy − φx)−
ex

2ωxax
sinφx, (2.50)

day
dt∗

= −cy
2
ay −

µyτ
∗ω2

x

2
ax +

ωxµy
2

ax sin (φx − φy) +
ey

2ωx
cosφy, (2.51)

dφy
dt∗

= −σ − Ky

8
a2
y −

ωxµy
2

ax
ay

cos (φx − φy)−
ey

2ωxay
sinφy + αay (2.52)

where the scaled parameters by using ε are reset to the original form without (̂ ). Sub-

stituting Eqs. (2.47) and (2.48) into Eqs. (2.35) and (2.36) yields the first approximate

solution

∆x = ax cos (ωf t
∗ + φx) +O(ε2), (2.53)

∆y = ay cos (ωf t
∗ + φy) +O(ε2). (2.54)

2.2.3 Nonlinear normal modes

In analogy with the LNMs, we consider undamped free oscillation of Eqs. (2.49) to

(2.52). Dropping the damping and driving terms, the amplitude equations for NNMs

are given by

dax
dt∗

=
1

2
ωxµxay sin (φy − φx) , (2.55)

dφx
dt∗

= −Kx

8
a2
x −

1

2
ωxµx

ay
ax

cos (φy − φx) , (2.56)

day
dt∗

=
1

2
ωxµyax sin (φx − φy) , (2.57)

dφy
dt∗

= −Ky

8
a2
y −

1

2
ωxµy

ax
ay

cos (φx − φy) + αay. (2.58)

In what follows, the steady-state solution of Eqs. (2.55) to (2.58) is considered by

extending the definition of normal modes; motions which depart from a NNM confined

in it for all time. To obtain explicit expression of the NNMs, letting dax/dt = day/dt =
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0 in Eqs. (2.55) and (2.57) yields

φx − φy = 0, π (2.59)

which correspond to in-phase and out-of-phase NNMs, respectively. Since d (φx − φy) /dt =

0 from Eq. (2.59), Eqs. (2.56) and (2.58) lead to a following nonlinear algebraic relation

for ax and ay.

−Kx

8
a2
x +

Ky

8
a2
y ∓

ωx
2

(
µxay
ax
− µyax

ay

)
− αay = 0. (2.60)

The first approximate solution of the free oscillation is

∆x = ax cos Ωx(t
∗) +O(ε2), (2.61)

∆y = ay cos Ωy(t
∗) +O(ε2) (2.62)

where Ωi(t
∗) = ωxt

∗ + φi is the oscillation phase of the normal modes. The normal

frequency of ∆x and ∆y, denoted by ω1 and ω2 are given by

ω1 =
dΩx(t

∗)

dt
= ωx −

Kx

8
a2
x −

ωxµxay
2ax

cos (φy − φx) , (2.63)

ω2 =
dΩy(t

∗)

dt
= ωx −

Ky

8
a2
y −

ωxµyax
2ay

cos (φx − φy) + α. (2.64)

On the NNMs, the bubbles oscillate at the same frequency, ω, which are determined by

Eqs. (2.63) and (2.64). In order to complete understanding a bifurcation structure of

the normal modes, the case of equally-sized bubbles is considered in the following. In

this case (α = 0), one can analytically obtain the oscillation frequency and amplitude at

the bifurcation point. Straightforward calculations using the symmetric property of the

system and Eq. (2.60) lead to

(
a2
x − a2

y

) [
−Kx

8
± ωxµx

2axay

]
= 0 (2.65)
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FIGURE 2.2: The NNMs Ni (i = 1, 2, 3, 4) as a function of normal oscillation frequency ω (Case
A: R10 = R20 = 10 µm). The LNMs, L1 and L2, are also shown for comparison.

where Ky and µy are replaced by Kx and µx owing to the equality of the bubble sizes.

Assuming ax and ay to be positive quantities without loss of generality, Eq. (2.65)

produces

ay =


ax,

4ωxµx
Kxax

(φx − φy = 0),

ax (φx − φy = π).

(2.66)

Therefore, we obtain four types of NNMs:

N1: ax = ay, φx − φy = 0

N2: ax = ay, φx − φy = π

N3: ax ≥ ay, φx − φy = 0 (Localized mode)

N4: ax ≤ ay, φx − φy = 0 (Localized mode)

where Ni (i =1,2,3 and 4) denotes a branch of the four types of NNMs. The non-

localized normal modes N1 and N2 correspond to in-phase and out-of-phase motions.

Localized modes N3 and N4 indicate a localized oscillation where the total vibration

energy of the system is not evenly shared between the oscillators, but confined to either

one. Fig. 2.2 illustrates the NNMs as a function of oscillation frequency where the

LNMs, Li (i = 1, 2), are also depicted for comparison. The frequency of N1 and N2
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decreases with increasing oscillation amplitude, and they converge asymptotically to

their linear counterparts L1 and L2 in the limit of zero-amplitude. The in-phase mode,

N1, splits up at the bifurcation point, Pb, and the localized normal modes, N3 and

N4, emerge on either sides of N1 as a result of a pitchfork bifurcation (i.e., symmetry-

breaking). It follows that nonlinear localized resonance is expected in the neighborhood

of the localized NNMs if the vibration amplitude exceeds a certain critical value. What

is notable is that nonlinear localization can occur even in an equal-sized pair of bubbles

which has no structural detuning but is completely symmetric. The amplitude and the

frequency at the bifurcation point, Pb, are given by

abp = 2

[
ωxµx
Kx

] 1
2

, (2.67)

ωbp = ωx(1− µx). (2.68)

The amplitude at Pb is proportional to the square root of the ratio between the magnitude

of the nonlinearity and radiation coupling. In contrast, the frequency at Pb is just a

linear function of the coupling coefficient. We note that these results are valid only for

a limited parameter space under the small-amplitude approximation. Furthermore, the

bifurcation structure and their stability highly depend on energy dissipation because the

damping effect tends to smooth out the energy localization.

2.2.4 Steady state solution

The steady-state amplitude, the phase shift of ∆x and ∆y and their linear stabilities

are shown in Fig. 2.3 as a function of the driving frequency. It is clear that the forced

oscillation occurs in the neighborhood of the NNMs as is the case with linear reso-

nance; The branches a1 and a2 (in-phase oscillation) result from the in-phase normal

mode N1, and the branches a3 and a4 (localized oscillation) arise from the localized

normal mode N3 and N4, respectively. Out-of-phase motion associated with N2 is not

in resonance for this case. We found that the branch a1 is connected to a saddle-node
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FIGURE 2.3: The steady-state amplitude (top) and the phase shift (bottom) of the fundamental
component for case B as a function of the dimensionless driving frequency denoted by ai (i =1,2,3
and 4) in different colors. Solid and dashed lines stand for stable and unstable solutions, respec-
tively. For convenience, the NNMs in Fig. 2.2 are also depicted. The numerical results (circles) are
the steady-state fundamental component extracted from the FFT spectrum of time-radius curve.
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FIGURE 2.4: The steady-state solution of the branches a1 to a4 plotted in a ∆x-∆y configuration
space for (a) the branch a1 at ωf = 0.92, (b) the branch a2 at ωf = 1.02, (c) the branch a3 at
ωf = 0.97 and (d) the branch a4 at ωf = 0.97. The physical parameters are the same as those of
Fig. 2.3. Analytical solutions are the first approximation given by Eqs. (2.49) to (2.54). Numerical
curves were obtain by time-integration of Eqs. (2.5) and (2.6).

bifurcation point at its right end, and a supercritical pitchfork bifurcation appears at the

left end of a2. Consequently, there arises no stable synchronized motion between the
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FIGURE 2.5: The steady-state amplitude (top) and the phase shift (bottom) of the fundamen-
tal component for case C as a function of the dimensionless separation distance denoted by bi
(i =1,2,3 and 4) in different colors. Solid and dashed lines stand for stable and unstable solutions,
respectively. The numerical results (circles) are the steady-state fundamental component extracted
from the FFT spectrum of time-radius curve.

two bifurcation points. Instead, the localized solutions, a3 and a4, branch out from the

pitchfork bifurcation point. We also notice that the localized branch a4 intersects with

the non-localized branch a1, and three stable solutions coexist within a narrow range of

the driving frequency. Comparison with the numerical results shows a good agreement

over the range of the parameter limit. In general, more complicated bifurcation patterns

are to be expected in other two-oscillator with different nonlinearities and topologically

equivalent nonlinear systems. For reference, a bifurcation diagram for the case of larger

bubbles of 100 µm in radius are presented in Appendix A.3. Since the larger bubbles

have lower damping constants due to higher bubble wall Reynolds number, Hopf bifur-

cation and accompanying quasi-steady oscillation are found in Fig. A.1 in addition to
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FIGURE 2.6: The steady-state amplitude (top) and the phase shift (bottom) of the fundamental
component denoted by ci (i =1,2,3,4,5 and 6) in different colors. The parameters are same as case
B in Table 1. For comparison to Fig. 2.3, the effect of finite speed of sound is incorporated only in
the retardation effect, while neglecting the radiation damping. The numerical results are obtained
form Eqs. (2.15) and (2.16). The parameter of the retardation time is τ∗ = 0.86. Note that the peak
amplitudes of c3 and c4 are substantially damped compared to Fig. 2.3, and out-of-phase motions
(c5 and c6) manifest in the neighborhood of N2.

the symmetry-breaking bifurcation.

In Fig. 2.4, these four types of steady-state solutions are described in ∆x−∆y con-

figuration space. The non-localized solutions, a1 and a2, look like a straight line with a

positive slope of unity in Fig. 2.4(a) and (b) because of the completely synchronized in-

phase motion, while the plot of localized solutions, a3 and a4, are an elongated closed

orbit with an oblique axis. The orientation of the axes are due to the localization of the

phase difference shown in Fig. 2.3.

The steady-state amplitude and the phase shift as a function of the separation dis-

tance d∗(= d/R10) are shown in Fig. 2.5 where the driving frequency is fixed to ωf =
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0.97. The branch bi, respectively, corresponds to the branches ai in Fig. 2.3 for the

same i =1,2,3 and 4. The similar bifurcation structures (i.e., pitchfork and saddle-node

bifurcations) are also the case as with Fig. 2.3. That is, multi-valued stable solutions

arise by increasing the separation distance, leading to a drastic jump of the steady-state

at d∗ = 90 where the phase difference φy−φx changes from π/2 to zero. This indicates

that even a small coupling effect exerted from neighboring bubbles are essentially neg-

ligible in such nonlinear regime. The immediate question is to which solution does the

system converge for a typical initial condition. It requires observation of the sensitive

dependence of the long-time behavior on the initial conditions and is beyond the scope

of this paper.

Fig. 2.6 presents the effect of non-zero retardation time on the steady-state solu-

tion. The parameters are the same as Fig. 2.3 (case B) except for the presence of the

retardation effect. The primary difference from Fig. 2.3 (no time delay) is that one pair

of additional localized steady-state solutions, c5 and c6, arise in the neighborhood of

N2 (out-of-phase mode) as a result of symmetry-breaking bifurcation of c2. Indeed,

out-of-phase oscillations of c5 and c6 are evident from the bifurcation diagram of the

phase shift in Fig. 2.6. We also note that the peak amplitude of c3 and c4 are damped

compared to Fig. 2.3. These differences are due to the additional damping term, i.e.,

non-diagonal elements of the damping matrix C in Eq. (2.16). In fact, the NNMs are

unchanged with the presence of the retarded time as seen in Eq. (2.66). The result is

consistent with the discussion of (Doinikov, Manasseh, and Ooi, 2005) for two-bubble

oscillation; the damping constant of the higher-frequency mode, corresponding to L2

of this study, decreases because of the presence of the retarded effect, while that of the

lower-frequency mode is substantially increased.
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TABLE 2.1: Dimensionless parameters for air bubbles in water and the atmospheric ambient pres-
sure. The equilibrium radii of the two bubbles are 10 µm for all the cases. Case A corresponds to an
undamped free oscillation (damping and driving pressure are removed), and the other cases are for
forced oscillation with damping effects. Note that in case D and E Reynolds number is calculated
with the effective kinematic viscosity νeff = 6.73× 10−3 m2/s, and the effective polytropic expo-
nent κeff = 1.10. The corresponding driving pressure are 2.5 and 100 kPa for A∗ = 2.50 × 10−2

and 1.00, respectively.

Case R∗ Eu Re We C Pe A∗ ωf d∗

A 1 0.214 215 64.3 ∞ ∞ · · · · · · 60
B 1 0.214 215 64.3 ∞ ∞ 0.0250 0.9-1.05 60
C 1 0.214 215 64.3 ∞ ∞ 0.0250 0.97 5-200
D 1 0.214 215 64.3 69.5 11.4 1.00 0.3-1.1 7.5
E 1 0.214 215 64.3 69.5 11.4 1.00 0.3-1.1 3-45
F 1 0.235 2.06×103 585 ∞ ∞ 0.0150 0.9-1.05 60
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FIGURE 2.7: Time-radius curves for (a) ωf = 0.40 (second superharmonic resonance), (b) ωf =
0.70 (primary resonance). The physical parameters are case D (d∗ = 7.5, and A = 1.00) in Table
2.1.

2.3 Numerical results

The preceding weakly nonlinear analysis assumed small-amplitude perturbation and is

valid only for the limited parameter space. In this section, large amplitude oscillations

for a wide range of the driving frequency and the separation distance are presented.

An pair of equally-sized bubbles of 10 µm in radius with a fixed separation distance

are driven by a sound pressure amplitude of 100 kPa. We put a small disturbance to

the initial radius of bubble 2 in order to avoid a completely symmetric motion, and

(R1(0), R2(0), Ṙ1(0), Ṙ2(0)) = (1, 1.01, 0, 0) is used for each ωf . To be simple, the
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FIGURE 2.8: Frequency response curves of the maximum bubble radii obtained from the steady-
state oscillation after 32 cycles of the driving period. The physical parameters are case D (d∗ = 7.5,
and A = 1.00) in Table 2.1. The sound pressure corresponds to 100 kPa.

retarded effect is neglected in the following numerical calculation. In addition, we ac-

count for the well-known additional damping (Devin Jr, 1959; Chapman and Plesset,

1971) because the thermal damping dominates over the viscous damping for a resonant

bubble in a wide range of equilibrium bubble sizes. The effective viscosity, νeff , and

polytropic index, κeff , for thermal behavior of the internal gas are given by a function

of Péclet number, Pe = ωfR
2
10/αth, where αth is the thermal diffusivity of the gas

(Prosperetti, Crum, and Commander, 1988). In the calculation, the governing equation

is transformed into a C∞ equivalent dynamical system (Parlitz, Englisch, Scheffczyk,

and Lauterborn, 1990) to achieve smoother oscillation in the transformed system since

a singular behavior due to a violent collapse of a bubble oscillation leads to serious

numerical errors. The classical fourth order Runge–Kutta method is used for time inte-

gration.

In Fig. 2.7, time-radius curves of typical localized oscillation are plotted for case D

with a fixed driving frequency. The oscillation amplitudes are attracted to a localized

steady-state after the transient response decays although both motions of the bubbles

look identical during the first eight oscillation periods. It is also interesting to note that

the phase shifts of the oscillators converge to different values, and the bubbles collapse
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0

FIGURE 2.9: Contour plot of ∆Rmax = (R2max − R1max)/R10 as a function of the driving
frequency and the separation distance. Note that ∆Rmax = 0 indicates non-localized oscillation
which is not plotted, and only localized oscillation ∆Rmax 6= 0 is plotted. The physical parameters
used are those for case E (d∗ = 3− 45, and A∗ = 1.00) in Table 2.1.

with a slight time lag. Fig. 2.8 shows the frequency response curve of the maximum bub-

ble radii, Rimax, obtained from the steady-state oscillation after 32 cycles of the driving

period (Case D). The localized oscillations of the primary resonance demonstrated in

the previous section are clearly observed. The in-phase localized oscillation as shown

in Fig. 2.7(b) arises for a wide range of the driving frequency as can be expected from

the discussion of N3 and N4, while out-of phase motions associated with mode N2 are

suppressed by the presence of the additional thermal damping. As a result, the bifur-

cation structure is similar to Fig. 2.3. In addition, symmetry-breaking bifurcation of

superharmonic resonance is evident at ωf ≈ 0.40, while the perturbation analysis of

this frequency range is not presented in this article. The symmetry-breaking bifurca-

tion at the superharmonic resonance was numerically observed in coupled two Duffing

oscillators (Kozłowski, Parlitz, and Lauterborn, 1995). Furthermore, the magnitudes of

R1max and R2max are switched at the resonance peaks. It follows that the magnitude of

localized oscillation is sensitive, at the vicinity of resonance peaks, to microscopic fluc-

tuation of initial conditions or an external disturbance with the magnitude of no more
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than 1 % of the initial bubble radii.

In order to explore bifurcation structures in ωf −d∗ space, contour plot of the differ-

ence of the maximum amplitude, ∆Rmax = (R2max − R1max)/R10, as a function of the

driving frequency and the separation distance is illustrated in Fig. 2.9 where the physi-

cal parameters of case E are used. In contrast to the weakly nonlinear case, localization

occurs at short separation distances. This is because both the nonlinearity and coupling

strength should be large enough to counterbalance the thermal damping. Therefore,

the region of localization shifts toward a low-frequency and short-distance part of the

ωf − d∗ space which is a fairly typical parameter range used in practical experiments

and simulations in the early literatures (Takahira, Akamatsu, and Fujikawa, 1994; Par-

litz, Englisch, Scheffczyk, and Lauterborn, 1990; Takahira, Yamane, and Akamatsu,

1995; Ooi and Manasseh, 2005; Mettin, Akhatov, Parlitz, Ohl, and Lauterborn, 1997;

Wiedemair, Tukovic, Jasak, Poulikakos, and Kurtcuoglu, 2014). It follows that even

a single-sized bubble cloud can have complex bifurcation structures depending on the

concentration of bubbles and the driving pressure amplitude at the nonlinear resonant

frequencies.

2.4 Summary

This chapter provides an asymptotic derivation of the steady-state solution and under-

lying NNMs for the primary resonance of two spherical bubbles oscillating with a fixed

separation distance. In the case of equal-sized bubbles, an approximate solution of the

oscillation amplitude and the phase shift shows symmetry-breaking bifurcations, lead-

ing to multi-valued stable solutions in the neighborhood of the localized NNMs. The

distinctive feature of these solutions is that localized oscillation can occur depending

on the driving frequency and the separation distance between the bubbles; the synchro-

nized steady-state motion becomes unstable in a certain range of the parameter space.

In addition to the symmetry-breaking bifurcation, Hopf bifurcations turn out to occur
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for the case of lower damping constants (i.e., for larger bubbles). Additionally, numer-

ical calculation shows that the localized oscillation occur for a fairly typical parameter

range used in practical experiments and simulations in the literature.
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Chapter 3

Translational dynamics of an

oscillating bubble cluster

Translational motion of an oscillating bubble cluster under sound irradiation is studied

experimentally and is modeled in the framework of the classical approach of Bjerk-

nes. An experimental technique is proposed to observe bubble cluster formation and its

translational dynamics interacting with wall boundaries due to the secondary Bjerknes

force. The translational motion observed in the experiment is modeled by extending the

classical theory of Bjerknes on single bubble; a bubble cluster is treated as a single bub-

ble. The extended Bjerknes theory is shown to allow us to predict the overall trajectory

of the cluster translating toward a wall of finite acoustic impedance by tuning acoustic

energy loss at the wall. The drag force turns out to be unimportant for the translation of

a millimeter-sized cluster that we observed.

3.1 Experimental method

3.1.1 Experimental setup

The experimental setup is sketched in Fig. 3.1(a). A rectangular acrylic vessel (inside

sizes: 50 mm × 50 mm × 100 mm, thickness: 5 mm) filled with tap water of 90 mm in

height at the room temperature was fixed on a vibration generator (513-BS/Z08, EMIC
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Corp.). A vacuum pump (DAP-6D, ULVAC KIKO Inc.) was connected to the well-

closed vessel through a valve in order to reduce the hydrostatic pressure in the vessel

toward the vapor pressure. With the reduced ambient pressure, one can easily obtain

cavitation evens at low driving amplitude of the vibration generator (Crum, 1975). Con-

tinuous sinusoidal excitation was input from a function generator (WF1973, NF Corp.)

via a power amplifier (371-A, EMIC Corp.). The acceleration of the vessel in the ver-

tical direction was measured by an accelerometer (710-D, EMIC Corp.) with a charge

amplifier (6001-AHD/1NBD-1, EMIC Corp.), which was used to calculate the absolute

liquid pressure. The gas pressure in the container was monitored by a pressure sensor

(HAV-100KP-V, SENSEZ) attached on the top of the vessel. The absolute gas pressure

remains approximately at 5.0 kPa under steady state operation of the vacuum pump. It

turned out that the gas pressure is almost undisturbed, even with the presence of cavita-

tion. It can therefore be assumed that the liquid pressure at the free surface is fixed at

the gas pressure.

The recording system consists of a high-speed video camera (FASTCAM SA-5,

Photron), a distortion-less macro lens (VS-LD50, VS Technology) combined with a

2.0× magnification converter lens (VS-2.0XV, VS Technology), and LED backlight

(TS-LAX-RGB3, MeCan imaging). The spatial resolution of images was 41 µm per

pixel. The recording frame rate of the high-speed camera was set at 10000 frame/s,

which is sufficiently fast for image processing with the Fourier analysis. The exposure

time of the camera was fixed to 0.1 ms.

3.1.2 Preparation of a bubble cluster

A millimeter-sized gas bubble as a cavitation nucleus was manually injected by a needle

through a silicone plug of 4.5 mm in diameter, which was located at 30 mm above the

vessel bottom and 25 mm away from the side walls. The bubble injection was sketched

in Fig. 3.1(b). The diameter of the gas nucleus we obtained is approximately 1 mm. The

side view of the bubble nucleus is shown in Fig. 3.2. The bubble remained attached to
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FIGURE 3.1: Schematic of (a) experimental setup, (b) an enlarged view of the silicone plug and
needle and (c) comparison of a typical photographed image (left) and the image processing with a
bounding box and its centroid (right).

the wall surface unless the external driving force was imposed.

The periodic pressure field induced by the driving acceleration will follow a poten-

tial solution owing to the sufficiently long wave length and given in the form of (Crum,

1975; Nyborg and Rodgers, 1967; Sorokin, Blekhman, and Vasilkov, 2012)

p(h, t) = p0 + ρLgH + ρLAω
2H sinωt (3.1)

where H is the water depth measured from the free surface, p0 is the static pressure

at the free surface, ρL is the liquid density, g is the gravitational acceleration, A is the

displacement amplitude of the vibration generator, and ω is the angular frequency of the

vibration generator. Since p0 reached 5.0 kPa after vacuuming, the hydrostatic pressure

at the initial bubble position, atH = 60 mm (≡ H0), was reduced to 5.6 kPa. As a result

of this pressure reduction, the injected bubble nucleus was subject to large amplitude

oscillation and accompanying surface instability in the sub-kHz sound field even with a

weak sound amplitude ρLAω2H; this eventually leads to the formation of a collapsing
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FIGURE 3.2: Sideview of an injected bubble nucleus corresponding to the schematic in Fig. 3.1(b).

bubble cluster. In fact, the displacement acceleration measured by the accelerometer

was 29 m/s2 for 625 Hz and yields sound amplitude of 1.9 kPa at H = H0. However,

further large driving amplitude gave rise to a large number of cavitation arising probably

from pre-existing bubble nuclei at the container surface (Atchley and Prosperetti, 1989).

In order to observe only the motion of the injected bubble nucleus, the driving amplitude

was set at sufficiently low levels to avoid such undesired cavitation events.

3.1.3 Image processing

The recorded images were analyzed using the image processing software (MATLAB,

The Mathworks Inc.) function graythresh based on the binarization and thresholding

technique of a recorded image sequence to 8-bit grayscale images. Fig. 3.1(c) shows

comparison between a captured image and a processed binary image with a bounding-

box which encloses the contour of the cluster with the minimum area. The area of the

bounding-box Abox and the coordinate of its centroid (X, Y ) were computed for each

recorded image. Here, we defined an area-equivalent mean radius Rb as

Rb =

√
Area of the inscribed ellipse

π
=

√
Abox

2
. (3.2)

Temporal evolution ofRb was produced from the recorded image sequence, and Fourier

spectrum of the time-radius curve was then calculated for the use of theoretical analysis.

The transient velocity U in the x direction was calculated by a simple central difference
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FIGURE 3.3: Trajectory of a cluster motion denoted by a red solid line. Representative pictures
of the cluster are superimposed: (a) initial state, (b) collapse and fission, (c) jet formation and (d)
oscillation in contact with the side wall. The injected bubble nucleus departs from the silicone plug
and moves toward the right side wall.

of the X–t curve where X stands for the geometric center of a bubble cluster. Before

applying differentiation to compute the velocity, the X–t curve was smoothed using a

moving average low-pass filtering based on the MATLAB function filter.

3.2 Experimental observation

3.2.1 Overview of bubble cluster dynamics

Fig. 3.3 presents a representative example of cluster motion and its trajectory with the

driving frequency 625 Hz. An initially injected bubble ofRb=1 mm departs from the sil-

icone plug, oscillating in volume subject to the primary sound field. The bubble continu-

ously collapses with the Rayleigh–Taylor-like surface instability and subsequent bubble

fission (Brennen, 2002), so that the bubble oscillates as a cluster of bubble fragments.

It should be noted that the cluster motion occurs almost in the horizontal direction be-

cause the primary Bjerknes force counterbalances to the buoyant force in the vertical

direction.
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FIGURE 3.4: Snapshots of (a) the initial state, (b) maximum expansion, and (c-f) the consecutive
collapse phases. The scale bar represents 2 mm.

FIGURE 3.5: A typical image sequence of an oscillating bubble cluster driven at 625 Hz. The
image sequence corresponds to one oscillation cycle of the imposed driving frequency. The scale
bar represents 2 mm.

After some back-and-forth motion around the silicone plug, the bubble cluster goes

straight to the right direction with increasing its translational velocity due to the sec-

ondary Bjerknes force that arises from the interaction with the side walls, as will be

explained in Chapter 4. During the travel to the right side wall, the bubble cluster ex-

perienced kinds of phenomena shown in the following section, i.e., surface instability,

bubble collapse and fission, coalescence, nonlinear oscillation, interaction with the wall

boundaries.

3.2.2 Bubble collapse, fission and cluster oscillation

An image sequence of consecutive collapse phases is shown in Fig. 3.4. The dark circu-

lar structure seen beneath the bubble in the images is the upper part of the silicone plug.

The initially spherical bubble reached a maximum radius Rb = 2.15 mm, as seen in

Fig. 3.4(b), after several driving periods. At the subsequent first collapse shown in Fig.
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FIGURE 3.6: The results of image processing. (a) Rb–t curve, (b) Rb–t curve (enlarged) and (c)
its Fourier spectrum. The fitting curve in (b) was reproduced using the frequency component up to
the third harmonics of (c).
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FIGURE 3.7: The temporal evolution of the cluster position.

3.4(c), surface instability was developed, so that the bubble was split into fission frag-

ments. The deformed bubble has lost the spherical symmetry, but the configuration of

the fragments has an almost exact line symmetry with respect to the vertical axis. This

indicates that the primary sound field does not have a significant pressure gradient in the

x direction as described by Eq. (3.1). After the second collapse shown in Fig. 3.4(d),

each tuft-like structure in Fig. 3.4(c) seems to be split again into a couple of daughter

bubbles. Although the number of fission fragments was augmented and the size of bub-

ble fragments was ununiformly distributed, the line symmetry was barely retained at

this moment. During the third collapse, the fragmentation continued further as shown

in Fig. 3.4(e), and much smaller bubbles were produced. As seen in Fig. 3.4(f), the bub-

ble fragments tended to be single-sized after the fourth collapse, and their oscillation

phases were synchronized. At the subsequent collapses, the cluster looked very similar
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in a sense that the size and number of the bubble fragments remain at the same order,

implying that fission and coalescence balance. The subsequent cluster oscillation for

one driving period is shown in Fig. 3.5. The bubble cluster kept in contact with the back

wall and slid across the contact surface with its shape remained nearly hemispherical.

Fig. 3.6(a) shows the last 130 oscillation periods of the evolution of the cluster ra-

dius Rb before the bubble cluster crashed to the right side wall. The beginning of the

external driving is set to t = 0. The volumetric response of the bubble cluster is found

to be almost in a steady state during the observation. It should be noted that the inter-

action between the cluster and the right side wall comes into play just before the cluster

reaches the wall; otherwise, the interaction does not play an important role in the volu-

metric oscillation. The bubble fragments remain gathered in a cluster. This is because

attractive secondary Bjerknes forces, which act on synchronously oscillating bubbles of

the similar size, hold the bubble fragments closely together within the cluster.

The evolution of the cluster radius in shorter time is shown in Fig. 3.6(b) and its

Fourier spectrum (from 64 data points) is computed in Fig. 3.6(c). The fitting curve is

reproduced using Eq. (3.5), to be presented in the following section, where nonlinear

components up to the third harmonic δ3 are considered. It is clearly seen that there arises

nonlinear resonance in the oscillation; the second superharmonic at 1250 Hz (i.e., twice

the driving frequency) is notably evident. It follows that the resonant frequency of the

cluster oscillation would lie around 1250 Hz. If the damping effect is small, resonant

FIGURE 3.8: A typical image sequence of an oscillating bubble cluster driven at 312 Hz. The
image sequence corresponds to one oscillation cycle of the imposed driving frequency. The scale
bar represents 2 mm.
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frequency of a spherical gas bubble is given by the Minnaert frequency, ωM (Leighton,

2012). The formula of the natural frequency can be extended to the case of a spherical

bubble cluster that consists of single-sized bubbles (Nigmatulin, Akhatov, Vakhitova,

and Nasibullayeva, 2000; Nasibullaeva and Akhatov, 2013) and is given by

ωc =
1

a0

√√√√√√√
3γ (p0 − pv) +

2S

a0

(3γ − 1)

ρL

(
1 +

N1/3a0

R0

(N2/3 − 1)

) < ωM (3.3)

where N is the number of bubble fragments in the cluster, R0 is the equilibrium cluster

radius, a0 is the equilibrium radius of bubbles in the cluster, γ is the ratio of the specific

heats of the bubble contents, pv is the vapor pressure and S is the surface tension. Eq.

(3.3) is reduced to the Minnaert frequency when N = 1 and the surface tension is

neglected. Calculating with γ = 1.4 (for air), S = 0.073 N/m, R0 = 1.6 mm and

p0 − pv ∼ 3 kPa offers a reasonable estimation of a0, given the cluster’s resonance

frequency ωc = 2π × 1250 rad/s; a0 = 0.58 mm, 0.35 mm, 0.17 mm and 0.081 mm,

respectively, for N = 1, 10, 100 and 1000. In the particular example of our experiment

in Fig. 3.3, the cluster dynamics are tuned to be under resonance at twice the driving

frequency. Indeed, we also observed cluster oscillation under primary resonance (i.e.,

resonance at an imposed frequency) by lowering the driving sound frequency to 312.5

Hz (See Fig. 3.8), which consists of a small number of N but arising from similar R0,

leading to larger bubble fragments than that of Fig. 3.4. The result is consistent with the

above discussion where one obtains a smaller resonant frequency from Eq. (3.3) for the

case of larger a0.

3.2.3 Interaction with wall boundaries

The trajectory of the cluster center is shown in Fig. 3.7. The cluster stayed around the

plug until t = 760 ms. After that, the cluster began traveling toward the right side

wall subjected to the secondary Bjerknes force exerted from the wall. The direction of

movement depends not only on the initial position, but also the detuning of the vibrating
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a)

b)

FIGURE 3.9: An image sequence of (a) the jet-like motion and (b) hemispherical oscillation in
contact with the right side wall driven at 625 Hz. The scale bar represents 2 mm.

system and randomness of the fission process. The impact on the right wall (located at

x = 25 mm) occurred approximately at t = 970 ms.

The oscillating bubble cluster radiates secondary pressure field, prad, which re-

flects on the side walls and forms a pressure gradient at the cluster normal to the wall,

∂prad/∂x. The cluster with volume V (t) in the pressure gradient experienced an instan-

taneous force, −V (t)∂prad/∂x. Since this force is composed of a product of oscillating

components, time-averaging of this force leads to mean motion of the cluster. The di-

rection of the force is determined by phase angle between the cluster oscillation and the

reflected wave. It is instructive to note that in the y direction, buoyant force counter-

balanced to the Bjerknes force due to the primary sound field induced by the driving

acceleration (strictly, interaction with the bottom wall and top surface contribute to the

force balance). This allowed the cluster to move almost in the horizontal direction. The

translational dynamics in the x direction will be modeled and examined in Section 4.

At the final stage of the wall impact, we observed a jet-like motion of the bubble

cluster shown in Fig. 3.9(a), which is similar to the phenomenon of a single bubble near

a wall boundary; asymmetric bubble collapse leads to formation of a liquid jet directed

toward the wall (Lauterborn and Bolle, 1975; Kim and Kim, 2014). The interaction

between larger bubbles in the cluster and the wall boundary became much stronger than
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that of bubble-bubble interaction; smaller bubbles were no longer able to follow up

the fast motion and left behind the cluster. After the impact on the wall, side view of

cluster oscillation were captured at the corner of the container shown in Fig. 3.9(b).

Once the cluster was attached to wall surface, the shape of the cluster remained almost

hemispherical during oscillation, meaning that the boundary layer at the side wall does

not have an impact on the cluster dynamics.Therefore, the hemispherical bubble cluster

may be treated as a spherical cluster under the presence of a hemispherical mirror image

that is oscillating in phase at the opposite side of the wall.

3.3 Modeling of the translational motion

3.3.1 Secondary Bjerknes force

Fig. 3.10 illustrates the top view of the vibrating water vessel. The separation between

the left and right side walls is 2L, and the center of a (hemispherical) bubble cluster

in the x direction is denoted by X and is initially set at the middle of the side walls

(i.e., −L < X < L). Here, we consider fictitious bubble clusters that are mirrored

with respect to the left and right side walls; the mirrored clusters are set at 2 (L+X)

and 2 (L−X) away from the original cluster. With these mirrored clusters, we aim to

model the interaction of the oscillating bubble cluster of our target with the side walls.

We treat the acrylic side wall as an elastic boundary and assume that the secondary

sound field induced by oscillation of a bubble cluster is spherically symmetric. Since

the interaction between the bubble cluster and the plane boundaries is equivalent to

monopole interaction with its images, the gradient of the radiation pressure at distance

l away from the center of an oscillating cluster is described by (Brennen, 2013)

∂pa
∂r

∣∣∣∣
r=l

= −
ρL

(
R2R̈ + 2RṘ2

)
l2

(3.4)
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FIGURE 3.10: Schematic of the water vessel (top view). X and 2L denote the center of a hemi-
spherical bubble cluster and the separation distance between the left and right side walls, respec-
tively. The bubble cluster is mirrored with respect to the left and right side walls; the mirrored
clusters are set at 2 (L+X) and 2 (L−X) away from the original cluster.

where dots denote time derivative, r is the radial component in the spherical coordinates,

ρL is the (constant) density of the liquid, R is the time-varying cluster radius, and l

is the distance to measurement point from the cluster center. For clarity, we account

only for the adjacent two images in the x direction while neglecting any higher-order

corrections. Since we will below introduce simplifications in fluid dynamics modeling

of cluster translation, higher-order corrections are expected to be minor.

The radial oscillation of a spherical cluster is now expanded as Fourier series:

R(t) = R0

[
1 + δ0 +

n∑
k=1

δk sin(kωt+ φk)

]
(3.5)

where R0 is the radius of the (initially injected) bubble nucleus, ω is the angular fre-

quency of the primary sound field induced by the external driving, and δk and φk

(k = 0, 1, . . . , n) are, respectively, the small amplitude and the phase angle of frequency

component k. Here, the mean radius of the cluster, Rc, is defined as a time average of
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R(t) by

Rc = R0 (1 + δ0) . (3.6)

Since the primary sound field governed by Eq. (3.1) is a function of y (= H0 −

H) and has no significant pressure gradient in the x direction, the force acting on the

cluster is only due to the reflected pressure wave from the side walls (Crum, 1975).

Therefore, the pressure gradient of the reflected wave at the center of the bubble cluster

is approximated by

∂pa
∂x

∣∣∣∣
x=X

= −

[
ρLR

2
cR̈

4(L−X)2
− ρLR

2
cR̈

4(L+X)2

]
Q (3.7)

where the complex quantity Q represents acoustic energy loss through transmission to

the side walls of finite acoustic impedance. To be simple, the loss Q is assumed to be

constant regardless of the frequency. The time-averaged Bjerknes force (of the second

kind) in the x direction is obtained as a function of position X ,

FB(X) = −
〈
V (t)

∂pa(X, t)

∂x

〉
(3.8)

where 〈·〉 denotes a time average over the driving period 2πω−1 and V (t) = (4π/3)R3(t)

is the volume of the spherical bubble cluster. Substituting Eq. (3.7) into Eq. (3.8) leads

to

FB(X) = 2πρLω
2R6

c∆
2

[
1

4(L−X)2
− 1

4(L+X)2

]
<[Q] (3.9)

where < denotes the real part and

∆ =
1

1 + δ0

[
3∑

k=1

k2δ2
k

]1

2
. (3.10)

Here, higher nonlinear corrections of the order O(δi1δ
j
2δ
k
3) (i+ j + k ≥ 3 ; i, j and k are
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integers) are neglected in Eq. (3.9). We note that a long-time behavior of the transla-

tion of an oscillating bubble cluster arises from quadratic nonlinear terms O(k2) in the

expression of the Bjerknes force FB.

3.3.2 Translational motion of the bubble cluster

The translation of the bubble cluster may be described by

m
dU

dt
= FB + FD + FA (3.11)

where U is the translational velocity and m is the mass within the cluster. Since the gas

phase is essentially massless, the cluster mass is approximated by

m =
4

3
πρLR

3
c (1− αc) , (3.12)

where αc is the so-called void fraction (i.e., the volume fraction of the gas phase). The

case of no bubbles is represented by αc = 0. The added force, FA, arising from un-

steadiness is calculated by (Barbat, Ashgriz, and Liu, 1999)

FA =
2

3
πρLR

3
c

dU

dt
, (3.13)

where (2/3)πρLR
3
c means the added mass. It will turn out, in the following discussion,

that the added force is comparable with the cluster’s inertia and needs to incorporated

in the case of unsteady translation.The drag force acting on the bubble cluster is given

by Levich’s formula (Doinikov, 2002),

FD(U) = −12πµLRcU (3.14)

where µL is the liquid viscosity. We will show that the contribution of the drag force

has negligible impact on the translation. Because of the assumption of small-amplitude
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oscillations, the cluster radius is evaluated as the undisturbed constant Rc in Eqs. (3.12)

to (3.14) (Krefting, Toilliez, Szeri, Mettin, and Lauterborn, 2006).

The dimensionless variables (superscripted by asterisks) are defined as

U∗ =
U

ωL
, X∗ =

X

L
, t∗ = ωt. (3.15)

Substituting Eqs. (3.15) into Eq. (3.13) leads to the dimensionless form

dU∗

dt∗
= B

[
1

(1−X∗)2
− 1

(1 +X∗)2

]
− CDU∗. (3.16)

There arise the two dimensionless parameters

B =
3

4m∗

(
Rc

L

)3

∆2<[Q], CD =
3

4m∗
Rc

L

48

Re
. (3.17)

wherem∗ is the dimensionless mass that consists of the cluster mass and the added mass

is given by

m∗ = 3− 2αc. (3.18)

For the case of a single bubble (not a cluster) with αc = 1, this reduces to m∗ = 1. Note

that B presents intensity of the acoustic radiation from the bubble cluster including the

acoustic energy loss, and CD is the drag force where Re = (2Rc)
2 ων−1

L is Reynolds

number from the cluster translation. For the inviscid case (CD = 0), one can explicitly

derive the exact solution of Eq. (3.16). Multiplying the both side of Eq. (3.16) by U∗

and integrating with initial conditions (X0, U0) yield

U∗2 =

(
U∗20 −

4B

1−X∗20

)
+

4B

1−X∗2
. (3.19)

For reference, the eigenvalue analysis of the dynamical system described by Eq. (3.16)

is presented in Appendix B.
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TABLE 3.1: The cluster radius Rc and oscillation amplitudes δk determined by the experimentally
obtained Fourier spectrum. The radius of the (initially injected) bubble nucleus is R0 = 1.01 mm.
The imposed sound frequency is 625 Hz.

Rc[mm] δ0 δ1 δ2 δ3

1.68 0.665 0.216 0.169 0.0802
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FIGURE 3.11: Comparison between the experiment and simulations: the results of the temporal
evolution of the cluster position. The parameter for the acoustic energy loss is set at <[Q] = 0.22.

3.4 Comparison to the experimental result

With the model we proposed in the previous section, we now try to replicate the cluster

translation observed in Fig. 3.3. The mean radius Rc and oscillation amplitudes δk are

determined from the Fourier spectrum in Fig. 3.6(c):

Rc = |Rb(f)|f=0, (3.20)

δk = |Rb(f)|f= ω
2π
×k (3.21)

where k takes 1, 2, or 3. The computed values of Eqs. (3.20) and (3.21) are summarized

in Table 3.1. For water, we have ρL = 1000 kg/m3 and µL = 0.001 Pa·s. The initial

position and velocity of the bubble cluster are set, respectively, at X0 = 4 mm and

U0 = 0.01 m/s; the simulation result is not altered significantly by slight changes in the
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values of X0 and U0. The void fraction is approximated by

αc ≈
(
R0

Rc

)3

= 0.27. (3.22)

Comparison of the temporal evolution ofX between the experiment and the model is

made in Fig. 3.11 where the parameter for the acoustic energy loss is set at<[Q] = 0.22.

The maximum particle Reynolds number defined as ReU = 2RcUν
−1
L is approximately

1900 for Umax = 0.576 m/s at X = 23 mm. The computed curve fits well to the

experiment except near the cluster-wall collision. It should be noted, however, that

higher-order nonlinear corrections neglected in the present model may be needed for

the short-distance interaction; the model overestimates the translational velocity as the

separation distance decreases. We also note that the evaluation of the drag force acting

on the cluster is unimportant, for a change in the computation is insignificant between

the viscous and inviscid cases. Finally, we pointed out that the ratio of the cluster’s

inertia to the added inertia, m(dU/dt)/FA, is 1.46, meaning that the added mass effect

needs to be incorporated in the case of unsteady translation. It is therefore concluded

that the translational motion is determined mainly by the secondary Bjerknes force and

the inertia from the cluster’s mass and the added mass in this particular example.

3.5 Summary

An experimental technique was developed to observe translation of a bubble cluster

oscillating under a stationary sound field and the translational dynamics were modeled

by simply extending the theory of Bjerknes. The bubble cluster shows translation toward

the side wall. We explained the cluster translation as a result of the interaction with

imaginary bubbles located at the opposite side of the side walls. The interaction was

modeled by applying the Bjerknes theory of the second kind where the cluster is treated

as a single bubble, while acoustic energy loss at the elastic wall was treated as a tuning

parameter. We showed that the cluster translation observed in the experiment can be
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predicted properly by solving the equation of the cluster motion coupled with extended

Bjerknes theory. It is concluded that the cluster translation in the present experiment

is determined mainly by the secondary Bjerknes force and the cluster inertia from the

cluster’s mass and the added mass.
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Chapter 4

Coupled bubble dynamics with an

elastic boundary

This chapter provides a physical model designed for the coupled bubble and elastic wall

dynamics. Bubble oscillation is modeled in an axisymmetric two dimensional domain.

The ambient flow field is assumed potential, and linear elastodynamics of a circular

plate with a finite thickness is coupled with the potential flow via linear boundary con-

ditions. The basic equations of the flow field are converted in integral form for the sake

of boundary element formulation. Eigenvalue analysis of the elastodynamics of the

deformable wall is performed on the basis of Love’s stress function in order to obtain

linear normal modes of the elastic wall given a stress free boundary condition.

4.1 Boundary integral modeling of bubble dynamics

4.1.1 Basic equation

A schematic of an oscillating bubble near a circular elastic body embedded in a rigid

foundation is given in Fig. 4.1. The equilibrium bubble radius is R0. The distance

between the bubble center and the elastic wall is dw. The coordinate of system is an

axisymmetric cylindrical coordinates. The bubble wall is denoted by Sb, and the wall

surface is denoted by Sr and Se for the rigid and elastic parts of the wall. The radius

and thickness of the elastic body are a and h, respectively. The origin of the coordinate
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Bubble

dw
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FIGURE 4.1: A schematic of bubble-wall interaction.

system is fixed on the bottom of the elastic body. The host liquid is incompressible,

and the ambient fluid motion is assumed to be irrotational, indicating that boundary

layer is sufficiently thin due to the slipped boundary condition at the bubble wall. It

should be noted that the slipped boundary condition does not hold if the bubble wall

is contaminated with chemical materials such as surfactants; Marangoni effects arising

from ununiformity of the concentration of the surfactants alter the dynamical boundary

condition at the bubble wall (Takagi and Matsumoto, 2011). The fluid velocity is given

by a gradient of the velocity potential:

u = ∇φ. (4.1)

The conservation of mass leads to Laplace’s equation for the velocity potential:

∇2φ = 0. (4.2)
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The dynamic boundary condition is satisfied on the bubble wall.

Dφ

Dt
=

1

2
|∇φ|2 − pb − p∞

ρL
(4.3)

where D/Dt is the material derivative, pb is the liquid pressure at the bubble wall, p∞ is

the pressure in the far field and ρL is the liquid density. The position of a liquid particle

on the bubble wall satisfies the kinetic boundary condition:

dx

dt
= ∇φ (4.4)

where x is the position of a fluid particle on the bubble wall. On the free surface, no

shear boundary condition is satisfied.

Dφ

Dt
=

1

2
|∇φ|2 +

p∞(t)

ρL
− PG0

ρL

(
V0

V

)κ
+
S

ρL
(∇ · n) +

2

Re
(n∇n) . (4.5)

where PG0 and V0 are the equilibrium gas pressure and the volume of the bubble content,

S is the surface tension and n is the unit normal directed away from liquid. The viscous

collection (Lundgren and Mansour, 1988) is incorporated in the last term on the right

hand side of Eq. (4.5).

4.1.2 Boundary integral formulation

Laplace’s equation is solved for φ and ∂φ/∂n in the form of an integral equation:

α (x0) f (x0) = −
∫
S

GAX (x,x0) [n · ∇f (x)] r (x) dl (x)

+PV

∫
S

f (x)
[
n · ∇GAX (x,x0)

]
r (x) dl (x) (4.6)

where x denotes the observation point in the cylindrical coordinates, x0 is the source

point of G (x,x0), and G (x,x0) is the fundamental solution of Laplace’s equation
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given by

G (x,x0) =
1

4π |x− x0|
. (4.7)

For axisymmetric flow in the cylindrical coordinates, the Green function is integrated in

θ and the axisymmetric Green function is given by

GAX (x,x0) =
F (k)

π
√

(z − z0)2 + (r + r0)2
. (4.8)

where F (k) is the elliptic integral of the first kind given by

F (k) =

∫ π
2

0

dη√
1− k2 cos2 η

. (4.9)

The parameter k is a function of the observation point and of the position of the source

point as follows:

k2 =
4rr0

(z − z0)2 + (r + r0)2
. (4.10)

The gradient of the axisymmetric Green function are

∂GAX

∂z
= − 1

4π
(z − z0)I30, (4.11)

∂GAX

∂r
= − 1

4π
(rI30 − r0I31) . (4.12)

The integral quantities in Eq. (4.11) and (4.12) are given by

I30 =
4

π [(z − z0)2 + (r + r0)2]
3
2

E(k)

1− k2
, (4.13)

I31 =
4

π [(z − z0)2 + (r + r0)2]
3
2

1

k2

[
−2F (k) +

2− k2

1− k2
E(k)

]
(4.14)
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where E(k) is the elliptic integral of the second kind defined as

E(k) =

∫ π
2

0

√
1− k2 cos2 η dη. (4.15)

4.1.3 Boundary condition

On the elastic part of the wall, the fluid motion is coupled with the elastic wall via

following linearized boundary conditions:

∂φ

∂z
=
∂w

∂t
, (4.16)

∂2φ

∂z∂t
=
∂2w

∂t2
, (4.17)

pw(r, t) = −ρL
∂φ

∂t
+ p∞ (4.18)

where w is the vertical displacement of the elastic boundary, and pw(r, t) is the pressure

at the wall. Eq. (4.18) is the linearized Bernoulli equation. On the rigid part of the wall,

the normal velocity and acceleration are set to zero:

∂φ

∂z
= 0, (4.19)

∂2φ

∂z∂t
= 0. (4.20)

4.2 Linear elastodynamics of a circular plate

4.2.1 Basic equation

The elastodynamics of an axisymmetric elastic body is described by Cauchy’s equation

of motion:

∂τrr
∂r

+
∂τrz
∂z

+
τrr − τθθ

r
= ρw

∂2ur
∂t2

, (4.21)

∂τzr
∂r

+
∂τzz
∂z

+
τzr
r

= ρw
∂2uz
∂t2

(4.22)
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where ρw is the solid wall density, ur and uz are the displacements in the r and z direc-

tions, and τij is the stress tensor of the isotropic linear elasticity given by

τij = Λδij

(
∂ur
∂r

+
∂ur
r

+
∂uz
∂z

)
+G

(
∂ui
∂rj

+
∂uj
∂xi

)
(4.23)

where i and j take r or z, Λ and G are Lamé’s constants, which are related via Poisson’s

ratio, ν, as

Λ =
2(1− ν)

1− 2ν
G (4.24)

which takes infinity for the case of incompressible solid (ν = 0.5).

4.2.2 Dynamic Love’s stress function

To simplify the eigenvalue analysis, the displacements and stresses are expressed by

only one scalar function, χ(r, z, t), in the form of

ur(r, z, t) = − 1

2G

∂2χ

∂r∂z
, (4.25)

uz(r, z, t) =
1

2G

[
(1− 2ν)

(
∇2χ− 1

c2
s

∂2χ

∂t2

)
+∇2

rχ

]
, (4.26)

τrr(r, z, t) =
∂

∂z

[
ν

(
∇2χ− 1

c2
s

∂2χ

∂t2

)
− ∂2χ

∂r2

]
, (4.27)

τθθ(r, z, t) =
∂

∂z

[
ν

(
∇2χ− 1

c2
s

∂2χ

∂t2

)
− 1

r

∂χ

∂r

]
, (4.28)

τzz(r, z, t) =
∂

∂z

[
(1− ν)

(
∇2χ− 1

c2
s

∂2χ

∂t2

)
+∇2

rχ(r, z, t)

]
, (4.29)

τrz(r, z, t) =
∂

∂r

[
(1− ν)

(
∇2χ− 1

c2
s

∂2χ

∂t2

)
− ∂2χ

∂z2

]
(4.30)

where χ is dynamical Love’s stress function, cs =
√
G/ρw is the speed of transversal

sound wave, and∇2
r is a Laplace operator with respect to the radial coordinate given by

∇2
r =

1

r

∂

∂r

(
r
∂

∂r

)
=

∂2

∂r2
+

1

r

∂

∂r
. (4.31)
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The stress function identically satisfies Eq. (4.21) and yields a biharmonic problem de-

scribed by Eq. (4.22) as will be presented in the following section.

4.2.3 Dimensionless form

The initial bubble radius and the oscillation period of the adiabatic natural frequency of

an isolated spherical bubble are chosen to be the characteristic length and time scales.

The coordinates of the system and variables are transformed to dimensionless form:

r∗ =
r

R0

, z∗ =
z

R0

, t∗ = ωN t, (4.32)

u∗r =
ur
R0

, u∗z =
uz
R0

, (4.33)

χ∗ =
χ

2GR3
0

. (4.34)

Navier’s equation in dimensionless form is

∇∗2u∗ +
1

1− 2ν
∇∗(∇∗ · u∗) =

1

M2
s

∂2u∗

∂t∗2
(4.35)

where M2
s = G/ (ρwω

2
NR

2
0) is the dimensionless speed of the transversal sound wave.

Note that the second term on the left hand side of Eq. (4.35) is dropped for the case of

incompressible elasticity ν = 0.5). The dimensionless displacements and stresses are

u∗r = − ∂2χ∗

∂r∗∂z∗
, (4.36)

u∗z = (1− 2ν)

[
∇∗2χ∗ − 1

M2
s

∂2χ

∂t2

]
+∇2

rχ
∗, (4.37)

τ ∗rr =
∂

∂z∗

[
ν

(
∇2χ∗ − 1

M2
s

∂2χ∗

∂t∗2

)
− ∂2χ∗

∂r∗2

]
, (4.38)

τ ∗θθ =
∂

∂z∗

[
ν

(
∇2χ∗ − 1

M2
s

∂2χ∗

∂t∗2

)
− 1

r∗
∂χ∗

∂r∗

]
, (4.39)
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τ ∗zz =
∂

∂z∗

[
(1− ν)

(
∇2χ∗ − 1

M2
s

∂2χ∗

∂t∗2

)
+∇∗2r χ

]
, (4.40)

τ ∗rz =
∂

∂r∗

[
(1− ν)

(
∇2χ∗ − 1

M2
s

∂2χ∗

∂t∗2

)
− ∂2χ∗

∂z∗2

]
. (4.41)

4.2.4 Boundary condition

Displacement boundary conditions are imposed at z = 0 and r = a:

ur(a, z, t) = 0, (4.42)

uz(r, 0, t) = 0. (4.43)

Stress boundary conditions are imposed at z = 0 and r = a. At the bottom end, shear

free boundary condition is used, while stress free condition is used for the free surface:

τrz(r, 0, t) = 0, (4.44)

τrz(r, h, t) = 0, (4.45)

τzz(r, h, t) = 0. (4.46)

4.2.5 Eigenvalue analysis

On the basis of the stress function, eigenfunctions and eigenfrequencies are derived as

follows. For brevity, subscripts for dimensionless parameters are omitted. The equation

of motion in the z direction is a biharmonic equation of χ:

∇4χ+

(
1

M2
s

+
1

M2
p

)
∇2χ̈+

1

M2
sM

2
p

....
χ = 0 (4.47)

where dots denote differentiation with respect to time, and Mp is the speed of the longi-

tudinal sound wave. The stress function is separated in the form

χ(r, z, t) = R(r)Z(z)eipt (4.48)



4.2. Linear elastodynamics of a circular plate 65

where p is the eigenfrequency, andR(r) and Z(z) are the eigenfunctions in the r and z

directions, respectively. Substituting into Eq. (4.22) leads to

∇4
rR
R

+

(
p2

M2
s

+
p2

M2
p

)
∇2
rR
R

+ 2
∇2
rR
R
Z ′′

Z

+

[
p4

M2
sM

2
p

+

(
p2

M2
s

+
p2

M2
p

)
Z ′′

Z
+
Z ′′′′

Z

]
= 0. (4.49)

The fourth term on the left hand side of Eq. (4.49) should be a function of either r or z.

Therefore, we consider the case of

∇2
rR
R

= −λ2 (4.50)

where λ is a positive real or a pure imaginary constant. Thus,R turns out to be expressed

by

R(r) = A1J0(λr) (4.51)

where J0 is the Bessel function of the first kind of the zeroth order. Substituting Eq.

(4.51) into Eq. (4.49) yields

Z ′′′′ +
(
p2

M2
s

+
p2

M2
p

− 2λ2

)
Z ′′

−
(
p

Ms

− λ
)(

p

Ms

+ λ

)(
p

Mp

− λ
)(

p

Mp

+ λ

)
Z = 0. (4.52)

The solution of Eq. (4.52) can be given in the form of

Z(z) = B1 cos ksz +B2 sin ksz +B3 cosh kpz +B4 sinh kpz (4.53)
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where ks and kp, respectively, are the complex wave numbers of the transversal and the

longitudinal sound waves given by

ks =

√
λ2 − p2

c2
s

, (4.54)

kp =

√
λ2 − p2

c2
p

. (4.55)

For incompressible elasticity, kp = λ because of the infinite speed of sound of the

longitudinal wave. Eq. (4.42) leads to

J1 (aλ) = 0 (4.56)

where a is the radius of the elastic plate. Therefore,

λm =
αm
a

(4.57)

where αm is the mth zero of the Bessel function of first kind of the zeroth order. Simi-

larly Eq. (4.43) and (4.44) yield

B1 = 0, (4.58)

B3 = 0. (4.59)

Stress free boundary conditions at z = h lead to following two linear equations with

respect to B2 and B4:

B2ks
(
−M2

s k
2
s + p2

)
cos ksh+B4kp

(
M2

s k
2
p + p2

)
cosh kph = 0, (4.60)

B2M
2
s

(
k2
s − λ2

m

)
sin ksh+B4M

2
s

(
k2
p + λ2

m

)
sinh kph = 0. (4.61)
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To determine non-zeroB2 andB4, the determinant of the set of Eq. (4.60) and Eq. (4.61)

must be zero, leading to

kp
(
k2
s − λ2

m

) [
M2

s

(
(k2
p − 3λ2

m

)
+ p2

]
cosh kph sin ksh

− ks
(
k2
p + λ2

m

) [
M2

s

(
k2
s + 3λ2

m

)
− p2

]
sinh kph cos ksh = 0. (4.62)

The eigenfrequency of (m,n) mode, pn, is numerically obtained from the nth zero of

Eq. (4.62). The corresponding eigenfunction is

χmn(r, z, t) = J0 (λnr)

[
sin ksz +

(ks + λm) (ks − λm) sin ksh

2λ2
m sinh kph

sinhλmz

]
. (4.63)

The boundary conditions of Z(z) are summarized below for use of the next section:

Zn(0) = 0, (4.64)

Z ′′n(0) = 0, (4.65)

Z ′′n(h) + λ2
mZn(h) = 0, (4.66)

Z ′′′n (h) +

(
p2
n

M2
s

− 3M2
s λ

2
m

)
Z ′n(h) = 0. (4.67)

In Fig. 4.2, the eigenfrequencies of the (1,m) modes are plotted as a function of the

wall thickness. The eigenfrequency decreases with increasing the wall thickness and

the mode number.

4.2.6 Orthogonality of the eigenfunction

In this section, the orthogonality of the differential operator of Eq. (4.52) is examined,

and an adjoint function which is orthogonal to Zn(z) is developed. Multiplying a scalar

function of z, Φ(z), on the left hand side of Eq. (4.52) and integrating with respect to z

from 0 to h yield

∫ h

0

(
Ln − V 2

n2

)
ZnΦdz = 0 (4.68)
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FIGURE 4.2: Eigenfrequency of the (1, n) eigenmodes (n = 1, 2, 3, 4 and 5) as a function of the
wall thickness for the case of (a)G = 1.5 kPa, and (b)G = 15 kPa. The eigenfrequency and the wall
thickness are normalized, respectively, by the adiabatic natural frequency and the initial radius of
an isolated bubble.

where L = (∂4/∂z4) + V 2
n1 (∂2/∂z2) denotes the linear differential operator, and V 2

n1

and V 2
n2 are given by the eigenvalues of the (m,n) mode:

V 2
n1 =

p2
n

M2
s

− 2λ2
m, (4.69)

V 2
n2 = λ2

m

(
p2
n

M2
s

− λm
)
. (4.70)

Integrating Eq. (4.68) by part leads to

∫ h

0

(
Ln − V 2

n2

)
ZnΦdz =

∫ h

0

Zn
(
Φ′′′′ + V 2

n1Z ′′nΦ− V 2
n2Φ
)
dz

− Φ(0)Z ′′′n (0)−
[
V 2
n1Zn(0) + Z ′′n(0)

]
Z ′n(0)

− [(Vn1 − λm) (Vn1 + λm) Φ′(h) + Φ′′′(h)]Zn(h)

+

[(
− p2

n

M2
s

+ V 2
n1 + 3λ2

m

)
Φ(h) + Φ′′(h)

]
Z ′n(h)

= 0 (4.71)
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where Eq. (4.64) to (4.67) are used. Suppose that Φl(z) undergoes the same differential

operator:

Φ′′′′l + V 2
l1Φ′′l − V 2

l2Φl = 0, (4.72)

(4.73)

and satisfies following boundary conditions:

Φ(0) = 0, (4.74)

Φ′′(0) = 0, (4.75)

(Vn1 − λ) (Vn1 + λ) Φ′(h) + Φ′′′(h) = 0, (4.76)(
− p2

n

M2
s

+ V 2
n1 + 3λ2

m

)
Φ(h) + Φ′′(h) = 0. (4.77)

It therefore turns out from Eq. (4.71) that Zn(z) and Φl(z) have a following orthogonal

relation for n 6= l:

∫ h

0

Zn
(
Φ′′′′l + V 2

n1Z ′′nΦl − V 2
n2Φl

)
dz

=

∫ h

0

Zn
[(
V 2
n1 − V 2

l1

)
Φ′′l −

(
V 2
n2 − V 2

l2

)
Φl

]
dz

=

∫ h

0

Zn
(
V 2
n1 − V 2

l1

V 2
n2 − V 2

l2

Φ′′l − Φl

)
dz

=

∫ h

0

Zn
(
λ−2
m Φ′′l − Φl

)
dz

= 0. (4.78)

Consequently, the orthogonal function of Zn(z) is obtained for n 6= l:

∫ h

0

ZnΨldz = 0 (4.79)
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with

Ψl(z) =
λ−2
m Φ′′l (z)− Φl(z)

λ−2
m Φ′′l (h)− Φl(h)

(4.80)

which is normalized such that Ψ(h) = 1.

4.2.7 Wave equation of the wall surface

In this section, the equation of the normal modes for the wall surface (i.e., the wave

equation of the wall surface) is derived for the case of incompressible elasticity by inte-

grating the equation of motion in the z direction. The displacement in the r direction is

neglected, and the displacement in the z direction is expanded in a series of the eigen-

function:

ur(r, z, t) ≈ 0, (4.81)

uz(r, z, t) = w(r, t)
∞∑
n=1

Zn(z) (4.82)

where w(r, t) = uz(r, h, t) is the vertical displacement of the boundary at z = h. Sub-

stituting Eq. (4.82) into Eq. (4.37) and integrating with respect to z with ν = 1/2 leads

to

∞∑
i=1

[
∂2w

∂t2

∫ h

0

Zi(z)Ψj(z)dz − 2M2
sw(r, t)

∫ h

0

∂2Zi(z)

∂z2
Ψj(z)dz

−M2
s∇2

rw(r, t)

∫ h

0

∂Zi(z)

∂z
Ψj(z)dz

]
= 0. (4.83)

The second term on the left hand side of Eq. (4.83) can be integrated by part:

∫ h

0

∂2Zi(z)

∂z2
Ψj(z)dz =

[
∂Zi(z)

∂z
Ψj(z)

]h
0

−
∫ h

0

∂Zi(z)

∂z

∂Ψj(z)

∂z
dz

=Z ′i(h)Ψj(h)−
∫ h

0

Z ′i(z)Ψ′j(z)dz. (4.84)
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Substituting Eq. (4.84) into Eq. (4.83) results in

ẅ(r, t)

∫ h

0

Zj(z)Ψj(z)dz − 2M2
sw(r, t)

∞∑
i=1

Z ′i(h)Ψj(h)

+ 2M2
sw(r, t)

∞∑
i=1

∫ h

0

Z ′i(h)Ψ′j(z)dz

−M2
s∇2

rw(r, t)

∫ h

0

Zj(z)Ψj(z)dz = 0 (4.85)

where the orthogonal relation is used at the integrals of the first and fourth terms. Here,

the stress boundary condition at z = h is described by

pw(r, t) + p∞ =
∂τzz
∂z

∣∣∣∣
z=h

= 2M2
sw(r, t)

∞∑
i=1

Z ′i(h). (4.86)

Thus, the second term on the left hand side of Eq. (4.85) is replaced by the distributed

pressure due to the fluid motion at the wall boundary.

ρwẅ(r, t)

∫ h

0

Zj(z)Ψj(z)dz + 2M2
sw(r, t)

∞∑
i=1

∫ h

0

Z ′i(h)Ψ′j(z)dz

−M2
s∇2

rw(r, t)

∫ h

0

Zi(z)Ψj(z)dz = pw(r, t) + p∞ (4.87)

Therefore, the equation of motion of (m,n) mode is obtained in the form of

M∗
nẅ(r, t) +K∗nw(r, t)− T ∗n∇2

rw(r, t) = pw(r, t) + p∞ (4.88)

where

M∗
n(h) = ρw

∫ h

0

Zn(z)Ψn(z)dz, (4.89)

K∗n(h) = 2M2
s

∞∑
i=1

∫ h

0

Z ′i(h)Ψ′n(z)dz, (4.90)

T ∗n(h) = M2
s

∫ h

0

Zn(z)Ψn(z)dz (4.91)
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FIGURE 4.3: The parameters of the (1, n)th eigenmode (n = 1, 2, 3, 4 and 5) as a function of the
wall thickness: (a) mass, (b) tension and (c) stiffness.

The three terms on the left side of Eq. (4.88) are due to inertia, tension and stiffness of

the elasticity. Note that Eq. (4.91) are coupled with the other modes via the second term,

which will be approximated by a single mode in the following numerical formulation:

K∗n(h) ≈ 2M2
s

∫ h

0

Z ′n(h)Ψ′n(z)dz. (4.92)

4.3 Numerical method

In what follows, a numerical method for the coupled bubble-wall model developed in

the previous sections. The flow field is described in a set of boundary integral equations

and formulated in the form of boundary element framework. The linear wave equation

of the elastic boundary is discretized using the Galerkin approximation and coupled with
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the bubble oscillation. Smoothing technique and reconstruction of nodes are employed

to suppress numerical instabilities arising from time stepping of moving boundaries.

4.3.1 Spatial discretization

The rigid and elastic part of the solid boundaries and the bubble wall are discretized into

N1, N2 and N3 linear elements, respectively using linear isoparametric functions given

by

f1(η) =
1

2
(1− η), f2(η) =

1

2
(1 + η) (4.93)

where η is the local coordinate which takes −1 to 1 along each element. The global

coordinates are interpolated by Eq. (4.93):

r = f1(η)ri + f2(η)ri+1, (4.94)

z = f1(η)zi + f2(η)zi+1 (4.95)

where subscripts stand for the number of nodes. The velocity potential and its normal

derivative on the elements are also interpolated in the same manner.

φ(x) = f1(η)φi + f2(η)φi+1, (4.96)

∂φ(x)

∂n
= f1(η)

(
∂φ

∂n

)
i

+ f2(η)

(
∂φ

∂n

)
i+1

. (4.97)

The line element along the boundaries is transformed with respect to the local coordi-

nate:

dl(x) =

∥∥∥∥∂x∂η
∥∥∥∥dη =

√(
∂z

∂η

)2

+

(
∂r

∂η

)2

dη. (4.98)
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Substituting the above discretized variables, the discretized form of the boundary inte-

gral equation is given by

αi
4π
φi = −

N∑
k=1

{∫
Ck

GAX

[
f1(η)

(
∂φ

∂n

)
k

+ f2(η)

(
∂φ

∂n

)
k+1

]
[f1(η)rk + f2(η)rk+1]

lk
2
dη

}

+
N∑
k=1

{∫ PV

Ck

[
n · ∇GAX

]
[f1(η)φk + f2(η)φk+1] [f1(η)rk + f2(η)rk+1]

lk
2
dη

}
(4.99)

where Ck indicates the contour of the kth element. To close the set of equations, the

boundary integral equation with the source point xi is coupled for all the nodes:


. . . 0

αi

0 . . .




...

φi
...

 =

−


A

(1)
1,1

... A
(2)
1,N

... · · · A
(2)
i,k−1 + A

(1)
i,k · · ·

...

A
(1)
N+1,1

... A
(2)
N+1,N




...(
∂φ

∂n

)
i

...



+


B

(1)
1,1

... B
(2)
1,N

... · · · B
(2)
i,k−1 +B

(1)
i,k · · · ...

B
(1)
N+1,1

... B
(2)
N+1,N




...

φi
...

 (4.100)

where the elements in the coefficient matrices are given by

A
(1)
i,k =

∫
Ck

GAXf1(η) [f1(η)rk + f2(η)rk+1]
lk
2
dη, (4.101)

A
(2)
i,k =

∫
Ck

GAXf2(η) [f1(η)rk + f2(η)rk+1]
lk
2
dη, (4.102)

B
(1)
i,k =

∫ PV

Ck

[
n · ∇GAX

]
f1(η) [f1(η)rk + f2(η)rk+1]

lk
2
dη, (4.103)

B
(2)
i,k =

∫ PV

Ck

[
n · ∇GAX

]
f2(η) [f1(η)rk + f2(η)rk+1]

lk
2
dη. (4.104)
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In a matrix form,

Hji

(
∂φ

∂n

)
i

= (δijαi −Gji)φi, (4.105)

where δij is the Kronecker delta and

Hji = A
(2)
j−1,i + A

(1)
j,i (i, j = 1, · · ·, N + 1), (4.106)

Gji = B
(2)
j−1,i +B

(1)
j,i (i, j = 1, · · ·, N + 1). (4.107)

The unit normals on nodes are defined as a wighted average of the two adjacent unit

normals on the elements. The weight factors are with resect to the element length of the

two adjacent element:

ñi =
li+1ni + lini+1

li + li+1

(4.108)

where ni and li are the unit normal and element the length of the ith element, respec-

tively. The solid angles at x0 can be calculated by (Pozrikidis, 2002)

α (x0) = −PV
∫
C

[
n · ∇GAX (x,x0)

]
r (x) dl (x) . (4.109)

4.3.2 Smoothing scheme

To prevent numerical instability of the velocity potential on the boundaries, a smoothing

method (Longuet-Higgins and Cokelet, 1976; Pozrikidis, 2002) is employed. Smooth-

ing of variables is performed using a five point formula given by

q
(t+∆t)
i =

−q(t)
i−2 + 4q

(t)
i−1 + 10q

(t)
i + 4q

(t)
i+1 − q

(t)
i+2

16
(4.110)

where qi is the variable to be smoothed at the ith node. In the present study, the smooth-

ing treatment by Eq. (4.110) is preformed on the coordinates of the nodes, the velocity

potential and its normal derivative, mean curvature on nodes every 5 step of the time
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stepping.

4.3.3 Galerkin approximation

The motion of the elastic wall and pressure on the liquid-solid interface is approximated

by isoparametric linear basis functions, φj:

w(r, t) =

N2∑
k=1

wk(t)φk(r), (4.111)

pw(r, t) =

N2∑
k=1

ηk(t)φk(r), (4.112)

and a discretized form of Eq. (4.88) is obtained:

M∗
nMjkẅk + (K∗nMjk + T ∗nAjk)wk = F ∗Mjkηk (4.113)

where

Mjk =

∫ a

0

rφjφkdr, (4.114)

Ajk =

∫ a

0

r
∂φj
∂r

∂φk
∂r

dr. (4.115)

Multiplying M∗M−1
jk on the both side of Eq. (4.113) leads to

ẅj +Bjkwk = tbj (4.116)

with

Bjk =
K∗

M∗ δjk +
T ∗

M∗M
−1
ja Abk, (4.117)

tbj =
F ∗

M∗ηj. (4.118)
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4.3.4 Adaptive time step

To overcome numerical instabilities of BEM encountered at rapid bubble growth and

collapse phases, an adaptive time step is used with the fourth order explicit Runge-Kutta

time integration, which determines the time step, ∆t, depending on the magnitude of

|Dφ/Dt| on the calculation nodes:

∆t = min

δtreg,
Tf

max

∣∣∣∣DφDt
∣∣∣∣
 (4.119)

where δtreg is a constant time step which is regularly used unless |Dφ/Dt| exceeds a

critical value. A positive constant, Tf , is set so that an increment of the variables at

every time stepping be kept on the same order throughout computation. In the present

study, Tf is set at 0.005.

4.3.5 Newmark method

The wave equation is integrated in time by Newmark method, which consists of predic-

tor and corrector steps. The displacement and velocity vectors are approximated by

wk(t+ ∆t) = wk(t) + ∆tẇk(t) +
1

2
∆t2[(1− β2)ẅk(t) + β2ẅk(t+ ∆t)], (4.120)

ẇk(t+ ∆t) = ẇk(t) + ∆t[(1− β1)ẅk(t) + β1ẅk(t+ ∆t)]. (4.121)

Substituting Eqs. (4.120) and (4.121) into Eq. (4.116) yields

[
Ijk +

1

2
β2∆t2Bjk

]
ẅk(t+ ∆t) =−Bjk

[
wk(t) + ∆tẇk(t) +

1

2
(1− β2)∆t2ẅk(t)

]
+ tbj(t+ ∆t) (4.122)

where β1 and β2 are positive real parameters. For conservative computation (i.e., no

numerical damping), β1 = 1/2 and β2 = 1/4 are used in the present study. The ac-

celeration of the next time step is calculated by Eq. (4.122), and the displacement and
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velocity are obtained from Eqs. (4.120) and (4.121).

4.4 Numerical results

The translational dynamics of an oscillating bubble presented in the preceding sections

is numerically explored. The effects of the elastic wall thickness and oscillation modes

are examined to identify the acoustic property of the elastic layer based on a solid sur-

face. The results are compared with the case of rigid wall.

4.4.1 Sample calculation

An initially spherical bubble of 10µm in radius is located at z/R0 = 5 + h; the initial

distance between the bubble center and the wall surface is dw = 5.The radius of the

elastic wall is fixed at a/R0 = 5 for all the cases considered below. The ambient

pressure is 100 kPa, and the other physical parameters are ρL = 1000 kg/m3, ρw =

1000 kg/m3, µeff = 0.0067 Pa · s, S = 0.073 N/m and the effective polytropic index

of the bubble content is 1.1. The wall thickness and the oscillation mode are shown

in Table 4.1. Note that the range of the control parameters are restricted because of

numerical instability (Duncan and Zhang, 1991). To be simple, the mode number in

the r direction is approximated by the fundamental mode (m = 1). The driving sound

frequency is set at ωN so that the spherical bubble oscillation is under resonance.

TABLE 4.1: Dimensionless parameters with different wall thicknesses and the oscillation mode of
(m,n) mode. The radius of the elastic layer is fixed at a = 5R0, and the modulus of rigidity is
G = 1.5 kPa. In cases (a) to (c), the wall thickness is fixed at 1.0, and different oscillation modes
are considered. The wall thickness is varied in cases (d) and (e) for the fundamental mode (1, 1).
These cases are compared with the case of rigid boundary.

Case h/R0 [-] (m,n) p [-] M∗ [-] T ∗ [-] K∗ [-]
(a) 1.0 (1, 1) 0.035 5.9 0.0038 0.0025
(b) 1.0 (1, 2) 0.083 98 0.063 0.80
(c) 1.0 (1, 3) 0.16 990 0.63 26
(d) 0.8 (1, 1) 0.10 4.3 0.0028 0.0018
(e) 2.0 (1, 1) 0.028 10 0.0065 0.0039
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To give an overview of translational bubble oscillation, a sample calculation is

presented for case (a) in Table 4.1. Fig. 4.4(a) shows temporal evolution of bubble

mean radius defined by

Rb =

(
3Vb
4π

) 1
3

(4.123)
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where Vb is the volume of the bubble content. It is found that the wall oscillation is

synchronized with the bubble motion; the bubble growth and contraction correspond to

compression and expansion of the wall. This is because the natural frequency of the

fundamental normal mode is lower than the sound frequency. The temporal evolution

of bubble center is given in Fig. 4.4(b). The translational velocity of attractive motion

directed toward the wall increases as the distance between the bubble and wall surface

decreased.

Temporal evolution of the bubble and wall profiles are presented in Fig. 4.5 where

the displacement of the elastic wall is depicted with 102-fold magnification. The spher-

ical symmetry of the oscillating bubble is broken as the separation distance decreases,

while the deformation of the elastic wall is smaller than the bubble oscillation by two

orders of magnitude. It should be noticed that the deformed shape of the wall boundary

is almost similar with the fundamental mode (m = 1) except the close interaction as

shown Fig. 4.5(b).

To show the effect of the higher oscillation modes, the evolution of translational

motion is shown in Fig. 4.6 for different oscillation modes, and compared with the case
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FIGURE 4.6: The temporal evolution of the bubble center, Xb, for different oscillation modes: (a)
(m,n) = (1,1), (b) (m,n) = (1,2), (c) (m,n) = (1,3). The wall thickness is fixed to h = 1.0, and the
other parameters are listed in Table 4.1.
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of a rigid boundary. The parameters are shown in Table 4.1. It turns out that the trans-

lational velocity increases with increasing the oscillation mode number, indicating that

the wall motion of the higher modes is converges to the case of a rigid wall. This implies

that the small deformation of the elastic wall (i.e., transversal surface wave) has great

importance to the bubble translational dynamics even in the case of incompressible as-

sumption. It follows that the surface deformation of the lowest mode mainly determines

the bubble-wall interaction.

In Fig. 4.7, the evolution of translational motion for the case of different wall thick-

nesses is shown. Here, the oscillation mode is fixed at (1, 1) (fundamental mode). As

the wall thickness decreased, the bubble translational velocity decays. Since the inertia

of the wall converges to zero in the limit of h → 0, the thiner wall experiences large

amplitude oscillations, that is synchronized with the bubble wall motion (in-phase os-

cillation). Because of the in-phase motion of the bubble and wall boundary, the pressure

change is less induced between the bubble and wall. As a result, the translational motion

for the limit of h → 0 does not converges to the case of a rigid wall. It can therefore

be concluded that the presence of a thin elastic layer has great impact on the bubble and
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FIGURE 4.7: The temporal evolution of the bubble center, Xb, for different wall thicknesses: (a) h
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are listed in Table 4.1.
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elastic wall interactions.

4.4.2 Summary

Numerical results of the coupled bubble-wall dynamics are presented. An analytical

model and the basic equation for the coupled nonlinear dynamics of an oscillating bub-

ble near an elastic wall are shown, and an eigenvalue analysis of linear isotropic elasto-

dynamics of the compliant boundary is performed to obtain eigenfunctions and eigenfre-

quencies of normal modes. The coupled fluid-structure problem is numerically solved

in the framework of the coupled BEM-FEM technique. The effect of the thickness and

the oscillation modes of the elastic body on the translational direction and velocity of

the oscillating bubble are discussed, drawing a conclusion that a small surface deforma-

tion of an elastic layer is not negligible for the translational dynamics of an oscillating

bubble.
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Chapter 5

Concluding remarks

5.1 Summary and conclusions

Coupled dynamics of oscillating bubbles have been explored analytically, experimen-

tally and numerically; nonlinear modal analysis of coupled two spherical bubble oscil-

lations developed bifurcation structures of steady-state oscillation based on perturbation

method. Experimental observation of an oscillating bubble cluster was conducted and

compared with classical model of the translational motion. Interaction between an os-

cillating bubble and an elastic wall was numerically investigated.

Asymptotic derivation of the steady-state solution and underlying nonlinear normal

modes (NNMs) are provided in Chapter 2 for the primary resonance of two spherical

bubbles oscillating with a fixed separation distance. In the case of equal-sized bub-

bles, an approximate solution of the oscillation amplitude and the phase shift showed

symmetry-breaking bifurcations, leading to multi-valued stable solutions in the neigh-

borhood of the localized NNMs. The distinctive feature of these solutions is that lo-

calized oscillation can occur depending on the driving frequency and the separation

distance between the bubbles; the synchronized steady-state motion becomes unstable

in a certain range of the parameter space. In addition to the symmetry-breaking bi-

furcation, Hopf bifurcations turn out to occur for the case of lower damping constants

(i.e., for larger bubbles). Requirements necessary for the occurrence of localized os-

cillation are summarized: (a) The partial natural frequencies of the individual bubbles

are close enough to arise the internal resonance; (b) Bubbles are in resonance at the
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imposed driving frequency; (c) Steady-state oscillation are achieved; (d) The separation

distance is within a proper range where the coupling strength counterbalances the non-

linearity of the radial dynamics; (e) Damping effects are not so strong to smooth out

the energy distribution among the bubbles. Some of our numerical calculation showed

that the localized oscillation occur for a fairly typical parameter range used in practical

experiments and simulations in the literature. This makes it difficult to accurately de-

scribe the bubble cloud dynamics since even a bubble cluster containing a small number

of bubbles can have a large number of steady-states. However, the present bifurca-

tion analysis offer improvements in the understanding of complex nonlinear behaviors

of oscillating bubbles such as a formation of bubble structures and a sign reversal of

the secondary Bjerknes force Pelekasis, Gaki, Doinikov, and Tsamopoulos, 2004.For

future experimental applications of bubble oscillations, a single-sized bubble cloud in

nonlinear resonance should therefore be designed with care in tuning the imposed sound

frequency and the concentration of the bubbles.

An experimental technique was developed to observe translation of a bubble cluster

oscillating under a stationary sound field and the translational dynamics were modeled

by simply extending the theory of Bjerknes in Chapter 3. A gas bubble nucleus showed

nonlinear oscillation in a low-frequency vibrating vessel and eventually leads to fission

into bubble fragments. The bubble cluster showed translation toward the side wall. We

explained the cluster translation as a result of the interaction with imaginary bubbles

located at the opposite side of the side walls. The interaction was modeled by applying

the Bjerknes theory of the second kind where the cluster is treated as a single bubble,

while acoustic energy loss at the elastic wall was treated as a tuning parameter. We

showed that the cluster translation observed in the experiment can be predicted properly

by solving the equation of the cluster motion coupled with extended Bjerknes theory. It

is concluded that the cluster translation in the present experiment is determined mainly

by the secondary Bjerknes force and the cluster inertia. It is therefore suggested that, for

the case of coupled bubble cluster oscillations, the translational dynamics of the bubble
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cloud consisted of the oscillating bubble cluster can be modeled by the classical Bjerk-

nes theory with the spherical cluster dynamics described based on Rayleigh–Plesset-

type equations. Furthermore, it can be able to predict the global dynamics of the bubble

cluster structure, given the configuration of bubble cluster (size distribution and num-

ber of bubble fragments) can preliminarily be estimate for a particular case of interest.

However, it remains in the future work to incorporate the fission of collapsing bubble

as an additional damping of the bubble cluster volume oscillation in order to properly

describe the time scale of the global cloud dynamics.

Chapter 4 presented an analytical model and the basic equation for the coupled

nonlinear dynamics of an oscillating bubble near an elastic wall. Eigenvalue analy-

sis of linear isotropic elastodynamics of a compliant boundary was performed to obtain

eigenfunctions and eigenvalues of normal modes, which was coupled with the bub-

ble oscillation. A numerical method to solve the previously presented fluid-structure

coupled model was summarized in the following sections. It turns out that the small

deformation of the elastic wall (i.e., transversal surface wave) has great importance to

the bubble translational dynamics even in the case of incompressible assumption. The

bubble translational dynamics is mainly determined by the surface deformation of the

lowest eigenmode. Additionally, because of the in-phase motion of the bubble and wall

boundary, the pressure change is less induced at the neighborhood of the bubble for the

case of a thin wall. It follows that the limit of zero-wall thickness does not leads to the

case of a rigid boundary. It can therefore be concluded that the presence of a thin elastic

layer has great impact on the bubble and elastic wall interactions.

5.2 Suggestions for future work

The nonlinear modal analysis presented in Chapter 2 may be extended to bubble cluster

oscillations, i.e., coupled multi-bubble or bubble cloud dynamics. A large number of

steady-state solutions is expected to arise, which leads to complex spatial localization

of oscillation energy in the bubble cloud. This leads to understanding in formation of
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complex bubble structures (i.e., a cluster of bubble chains) in a high intensity sound

field.

The formation of an oscillating bubble cluster depends on the sound field and me-

chanical properties of the liquid (i.e., sound frequency, sound pressure, surface tension

and viscosity of the host liquid). For engineering application, the number and size of

bubble fragments in an oscillating cluster should be incorporated into the model equa-

tion. To complete the theory of Bjerknes for cluster oscillation, an experimental tech-

nique for observation of different cluster configurations is needed.

The elastic wall model used in this study assumes linear elasticity, indicating that the

displacement of the elastic layer is sufficiently small compared to the wall thickness.

However, the present numerical experiment shows large amplitude oscillations of the

wall surface for the case of a thin wall thickness: the small strain assumption does not

hold in the limit of h → 0. It follows that the nonlinearity of the elastic wall should be

incorporated into the linear spring-backed model for the case of a thin compliant layer

coated on solid surface.
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Appendix A

Nonlinear modal analysis

A.1 The scale analysis of the translational velocity

The translational motion can be approximately decoupled from the radial dynamics after

a scale analysis described below. The term associated with the translational motion that

we neglected on the right hand side of Eq. (2.2) is u2
2/4 where u2 is the translational

velocity of the bubble 2 (Doinikov, 2002). This can be dropped from the equation of

motion in the perturbation analysis to the order of O(ε3) when the contribution of the

term is of the order of O(ε4):
1
4
u2
i

ω2
NR

2
10

≈ ε4 (A.1)

where i takes 1 and 2. Substituting a representative oscillation amplitude of ε ≈ 0.2 and

the Minnaert formula (Leighton, 2012), ωNR10 ≈ 2π×3 m/s, for air bubbles in water at

one atmosphere into Eq. (A.1), one obtain the model limitation velocity approximately

given by

|ui| ≈ 1.5 m/s. (A.2)

For the stationary assumption to be justified, the translational velocities should be suf-

ficiently smaller than Eq. (A.2). This condition is likely satisfied in many practical

experiments of moderately forced bubbles (Xi, Cegla, Mettin, Holsteyns, and Lippert,

2012; Jiao, He, Kentish, Ashokkumar, Manasseh, and Lee, 2015) except in the case of

short-distance interaction. It can therefore be assumed that the translational motion has
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negligible contribution to the radial dynamics in the weakly nonlinear analysis. Fur-

thermore, the contribution of temporal change of the separation distance, ḋ∗(t), is also

on the order of O(ε4) or less. Therefore, the assumption of dropping the translational

dynamics does not violate the qualitative feature of the particular examples shown in

Chapter 2.

A.2 List of the dimensionless parameters

The dimensionless parameters in Eqs. (2.14) and (2.15) are

ωx =

[
3κEu + (3κ− 1)

2

We

] 1
2

, ωy =

[
3κ

Eu
R∗2

+ (3κ− 1)
2

WeR∗3

] 1
2

, (A.3)

cx =
4

Re
+
ω2
x

C
, cy =

4R∗2

Re
+

ω2
y

CR∗
, (A.4)

µx =
R∗3

d∗
, µy =

1

d∗R∗2
(A.5)

ex = EuA∗, ey =
EuA∗

R∗2
(A.6)

with which

K =

 ω2
x 0

0 ω2
y

 , (A.7)

M =

 1 µx (1 + cxτ
∗)

µy (1 + cyτ
∗) 1

 , (A.8)

C =

 cx µxτ
∗ω2

x

µyτ
∗ω2

y cy

 , (A.9)

F =

 ex 0

0 ey

 . (A.10)
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The dimensionless parameters in Eqs. (2.22) and (2.23) are

βxx = −(3κ+ 1)(3κ+ 2)− 6

We
− (3κ+ 1)(3κ+ 2)− 2

2
Eu, (A.11)

βyy = −(3κ+ 1)(3κ+ 2)− 6

WeR∗3
− (3κ+ 1)(3κ+ 2)− 2

2

Eu
R∗2

, (A.12)

βxxx =
(3κ+ 1)(3κ+ 2)(3κ+ 3)− 24

3We
− (3κ+ 1)(3κ+ 2)(3κ+ 3)− 6

6
Eu, (A.13)

βyyy =
(3κ+ 1)(3κ+ 2)(3κ+ 3)− 24

3WeR∗3
− (3κ+ 1)(3κ+ 2)(3κ+ 3)− 6

6

Eu
R∗2

.

(A.14)

A.3 Hopf bifurcation

Fig. A.1 presents a Hopf bifurcation structure of two equally-sized bubbles of 100 µm

in radius. It turns out that underlying bifurcation structures are more complicated be-

cause of the higher Reynolds number due to the larger bubble size (i.e., lower damping

constants) compared to case B (R10 = R20 = 10 µm); Hopf bifurcations arise on the

localized oscillations, d3 and d4, at ωf = 0.969 and 0.990. Between the two bifurcation
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FIGURE A.1: The steady-state amplitude of the fundamental component for case F (R10 = R20 =
100 µm) in Table 2.1 as a function of the driving frequency denoted by di (i =1,2,3,4,5 and 6)
in different colors. The numerical results of periodic solutions are shown by circles. The vertical
lines indicate modulation amplitudes of quasi-periodic oscillations obtained during 1000 oscillation
periods of the driving frequency.
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points, the localized periodic solutions are unstable, leading to quasi-periodic oscilla-

tions. The vertical lines indicate modulation amplitudes of the quasi-periodic oscillation

obtained during 1000 oscillation periods of the driving frequency. It is interesting to

note that localized oscillations are the case with the modulation amplitudes; the quasi-

periodic oscillations arise in the neighborhood the branches d3 and d4 at ωf ≈ 0.99.

Similar bifurcation structures consisting of symmetry-breaking and Hopf bifurcations

are expected in other coupled nonlinear oscillators more than three dimensional state

space (Kozłowski, Parlitz, and Lauterborn, 1995).
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Appendix B

Dynamical analysis of the translational

motion of an oscillating bubble

B.1 Eigenvalue analysis

The translational dynamics described by Eq. (3.16) has only one equilibrium point

(X∗st, U
∗
st) = (0, 0), which is a stationary solution of the system. Perturbation of (X∗, U∗)

from the fixed point is denoted by (δx, δu), and the linear truncation of Eq. (3.16) is

obtained in the form of

d

dt∗

 δx

δu

 =

 0 1

−4B −CD


 δx

δu

 (B.1)

after the transformation with X∗ = X∗st + δx and U∗ = U∗st + δu. The eigenvalues of

the system are

λ =
−CD ±

√
C2
D + 16B

2
. (B.2)

The bifurcation structure can be understood in B–CD plain and is divided into three

regions. The stability of (X∗st, U
∗
st) is determined only by the sign of B as explained

below. When B > 0, the equilibrium point is unstable (saddle point) because of a pos-

itive real eigenvalue. This indicates that the oscillating bubble cannot stay away from

the both side walls, leading to the attractive motion toward the walls. When B is neg-

ative, the equilibrium point is stable node or spiral depending on the magnitude of CD,
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which is assumed positive real in this study. If B < 0 and CD is small enough to satisfy

C2
D + 16B < 0, the system presents damped oscillatory motion around the stable equi-

librium point due to the complex eigenvalues. Increasing CD causes qualitative change

of the bubble behavior from damped oscillation to asymptotic motion to the equilib-

rium point. The sign of B depends on the acoustic impedance of the wall boundary, the

separation distance and the imposed sound frequency (Ingard, 1951).
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Delale, C. F. and Tunç, M. 2004 A bubble fission model for collapsing cavitation bub-

bles. Physics of Fluids 16, pp. 4200–4203.

Devin Jr, C. 1959 Survey of thermal, radiation, and viscous damping of pulsating air

bubbles in water. The Journal of the Acoustical Society of America 31, pp. 1654–

1667.

Doinikov, A. A. and Zavtrak, S. T. 1995 On the mutual interaction of two gas bubbles

in a sound field. Physics of Fluids 7, pp. 1923–1930.

Doinikov, A. A. 2002 Translational motion of a spherical bubble in an acoustic standing

wave of high intensity. Physics of Fluids 14, pp. 1420–1425.

Doinikov, A. A., Manasseh, R., and Ooi, A. 2005 Time delays in coupled multibubble

systems (L). The Journal of the Acoustical Society of America 117, pp. 47–50.

Dommermuth, D. G. and Yue, D. K. 1987 Numerical simulations of nonlinear axisym-

metric flows with a free surface. Journal of Fluid Mechanics 178, pp. 195–219.

Duncan, J. H., Milligan, C. D., and Zhang, S. 1996 On the interaction between a bubble

and a submerged compliant structure. Journal of Sound and Vibration 197, pp. 17–

44.

Duncan, J. H. and Zhang, S. 1991 On the interaction of a collapsing cavity and a com-

pliant wall. Journal of Fluid Mechanics 226, pp. 401–423.



BIBLIOGRAPHY 95

Dzaharudin, F., Suslov, S. A., Manasseh, R., and Ooi, A. 2013 Effects of coupling,

bubble size, and spatial arrangement on chaotic dynamics of microbubble cluster in

ultrasonic fields. The Journal of the Acoustical Society of America 134, pp. 3425–

3434.

Eller, A. and Flynn, H. 1965 Rectified diffusion during nonlinear pulsations of cavitation

bubbles. The Journal of the Acoustical Society of America 37, pp. 493–503.

Emmer, M., Van Wamel, A., Goertz, D. E., and De Jong, N. 2007 The onset of mi-

crobubble vibration. Ultrasound in Medicine & Biology 33, pp. 941–949.

Farhangmehr, V., Aghdam, A. H., Shervani-Tabar, M. T., Parvizi, R., Ohl, S. W., and

Khoo, B. C. 2014 Numerical investigation on the pulsating bubble dynamics in a

narrow cylinder with a compliant coating. Fluid Dynamics Research 46, p. 015513.

Francescutto, A. and Nabergoj, R. 1983 Steady-state oscillations of gas bubbles in liq-

uids: Explicit formulas for frequency response curves. The Journal of the Acoustical

Society of America 73, pp. 457–460.

Geist, K. and Lauterborn, W. 1988 The nonlinear dynamics of the damped and driven

Toda chain: I. Energy bifurcation diagrams. Physica D: Nonlinear Phenomena 31,

pp. 103–116.

Geist, K. and Lauterborn, W. 1991 The Nonlinear Dynamics of the Damped and Driven

Toda Chain: III. Classification of the nonlinear resonances and local bifurcations.

Physica D: Nonlinear Phenomena 52, pp. 551–559.

Gibson, D. C. and Blake, J. R. 1982 The growth and collapse of bubbles near deformable

surfaces. Applied Scientific Research 38, pp. 215–224.

Gisbon, D. C. and Blake, J. R. 1980 Growth and collapse of cavitation bubbles near flex-

ible boundaries. 7th Australasian Conference on Hydraulics and Fluid Mechanics

1980: Preprints of Papers. Institution of Engineers, Australia, p. 283.

Harkin, A., Kaper, T. J., and Nadim, A. 2001 Coupled pulsation and translation of two

gas bubbles in a liquid. Journal of Fluid Mechanics 445, pp. 377–411.



96 BIBLIOGRAPHY

Helfield, B. L. and Goertz, D. E. 2013 Nonlinear resonance behavior and linear shell

estimates for DefinityTM and MicroMarkerTM assessed with acoustic microbubble

spectroscopy. The Journal of the Acoustical Society of America 133, pp. 1158–1168.

Hilgenfeldt, S., Lohse, D., and Brenner, M. P. 1996 Phase diagrams for sonoluminescing

bubbles. Physics of Fluids 8, pp. 2808–2826.

Hill, C. R. and Ter Haar, G. R. 1995 High intensity focused ultrasound—potential for

cancer treatment. The British Journal of Radiology 68, pp. 1296–1303.

Hsiao, C.-T. et al. 2013 Modelling single-and tandem-bubble dynamics between two

parallel plates for biomedical applications. Journal of Fluid Mechanics 716, pp. 137–

170.

Ikeda, T., Harata, Y., and Nishimura, K. 2013 Intrinsic Localized Modes of Harmonic

Oscillations in Nonlinear Oscillator Arrays. Journal of Computational and Nonlin-

ear Dynamics 8, p. 041009.

Ingard, U. 1951 On the reflection of a spherical sound wave from an infinite plane. The

Journal of the Acoustical Society of America 23, pp. 329–335.

Jameson, G. J. and Davidson, J. F. 1966 The motion of a bubble in a vertically oscillating

liquid: theory for an inviscid liquid, and experimental results. Chemical Engineering

Science 21, pp. 29–34.

Jiao, J., He, Y., Kentish, S. E., Ashokkumar, M., Manasseh, R., and Lee, J. 2015 Exper-

imental and theoretical analysis of secondary Bjerknes forces between two bubbles

in a standing wave. Ultrasonics 58, pp. 35–42.

Kalumuck, K. M., Duraiswami, R., and Chahine, G. L. 1995 Bubble dynamics fluid-

structure interaction simulation by coupling fluid BEM and structural FEM codes.

Journal of Fluids and Structures 9, pp. 861–883.

Kang, I. S. and Leal, L. G. 1988 The drag coefficient for a spherical bubble in a uniform

streaming flow. Physics of Fluids 31, pp. 233–237.

Keller, J. B. and Miksis, M. 1980 Bubble oscillations of large amplitude. The Journal of

the Acoustical Society of America 68, pp. 628–633.



BIBLIOGRAPHY 97

Kerschen, G., Peeters, M., Golinval, J.-C., and Vakakis, A. F. 2009 Nonlinear normal

modes, Part I: A useful framework for the structural dynamicist. Mechanical Systems

and Signal Processing 23, pp. 170–194.

Kim, T.-H. and Kim, H.-Y. 2014 Disruptive bubble behaviour leading to microstructure

damage in an ultrasonic field. Journal of Fluid Mechanics 750, pp. 355–371.

Kim, W., Kim, T.-H., Choi, J., and Kim, H.-Y. 2009 Mechanism of particle removal by

megasonic waves. Applied Physics Letters 94, p. 081908.

King, M. E., Aubrecht, J., and Vakakis, A. F. 1995 Experimental study of steady-state

localization in coupled beams with active nonlinearities. Journal of Nonlinear Sci-

ence 5, pp. 485–502.

Klaseboer, E. and Khoo, B. C. 2004 An oscillating bubble near an elastic material.

Journal of Applied Physics 96, pp. 5808–5818.

Klaseboer, E., Turangan, C. K., and Khoo, B. C. 2006 Dynamic behaviour of a bub-

ble near an elastic infinite interface. International Journal of Multiphase Flow 32,

pp. 1110–1122.

Koch, P., Kurz, T., Parlitz, U., and Lauterborn, W. 2011 Bubble dynamics in a standing

sound field: The bubble habitat. The Journal of the Acoustical Society of America

130, pp. 3370–3378.

Kozłowski, J., Parlitz, U., and Lauterborn, W. 1995 Bifurcation analysis of two coupled

periodically driven Duffing oscillators. Physical Review E 51, p. 1861.

Krefting, D., Mettin, R., and Lauterborn, W. 2004 High-speed observation of acoustic

cavitation erosion in multibubble systems. Ultrasonics Sonochemistry 11, pp. 119–

123.

Krefting, D., Toilliez, J. O., Szeri, A. J., Mettin, R., and Lauterborn, W. 2006 Translation

of bubbles subject to weak acoustic forcing and error in decoupling from volume

oscillations. The Journal of the Acoustical Society of America 120, pp. 670–675.

Kreider, W., Crum, L. A., Bailey, M. R., and Sapozhnikov, O. A. 2011 Observations of

the collapses and rebounds of millimeter-sized lithotripsy bubbles. The Journal of

the Acoustical Society of America 130, pp. 3531–3540.



98 BIBLIOGRAPHY

Lauterborn, W. and Bolle, H. 1975 Experimental investigations of cavitation-bubble

collapse in the neighbourhood of a solid boundary. Journal of Fluid Mechanics 72,

pp. 391–399.

Leighton, T. 2012 The acoustic bubble. Academic press.

Li, X., Ji, J. C., and Hansen, C. H. 2006 Non-linear normal modes and their bifurcation

of a two DOF system with quadratic and cubic non-linearity. International Journal

of Non-Linear Mechanics 41, pp. 1028–1038.

Li, Z.-R., Sun, L., Zong, Z., and Dong, J. 2012 A boundary element method for the

simulation of non-spherical bubbles and their interactions near a free surface. Acta

Mechanica Sinica 28, pp. 51–65.

Longuet-Higgins, M. S. and Cokelet, E. 1976 The deformation of steep surface waves

on water. I. A numerical method of computation. Proceedings of the Royal Society

of London A: Mathematical, Physical and Engineering Sciences. 350. The Royal

Society, pp. 1–26.

Lundgren, T. and Mansour, N. 1988 Oscillations of drops in zero gravity with weak

viscous effects. Journal of Fluid Mechanics 194, pp. 479–510.

Macdonald, C. A. and Gomatam, J. 2006 Chaotic dynamics of microbubbles in ultra-

sonic fields. Proceedings of the Institution of Mechanical Engineers, Part C: Journal

of Mechanical Engineering Science 220, pp. 333–343.

Magnaudet, J. and Legendre, D. 1998 The viscous drag force on a spherical bubble with

a time-dependent radius. Physics of Fluids 10, pp. 550–554.

Mettin, R., Akhatov, I., Parlitz, U., Ohl, C. D., and Lauterborn, W. 1997 Bjerknes forces

between small cavitation bubbles in a strong acoustic field. Physical Review E 56,

p. 2924.

Miao, H. and Gracewski, S. M. 2008 Coupled FEM and BEM code for simulating acous-

tically excited bubbles near deformable structures. Computational Mechanics 42,

pp. 95–106.

Nasibullaeva, E. S. and Akhatov, I. S. 2013 Bubble cluster dynamics in an acoustic field.

The Journal of the Acoustical Society of America 133, pp. 3727–3738.



BIBLIOGRAPHY 99

Nayfeh, A. H. 2008 Perturbation methods. John Wiley & Sons, pp. 228–244.

Nayfeh, A. H. and Mook, D. T. 2008 Nonlinear oscillations. John Wiley & Sons, pp. 195–

196.

Neppiras, E. A. 1984 Acoustic cavitation series: part one: Acoustic cavitation: an intro-

duction. Ultrasonics 22, pp. 25–28.

Nigmatulin, R. I., Akhatov, I. S., Vakhitova, N. K., and Nasibullayeva, E. S. 2000 Dy-

namics of bubble clusters. Nonliner Acoustic at the Turn of the Millenium: ISNA 15,

15th International Symposium. 524. AIP Publishing, pp. 455–458.

Nyborg, W. L. and Rodgers, A. 1967 The motion of liquid inside a closed vibrating

vessel. Biotechnology and Bioengineering 9, pp. 235–256.

Ohl, S. W., Klaseboer, E., and Khoo, B. C. 2009 The dynamics of a non-equilibrium

bubble near bio-materials. Physics in Medicine and Biology 54, p. 6313.

Ooi, A. and Manasseh, R. 2005 Coupled nonlinear oscillations of microbubbles. ANZIAM

Journal 46, pp. 102–116.

Parlitz, U., Englisch, V., Scheffczyk, C., and Lauterborn, W. 1990 Bifurcation structure

of bubble oscillators. The Journal of the Acoustical Society of America 88, pp. 1061–

1077.

Pelekasis, N. A., Tsamopoulos, J. A., and Manolis, G. D. 1992 A hybrid finite-boundary

element method for inviscid flows with free surface. Journal of Computational Physics

101, pp. 231–251.

Pelekasis, N. A., Gaki, A., Doinikov, A., and Tsamopoulos, J. A. 2004 Secondary Bjerk-

nes forces between two bubbles and the phenomenon of acoustic streamers. Journal

of Fluid Mechanics 500, pp. 313–347.

Pelekasis, N. A. and Tsamopoulos, J. A. 1993a Bjerknes forces between two bubbles.

Part 1. Response to a step change in pressure. Journal of Fluid Mechanics 254,

pp. 467–499.

Pelekasis, N. A. and Tsamopoulos, J. A. 1993b Bjerknes forces between two bubbles.

Part 2. Response to an oscillatory pressure field. Journal of Fluid Mechanics 254,

pp. 501–527.



100 BIBLIOGRAPHY

Plesset, M. S. and Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity

in the neighbourhood of a solid boundary. Journal of Fluid Mechanics 47, pp. 283–

290.

Pozrikidis, C. 2002 A practical guide to boundary element methods with the software

library BEMLIB. CRC Press, pp. 9–109.

Prosperetti, A. and Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part 1.

First-order theory. Journal of Fluid Mechanics 168, pp. 457–478.

Prosperetti, A., Crum, L. A., and Commander, K. W. 1988 Nonlinear bubble dynamics.

The Journal of the Acoustical Society of America 83, pp. 502–514.

Reddy, A. J. and Szeri, A. J. 2002 Coupled dynamics of translation and collapse of

acoustically driven microbubbles. The Journal of the Acoustical Society of America

112, pp. 1346–1352.

Robinson, P. B., Blake, J. R., Kodama, T., Shima, A., and Tomita, Y. 2001 Interaction

of cavitation bubbles with a free surface. Journal of Applied Physics 89, pp. 8225–

8237.

Rosenberg, R. M. 1966 On Nonlinear Vibrations of Systems with Many Degrees of

Freedom. Advances in Applied Mechanics 9, p. 155.

Rosenberg, R. M. 1960 Normal modes of nonlinear dual-mode systems. Journal of Ap-

plied Mechanics 27, pp. 263–268.

Rosenberg, R. M. 1962 The normal modes of nonlinear n-degree-of-freedom systems.

Journal of Applied Mechanics 29, pp. 7–14.

Sato, M., Hubbard, B. E., English, L. Q., Sievers, A. J., Ilic, B., Czaplewski, D. A., and

Craighead, H. G. 2003 Study of intrinsic localized vibrational modes in microme-

chanical oscillator arrays. Chaos: An Interdisciplinary Journal of Nonlinear Science

13, pp. 702–715.

Shima, A., Tomita, Y., Gibson, D. C., and Blake, J. R. 1989 The growth and collapse

of cavitation bubbles near composite surfaces. Journal of Fluid Mechanics 203,

pp. 199–214.



BIBLIOGRAPHY 101

Sochard, S., Wilhelm, A.-M., and Delmas, H. 1998 Gas-vapour bubble dynamics and

homogeneous sonochemistry. Chemical Engineering Science 53, pp. 239–254.

Soh, W. K. 1992 An energy approach to cavitation bubbles near compliant surfaces.

Applied Mathematical Modelling 16, pp. 263–268.

Sorokin, V. S., Blekhman, I. I., and Vasilkov, V. B. 2012 Motion of a gas bubble in fluid

under vibration. Nonlinear Dynamics 67, pp. 147–158.

Sudo, S. and Hashimoto, H. 1988 Unsteady Pressure Response of a liqud in a Cylin-

drical Container Subject to Vertical Vibration. JSME International Journal. Ser. 2,

Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties

31, pp. 227–233.

Takagi, S. and Matsumoto, Y. 2011 Surfactant effects on bubble motion and bubbly

flows. Annual Review of Fluid Mechanics 43, pp. 615–636.

Takahira, H., Yamane, S., and Akamatsu, T. 1995 Nonlinear oscillations of a cluster of

bubbles in a sound field (bifurcation structure). JSME International Journal. Series

B, Fluids and Thermal Engineering 38, pp. 432–439.

Takahira, H., Akamatsu, T., and Fujikawa, S. 1994 Dynamics of a Cluster of Bubbles

in a Liquid. Theoretical Analysis. JSME International Journal Series B Fluids and

Thermal Engineering 37, pp. 297–305.

Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuk, V. N., and Zevin, A. A. 2008

Normal Modes and Localization in Nonlinear Systems. John Wiley & Sons, 8–21.

Wang, Q. X., Yeo, K. S., Khoo, B. C., and Lam, K. Y. 1996 Nonlinear interaction be-

tween gas bubble and free surface. Computers & Fluids 25, pp. 607–628.

Wang, Q. 2014 Multi-oscillations of a bubble in a compressible liquid near a rigid

boundary. Journal of Fluid Mechanics 745, pp. 509–536.

Wang, S., Zhang, A., Liu, Y., and Zeng, D. 2013 Numerical simulation of bubble dy-

namics in an elastic vessel. The European Physical Journal E 36, pp. 1–7.

Wiedemair, W., Tukovic, Z., Jasak, H., Poulikakos, D., and Kurtcuoglu, V. 2014 Mod-

eling the interaction of microbubbles: Effects of proximity, confinement, and exci-

tation amplitude. Physics of Fluids 26, p. 062106.



102 BIBLIOGRAPHY

Xi, X., Cegla, F., Mettin, R., Holsteyns, F., and Lippert, A. 2012 Collective bubble

dynamics near a surface in a weak acoustic standing wave field. The Journal of the

Acoustical Society of America 132, pp. 37–47.

Yang, X. and Church, C. C. 2005 A model for the dynamics of gas bubbles in soft tissue.

The Journal of the Acoustical Society of America 118, pp. 3595–3606.

Yu, H., Lin, Z., Xu, L., Liu, D., and Shen, Y. 2015 Theoretical study of microbubble

dynamics in sonoporation. Ultrasonics 61, pp. 136–144.

Zabolotskaya, E. A. 1984 Interaction of gas-bubbles in a sound field. Soviet Physics

Acoustics-Ussr 30, pp. 365–368.

Zhang, S., Duncan, J. H., and Chahine, G. L. 1993 The final stage of the collapse of a

cavitation bubble near a rigid wall. Journal of Fluid Mechanics 257, pp. 147–181.



List of publications 
 

 

Sugita, N., & Sugiura, T. 2017 Nonlinear normal modes and localization in two bubble 

oscillators. Ultrasonics 74, pp. 174-185. 

 

Sugita, N., Ando, K. & Sugiura, T. 2017 Experiment and modeling of translational 

dynamics of an oscillating bubble cluster in a stationary sound field. Ultrasonics 

[Accepted for publication] 


