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Abstract

This dissertation provides a study on co-location system of mobile users. Co-
location system combines methods of detecting nearby mobile users and providing
them interesting and useful services or information within their respective groups.
It has found several useful and real-world applications in proximity-based services.
Aware of this new trend in our society and its impact in our daily life, we design two
novel frameworks with the aiming at unleashing the potential of these proximity-based
services.

We first devise a scheme that exploits the similarity of the environmental radio
signals from multiple Wi-Fi access points when mobile users are in the same place,
a room, for instance, to cluster them into the same group. The designed scheme is
based on a nonparametric Bayesian method called infinite Gaussian mixture model
that allows the model parameters to change with the observed input data. In addition,
we apply a modified version of Gibbs sampling techniques with an average similarity
threshold to better fit user’s group. We evaluate the performance, in terms of clus-
tering accuracy, of our proposal numerically and then experimentally. Through the
experimental results we demonstrate the feasibility and the efficiency of this method.
Results on experiment showed that it can even achieve a better accuracy when com-
pared with the state-of-the-art community detection-based clustering method.

Then, we extend our first scheme to a new issue arising from the need to co-localize
walking groups of people. That is, we give it now the ability of clustering groups of
people even though their are walking together as part of the same group. This sec-
ond devised framework is based on the analysis of the two key network properties,
i.e., the edge betweenness and the shortest average path length among all pairs of
mobile users in the wireless networks. It leverages Bluetooth low energy technology
to achieve a high degree of co-location accuracy. From the collected radio signals, we
construct a graph network in which the distance between pairwise vertices represents
the connection strength between mobile users. Then, we apply a modified version of
the edge betweenness techniques to cluster walking groups of mobile users into the
same group. We assess our method with both computer-generated and experimental
data sets. Through obtained results, we have shown that our method can be suc-
cessfully applied to co-localize people walking as part of the same group in wireless
networks.
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Chapter 1

Introduction

1.1 Background and Motivations

Humans are social beings. Consequently, they construct conscientiously or not

many complex group structures cooperating and/or competing against each other.

These human groups can be exploited for many purposes as in providing them in-

teresting and useful services or information within their respective groups. With the

massive use of smartphones, these social beings provide a way to be co-localized by

using only their captured ambient radio signals. Thus, allowing scientists in gaining

a better understanding of their behaviors and their social interactions.

This explosive use of smart devices has also given rise to an impulsive and rapid

development of a variety of mobile applications. As a result, a wide range of services is

now available on users’ smart devices. Example of these services are proximity-based

services (ProSe), location-based services (LBS), etc.

Services such as ProSe (e.g., mobile social network [1, 2], mobile healthcare [3–5],

etc.) have been around for quite a while, and new services are expected to change

all user experiences in the near future. Reflecting this trend, worldwide researchers

have also shown their interests in this new kind of human mobility-based, and many

interesting works have been done in this area in recent years.

With this proliferation of mobile devices, a lot of efforts have been deployed aiming

to explore them to their full potentials in a broad variety of contexts, such as in co-
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location of contexts [6, 7], in co-location of physically nearby mobile users1 [8, 9],

and in extraction of the user social relationships [10, 11], etc. New services have also

been provided to the customers depending on their current location, which is known

as LBS. In LBS nearby places of interest are ubiquitously queried by mobile users

based on their current positions transmitted to the location server. LBS answers the

questions such as where are we (in terms of latitude and longitude)? what points of

interest are near us? what businesses are near us? etc.

Another interesting application of this widespread adoption of powerful smart

devices is to provide useful services and information to a co-located group of people,

according to their local geographical proximity. One way to proceed is to allow mobile

user equipments (UEs) to sense and transmit their shared ambient radio signals to

the co-location server. Upon receipt, the co-location server, based on the similarity of

the reported radio signals, or on the distance between pairwise mobile users, from the

same ambient radio signals, will cluster mobile users into the same group. Then, the

co-location server will inform them back, through an application installed on their

devices, about their belonging group.

The co-location of contexts, as it is presented in [7], aim at delivering a rich

contextual information, to a co-located group of people, for developing context-aware

applications in pervasive computing [12]. The information is delivered to a group

of people according to their context. Here, the focus is on the context in which

people are. Examples of such context are social interaction, data delivering, daily

routines, etc. Whereas, the co-location of physically nearby mobile users is designed

for detecting communities in which people are physically and geographically close to

one another and have been together for a certain time interval. Here, on the other

hand, the emphasis is on physical proximity entities. In this dissertation, even though

the former is of interest, we are mainly concerned with the latter.

Therefore, the co-location system under concern in this thesis focuses on detecting

and clustering of mobile users who are in the same place (a room, for instance), and/or

1In this thesis when we refer to a mobile user we mean that a person holding a mobile device. It
can be a smartphone, a tablet, etc.
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are walking together, as part of the same group, for a certain amount of time, and

are physically, geographically close to one another.

In the following subsections, we will discuss the main differences between co-

localization and localization systems. We also highlight some of their numerous pos-

sible application areas.

1.1.1 Co-localization versus Localization Systems

In this subsection, we want to clarify the difference between two key words that

may be confusion. They are co-localization and localization. It is important to have a

clear definition of these two terms in our mind before going further in this dissertation.

Localization

The term localization is defined as the process of accurately estimating the ge-

ographical position of an object, also commonly called a target or node, in wireless

networks and display it on a surface of a map. The localization system focus on accu-

rately estimating the target’s position coordinates in a reference system and display

it on a map, see Figure 1-1 for an example. In the localization system, when a target

can estimate its own position, it is called self-positioning. On the other hand, when

a central unit (e.g., cloud server) estimates the target’ position through the reported

information, it is called remote-positioning.

A number of applications can benefit from an accurate position estimation of a tar-

get, such as location sensitive billing, intelligent transport systems, improved traffic

management, intruder detection, tacking of fire-fighters and miners, patient monitor-

ing, and many more [13, 14]. Also, with the popularity of the wireless information

access and its wide spread utilization, accurate positioning in wireless networks is

highly demanded in both indoor and outdoor environments [15].

Basically, there are two different position estimation schemes: direct positioning

and two-step positioning. The former is used when the location estimation is per-

formed directly from the radio signals traveling between nodes [16]. Whereas, in the
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Figure 1-1: An example of a localization scenario. This figure exhibits an example
of a localization scenario where the absolute position of a target is estimated (for
example, by using GPS) and displayed on a surface of a map. Therefore, the absolute
coordinates of a target, in terms of latitude and longitude, with respect to a map are
henceforth known.

latter, certain signal parameters are extracted first from the observed radio signals,

then the location of a node is estimated based on those signal parameters. In general,

the two-step positioning method is suboptimal. However, when compared with direct

positioning, it shows significantly lower complexity. For this reason, it is the most

common method utilized in positioning systems.

As its name suggests, the two-step positioning approach is in fact a two steps

positioning method. In the first step, and depending on accuracy requirements and

system constraints, position related parameters of the radio signals such as time

of arrival, angle of arrival, time difference of arrival or received signal strength are

estimated. In the second step, the position of a target is estimated based upon the

position related parameters of the radio signals estimated in the first step. The most

commonly employed position estimation techniques, in this second step, are mapping,

geometric or statistical methods.

Mapping methods requires an up-to-date database, constructed in an off-line

phase, consisting of previous estimated position in a given environment before the

actual position estimate of a target begins. On the other hand, the geometric and

statistical methods do not requires any pre-existing database. The estimation of

the position of a target is performed directly from the signal parameters estimated

4



in the previous step by utilizing geometric relationships and statistical approaches,

respectively.

Co-localization

The term co-localization is defined as how near (geographically close to) or how

far two or more nodes are from one another. A node represents a person or an object.

Figure 1-2 shows an example network with two groups of co-located mobile UEs:

Group 1 and Group 2. Thus, mobile users in the same group can enjoy all the

applications provided by the co-location systems.

Figure 1-2: An example network with two co-located mobile user equipments (MUEs).
In Group 1, there are three co-located MUEs. On the other hand, in Group 2, there
are two co-located MUEs. The double-headed arrow represents the communication
links between MUEs.

Co-location systems are primarily interested only in proximity objects, i.e., what

is “near” to one another, and the term “near” is defined in accordance with the ap-

plication requirements. There is no fixed measure of vicinity among nodes, with

respect to a distance, to state whether they are co-located or not. Therefore, the

term co-localization is more ambiguous that the term localization discussed earlier.

The co-location system under concern in this thesis focuses on detecting and

clustering mobile users who are in the same space and/or are walking together for

a certain amount of time, and are physically, geographically close to one another.

It is worth noting that, contrary to the localization systems [13, 14], whose aim is

at estimating the absolute or relative position of an individual user in the wireless

networks and display it on a surface of a map, the co-location systems, on the other

hand, seek ways of identifying vicinity users and clustering them into the same group.
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Therefore, in accordance with the application requirements, one defines how closely

users should be regarded as potentially co-located [17]. Note also that a mobile device

is considered in proximity to another mobile device if a given proximity criterion is

fulfilled. Examples of these proximity criteria are radio range, geographic range, etc.

A number of real-world applications can directly benefit from the automatic infer-

ence of co-localized groups of mobile devices. In the next subsection, we will present

some of the potential areas of application of co-located groups of mobile users.

1.1.2 Applications of Co-location Systems

We are witnessing an incredible change in the way we interact with each other

and with our physical world. Information collected on a co-located group of mobile

user equipments (UEs) has found several useful and real-world applications. In this

subsection, we present some of these application scenarios with the aim at showing

how it can be applied to provide enhanced wireless services to the mobile users. This

subsection serves also an introduction and the motivations of doing research on this

topic.

Real-world example applications of co-localized groups of mobile users range from

authentication scenarios [18, 19] (see Figure 1-3) with nearby people, in wireless

networks, to prevent eavesdropping and spoofing attacks, to place recommendations

(for people with common interests) and includes information about human social

interactions, geosocial networking [20], opportunistic networks [21, 22] (in which the

aim is at delivering data based on pairwise contact opportunities), and many more.

It also shows promises in revolutionizing vehicular social networks [23–25].

Another particular interesting application of co-located groups of mobile users

is at providing social network users with notification messages on their smartphone

such as that their co-workers, acquaintances, friends, etc., are in close proximity with

them (e.g., in the same room). This is performed by allowing the co-location server

to estimate the proximity level of mobile devices and send a notification message to

the mobile users that their co-workers, for example, are in the same room as they.

Furthermore, by taking advantage of physically closely co-localized mobile UEs,
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Figure 1-3: An example application scenario of two co-located mobile user devices
(User A and User B) involving in an authentication process. As they are co-localized,
according to some pre-established authentication requirements, if a third user, for ex-
ample User C, wants to eavesdrop their communication with the aim at launching a
spoofing attack, they can be aware of this malicious intent and take some appropri-
ated measurements to counteract this kind of behavior. As an example where such
application may be very useful is in mobile payment, where the payment services are
performed via two nearby mobile devices. In this case, a very short distance around
10 centimeters is required.

one can directly route data traffic between mobile users that includes content shar-

ing (e.g., sharing streaming video, pictures, etc.), connectivity extension, etc., which

is known as device-to-device (D2D) [26] communication (see Figure 1-4), for the

purposes of proximity-based services [17] in long-term evolution advanced (LTE-

Advanced) system. Thus, co-located mobile UEs, in the context of D2D commu-

nication, can be exploited with the objective of minimizing the power consumption

of mobile devices [27], in improving throughput, increasing network coverage, de-

lay, spectrum efficiency, as well as enhancing quality of experience in LTE-Advanced

networks [28]. It is also beneficial in spreading of information in social-aware mo-

bile networks [29], in which the interactions among mobile users rely on both their

movement as their social relationships.
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Figure 1-4: An example network of device-to-device (D2D) communication and
machine-to-machine (M2M) communication. This figure exhibits critical applica-
tions of co-located mobile devices. It shows that nearby mobile devices can directly
communicate with one another without the need for the data to traverse the core net-
work. This obviously brings some real advantages to the wireless networks. It aims
at minimizing the power consumption of the mobile devices, improving throughput,
increasing network coverage, etc.

An Illustrative Example

With the aim at helping visualize the concept and scope of the co-location systems,

let us imagine a real-world application of a co-localized group of mobile users where

one of them is watching a video on YouTube channel. If another one wishes to watch

the same video, as they are in close proximity to one another, he can take streaming

video directly from his neighbor, instead of downloading it directly from the YouTube

server. It happens that the same line of reasoning can be adopted on the uploading

case in a specific situation. That is, instead of having multiple connections on the

server for the same purposes, it is better to have a reduced number of connections on

the server and let the users routing their data traffic between themselves.

1.2 Contributions

This thesis starts with an introduction to the co-localization systems. A particular

attention is devoted to the background and the motivations of doing research on this
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topic. Then, we clearly show in which aspects and to what extent the co-localization

systems differ from localization systems, discuss several real-world applications, and

the benefits that co-location systems bring to our ever-connected society.

In Chapter 2, we first discuss some existing methods that can be used in clustering

process. Then, we review some related existing works that have been done on this

topic. We describe, in each case, the approach undertaken in order to address this

issue. Technical details about their implementation are also presented. The work

that inspired us to do research on this topic is highlighted [30] in this chapter as well.

Moreover, for each discussed approach, we emphasize its strengths and make clear its

limitations.

In Chapter 3, we present our first method for clustering mobile users. It automat-

ically discovers co-localized mobile users, when they are in the same place. To this

end, we exploit the similarity of radio frequency measurements from users’ mobile

terminal. We do not require any further information about them.

The designed co-localization algorithm is based on a nonparametric Bayesian

(NPB) method called infinite Gaussian mixture model (IGMM) that allows the model

parameters to change with observed input data. IGMM possesses several attractive

properties that make it an excellent choice for this kind of applications when com-

pared with other existing techniques. One of them is actually that it can be used

when the number of clusters in the input data is unknown or may vary over time.

Indeed, this is always the case in the pervasive computing.

Based on the co-location criterion, we propose a modified version of Gibbs sam-

pling technique with an average similarity threshold (which can be understood as

level of the similarity of the measured radio signals) to better fit user’s group. Fi-

nally, we carry out analysis and show that the proposed method is practical and can

be implemented efficiently with high accuracy.

As we are interested, in this first proposal, only on mobile users that have been in

the same place (e.g., in a room) for a certain amount of time, we derive a mathematical

model to differentiate between walking and non-walking mobile users. The goal is to

filter out the passing by mobile user who will not make part of any existing group.
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For the purpose of co-location, we use ambient Wi-Fi radio signals whose detection

is available in nearly every smartphone, and increasingly, hotspots can be found

anywhere we go. Therefore, it can work in both indoor and outdoor environments.

The proposed method is built on spatial-temporal location of the mobile users, and

infers co-located mobile users using multiple ambient radio signals, which provides

an unforgeable co-localization proof. In association with received signal strength

indicator (RSSI), MAC address, and arrival time of beacon packets from multiple

ambient radio signals, we show through simulation and experimental studies that the

proposed method can efficiently detect co-located mobile users.

The discovery of the co-located mobile users is performed in real-time and in a

centralized, which allows the co-location server to control the formation of the all

co-localized mobile users. We analyze the performance of our proposal, in terms of

clustering accuracy, not only numerically but also experimentally in order to demon-

strate its feasibility. We also perform a comparison result.

With the aim at improving the framework proposed in Chapter 3, we specially

design a novel method for clustering mobile users, in real-time, when they are walking

together as part of the same group, in Chapter 4. However, it can also be applied

when people remain in the same place as well.

The designed method is based on the edge betweenness techniques that allow the

model to automatically infer the number of co-located mobile users in the input data.

It exploits the period of time that mobile users have been walking together as part

of a group, the frequency of their meetings, and finally the distance between pairwise

mobile users for the same period of time. Furthermore, we propose a modified version

of the edge betweenness algorithm with an average path length as a key enabler to a

high co-location accuracy, in accordance with the application requirements.

The proposed method is designed in such a way that it allows us to exploit one

of the most interesting findings in social networks analysis, i.e., most of real world

groups have on average a short distance connecting people within groups [31].

We leverage the emerging and promising Bluetooth low energy (BLE) [32] tech-

nologies by collecting an array of signals broadcast by all nearby iBeacon [33] devices
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indexed by time. For this, we take into account the universally unique identifier

(UUID), received signal strength indicator (RSSI), and the arrival time of radio sig-

nals transmitted by an iBeacon device. The iBeacon technologies are used owing to

its very low cost, low power consumption, easy to deploy, and relatively long range.

Furthermore, it is mainly designed for proximity-based services, contrary to the access

points which implement the protocols for faster access.

We use the collected information to construct a matrix of interactions, in which

each entry is a distance representing a pairwise connection strength among mobile

users. Then, the groups of mobile users are inferred based on the analysis of the two

key network properties, i.e., the edge betweenness and the average shortest distance

among all pairs of users. Finally, we analyze our approach with both computer-

generated and experimental data set to demonstrate its feasibility.

Note that both of the designed methods, in Chapters 3 and 4, do not estimate

the absolute position of individual users, which prevents them from being tracked,

thus protecting their location privacy. These methods require only a list of captured

ambient and iBeacon radio signals to be reported to the co-location server, and do

not spread the list among other users, consequently there is no privacy leakage. It is

worth noting that, even though the co-location server informs users of the presence

of other users in their vicinity, it does not disclose their exact location.

Chapter 5 draws a conclusion of this thesis and presents some directions for the

future research on this topic.

We summarize the contributions of this thesis as follows:

∙ For the purpose of proximity-based services, we first propose a method able to

automatically cluster mobile users, in real-time and in a centralized manner,

while they are in the same place (a room, for instance). The proposed method

exploits the similarity of the users’ measured ambient radio signals to cluster

them into the same group. We also consider that mobile users should be in that

place for a certain amount of time in order to regard them as co-located. We

apply IGMM and a modified version of Gibbs sampling techniques for inference

of the class label of each observation.
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∙ We design a novel method that extends the capability of the previous method

by given it now the ability to cluster mobile users even though they are walking

together as part of the same group. In this case, we utilize the radio signals

transmitted by iBeacon devices. Thus, we exploits the connection strength

between iBeacon devices to cluster users into the same group. Moreover, the

period of time that mobile users spend together is also taken into account. The

set of mobile users belonging to the same group is inferred by applying two key

network properties, namely the edge betweenness and the average path length.

∙ In both cases, we first present numerical results. Then, we carry out experiments

and analyze these methods with data sets from real-world settings. Thus, we

demonstrate, through numerical and experimental evaluation, their robustness

and effectiveness, and show that they can be successfully applied to co-localize

people in wireless networks.

1.3 Outline of Dissertation

This thesis is structured into five Chapters as it is shown in Figure 1-5. In the

first chapter, we introduce the background and motivations of the co-location systems.

We highlight some key differences between localization and co-localization systems.

Then, the related works are reviewed in Chapter 2. In Chapter 3, we provide a

technical analysis on how to infer co-located groups of people, while they are in the

same place, by applying a nonparametric Bayesian method called infinite Gaussian

mixture model. Analysis on numerical and experimental results are conducted in

order to demonstrate its effectiveness.

Then, we extend the aim of Chapter 3, in Chapter 4, by proposing a novel method

able to co-localize users even though they are walking as part of the same groups. This

newly devised method is based on the analysis of the two key network properties, i.e.,

the edge betweenness techniques and the average path length. We carry out numerical

and experimental analysis and show its performance in terms of clustering accuracy.

Finally, we conclude and present the direction for future research including possible
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improvements in Chapter 5.

We portray the relationship between chapters and techniques used in this thesis

in Figure 1-6. It illustrates that radio signals are sensed from multiple Wi-Fi access

points (APs) and Bluetooth low energy (BLE) devices. In fact, received signals

strength indicators (RSSI) are collected and processed in both cases. Similarity of

the measured radio signals from different APs are exploited for the inference of the

co-located groups of people that are in the same place, in Chapter 3. Whereas the

connection strength between pairwise of mobile users using BLE devices are used to

co-locate walking groups of people in Chapter 4.

Radio signals from APs are extracted and modelled with finite Gaussian mixture

model (FGMM) when the number of clusters in the data set is known. However, when

the number of clusters is unknown or may vary over time, infinity Gaussian mixture

model (IGMM), which is an extreme case of FGMM, becomes a better choice. In this

work, the latter is utilized.

Both FGMM and IGMM use Gaussian distribution to model the observations.

Gibbs sampling method is utilized to infer the class label of each observation. How-

ever, to effectively cluster mobile users, in accordance with the application require-

ments, we compute the average similarity value, which represents the centroid of each

discovered cluster, and accept a new membership, into this particular cluster, if the

distance of this new incoming observation to the center of that cluster is less than or

equal to a predefined similarity threshold. In this case, different distance metrics can

be utilized. The similarity threshold defines our co-location criterion, i.e., how close

mobile users should be considered as potential co-located.

From the collected BLE radio signals, we construct a graph network in which

each vertex corresponds to a mobile user and the distance between pairwise vertices

represents the connection strength between mobile users. Then, the edge betweenness,

which is a generalization of the vertex betweenness, is used to classify walking groups

of mobile users. Based on average path length (APL) of each discovered cluster, with

a similarity threshold, set of vertices that belong to the same cluster are extracted

from the constructed graph network. These set of vertices represent co-localized
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walking groups of people. Here again, the similarity threshold defines our co-location

criterion.

In Chapter 5, we draw a general conclusion of this thesis and highlight several

other challenging issues that need to be addressed in order to fulfill the potential of

co-location systems.
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Chapter 2

Related Works

2.1 Introduction

The co-localization system has been subject to several research studies in recent

years, due to its importance on people-centric and place-centric mobile applications

[34]. However, it is indeed a recent research topic and many works still remain to be

done, as we will see later on.

In this chapter, we first discuss some traditional clustering methods able to tackle

this issue. Then, we provide a review on some interesting works already done in co-

location system and explain different techniques utilized. In both cases (traditional

and conventional methods), we highlighted their strengths as well as their limitations.

Co-location system faces several key design challenges that should be careful ad-

dressed in order to fulfill its potential. Following are some of them:

∙ The designed algorithm should be able to automatically discover co-located

groups of mobile users, with high accuracy, in the wireless networks, without

the need to be specified how many clusters to find. Indeed, in the real-world

scenario, we do not have any knowledge of the number of active mobile users in

the network. Moreover, it is unpredictable and changes over time.

∙ As users are becoming more and more concerned with their privacy, the designed

algorithm should not track or allow a third-party application to trace them.
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Therefore, the designed schemes should be inherently users’ privacy preserving.

∙ Instead of estimating the position of a mobile user, as localization engines do, co-

localization techniques seek to detect physically and geographically close mobile

users who have been together for some amount of time, and cluster them into

the same groups. Therefore, two key co-location parameters should be taken

into account, i.e., the duration and/or the frequency of the group meeting.

In the following sections, we will present some existing clustering methods and

related works and explain how they deal with the aforementioned design challenges.

2.2 Traditional Clustering Methods

An easy way of thinking to address the co-location issue is to use an already

built-in positioning system equipped with each smartphone to estimate the current

position of the users. Then, using the current obtained position to state whether or

not they are co-located [35]. Despite the fact that this approach seems simple and

attractive at first, it presents several drawbacks associated with positioning systems

to co-localize mobile users. One of them is actually that the position of a target is

not accurately assessed and changes place to place (in indoor environment, it is even

not available when using GPS) [36]. Another drawback is that collecting people’s

position for a long period of time can allow them to be easily tracked with today’s

technologies (e.g., by using data mining). Therefore, robust techniques to infer groups

of co-localized mobile users are needed, without disclosing their absolute position.

Traditional clustering approaches such as K-means [37], Gaussian mixture mod-

eling (GMM) [38], or hidden Markov model [39] provide also a way to solve this

problem. However, all of them suffer from the same drawbacks. In fact, these algo-

rithms require a fixed number of clusters1, which they need to be told to find. As

the number of users in pervasive computing can change over time, and consequently

the number of hidden clusters in the input data set is unknown and may also vary,

1Throughout this thesis, the words cluster and group are used interchangeably.
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these algorithms become inappropriate for this kind of problems. In addition, in real-

world settings we do not have any knowledge of the input data, and the model chosen

depends heavily on the data sets.

In the following subsections, we present some of these algorithms and provide their

mathematical foundation. We skip the discussion of GMM in this chapter because

our derived framework is based on it, which we thoroughly discuss in Chapter 3.

2.2.1 K-means Algorithm

Parametric clustering methods such as K-means has been thoroughly used in the

literature since its establishment in 1967 by MacQueen et al. [40]. Its widely adop-

tion is due to the fact that its procedure is easily programmed and computationally

economical [40].

The main objective of this algorithm is to partition a given data set into K subsets,

where K is the number of clusters in the dataset. K is also a parameter to be specified.

For example, given a set of N observations, y = {y1, y2, . . . , yN }, in an D-dimensional

feature space, K-means algorithm partitions each observation yi into a cluster c j ,

where j ≤ K. This partitioning is performed by minimizing the sum of the squared

distances to the cluster centers, i.e., to minimize the following objective function

K∑
j=1

∑
yi∈cj
‖ yi − µ j ‖2 (2.1)

where µ j is the centroid of the cluster c j . The algorithm operates in the following

steps to classify a given set of the observations [40]

1. Put K observations into the space represented by the observations that are being

clustered. These observations represent initial cluster centroids.

2. Assign each observation to the cluster that has the closest centroid.

3. When all observations have been assigned, recalculate the positions of the K

centroids.
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4. Repeat steps 2 and 3 until the centroids no longer move.

The algorithm is expected to converge at a certain number of iterations, i.e., when

no more assignment changes are happening with each iteration. However, it does not

necessarily find the most optimal partition, i.e., it can get stuck in local minima.

Moreover, it is also significantly sensitive to the initial selected cluster assignments.

There are techniques for choosing initial assignments effectively and keeping the al-

gorithm from converging in local minima. The Bradley-Fayyad algorithm [41] is one

of these techniques for choosing refined initial assignments.

2.2.2 Hidden Markov Models

Hidden Markov models (HMM) are another class of algorithms that can be used

for clustering. They are stochastic methods for modelling temporal and sequence

data. The basic idea of HMM was introduced by Baum and Petrie in the late 1960s

[42, 43]. Since then, it has been extensively applied to a wide variety of problems, as

in automatic speech recognition [44, 45], gesture recognition [46, 47], sequence clus-

tering [48], computer vision [49], and many more.

Figure 2-1: Illustration of the sequence of hidden Markov model where each observa-
tion yi corresponds to a hidden state si.

The HMM can be considered as a specific instance of the state space model rep-

resented in Figure 2-1, in which the latent variables, S = {si}Ki=1, are discrete. In this

figure, we can notice that each observation yi is generated by a specific hidden state

si. In fact, under Markov assumption, the latest observation is assumed to be influ-

enced by the current state of the system. Therefore, a discrete-time HMM is defined
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by a set of hidden states, S = {s1, s2, . . . , sK}, where each state is characterized by a

state transition probability distribution, also known as transition matrix A. K is the

number of the hidden states. The values of the transition matrix A denoted by ai j

represent the transition probabilities of going from one state the to another, i.e., from

state si to state s j . They are given by

ai j = p(st+1, j = 1|st,i = 1), (2.2)

which means that the probability of being in state s j at time t + 1 given that at time

t we were at state si. As the values of ai j are probabilities, they take their values

from 0 6 ai j 6 1, with
∑

K ai j = 1. At each time instant t, which T denoting the

length of observation sequence, there is a set V = {v1, v2, . . . , vM} of possible discrete

observation symbols that can be made. The probability of observing these symbols

is denoted by B = {b j(l)}, where b j(l) = p(vt,l |st = j) is the probability of observing a

particular symbol vl given that at time t we are at state s j .

As the model is formulated as sequential of hidden states, from Figure 2-1 we

can see that the initial state s1 has no parent node. It has, however, a marginal

distribution p(s1) given by a vector of probabilities π = {πi}, in which πi = p(s1 = i),

i.e., the probability of being in state si at time t = 1.

The observation sequences made at each time instant t is denoted by Ot . The

HMM is usually denoted in a compact form as a triplet λ = (A, B, π).

Given a set of observed sequences {Ot}, the values of the HMM parameters can be

efficiently estimated using the Baum-Welch algorithm [39] or Baldi-Chauvin algorithm

[50]. Baum-Welch algorithm determines the parameters maximizing the likelihood

p(Oi |λ). It is an example of a forward-backward algorithm [39] used to compute

p(O |λ), given the model λ and a sequence O.

A standard approach to cluster sequences of observations using HMM is known

as proximity-based method [51]. It computes the similarity between sequences of

observations and pairwise distance matrix-based approaches to obtain clusters of se-

quences.
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Considering a set of T observed sequences {Ot}Tt=1, the algorithm operates as fol-

lows:

1. Train the model for each sequence;

2. Compute the distance matrix {D(Oi,O j)}, expressing the similarity measure

between sequences by using forward probability p(O j, λi);

3. Using pairwise distance matrix-based method to perform clustering.

Even though HMM is a well known and studied technique, it is unsuitable for

the co-location problem. Indeed, it needs to be specified the value of K, i.e., the

number of clusters to be found in the input data. As discussed earlier and thoroughly

emphasized in this dissertation, in pervasive computing we do not have any knowledge

of the number of clusters in the input data, and it may vary over time. Consequently,

HMM becomes not the best choice for this kind of applications.

2.3 Group-place Identification Algorithm

The first work on using community mobility traces to automatically infer social

groups members and group-place associations that have some importance for a group

of people goes back to the work published by Gupta et al. [52] in 2007. The authors

in [52] designed an algorithm, called group-place identification (GPI), that takes ad-

vantage of the location of users to infer their corresponding groups and associated

places.

The GPI algorithm performs using community mobility traces acquired from any

localization system to achieve its goal. It relies on repeatedly discovering users’ co-

presence at the same place to determine the group members, and in turn deduce

their meeting places. The basic assumption behind GPI is that group members have

a much higher degree of copresence (DCP) than non-group members. The DCP is

rather defined as the total number of times two members were copresent divided by

the total number of group meetings.
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The GPI algorithm operates by identify each user with his respective places. For

each place visited by a user ui, the algorithm verifies if there are groups associated

with that place. If so, the group members are identified using copresence information.

This is done by analyzing the place visit data from all other users uk to check potential

copresence with user ui at place P. The information obtained from this analysis is

then used to build a copresence matrix with respect to user ui at place P. Two users

identified at the same place are considered co-located if the distance between them is

less than a threshold ∆, and the time overlap between their visits is at least ∆t.

Finally, the place where the group is formed is to be identified. To this end, the

average of the geographical coordinates of all trace points by all users at place P is

computed, and called a point C. Then, the place is determined by looking at actual

geographies area of radius E around the point C. The radius E is defined as the

maximum error in determining the point C, which is introduced by the localization

engine. Based on the proposed scheme, the GPI algorithm is evaluated with respect

to the two following goals: i) high percentage of group member identification, and ii)

high accuracy of the place of the group meetings.

From their evaluation, the authors showed that GPI algorithm is accurate and

exhibits low false positives. However, it presents some issues and privacy concerns

arise among them. In fact, the location of the mobile users is not accurately assessed

and its accuracy changes with places; by collecting positions of the users for a long

period of time exposes them to be easily tracked with today’s technologies; and finally,

their approach requires a location engine (e.g., GPS) [53] installed on every user’s

device, which constrains its usability. Moreover, the frequently computation of the

users’ location and delivering it to the server could significant reduce the battery

lifetime of a mobile devices.

2.4 Detection of Walking Groups of Users

Later in 2011, Roggen et al. in [54] proposed to detect groups of walking people

by analyzing the data signals collected from an ensemble of people wearing on-body
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sensors. During their experiments, people were wearing each one an accelerometer.

The authors in [54] formulated the co-location problem as a series of processing

steps, called crowd behavior recognition chain, that can be used to infer collective

crowd behavior from on-body sensors. From the collected data signals, machine

learning techniques are used to infer users with similar patterns while they are walking

together.

Crowd behavior is defined as coordinated movement of a large number of individ-

uals to which a semantically relevant meaning can be attributed. Examples of these

behaviors include people queuing, people clogging and forming lanes, people walk-

ing in groups, running, etc. In their work [54], the collective behavior is restricted

to walking groups of people. Therefore, all discuss hereafter will be on that latter.

The recognition chain, on the other hand, is defined as the task of identifying which

individuals participate to that crowd behavior.

From the on-body sensor data measurements, the characteristics of each user are

inferred. Then, these characteristics are analyzed pairwise for each pair of users. The

aim is at finding out whether the behavior of these two users may be the outcome of

their participation to the specific crowd behavior (e.g., walking together). Finally, the

users that participate in the common crowd behavior are determined among all the

others. This is achieved by analyzing the pairwise measure of disparity using graph

visualization and graph clustering. That is, the inference of all groups of walking

users.

2.4.1 Individual Activity Recognition

Following the individual activity recognition chain (IARC) [55] processing princi-

ples, the human activities are inferred from raw sensor data. The IARC is used for

recognizing one or more user behaviors from the on-body sensor data measurements.

Its role is to map low-level sensor data Su (e.g., body-limp acceleration) of a users u

to a meaningfully human activity (e.g., do a step). This is generically referred as the
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user “individual behavior” Bu. Formally,

I ARC : Su → Bu (2.3)

The individual behavior at given time t is estimated using the data available up

to that time point. Thus, the behavior Bu corresponds to time series is done by

Bu = {Bu
t : t ∈ Tu}, (2.4)

where Bu
t is the behavior of the user u at a given time t, and Tu = {Tu

1 ,T
u
2 , . . .} is

the time instants Tu
t at which the behavior Bu

t is estimated. The behavior is further

represented by a tuple Bu
t = (bu

t , pu
t ), where bu

t is the set of activities and pu
t representing

the confidence of the system in the decision.

The IARC embraces a series of processing stages described as follows: a) the

sensor data are collected, which correspond to a time series S = {s1, s2, s3, . . .}; b) the

time series S is pre-processed, which leads to time series P = {p1, p2, p3, . . .}. In this

case, the time series P is segmented into sections within which a characteristic of the

user behavior is computed. Each section i delimited by a start time ts
i and an end

time te
i , yielding a segmented time series Wi = {ptsi , . . . , ptei }; d) features are extracted

from these sections to discriminate the activities. The outcome is a feature vector

Xi = Ψ(Wi). The feature vector Xi is then mapped into an individual behavior bi as

Xi → (bi, pi). bi represents a discrete individual behavior and pi is the classification

likelihood, i.e., the confidence in the classification result.

The classification is carried out using a machine learning classifier. According to

the authors, any machine learning classifier such as Support Vector Machine [56],

Naïve Bayes classifiers [57], etc. can be adopted.

2.4.2 Pairwise Disparity Analysis

After inferring the behavior of each single user, the measure of disparity between

a pair of users is carried out at time T from the behavior Bu and Bv. The aim

is at recognizing pair of users that participate to a common crowd behavior. The
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computation of the disparity follows this model:

Cu,v
T = g(Corr( f (Bu,T), f (Bv,T))). (2.5)

The function Corr(·, ·) calculates the measure of similarity between the input data.

In turn, the function g maps it to a disparity value, which can be 0 for the same crowd

behavior and 1 for different crowd behavior. Thus, the resulting disparity matrix at

time T is computed as CT = [Cu,v
T ]n×n, for n users. Its values are lower when users

participate in the same crowd behavior and higher in different crowd behavior. The

pre-processing function f (·, ·) defines a slide window w1 within which the disparity is

computed. It is formulated as follows:

f (Bu,T) = {Bu
t : t ∈ Tu,T − w1 ≤ t ≤ T}. (2.6)

The functions Corr(·, ·), g(·), and f (·, ·) and their parameters are determined based

on the training data set.

2.4.3 Global Crowd Behavior

With the computation of the disparity matrix, CT = [Cu,v
T ]n×n, in the previous

subsection, the task now is to find the global crowd behavior from this disparity

matrix, i.e., to find out set of users who participate in the same crowd behavior at

a given time T . According to the authors [54], different methods can be adopted.

However, they opted for graph clustering method to objectively identify clusters of

users.

By applying graph clustering method, set of users performing the same activity

are identified by the proposed scheme, i.e., people participating to the common crowd

behavior, which is in fact the inference of walking groups of people.

Note that the proposed method first identifies activity of each user by applying

IARC techniques. Then, try to cluster users with the same activities together. How-

ever, it should be noted that IARC does not guarantee a perfect recognition of the

individual activities. The proposed techniques, in its own way, do not provide any

26



mechanism to assess how close people are from one another. By asking people to

wear a particular kind of sensors in order to determine their on-going activities re-

duces the practicability of the proposed scheme. Moreover, the time duration that

people should pass together in order to state that they are co-located is not taken

into account in their proposals.

2.5 Method Based on Community Detection Tools

More recently, in 2015, Dashti et al. [30] devised a real-time clustering method to

co-localize mobile users based on the similarity of their radio frequency (RF) finger-

prints. The authors assume the mobile users are in the same place and propose to

exploit their shared ambient radio signals. From the reported RF fingerprints, com-

munity detection (CD) tools are applied to infer co-located groups of users. Mobile

users are considered potentially co-localized if their reported RF fingerprints differ

less than a predefined threshold. The co-location is performed by calculating the dis-

tance (in signal space) between reported fingerprints from each pairs of mobile users.

In this proposal, the time traces of fingerprints are also taken into account in order

to infer the length of users’ interaction.

To apply CD tools for inferring groups of co-located mobile users, a connectivity

graph is first constructed by taking into account the similarity of user’s measured

radio signals. The connectivity graph is constructed with the distance computed (in

signal space) between reported fingerprints from each pairs of mobile users. If the

distance between pairwise users, di, j , is less than a preset threshold δ, the two mobile

users are connected by an edge, i.e., C′i, j = 1 in the estimated connectivity matrix,

otherwise C′i, j = 0. The groups discovering process in the constructed graph aims at

dividing the vertices (users) in such a way that within each cluster the most similar

vertices are observed. To this end, an objective function called “modularity” function

is defined which the aim at measuring the fraction of the edges that falls within the

given groups minus the expected fraction of edges if they were distributed at random.

Thus, by maximizing this modularity function, the graph is partitioned into many
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within-community links and few possible between-community links.

2.5.1 Modularity Function

The modularity function is defined as follows

M =
N∑

n=1

(
ln

L
− d2

n

4L2

)
(2.7)

where N is the number of communities, L is the number of links in the graph, ln is the

number of links between vertices in community n, and dn is the sum of the degrees

of the vertices in community n. The objective is to find a community assignment

for each vertex in the graph such that the modularity function M is maximized. By

maximizing this modularity function, the number of clusters within the constructed

connectivity graph can be inferred automatically. In the next subsection, we discuss

the technique used to maximize this modularity function.

2.5.2 Simulated Annealing Method

As aforementioned, the proposed algorithm needs to maximize a modularity func-

tion M for inferring the number of clusters in the constructed connectivity graph.

In fact, this maximization is performed with a heuristic technique called simulated

annealing (SA) [58]. SA is a stochastic optimization technique for finding a global

low-cost configuration of an objective function that may have several local minima. It

was inspired by the process of annealing in metalwork. The annealing process consists

of heating and cooling a metal so that its physical properties can be altered owing to

the changes in its internal structure.

SA was first proposed as an optimization technique by Kirkpatrick in 1983 [59]

and Černý in 1984 [60]. It is a well known randomized search process used for finding

a good solution (not necessarily the best one) to an optimization problem. It exhibits,

however, an attractive property, i.e., it avoids the problem of getting stuck in local

optima-solutions that are better than any other neighbors, but are not the very best.

In order to achieve a global low-cost configuration, a computational temperature T
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is introduced in the algorithm. At high temperature T , the algorithm can explore high

cost configurations, whereas at low temperature T , the algorithm explores low cost

configurations. Normally, we start with high temperature T and then slowly “cool”,

decrease, it. As the temperature is slowly reduced, the system decreases gradually

toward the minima solutions. In this case, the chance of accepting worse solutions

is also reduced. Thus, the algorithm gradually concentrate on the region of search

where hopefully a optimum solution can be found.

With the aim at identifying co-located groups of people in the wireless networks,

the objective function M is maximized. Thus, the cost C = −M, where M is the

modularity function that we want to maximize, as defined in (2.7). At each temper-

ature T , assuming the current best cost is Ci, the algorithm randomly chooses a new

neighbour solution Cj , and accepts this newly solution as the better one with the

following probabilities [58]

p =


1 if Cj ≤ Ci,

exp
(
−Cj−Ci

T

)
if Cj > Ci

(2.8)

where Ci is the current cost of the system and Cj is the cost of choosing a new solution

that maybe is better than the previous one.

The authors in [30] evaluated their proposal with real-world data sets and showed

that it provides accurate people co-location information with sub-meter accuracy.

Moreover, the proposed scheme was also analyzed with different distance metrics

(e.g., Euclidean distance, Manhattan distance, Minkowski distance, etc.), and demon-

strated that these distance metrics impact differently the co-location system.

The algorithm presented in this section inspired us to do our work. In Chapter 3,

we will compare our first proposal with this algorithm. Therefore, for the sake of

comparison, we will call henceforth this method CDSA-based clustering method.
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2.6 CrumblR Algorithm

In [61], Vanderhulst et al. built a framework, called CrumblR, that associates

places with services. That is, users opportunistically share their locations with a place

in order to obtain associated Proxemic Services. The authors defined the Proxemic

Services as a “temporal service that automatically provides the user with value at a

specific place.”

CrumblR algorithm operates by first presenting to the users with an overview of

places of interest (e.g., mall, hospital, airport, etc.) near their current location. By

checking in to a place, the user’ device begins to drop wireless signal fingerprints at

that place. In return, proxemic services associated with that place are pushed to the

user’ device (e.g., alerts, coupons, interactive controls). Once the user has left the

place, he automatically loses all these associated services.

To achieve its objectives, CrumblR implements two different algorithms able to

determine mobile device’ location and group. The first one is called place detection

algorithm. It checks in to the previously trusted places by detecting a mobile device’

coarse location. This task is accomplished by exploiting two key operations of mobile

devices: cellular and Wi-Fi probing techniques. Thus, enabling a mobile device to

learn about the identities of Wi-Fi APs and cell towers within radio range. The

second one is called point-in-place algorithm which is based on co-location. It is used

to detect mobile devices’ location and cluster them into the same group. The central

idea of co-location techniques here, according to the authors, is that the multipath

structure of a radio channel is unique to every location and can be considered as a

signature of the location. Therefore, co-localized mobile devices experience a similar

multipath environment and exhibit similar multipath profiles.

From the measured RF fingerprints, the algorithm computes the distance (in signal

space) between every two mobile devices. In this case, different distance metrics can

be utilized as a measure of the distance between devices. The mobile devices whose

RF fingerprints differ less than a predefined similarity threshold δ are regarded to be

potentially co-localized.
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Although such an approach seems interesting, it needs to collect RF fingerprint at

a specific place beforehand, which reduces its practicability. Indeed, like the algorithm

discussed in Section 2.3, it presents also a trade-off between disclosing users’ location

and the benefit of services it provides to them in return.

2.7 Summary of the Reviewed Clustering Methods

In the previous sections, we first reviewed some popular traditional clustering

methods and showed for each one of them why they fail to be applied to the co-location

systems. Then, we presented some existing conventional methods for co-location of

mobile users. We also highlight some of their strengths as well as their weaknesses.

In this section, we draw a summary of all these techniques presented earlier by

showing a comparison study between them. In this comparison, we are mainly con-

cerned with some of their key properties needed in co-location system. Table 2.1

presents a summary of each one of them. A hyphen in different cells means that the

information is missing.

2.8 Conclusion

In this chapter, we explain several design challenges that face co-location systems

and discuss how some existing methods can be applied to address these design chal-

lenges. Existing works on co-location systems are also reviewed. We provide in each

case the mainly idea behind each proposal and their mathematical foundation.

In the next chapters, we will present and evaluate our methods and show how our

proposals deal with these design challenges that face co-location systems.
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Table 2.1. Comparison between different clustering methods (traditional and con-
ventional)

Methods Number of Clusters Duration/
Frequency

Privacy
Issue

Accuracy

Tr
ad

it
io

n a
l

K-means Not Automatic - No -

HMM Not Automatic - No -

GMM Not Automatic - No -

C
on

ve
nt

io
na

l GPI Automatic Yes Yes High

IARC-based Automatic Yes No High

CDSA-based Automatic Yes No High

CrumbR Automatic Yes Yes -

HMM - Hidden Markov Model;
GMM - Gaussian Mixture Model;
GPI - Group-place Identification;
IARC-based - Individual Activity Recognition Chain-based clustering;
CDSA-based - Community Detection-based Simulated Annealing
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Chapter 3

IGMM-Based Co-Localization of

Mobile Users With Ambient Radio

Signals

3.1 Introduction

In this chapter, for the purpose of realizing potential applications of co-localized

mobile users, we present a method able to detect, in real-time and in a centralized

manner, co-localized mobile users in wireless networks. It is based on a nonparametric

Bayesian (NPB) method called infinite Gaussian mixture modeling (IGMM) [62]. We

chose IGMM because it offers several attractive proprieties, when compared with its

counterpart, that make it a potential candidate for the co-location problem. These

properties are summarized as follows

∙ It is known that Bayesian methodology avoids overfitting problem. Thus, the

task of adjusting model complexity disappears;

∙ It avoids selecting a statistical model from a set of candidate models, given the

input data;

∙ It avoids the need of the a priori knowledge of the input data, i.e., the number
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of active devices operating in the network;

∙ It can be used when the number of clusters in the input data is unknown or

may vary over time. In other words, it can automatically infer the number of

clusters in the data set; etc.

IGMM exploits the similarity of the users’ measured ambient radio signals from

different Wi-Fi hotspots to cluster them into the same group. To classify users’ mea-

sured radio signals a Markov chain Monte Carlo (MCMC) [63] implementation of a

hierarchical IGMM [64] is utilized. An MCMC is used because it simulates a Markov

chain whose equilibrium distribution is the posterior distribution. Therefore, sam-

pling from this posterior distribution avoids the problems of local optima solutions.

Furthermore, a modified version of Gibbs sampling is proposed as a key enabler to a

high co-localization accuracy, in accordance with application requirements.

As we are interested in the groups of users in the same place, we also proposed a

method for inferring walking and non-walking mobile users based on a period of time

∆t. This ∆t is defined as the minimum period of time required by the mobile users

to be together, in the same place, in order to regard them as potential co-located.

As stated earlier, in this chapter, we are only interested in clustering of mobile users

who spend a certain amount of time together in the same place. Therefore, we need

to filter out passing by users who will not make part of any of these groups.

The proposed method, which is based on IGMM, is built on spatial-temporal lo-

cation of the mobile users and infers co-located groups of mobile users using multiple

ambient radio signals, which provides an unforgeable co-localization proof. In associ-

ation with received signal strength indicator (RSSI), MAC address, and arrival time

of beacon packets from multiple ambient radio signals, we show through simulation

and experimental studies that the proposed method can efficiently detect co-located

groups of users. Moreover, through a comparative analysis we have shown that the

proposed method can even outperform the state-of-the-art clustering method.

Note that, contrary to the other existing techniques [35], our method does not

estimate the absolute position [65] of individual users, then to cluster them into the
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same group, which prevents them from being tracked, thus protecting location privacy.

The method requires only a list of captured ambient radio signals to be reported to

the co-location server, and does not spread the list among other users, consequently

there is no privacy leakage. It is worth noting that, even though the co-location server

informs users of the presence of other users in their vicinity, it does not disclose their

exact location.

3.2 System Model

Mobile users that have been together, for a certain amount of time, in the same

place, experience the similar Wi-Fi radio signals from their shared ambient radio

signals [30]. Hence, we aim at detecting these mobile users with similar RF measure-

ments and cluster them into the same group.

In Figure 3-1, we present an example network of our co-location system. In this

figure, there are several mobile user equipments (MUEs), organized in two groups:

Group 1 and Group 2. Mobile users in the same group are expected to experience

similar radio signals from their nearest access points (APs). Periodically, they will

report to the nearest base station (BS) their measured radio signals. Upon receipt,

the base station will in turn transmit the reported measurements to the co-location

server through the Internet. The server will perform the task of group formation

detection from the received data sets, and will inform back the mobile users, through

an application installed on their devices, about their belonging group.

In this thesis, we propose to exploit the Wi-Fi radio signals to cluster mobile users

when they are in the same place, a room, for instance. This approach is explained by

the fact of their easy deployment and no extra cost, and their ability of working in

both indoor and outdoor environments. However, other radio signals can be exploited

as well to co-localize mobile users [30].

In the following subsections, we discuss in detail our implementation based on

IGMM. For ease of reference, we summarize the notation of all the mathematical

symbols used in this chapter in the beginning of this thesis in Section “List of Symbols”.
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Figure 3-1: An example network architecture of two co-localized groups of mobile
users equipments: Group 1 and Group 2. The blue arrows indicate the transmission
of the ambient radio signals to the co-location server. The red arrows represent
information of co-localized mobile equipments sent by the server.

3.2.1 IGMM-Based Co-location

Consider y = {y1, y2, . . . , yN } are our set of all observations from N mobile users

in the area of interest Q, where each yi ∈ RD is a feature vector of ith user in a

D-dimensional space. For the sake of simplicity, we will first present our model for

one dimensional space (D = 1), and, then, explain how to generalize this model for

the multivariate case later on.

Farrahi et al. [66] showed through 72 individuals over nine month period collecting
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Bluetooth signals, that the distribution of users that have been in physical proximity

fits Gaussian distribution. Based on this finding, and as we are only interested in

users’ physical proximity, we assume that the received RF measurements can be well

modeled by a multivariate Gaussian distribution. Thus, one Gaussian mixture model

will be used to model each class.

Fixed number of classes

Our co-localization technique is implemented with infinite Gaussian mixture model

(IGMM) for modeling. Then, we apply an MCMC method called collapsed Gibbs

sampling technique for classification. It simulates a Markov chain whose equilibrium

distribution is the posterior distribution. Sampling from this posterior distribution

circumvents the problems with initialization and local optima [67].

In [62], Rasmussen has shown that, even though we do not have any knowledge

of our input data, we can start with a finite Gaussian mixture model (FGMM). That

is, we assume that the number of classes is known, and then explore the model when

the number of the classes is unknown. So, let us assume that we have K mixture

weights to model our input data y ={yi}Ni=1, which the probability density function

(PDF) given in (3.1), and derive the model later when K →∞.

p(yi) =
K∑

j=1

π jN
(
µ j, s−1j

)
, (3.1)

where π j are the mixture weights, with 0 ≤ π j ≤ 1, and
∑K

j=1 π j = 1. The mixture

weights represent the probability of yi observation belongs to one of the K classes.

The parameters µ j and s j are the means and precisions (inverse covariance) of the

jth Gaussian N, respectively.

The mixture means, µ j , have Gaussian priors in the following form

p(µ j |λ, r) ∼ N(λ, r−1), (3.2)

whose mean, λ, and precision, r, are hyperparameters of the model. Their priors are
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given by

p(λ) ∼ N(µy, σ2
y ) (3.3)

and

p(r) ∼ Ga(1, σ−2y ), (3.4)

which are Gaussian and Gamma, respectively. The mean, µy, and the variance, σ2
y

are computed from the observations.

The mixture precisions, s j , are given by the Gamma priors as

p(s j |β, ω) ∼ Ga(β, ω−1), (3.5)

whose shape, β, and mean, ω−1, are also hyperparameters of the model. Their priors

are given by

p(β−1) ∼ Ga(1, 1), (3.6)

and

p(ω) ∼ Ga(1, σ2
y ), (3.7)

which are inverse Gamma and Gamma, respectively.

Following [62], we use a symmetric Dirichlet distribution to compute the mixture

weights 𝜋 = (π1, π2, . . . , πK). In fact, Dirichlet distribution is a conjugate prior1 of the

Multinomial distribution, whose joint PDF is in the following form

1A prior is conjugate if it yields a posterior that is the same family as the prior (a mathematical
convenience) [64].

38



p(𝜋 |α) ∼ Dir(α/K, α/K, . . . , α/K)

=
Γ(α)
Γ(α/K)K

K∏
j=1

π
α
K −1
j , (3.8)

where Γ(·) is the Gamma function. The mixtures π j are positive and sum to one,

and α is the concentration parameter whose prior has an inverse Gamma shape as

p(α−1) ∼ Ga(1, 1). The symmetric Dirichlet hyperparameters α
K in (3.8) encode our

beliefs about how uniform or skewed the class mixture weights will be [67].

At this point, we presented our model for one dimensional (D = 1) feature space,

as stated earlier. However, in our experiments, we collected Wi-Fi radio signals sent

by three different APs. Therefore, the model presented so far should be modified to fit

the multivariate case. Hence, to adapt the model to the multivariate case, with D = 3

features, some modifications are needed, which is straightforward. We replace the

normal and Gamma variables with multivariate Gaussian and Wishart distribution,

respectively. Therefore, the normal variables µ j become multinormal random vectors

®µ j . The Gamma variables s j become Wishart random matrices Σ j . For the remainder

of this chapter, all discussion will be focused on the multidimensional space, i.e.,

D = 3.

According to [68], the conjugate prior distribution of the mean vector ®µ j and

covariance matrix Σ j , can be computed with Gaussian inverse Wishart (GIW) distri-

bution, with hyperparameters H = (Λ−10 , υ0, ®µ0, κ0), and they are denoted as

Σ j ∼ IWυ0(Λ−10 )

®µ j |Σ j ∼ N( ®µ0,Σ j/κ0), (3.9)

where IW is the inverse Wishart distribution and N is the multivariate Gaussian

distribution. The hyperparameters, denoted by H, delineate our knowledge of the

39



observations. Thus, the fully conjugate prior density is given by

p(𝜇,Σ) = GIW(𝜇,Σ |Λ−10 , υ0, ®µ0, κ0), (3.10)

where 𝜇 is the mean and Σ is the covariance matrix of a multivariate Gaussian. The

GIW is given by

GIW(𝜇,Σ |H) , N(𝜇| ®µ0,Σ/κ0) · IW(Σ |Λ−10 , υ0)

=
|Σ |−

υ0+D+2
2

ZGIW
exp

[
− κ0

2
(𝜇 − µ0)2Σ−1 −

Tr(Σ−1Λ−10 )
2

]
(3.11)

where

ZGIW = 2
υ0D
2 ΓD(υ0/2)(2π/κ0)D/2 |Λ−10 |−υ0/2, (3.12)

and ΓD(·) is the multivariate Gamma function. The complete derivation can be found

in [69, Ch. 4, pp 133].

The choice of the inverse Wishart distribution is because it is fully conjugate

prior for the multivariate Gaussian. The hyperparameters, denoted by H, for the

inverse Wishart have the following interpretations: ®µ0 is our prior mean for 𝜇, and

κ0 indicates how strongly we are confident about that. The hyperparameters Λ−10 is

proportional to our prior mean for Σ, and υ0 encodes our confidence about that.

For reference, the PDF of the inverse Wishart distribution is given in (3.13), where

υ is the number of degrees of freedom of the distribution, Λ is a D × D scale matrix,

and Tr(·) denotes the trace.

p(Σ) =
|Λ−1 |υ/2 |Σ |−υ+D+12 exp

[
−1

2Tr(Λ−1Σ−1)
]

2
υD
2 ΓD(υ/2)

. (3.13)

For the sake of completeness, we also provide here the PDF of the multivariate

Gaussian distribution in (3.14), where 𝜇 is the mean and Σ is a D × D covariance
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matrix.

p(y |𝜇,Σ) = 1

(2π)D/2 |Σ |1/2
exp

[
−1

2
(y − 𝜇)TΣ−1(y − 𝜇)

]
. (3.14)

Our purpose is to infer the class of each one of our N observations, y, from the

feature space. So, let us define a set of N indicator parameters z = {z1, z2, . . . , zN }

which encode each data point yi, i.e., zi encodes yi, indicating which class it belongs

to. This specifically means that, when zi belongs to class j, so does yi with probability

p(zi = j) = π j .

Non-fixed number of classes

So far, we assumed a fixed number of classes, K, as explained earlier. In reality,

we do not know the exact number of classes in our input data, and here is where the

IGMM comes, which is actually an extreme case of FGMM when K →∞.

We have chosen the p(𝜋 |α) and p( ®µ j,Σ j |H) to be our conjugate prior, therefore

one may integrate out the model parameters 𝜋, ®µ j and Σ j , and sample the indicator

parameters z to infer the class of each one of our N mobile users.

The indicator parameters z can be sampled according to the Bayesian principle.

Indeed, Bayes’ rule tells us that the posterior probability of the indicator parameters z

given the input data y is proportional to the prior probability of z times the likelihood.

Hence, the posterior distribution of the classification indicators is given by

p(zi = j |z−i, y, α,H)

∼ p(z|α)p(y|z,H)

∼ p(zi = j |z−i, α)p(y|zi = j, z−i,H)

∼ p(zi = j |z−i, α)p(yi |y−i,H), (3.15)

where y−i means that all other observations except the current one.
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In order to determine the value of the posterior probability in (3.15), we should

derive the expressions of the first and the second terms on the right side.

To infer the expressions for prior p(zi = j |z−i, α), we need to integrate out the

mixture weights and write the prior in terms of indicators

p(z|α) =
∫
𝜋

p(z|𝜋)p(𝜋 |α)d𝜋, (3.16)

where the first term

p(z|𝜋) =
K∏

j=1

π
nj

j , (3.17)

and the second term is given in (3.8). Hence, following [69] we have

p(z|α) = Γ(α)
Γ(α/K)K

∫
𝜋

K∏
j=1

π
nj+

α
K −1

j

=
Γ(α)
Γ(N + α)

K∏
j=1

Γ(n j + α/K)
Γ(α/K) , (3.18)

where n j is the number of observations belonging to class j.

We have applied Dirichlet distribution to model the distribution of the mixture

weights, 𝜋, when the number of the clusters is supposed known. However, in IGMM,

it can be hard to sample the mixture weights directly from Dirichlet distribution,

i.e., when the number of the clusters goes to infinity. Another method, called stick-

breaking construction [70] can be, instead, utilized. It is simply given as follows:

β j ∼ Beta(1, α) (3.19)

π j = β j

j−1∏
l=1

(1 − β j). (3.20)

We already know that the sum of the mixture weights is equal to one,
∑K

j=1 π j = 1.

Hence, starting with a stick of length one and break it into two separate parts at β1,
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assigning π1 to be equal to the length of either one of the two parts. β1 is sampled

according to the Beta distribution. Then, repeat the same process on the other

portion to obtain π2, π3 and so on.

Our goal is to sample from posterior distribution over the model when the limit

K → ∞. An Markov chain Monte Carlo (MCMC) technique known as Gibbs sam-

pling [71] [72] is used to sample the distribution and determine the class label of

each mobile user. Gibbs sampler makes this possible, by repeatedly replacing each

component with a value taken from its conditional distribution on the current values

of all other components. Therefore, to use Gibbs sampling for the indicators, zi, we

need conditional prior for a single indicator given all the others. By keeping all but

a single indicator fixed in (3.18), we obtain

p(zi = j |z−i, α) =
n−i, j + α/K
N − 1 + α

, (3.21)

where z−i are the classes for the observations other than yi, and n−i, j represent the

number of observations in class j before yi belonging to.

When K →∞ in (3.21), the conditional prior reaches the followings limits

p(zi = j |z−i, α) =


n−i, j
N−1+α, if n−i, j > 0,

α
N−1+α, if n−i, j = 0

(3.22)

where n−i, j = 0 means that, no observation has been assigned yet to class j. The

generative model in (3.22) is a characterization of Dirichlet process known as Chinese

restaurant process (CRP) [73] [74].

The CRP metaphor is described as follows. Imagine a Chinese restaurant with an

infinite number of tables. Each table corresponds to a specific cluster. The customers

that enter the restaurant are, in our case, the observations. The first customer enters

and chooses a table, i.e., selects a cluster. Then, the ith customer enters and chooses

an empty table or an occupied one. Therefore, the probability of choosing an occupied

table is given by n−i, j
N−1+α , which is proportional to the number of customers, n−i, j , who

have already chosen this particular table. In turn, the probability of choosing an
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empty table is given by α
N−1+α , which is proportional to the concentration parameter

α. From this, we can notice that, the more customers are at a particular table, it is

more likely the new customer will join it. In the contrary, the probability of joining

a completely new table is very small.

Same as the first term in (3.15) (right side) follows two cases, described in (3.22),

we may also find two expressions for the second term. Indeed, following [67] and

[69], the second term in (3.15) is obtained by the multivariate Student-t distribution,

because of our previous choice of conjugate prior. Therefore,

p(yi |y−i,H) ∼ tυn−D+1

(
®µn,

Λn(κn + 1)
κn(υn − D + 1)

)
, (3.23)

where t is the multivariate Student-t distribution. The subscript υn − D + 1 is its

number of degrees of freedom. The rest of the parameters in (3.23) are defined as

follows

®µn =
κ0

κ0 + N
®µ0 +

N
κ0 + N

ȳ (3.24)

κn = κ0 + N (3.25)

υn = υ0 + N (3.26)

Λn = Λ0 + S +
κ0n

κ0 + N
(ȳ − ®µ0)(ȳ − ®µ0)T (3.27)

and ȳ is the mean of observations, D is the dimensionality. µl, κl, υl and Λl are the

updated hyperparameters after observing samples, and S is defined as

S =
N∑

i=1

(yi − ȳ)2. (3.28)

For the case where no user has been assigned to a cluster, we need to find p(yi,H).

In fact, it has the same form as p(yi |y−i,H), given in (3.23), with the hyperparameters
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before updating

p(yi,H) ∼ tυ0−D+1

(
®µ0,

Λ0(κ0 + 1)
κ0(υ0 − D + 1)

)
. (3.29)

For reference, the PDF of the multivariate Student-t distribution is given in (3.30),

where υ is the degrees of freedom, 𝜇 is the mean, and Λ is a D × D scale matrix.

tυ(y |𝜇,Λ) =
Γ(D+υ2 )
Γ(υ2 )

|Λ|1/2

(πυ)D/2

[
1 +
(y − 𝜇)2Λ−1

υ

]−υ+D2
. (3.30)

As a conclusion, we can say that, to be able to compute the posterior probability

for our indicators z, we need to determine the posterior distribution when there are

observations assigned to an existing cluster. This is done by

p(zi = j |z−i, y, α,H) ∼
n−i, j

N − 1 + α
tυ0−D+1

(
®µ0,

Λ0(κ0 + 1)
κ0(υ0 − D + 1)

)
, (3.31)

and when there is no observation assigned to a cluster. That one is given by

p(zi , zi′, ∀i , i′|z−i, y, α,H) ∼
α

N − 1 + α
tυ0−D+1

(
®µ0,

Λ0(κ0 + 1)
κ0(υ0 − D + 1)

)
. (3.32)

Figure 3-2 depicts the graphical representation of this model. In Figure 3-2(a),

the FGMM is portrayed and its nonparametric version, which is the one used in

this work to co-localize mobile users, is exhibited in Figure 3-2(b). It illustrates

the conditional relationships among parameters, hyperparameters and input data in

IGMM. For example, it shows that the indicator zi depends on π j , which in turn

depends on the parameter α. The rectangular blocks represent the repetition, and

the symbol in the lower right corner indicates the number of repetitions.
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(a) Finite (b) Infinite

Figure 3-2: Graphical model representation of Bayesian Gaussian mixture model: (a)
finite and (b) infinite. We adopt the infinite model in our co-localization system.

3.2.2 Modified Gibbs Sampling

The proposed co-location algorithm exploits the similarity of users’ measurements

of their shared ambient radio signals. So, they are assigned to the same cluster

depending on their reported Wi-Fi radio signals.

As we mentioned above, depending on application requirements, one can define

how near two users should be considered as co-located. In the sense that there is no

precise distance of nearness between two users, for instance, to deduce that they are

co-located.

The two posterior distributions discussed so far permit us applying Gibbs sampler

to sample the values of the indicator parameters z, to infer the class label of each

user. To take into account how near two users should be considered as co-located

or not, we have introduced a similarity threshold denoted by ∆ (explained in detail

later on) in our algorithm. That is, when two users’ measurements differ less than

the similarity threshold ∆, we regard these users as co-located. More specifically, we
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first compute the average similarity denoted by AVGSIM of each existing cluster as

follows

AVGSIMj =
1

n j

N∑
i=1

δKronecker(zi, j), (3.33)

where AVGSIMj denotes the average similarity of the jth cluster, and δKronecker(zi, j)

is the Kronecker delta function representing the ith observation encoded by indicator

parameter zi, belonging to the jth cluster. It has the task of retaining all the obser-

vations that belong to a specific cluster j, when zi = j in the summation. That is,

when the observation yi encoded by zi belongs to the class j, this observation is taken

in the summation, otherwise not.

Then, for a new incoming observation, yi, the Euclidean distance denoted by

DIST(i, j), i.e., the distance between the ith observation, yi, and the jth average simi-

larity, AVGSIMj , is computed in signal domain. If the computed distance, DIST(i, j),

is less than or equal to the predefined similarity threshold ∆, the user is accepted in

that cluster, i.e., DIST(i, j) ≤ ∆.

Note that, n j is the number of observations in cluster j, and N is the total num-

ber of observations. zi is our indicator parameter that encodes the ith observation

indicating with cluster the observation belongs to. With this approach we were able

to leverage our co-location accuracy.

With respect to a moving user, who is walking around or just passing by, we

noticed that his measured ambient radio signals change a lot over time compared

with users that are interacting with others. So, we define a period of time, ∆t, that

users should have been together in order to classify them into the same cluster. ∆t

should be set large enough in order to ensure that people have spent time together.

Algorithm 1 shows the necessary steps of our modified Gibbs sampling for IGMM-

based co-location. The variable T indicates the number of iterations to be accom-

plished by the algorithm. It should be set large enough to ensure accurate sampling.
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Algorithm 1 Collapsed Gibbs sampler for IGMM-based co-location
1: Input : Data sets from N users, and pre-set threshold ∆.
2: Output: Users co-located in K clusters.
3: Initialize: Set all users into the same cluster, K = 1.
4: for t = 1 to T do
5: for i = 1 to N do
6: Remove yi from its current class.
7: for j = 1 to K do
8: Compute prob. of an existing class as in (3.31).
9: AVGSIMj ← (3.33)

10: DIST(i, j) ← distance to cluster j.
11: end for
12: Compute prob. of a new class as in (3.32).
13: zi ← class with highest prob. and DIST(i, j) ≤ ∆.
14: Remove any empty class, and decrease K.
15: end for
16: end for

3.2.3 Co-location Scheme Detection

To detect and cluster co-located users, we propose the following scheme (see Fig-

ure 3-3). Ambient radio signals are sensed for a period of time ∆t, and the collected

data signals are sent to the co-location server to be processed. Upon receiving the

data signals, the server will create distinct lists of users with the same APs. Then,

for each user a ∆σj (fleshed out later on) is calculated in order to determine if a user

is interacting or not with others. Note that, in this case, we compare ∆σj with a

threshold denoted by Θ. More on this threshold Θ will be discussed later on.

In the next step, the mean of received signals of each user is computed and assigned

all the users to the same class, K = 1, to start the classification process. Then,

hyperparameters and parameters of IGMM are computed, as well as the average

similarity of each cluster. For an incoming observation, Gibbs sampling will give

us its cluster, i.e., it will belong to an existing cluster or a new one. Based on a

predefined similarity threshold ∆ we assign this incoming observation into an existing

cluster predicted by Gibbs sampler or a new one. This is performed by comparing its

distance to the center of the predicted cluster. The optimum value of the similarity

threshold ∆ is estimated in offline analysis in Section 3.4. Finally, the users with the
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strongest ∆σj are assigned to different classes at the end of the algorithm.

As can be noticed, so far, we mainly focus on the clustering of mobile users who

have been spent time together in the same place. In Chapter 4, we will discuss a

challenging case when users are walking together as part of the same group and show

how to cluster them in real-time.

The proposed scheme has several advantages. One of them is that mobile users

who experience radio signals from different APs, in terms of the placement where

these APs are, will never be clustered together. Another one is that by introduc-

ing the similarity threshold ∆ in our clustering process, we are able to determine all

existing clusters in the input data, as it is shown in the next sections from our nu-

merical and experimental results. The proposed approach is also robust to deal with

the varying number of clusters and users over time. Indeed, this is one of the many

appealing properties of NPB, i.e., the ability to automatically infer the number of

clusters in the input data.
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Figure 3-3: Flow chart of co-localization algorithm based on IGMM.
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3.3 Numerical Results

Our co-localization algorithm is first assessed numerically, and then experimen-

tally. In this section, we will present our numerical results.

We considered a square area of interest Q of 460 m2 with four access points

(APs), located each one on its corner. Then, we randomly deployed 50 nodes (users)

in different regions of that testing area. The received signal strength indicator (RSSI)

is sampled 20 times per seconds, and then we took the average. Each node reports

its measured RSSI from each AP, and the proposed algorithm tests the similarities

among the reported RSSIs to decide the cluster of each one of them, according to

their similarity measurements.

Figure 3-4: Numerical results of our co-localization system. Each black dot represents
a user in the wireless network. The blue circles indicate the actual co-located group
of users. The red circle shows the misclassification case. We consider four APs in this
simulation.

Figure 3-4 depicts the obtained results. Each black point on this figure is consid-

ered as a user, and the blue circles indicate the true clusters. The red circle means

the misclassification case. To obtain a such result, we set the similarity threshold ∆
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to 1.05. This optimum value of ∆ is obtained by trial-and-error process. That is, the

inference of the optimum value of the similarity threshold ∆ is computed in function

of the number of users correctly clustered at each step size. The correct clustering

of mobile users, at each step size, is defined as the number of mobile users clustered

together by the proposed algorithm that is in accordance with our numerical setup.

That is, if User A and User B are inferred by the proposed algorithm to be in the

same group and it turns out that, in our numerical setup, these users were actually

together, we consider this inference as a correct clustering by the algorithm. As the

moving users are not considered in this simulation, the threshold Θ is not used. It

will be discussed in Subsection 3.4.2.

As can be seen in Figure 3-4, the algorithm was able to detect the correct cluster

of almost all nodes. Only two out of 50 nodes were wrongly clustered (red circle).

In fact, these two nodes form each one its own cluster. Thus, 98% of nodes were

correctly clustered.

In this simulation, we chose the value of the similarity threshold ∆, by trial-

and-error process, that gave us the best results. However, as it is explained more

thoroughly in the next section, the value of this threshold can be determined in

offline analysis, and set according to the application requirements. It should also be

noted that different environments (indoor and outdoor) have different effect on the

choice of the threshold. We did not carry out experiments to show how it varies with

different environments. However, we discuss this issue as part of the future research

on this topic in Chapter 5.

3.4 Experimental Setup and Results

In this section, we first discuss our experimental setup and present the obtained

results using collected real-world Wi-Fi signals. Then, in subsection 3.4.5, we compare

the performance of our method, in terms of clustering accuracy, against community

detection-based approach proposed in [30] to co-locate mobile users.
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3.4.1 Experimental Setup

To evaluate the performances of the proposed algorithm with a real-world setting,

we carried out an extensive experiment in an entire second floor of a building with six

participants, collecting Wi-Fi signals in different places in ten different time-stamps.

The testing area is a 1200 m2 of a floor in a building composed with several meeting

rooms, an open space, and corridors (see Figure 3-5).

Figure 3-5: A corridor (left side) and a meeting room (right side) of a 2nd floor of a
building where the experiments were conducted.

We utilized wireless adapters AirPcap Nx [75] and a free and open-source packet

analyzers Wireshark [76] to simultaneously capture environmental radio signals. Wi-

Fi signals were recorded for a period of time of one minute. Then, all measurements

were put together to be processed on a computer.

RSSI, MAC address, and time arrival of beacon packets at 2.437 GHz from the

same APs were extracted for one minute. For this experiment, users’ measurements

from three different APs deployed in a typical office building were considered. In this

work, three different APs were considered because it is large enough to represent the

unique signature of the location where the radio signals were captured. The fact that

we collected ambient radio signals during a period of time of one minute for each

user, and then took the average of each user, allows us to considerably reduce the

measurement errors.

The concentration parameter, α, and the hyperparameters denoted by H = (Λ−10 , υ0, ®µ0, κ0)
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in IGMM model express our prior belief on the distribution and need to be specified

roughly [69]. Therefore, in our implementation we proceeded as follows. We used

the standard setting for the concentration parameter α, i.e., p(α−1) ∼ Ga(1, 1). The

mean vector ®µ0 is set from our data sets. The hyperparameter κ0 that encodes how

confident we are about our mean is set to 0.5. Λ0 is chosen to be a diagonal matrix

of 0.1, and υ0 that represents our confidence about Λ0 is set to 20.

3.4.2 Inferring Interacting Users

We investigated the effect of walking users on a group of other users within a

room, i.e., while there is a group of users in a room, other users are walking in a

corridor. The purpose of this investigation is to evaluate the group detection process,

when a user is walking around and does not interact with the group.

As group meeting time is an important characteristic of co-location, we evaluated

the radio signals when users are interacting or sharing a certain amount of time

together, and when users are walking around or just passing by. The goal is to be

able to differentiate between interacting and non-interacting users.

Figure 3-6: RSSIs extracted from interacting (blue dots) and walking (red dots) users,
for a period of time (∆t) of one minute. Interacting users were in the same room,
while a user was walking in the corridor.

Figure 3-6 shows the collected RSSIs from the same APs when a user is interacting

or sharing some amount of time with other users (i.e., belonging to a cluster of users,

blue dots), and when the same user is walking in a corridor (red dots), during the

same period of time (one minute). As one can observe, on this figure these two
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measurements have different power levels. Therefore, we propose a method for their

detection in real-time based on a predefined threshold denoted by Θ.

Unsurprisingly, when the user is interacting with others, i.e., the user does not

move a lot over time (for a period of time ∆t), the measured radio signals are almost

the same (blue dots). On the contrary, when the same user is walking in a corridor, the

experienced radio signals change a lot over time (red dots). Therefore, we differentiate

these two kinds of users (interacting and non-interacting) as follows: the standard

deviation σj,i for each user of each AP is computed; then, we square and sum the

obtained value of σj,i from each user; and finally, a square root of it is computed.

Hence, the ∆σj for each user is obtained, as it is shown in (3.34)

∆σj =

√√√ D∑
i=1

σ2
j,i (3.34)

where D is the dimension of the observation, σj,i is the standard deviation of the jth

user for ith AP.

Table 3.1. ∆σj According to user actions (a hyphen means that no measurement was
collected)

Users Interacting Walking

A 6.12 18.42

B 7.38 -

C 6.11 -

D 6.63 18.73

E 6.85 -

F 6.49 -

Table 3.1 shows the obtained values of ∆σj for two different kinds of users’ actions

(interacting and walking). As expected, their values are quite different. Accordingly,

any value that can unambiguously differentiate these two kinds of users’ actions can be

chosen between these two sets of values. In our implementation, we set the threshold Θ
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to 12.5. The dash lines in the walking column of Table 3.1 mean that no measurement

was collected for this particular user concerning that action. This is explained by the

fact that, in our experiment, we have chosen only two distinct users to collect Wi-Fi

signals while they were walking.

It is worth noting that the obtained values of interacting users are almost the

same, and also the values of walking users are almost the same, which comfort us in

our choice of the value of the threshold Θ.

3.4.3 Similarity Threshold ∆

The proposed algorithm clusters users based on the similarity of their measured

radio signals and physical proximity. As previously mentioned, there is no fixed mea-

sure of nearness between two users to affirm that they are co-located. Consequently,

when measurements from two distinct users differ less than the predefined similarity

threshold ∆, they are regarded to be potentially co-located. Therefore, we performed

an offline analysis in order to determine the best value of the similarity threshold ∆

for users to be part of the same group, i.e., how near two or more users should be

considered as co-located.

We started by calculating the Euclidean distance between each pair of user’s mea-

surement. Thus, we noticed that when two or more users belong to the same group,

their computed Euclidean distances are shorter than those from the other groups. It

means that, by setting up a suitable value for the threshold ∆, we can accurately

cluster co-located users.

Table 3.2 displays the minimum and the maximum Euclidean distances found in

each cluster with two or more users. This table exhibits the values of nine clusters,

because actually there are nine clusters with two or more users. The minimum dis-

tance of all clusters is found to be 0.07, and the maximum distance is found to be

3.8. They are printed in bold in Table 3.2.

According to the above obtained values (minimum and maximum), we defined

the similarity threshold interval, i.e., the range on which the optimum value of the
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Table 3.2. Max and min Euclidean distance in each cluster

Minimum Maximum

Cluster 1 0.32 2.31

Cluster 2 0.16 1.67

Cluster 3 0.07 1.79

Cluster 4 0.30 1.87

Cluster 5 0.89 3.8

Cluster 6 0.59 2.7

Cluster 7 0.71 2.13

Cluster 8 0.09 1.74

Cluster 9 1.03 2.27

similarity threshold ∆ can be found. Otherwise, the scope will be too large to easily

find one.

Figure 3-7: Effect of the similarity threshold ∆ on users co-localization. The value of
∆ is computed in the signal domain for Euclidean distance metric.

Figure 3-7 depicts the effect of the threshold ∆ on classification accuracy for the

normalized Euclidean distance metric. In this figure, one can notice that, when the
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value of the threshold ∆ increases, the error rates decrease until attain its optimum

value at approximately the middle of the interval, and then it retakes its growth.

This corroborate our proposal of clustering co-located users by computing the average

similarity of each cluster, and accept an incoming user if his distance to the center of

that cluster is less than the similarity threshold ∆. Therefore, the optimal value of ∆

is found to be 2.07, i.e., the value that the best minimizes the error rate. As we shall

see, in the next chapter, when the value of the error rate is of the zero percent, one

hundred percent of accuracy is achieved.

During the experiments, we demanded the mobile users in the same group to stay

apart from one another at a maximum distance of two meters. They also stayed in

that place during three minutes, i.e., the period of time ∆t required to the mobile

users to be together in order to consider them as co-located. In our implementation,

however, we took the data signals collected during one minute. From this, we consider

that two mobile users are co-localized (i.e., forming a cluster) if the distance between

them is less than or equal to two meters and they pass a certain amount of time

together (∆t = 1 min).

For the inference of the optimum value of the similarity threshold ∆, we compute

its values in function of the number of users correctly clustered at each step size.

The correct clustering of mobile users at each step size is defined as the number of

users clustered together by the proposed algorithm that is in accordance with our

experimental setup. That is, if User A and User B are inferred by the proposed

algorithm to be in the same group and it turns out that, in our experiments, these

users were actually together, we consider this inference as a correct clustering by the

algorithm.

It should be pointed out that, the optimal value of the similarity threshold ∆ is

chosen in accordance with the application setup. In fact, if we envisage a reduced

distance between members of the same clusters, the value of the threshold ∆ can be

decreased. Consequently, more clusters will be found with smaller size. On the other

hand, by increasing the value of the threshold ∆ (more than the optimal) we also

increase the intra-cluster distances, i.e., we increase the distance between members
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within clusters, which in turn produces small number of clusters, but with bigger

size. In this sense, the threshold ∆ must be regarded as a key parameter to take into

account in this kind of applications.

As aforementioned, our analysis on the threshold is focused on its optimal value.

That is, the one that can give us back our co-located groups of people with the highest

accuracy possible. However, any other values of the threshold that cannot retrieve

accurately our co-located groups of mobile users can be considered as suboptimal.

The aim of our analysis is to show that the proposed method can be applied to

correctly infer co-located groups of people with high accuracy. Nevertheless, different

environments, applications, and purposes may require different values of the threshold

∆, which should be taken into consideration to fulfill the potential of the proximity-

based services [17].

3.4.4 Experimental Results

In this subsection, we present our experimental results. All the pre-computed

thresholds are considered, and the setup is as described previously.

By taking into account the two predefined thresholds (Θ and ∆), our algorithm

was able to detect almost all clusters, and classify users into their correct classes, as

it is shown in Figure 3-8.

Figure 3-8 depicts the map of the entire floor where the experiment was conducted

and the obtained results. The black and blue dots on this map represent users in

wireless network. The black circles surrounding dots illustrate the actually co-located

users, and the red dash circle means the misdetection group. The blue dots with a blue

arrow each one, surrounding by a black circle, indicate the users that were walking

in the corridor while we conducted the experiments.

For the misclassification case (red dash circle), we noticed that the users in the

room were separated from the user in the corridor by a plate thin glass, which made

some trouble to the algorithm to differentiate these to clusters.

From this result, we can see that the value of the threshold (which is in fact the
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Figure 3-8: Entire floor plan where the experiments were conducted and the obtained
results. Each black or blue dot exemplifies a user in wireless network. The blue dots
with a blue arrow indicate walking or just passing by users in the corridor. The black
circles surrounding dots represent actual co-located users. The red dash circle denotes
the misclassification case.

level of similarity between users’ measurements) is an important parameter to take

into account in this kind of applications. It defines how close or how far we want users

to be considered as co-located. If we choose its value to be less than the optimum

(i.e., less than 2.07), more number of clusters will be found in the data set but with

scanty number of users into it. On the other hand, when its value is set higher than

the optimum (i.e., higher than 2.07), less number of clusters will be found in the data

set. However, each one of these discovered clusters has an important number of users

into it.

3.4.5 Comparative Results

In this subsection, we will perform a comparative study between our proposal and

the community detection-based approach presented in [30], on our measured Wi-Fi

signals.

As mentioned earlier, the authors in [30] proposed to co-locate mobile users by
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constructing a connectivity graph that represents the potential co-located users, based

on pairwise similarity of RF measurements. Then, they applied community-detection

[58] tools to cluster users into the same group. Moreover, an objective function called

“modularity” is used. This modularity function is optimized with a heuristic method

called simulated annealing [59]. As they utilized community detection (CD) tools and

simulated annealing (SA) method to co-locate mobile users, henceforth we will call

their approach CDSA-based.

In this work, we also exploited the similarity of user’s RF measurements from their

mobile phones to cluster them into the same group. However, we do not consider any

connectivity graph among them. Instead, we leverage co-located users by applying

a nonparametric Bayesian method called IGMM with a modified version of Gibbs

sampling to infer users’ corresponding groups. Throughout these comparative studies

we will call our approach IGMM-based, and the one proposed in [30] CDSA-based.

For the sake of comparison, we performed an offline analysis to obtain the optimum

value of similarity threshold denoted by δ, for CDSA-based, using the Euclidean

distance metric. As the similarity threshold δ depends on the data signals and is

set in accordance with application requirements, we determined its best value from

our measured Wi-Fi signals. Therefore, we computed the best value of δ between an

interval of [min,max] with step size denoted by ∆δ, as the authors suggested to do

in [30]. We used our predefined similarity threshold interval in this case. With the

obtained value of the threshold δ, we proceeded with the evaluation process.

Notice that, in this comparative studies, we compared the performance of the

algorithms with users that are interacting with others, i.e., users that have been

together for some amount of time, and in the same place. We do not consider the

users that are walking or just passing by.

Figure 3-9 shows the impact of δ on connectivity errors for the normalized Eu-

clidean distance metric. The value of step size ∆δ is set to 0.01. The optimal similarity

threshold δ is chosen to minimize both false negative (misdetection) and false positive

connectivity errors. The best value of the threshold δ for our data set is found to be

1.48.
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Figure 3-9: Impact of the similarity threshold δ on connectivity errors, for Euclidean
distance metric. The step size ∆δ is set to 0.01. The value of δ is computed in the
signal domain.

Figure 3-10: Entire floor plan where the experiments were conducted and the obtained
results, using CDSA-based approach. The red dash circles indicate the misclassifica-
tion cases. The setup is the same as in Figure 3-8, but without walking users.

Figure 3-10 shows the obtained results applying CDSA-based algorithm, with the

value of the threshold δ set to 1.48. As one can see, both algorithms (IGMM-based
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and CDSA-based) misclassified a user in Case 1. However, CDSA-based approach

in addition misclassified a user in Case 2.

We mainly believe that this misclassification in Case 2, on the one hand, is due

to the predefined similarity threshold δ. On the other hand, the heuristic technique

called simulated annealing used to maximize the modularity function, i.e., to maxi-

mize the intra-cluster edges, avoids getting stuck in local optima-solutions that are

better than any others nearby, but are not the very best one.

Table 3.3. Performance comparison using Euclidean and Minkowski distance metrics

Euclidean Minkowski (p = 1.5)

Threshold Accuracy Threshold Accuracy

IGMM-based 2.07 98.27% 1.97 94.82%

CDSA-based 1.48 96.55% 1.70 94.82%

Table 3.3 presents the performance comparison between the IGMM-based and

CDSA-based algorithms using Euclidean and Minkowski distance metrics. The Minkowski

distance (lp-norm, p ≥ 1) [77] can be considered as a generalization of the Euclidean

distance, and is calculated in the signal domain as

dMink =
p

√√√ D∑
i=1

���RSSI(k)i − RSSI(m)i

���p (3.35)

where RSSI(k)i and RSSI(m)i denote the RSSI values observed by the kth and mth users,

respectively, from the ith AP. The order p = 2 for the Euclidean distance (l2-norm).

As one can observe in Table 3.3, IGMM-based achieves similar performance as

CDSA-based algorithm when Minkowski distance of order p = 1.5 is used. However,

with Euclidean distance it performs better. We believe that, this is due to the fact that

we used the average similarity of each cluster to accept a new incoming membership.

As can be seen, IGMM-based algorithm uses almost the same similarity thresholds

with both distance metrics, whereas, CDSA-based has different similarity thresholds.

This is explained again by the fact that we made use of the centroid of cluster to
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accept a new member.

3.5 Conclusion

Throughout this chapter we have analyzed a framework for clustering mobile users,

when they are in the same place, by exploiting the similarity of their measured ambient

radio signals. It is designed to operate in real-time and in a centralized manner. We

have shown that by using a nonparametric Bayesian method called infinite Gaussian

mixture model (IGMM) with a modified version of Gibbs sampler, the proposed

algorithm can accurately co-locate mobile users.

We carried out numerical and experimental analysis and showed that it can effec-

tively detecting and clustering group of co-localized mobile users. We also conducted a

comparative study where it has been shown that the proposed framework can achieve

a better clustering accuracy than it counterpart community detection-based cluster-

ing. When users are walking together, as part of the same group, however the same

approach can not be adopted. We discuss this issue is the next chapter and proposed

a novel method to solve this problem.

The framework presented in this chapter is specially conceived for detecting co-

located mobile users using ambient Wi-Fi radio signals, however it can be easily

adapted to other radio signals.
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Chapter 4

Discovering Co-Located Walking

Groups of People Using iBeacon

Technology

4.1 Introduction

In the previous chapter, we have designed and evaluated a framework mainly to

cluster mobile users when they are in the same place. We have shown that it is able

to identify clusters of mobile users based on the similarity of their measured Wi-Fi

radio signals when people are in the same place. However, the same model can not

be adopted when users are walking together, as part of the same group, using Wi-

Fi hotspot radio signals. This is because the measured radio signals do not fit the

same distribution [66]. Moreover, the protocols implemented by APs are conceived

for faster access rather than proximity-based services.

Therefore, we extend the framework designed in the previous chapter by proposing

a novel method for clustering people walking together, as part of the same group,

in wireless networks. This newly devised method is based on the edge betweenness

techniques presented in [78] by Girvan et al., which is a generalization of the centrality

betweenness algorithm proposed by Freeman in [79]. It is formalized as a graph
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network [80] in which each mobile user is represented by a vertex, and the connection

strength between pairwise users is expressed by an undirected weighted edge.

We propose and derive a co-location algorithm based on edge betweenness tech-

niques because it has some attractive properties. That is, with this technique, mobile

users who do not discover one another through the Bluetooth discovering process will

never be clustered together; by applying the edge betweenness techniques in conjunc-

tion with the average path length, the number of co-located groups of mobile users

is automatically inferred from the input data, contrary to the parametric methods

that need to be specified how many clusters to find in the input data; it needs only

to know the connection strength between pairwise users to infer their clusters.

A graph network is constructed with information collected from all nearby Blue-

tooth low energy (BLE) [32, 81, 82] devices (e.g., iBeacon devices [33]), and the

collected information is fed thereafter into the algorithm. To get information on

walking group of users, we leverage the emerging and increasingly widely available

BLE, owing to its very low cost, low power consumption, easy to deploy, and rela-

tively long range. Moreover, the iBeacon devices that implement the BLE protocols

are mainly designed for proximity-based services, which makes them the first choice

to be considered in this kind of applications.

4.2 Problem Statements

We commence, in this section, with the explanation of our system architecture.

Environmental radio signals are extracted from APs and iBeacon devices and pro-

cessed to be fed into the proposed algorithm. Then, the basic idea behind our pro-

posals is explicated, following by a full description of our modified version of the edge

betweenness techniques for clustering mobile walking groups of users.

4.2.1 System Model

Mobile devices that have been in close proximity to each other, for a certain

amount of time, detect one another for several times. They also experience similar
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radio signals from their environmental Wi-Fi hotspot [30]. Hence, our principal ob-

jective is to detect these proximity closely neighboring devices and cluster them into

the same group.

In Figure 4-1, we present an example network of our co-located mobile devices.

In this figure, there are several mobile user equipments (MUEs) and iBeacon devices

organized in two groups: Group 1 and Group 2. We consider the situation in

which a person is equipped with, in addition to a mobile device (e.g., an iPhone), an

iBeacon that broadcasts its radio signals. The radio signals broadcast by an iBeacon

are received by all nearby mobile devices apart from iBeacons. This is explained by

the fact that iBeacons only have the ability to broadcast their radio signals.

The reasons for this architecture are twofold: first, as in Chapter 3, we envisage

to exploit the captured ambient radio signals to co-localize users who have been

spending time together in the same place (in a room, for instance); and second, we

aim at utilizing the emerging BLE technologies to cluster users while they are walking

together for the same amount of time. Nevertheless, this latter approach can also be

applied to co-localize users that are in the same place. It should be highlighted the

fact that an iPhone, for example, can also be used as an iBeacon [83], therefore no

need for an additional device.

Mobile users in the same group are expected to experience similar radio signals

from their nearest access points (APs), and the radio signals broadcast by all nearby

iBeacon devices. Thus, on a periodical basis, they will report to the nearest base

station (BS) their measured radio signals from APs, and a matrix in which each

entry is a distance from pair of users computed with the signals detected from iBeacon

devices. The distance between pair of users are used as the measure of the strength

of the link between them, and it is calculated using RSSI signals broadcast by each

iBeacon. The higher the connection strength between users is, the closer they are to

one another. Upon receipt, the BS will in turn transmit the reported information to

the co-location server. The co-location server will perform the task of group formation

detection from the received data set, and will inform back the mobile users, through

an application installed on their devices, about their belonging group.

67



Figure 4-1: An example network architecture of co-localized mobile user equipments.
The blue arrows indicate the transmission of the collected radio signals to the co-
location server. The red arrows represent information of co-localized mobile user
equipments sent by the co-location server. The small iBeacons here serve as the
peripherals for MUEs.

In the likeness of the framework designed in Chapter 3, we propose to use Wi-Fi

radio signals to cluster users that have been together for a certain amount of time in

the same place. This is because of their easy deployment and no extra cost, and their

ability of working in both indoor and outdoor environments. On the other hand, we

exploit the emerging BLE technologies to cluster walking groups of users together,

because it has some advantages over its counterpart. That is, when a device receives

signals from a nearby iBeacon, it knows the sender and can compute the distance from
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it with high degree of accuracy. Moreover, it offers a lot of more possibilities than

existing wireless technologies, and it will be certainly a leading candidate to implement

the future Internet of Things (IoT), as IoT requires low power communication to fulfill

its potential [84].

4.2.2 Inferring Co-located Group of Users

In this subsection, we will explain our algorithm based on the edge betweenness

method to cluster walking groups of users in wireless networks.

As mentioned before, we aim at extending the capabilities of the framework pro-

posed in Chapter 3 by giving it now the ability to cluster groups of users even though

they are walking together. With this objective in mind, we provide design feature

to enhance that framework. This new feature is based on the method proposed by

Girvan et al. in [78] for detecting group of vertices in graph. Therefore, finding a

distinct group of vertices within a graph is a key function to identify proximity nodes

into the network, and, by extension, finding co-localized groups of people.

Hence, the problem of finding co-located walking groups of people is formulated

thereby as a group discovery process in graph, in which each mobile user is represented

by a vertex and the connection strengths among them are expressed by weighted

edges. As stated before, these weighted edges are computed using the radio signals

received from each iBeacon device on each mobile user. To find such groups within a

network, the algorithm exploits the idea that, edges connecting inter-cluster (different

clusters) have the highest betweenness scores than intra-cluster (same cluster) edges.

Therefore, proceeding with the removal of these edges, the network will be split into

tightly connected subgroups.

In the light of this observation, we design our co-localization system as a network

of undirected graph, defined as

G = (V, E), (4.1)

where V is the set of all vertices corresponding to the mobile users, and E is the set
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Figure 4-2: An example of an undirected graph with four vertices and five edges.

of all weighted edges representing the connection strength between pair of users in

the network [80]. The number of vertices and edges in the network are denoted by N

and M, respectively.

The central idea of group detection process presented in [78] is based on the vertex

betweenness as a measure of the centrality and influence of a vertex, with respect to

information flow, within the network, proposed by Freeman in [79]. In [79], Freeman

defines the partial betweenness, σi j(k), of a vertex k with respect to a pair of vertices,

i and j, in graph G as follows. In case when the vertices i and j are not reachable,

i.e., k is not between them, σi j(k) = 0. When the vertices i and j are reachable,

using the shortest path length, there may exist multiple paths with the same length

connecting these two vertices. Thus, the probability of using one of these paths is 1
pi j

,

where pi j is the number of the shortest paths connecting vertices i and j. Therefore,

the probability of vertex k falls on any one of the shortest path between vertices i

and j is given by

σi j(k) =
pi j(k)

pi j
, (4.2)

where pi j(k) is the number of shortest path length between vertices i and j contain-

ing the vertex k. An illustration of this network analysis technique is presented in
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Figure 4-2. Hence, the overall measure of betweenness centrality of a vertex k ∈ V is

defined in [79] as

CB(k) =
N∑

i∈V

N∑
j∈V\{i}

σi j(k). (4.3)

Therefore, the Freeman’s betweenness centrality is generalized to the edge be-

tweenness as the number of shortest paths between pairs of vertices, i and j, that

contain it. It has been shown that by successively removing edges with the high-

est betweenness, the network can be split up into many separate sub-networks [78].

This is explained by the fact that most of real world networks, arising in nature and

technology, are characterized by a very short average path length within themselves.

Thus, the concept of small-world phenomenon [31] [85] is introduced where people

are connected with one another through a very short path.

C

D

A

B

C

D

Figure 4-3: An example of a graph network with two sub-networks.

Figure 4-3 depicts an example graph network where vertices are connected between

them through edges to form a population structure. In fact, this figure exhibits two

groups of vertices (red and blue) connected between them by two edges: {A,C} and

{B,D}. The heart of our aim is to be able to partition this network into distinct

sub-networks where each one of them is regarded as a potential co-located group of

walking users. In this figure, each round circle (red or blue) designates a mobile user

in the wireless network. The black lines between pair of round circles indicate the
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connection strength between users. That is, these users detect and connect with each

other, otherwise no connection between them.

Based on the edge betweenness techniques, the algorithm finds the edge with

the highest betweenness score and removes it from the network. As the algorithm

repeatedly searches for these edges and removes them from the network, we will end

up with the entire network partitioned into several sub-networks.

More specifically, by way of example, let us take Figure 4-3 and suppose the fol-

lowing. In the first iteration, the edge {A, C} is found to have the highest betweenness

score. Consequently, this edge will be removed from the network. Then, in the next

iteration, the edge {B, D} will be found with the maximum betweenness score and

will be in turn removed from the network. At this point, we have divided the entire

network into two sub-networks. If we keep running the algorithm, we will end up

with this entire network split into its number of elements.

4.2.3 Modified Edge Betweenness Algorithm

The algorithm presented in the previous subsection actually divides a given net-

work into a K sub-networks. However, to efficiently apply this algorithm on the issue

at hand, i.e., co-location problem, we need to change its behavior. To do so, we intro-

duce a notion of average path length, APL, into it. That is, each time the algorithm

finds a new cluster in the network, as explained earlier, we compute the average path

length of that cluster. If the computed average path length is less than or equal to

a predefined similarity threshold ∆, i.e., APL ≤ ∆, we consider that a new cluster

has been discovered and proceed with the output followed by the removal of all the

elements of this newly found cluster in the network. The similarity threshold ∆ de-

fines how near two or more mobile users should be regarded as potentially co-located.

More on this threshold ∆ will be explained later.

In this work, we propose to use the average shortest path length to cluster mobile

users into the same group because, as highlighted earlier, most real world groups are

characterized by the shortest path length. Thus, we define the average path length,
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APL, [86] in terms of the shortest path lengths as follows

APL =
1

N(N − 1)
∑
i, j

dG(i, j), (4.4)

where dG(i, j) is the shortest path length between each pair of vertices, i and j,

regarding the communication path separating them physically. N is the number of

vertices in graph G.

In our implementation, we opt for the simplest, rapid, and efficient way to measure

the edge betweenness, which is based on the shortest paths. However, other measures

can be adopted which fit well with the application requirements [87]. It should be

noted that there are several optimized versions of the edge betweenness algorithm,

which make it a robust technique [87, 88].

It should be noticed that, even though the algorithm presented so far is able to

successfully discover potentially co-located group of people in the wireless network, it

does not take into account an important characteristic of the co-localization systems,

i.e., how long people have to be together in order to be clustered into the same group.

This issue is explained in the next subsection.

Algorithm 2 Edge betweenness-based co-location algorithm
1: Input : Data set from N users, and pre-set threshold ∆.
2: Output: Users co-localized into K clusters.
3: Initialize: Set all users into the same cluster, K = 1.
4: Compute the edge betweenness score for all edges in the network as in (4.3).
5: Remove the edge with the highest betweenness.
6: Compute the average path length, APL, of each existing cluster as in (4.4).
7: Output identified cluster, and remove it from the network.
8: Recompute the edge betweenness.
9: Repeat step 5.

In the algorithm 2 we show the necessary steps of the modified version of the edge

betweenness method to cluster walking groups of users.
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4.2.4 Duration and Frequency of Encounters

The algorithm proposed in this work does effectively detect and cluster co-located

group of people in the network. However, as it is mentioned in the previous sub-

section, it does not take into account the time that people spend together, which is

an important criterion of the co-location systems. Therefore, we propose to cluster

mobile users not only based on the strength of their connections but also on the time

duration and frequency of their meetings. In fact, one can use only time duration and

frequency of meetings to cluster mobile users into the same group. However, such an

approach fails when it comes to assessing how close people are to one another.

Toward this end, we proceed as follows, when a device receives a signal from

a nearby iBeacon, it registers the time of the reception and sets the frequency of

meeting to one. Next time this device receives the signals from the same iBeacon, it

just increases the duration and the frequency of meeting, as it has already received

the signals from the same iBeacon for that period of time, ∆t. ∆t is defined as the

minimum period of time that is required to the users to be together in order to

consider them as co-located.

Since we are dealing with walking group of people, certainly, they will encounter

many other people during the predefined period of time. Therefore, it is crucial that

the time traces of their measurements should be compared to infer the duration of

their interaction. Consequently, helping filter out these one-time encounters that will

not make part of the same cluster. The analysis carried out on the measured data

signals reveals that, when people are walking together for long time, the number of

times they detect one another is much longer than when a user just passes by them.

Therefore, the values of these two parameters should be tuned in order to achieve a

desired accuracy in line with the application requirements.

4.2.5 Co-location Scheme Detection

Aiming at detecting and clustering co-located group of people not only when

they are in the same place but also when they are walking together, we propose the
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Figure 4-4: Algorithm flow chart of our co-location system.

following scheme (see Figure 4-4). Ambient radio signals (from APs and iBeacons)

are sensed for a period of time, ∆t. Then, the mobile device computes the distance

to each one of the nearby users, the duration, and the frequency of being together,

using data signals from iBeacons. If the computed duration and frequency of being

together satisfy the predefined criteria, as explained earlier, the collected data signals

from both APs and iBeacons are sent to the co-location server to be processed.

Upon receiving the data signals, the co-location server will create distinct lists of

users with the data signals from the same APs, and a sparse symmetric matrix in

which each entry is a distance between a pair of users. We use this matrix to cluster

walking group of users. For each user a ∆σj is calculated in order to determine

whether he or she is walking or remaining in the same place, for the specified period

of time, ∆t. To compute the value of ∆σj , we use radio signals collected from APs,

and to determine whether a user is walking or not, we compare the value of ∆σj with

a threshold denoted by Θ. Note that, in Subsection 3.4.2 on page 54, we have defined
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a mathematical model to compute ∆σj and discussed how to choose the value of the

threshold Θ.

When the proposed model determines that users are staying in the same place, we

use the algorithm proposed in Chapter 3 to cluster them into the same group. Other-

wise, we apply our newly proposed scheme. That is, we apply the edge betweenness-

based algorithm on the transmitted data signals to cluster group of walking users into

the same group. To this end, we start with the computation of the edge betweenness

score. Then, we identify the edge with the highest betweenness score and remove it

from the network. Next, we calculate the average path length, APL, of each discov-

ered cluster. If the computed APL is less than or equal to a predefined similarity

threshold ∆, (APL ≤ ∆), we consider that a new cluster has been discovered and out-

put its elements followed by the removal of all the elements that belong to it. For the

remaining elements in the data set, we recompute the edge betweenness in order to

find the edge with the highest score and remove it from the network. This procedure

is repeated until the algorithm discovers all the existing groups in the data set.

It should be noticed that the proposed scheme enjoys several advantages. In fact,

mobile users who experience different AP radio signals and do not detect each other

will never be clustered together. Another one is that by introducing the similarity

threshold ∆, in our clustering process, we were able to discover all existing clusters.

The proposed approach is also robust in dealing with varying the number of clusters

and users over time in the network.

4.3 Numerical Results

Our co-localization of walking groups of users’ algorithm is first assessed numer-

ically, and then experimentally. In this section, we will present and discuss our

numerical results.
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Figure 4-5: Effect of the similarity threshold ∆ on users co-location. The error rate
decreases until it attains its lowest level and then increases to its highest level.

4.3.1 Setup

For the purpose of evaluating the performance, in terms of the clustering accuracy

of our proposals, a computer-generated graph similar to that one presented in Figure

4-3 is fed into the algorithm. The generated graph is a random modular graph with

60 vertices divided into 14 groups of vertices (each vertex represents a mobile user).

Each group contains a different number of vertices.

We adopted the following procedures to place edges between vertices. If the dis-

tance between pair of vertices is less than or equal to 25 meters, we consider they are

detecting each other. Thus, an edge is placed between them. The length of this edge

represents the strength of their connection. In the case where the distance is greater

than 25 meters, no edge is placed between them, which means no connection between

pair of users. With this approach, a graph is generated which simulates the network

of mobile users with known groups of vertices but in which its fundamental aspects

keep its randomness.
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4.3.2 Similarity Threshold ∆

In this subsection, we describe the steps undertaken to determine the optimum

value of the similarity threshold ∆, to co-localize walking groups of mobile users.

With the firm purpose to get the best value possible for our threshold ∆, we

perform an offline analysis. To do so, we define an interval in which the search will

be operated. Thus, we perform a search over this interval with the step size of 0.5

meter. The optimum value of the threshold ∆ is computed in function of the number

of the users correctly clustered at each step size. Figure 4-5 depicts the effect of the

similarity threshold ∆ on the co-location accuracy over the defined interval. As it

can be seen, from this figure, as the value of the threshold ∆ increases, the error rate

decreases until it attains its minimum percentage value, i.e., zero percent, and after

that it increases gradually to its highest level. Therefore, we take the value of the

threshold ∆ where its effect on co-location accuracy is the best, i.e., where its error

rate is of zero percent.

It should be noticed that, even though in this simulation, the accuracy of the

proposed algorithm reaches error-free, it should not be always the case. Indeed, in

a more realistic situation, more underlying parameters should be taken into account,

which may have different effects on the accuracy. We will have more discussion on

these matters later on in this chapter.

From this analysis, we observed that more than one value of the threshold ∆ can

be chosen in order to achieve the highest accuracy possible. In fact, this suggestion

is in perfect tune with our setup. We want also to emphasize the fact that the value

of this threshold is chosen in accordance with the application requirements. Here, we

take the one that gives us the higher accuracy possible for our setup, i.e., the one

that gets back our co-located group of users.

It is worth noting that when the value of the threshold ∆ is chosen to be less than

the optimum value, more number of clusters are found in the data set but with scanty

number of users. In some cases, even singleton clusters are discovered. On the other

hand, when the value of the threshold ∆ is set higher than the optimum value, less
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Figure 4-6: Numerical results of our co-localization system. Each red square dot
represents a vertex (mobile user) in the graph network. The rectangles surrounding
square dots indicate the detected co-located group of vertices. The algorithm reliably
discovers all groups of vertices.

number of clusters are found in the data set. However, each one of these discovered

clusters has an important number of users into it. Therefore, one should set the value

of this threshold that best fits the application targeted [17].

4.3.3 Results

Figure 4-6 shows the obtained results in the form of a tree. Each red square

dot at the bottom of the tree represents a vertex (a user), and the black rectangles

surrounding them indicate detected groups of vertices in the graph. In this evaluation,

and in accordance with our offline analysis in the previous subsection, the value of the

similarity threshold ∆ is set to 3.5 meters. That is, each time the algorithm partitions

the graph into subgraphs, we test whether or not the newly found subgraphs satisfy

our co-location criterion. If so, we output the vertices of these subgraphs as a new

co-located group of people and proceed with the removal of its vertices from the

network.

As it can be noticed, in this evaluation process, the algorithm correctly clusters
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all vertices into their respective groups. This result is justified by our earlier analysis

on the similarity threshold ∆, in the previous subsection. That is, when the error rate

is at its lowest level, the highest accuracy possible is achieved.

4.4 Experimental Setup and Results

In this section, we first describe our experimental setup to co-localize people walk-

ing together as part of the same group, and then we present and discuss the obtained

results.

4.4.1 Experimental Setup

We carried out an experiment on a corridor of our department building, collect-

ing iBeacon radio signals, to demonstrate the effectiveness of the proposed scheme.

Thus, we evaluated the performance in terms of clustering accuracy of the designed

framework with data set from this experiment.

2
.2

0
 m

243.0 m

Corridor

Figure 4-7: Corridor of a 3rd floor of a building where 12 users were walking during
the experiment. Each red dot represents a walking user, and the arrows indicate
the direction in which those groups of users were walking. We consider five walking
groups of users in this experiment.

To this end, we developed a smartphone application, for both Android and iPhone

OS devices, capable of collecting radio signals broadcast by all nearby iBeacon devices.

We installed this application on smartphone of 12 students and equipped each one

80



of them with an iBeacon device. Each iBeacon device is associated with a student’s

smartphone. Then, we demanded these students to walk in the corridor in groups

of different sizes, in different directions, in a third floor of our department building

during ten minutes. Thus, they can meet one another several times.

In Figure 4-7, we illustrate our configuration settings. Each red dot, in this figure,

corresponds to a walking user, and the arrows indicate the directions in which they

were walking in groups. There are five distinct groups of people. People in the same

group were walking apart each other at a distance of around two meters. During the

experiment, each group passed by each one several times. The size of this testing area

was a 2.20 x 243.0 m2 (see Figure 4-8 (b)).

The application installed on students’ smartphone collects iBeacon universally

unique identifier (UUID), date and time of received signals, and the received signal

strength indicator (RSSI) from each iBeacon device. After that, all information is

put together on a computer to be processed.

(a) Gimbal iBeacon [89] (b) Corridor

Figure 4-8: Experimental setup. (a) Gimbal iBeacon device used in this experiment.
(b) Corridor where we conducted the experiment.
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4.4.2 iBeacons

An iBeacon is a low cost, low power consumption, and a 2.4 GHz radio transmitter

using Bluetooth Smart [32]. It is also known as Bluetooth 4.0 low energy (BLE)

device with one way transmitter capabilities to the receiver devices. iBeacons neither

communicate with each other nor communicate with smartphones. Only a device

with an application installed on it and specifically designed to detect the radio signals

broadcast by iBeacons can do so. Its transmitted radio signals can be utilized to infer

proximity devices as well as in providing context-aware services.

Moreover, the range of an iBeacon depends on manufacturer. For some manufac-

turers the range can be on the order of 70 meters, which is considered as standard.

Whereas, long range iBeacons can reach hundreds of meters. The one we used in this

work, its range in line of site is up to 50 meters, but the range decreases if there are

some obstacles between an iBeacon and the devices that are supposed to detect it.

In this experiment, we use Gimbal proximity beacons series 10, measuring 40 x

28 x 5.5 millimeter [89], [90]. Figure 4-8 (a) shows an exemplar of them. More

information about iBeacons can be found in [33].

4.4.3 Experimental Results

In this subsection, we present and discuss the obtained experimental results.

As mentioned earlier, the proposed scheme, which is based on the edge between-

ness techniques, alone is not enough to state whether or not people are co-localized.

Therefore, in our evaluation process we further consider that people are co-localized

if they spend at least three minutes walking together (remember that, in tis experi-

ment, we collect radio signal during ten minutes). In fact, these three minutes are the

time required for a person to walk from one end to the other of the corridor where

the experiment was conducted (see Figure 4-7). The period of time should be set

large enough in order to ensure that people really pass time together. It is a tuning

parameter. Here, we consider this period of time to be three minutes because, from

our experiments, it seems a reasonable choice.
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During this period of time, we noticed that the number of times that people in

the same group detect each other is really high, compared with the number of times

when a person just passes by, on the one hand. On the other hand, it also depends

on the transmission interval of the signals configured in the iBeacon side. Therefore,

the frequency of meeting should be set in accordance. It is also a tuning parameter.

From our configuration, we noticed that users in the same group detect one another

for more than 200 times. Thus, we set the frequency of meeting to this value.

Signal Measurements

As users were walking together at the same speed and keeping the same distance

to one another, around two meters, we also observed that, the collected radio signals

during this time period (three minutes) do not vary a lot. An illustration of this is

given in Figure 4-9. In this figure, we plotted the collected radio signals by user A on

two different users, B and C, when they were walking together, in the same group,

during the experiment (users A, B, and C were walking in the same group). As can be

seen, from this figure, the collected radio signals by user A on users B and C do not

vary a lot over time. Therefore, we took the average of these measured data signals

and computed the distance in signal space to each other. Thus, a sparse matrix of

interactions is constructed in which each entry is a distance between pairwise users.

In the ideal case, a sparse symmetric matrix should be obtained from the collected

radio signals, as we did in Section 4.3. However, a such approach here may be incorrect

due to the fluctuation of the radio signals. Therefore, we constructed a sparse matrix

with the distance computed directly from the data signals obtained from iBeacons on

each user.

It should be pointed out that when users do not satisfy the two aforementioned

criteria, i.e., the duration and the frequency of meeting, we do not consider a link

between them. Thus, there is no connection between them for this predefined period

of time. Therefore, they will not be clustered together in the same group.
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(a) RSSI collected from user B

(b) RSSI collected from user C

Figure 4-9: RSSI values that user A measured from user B and C while they were
walking. (a) RSSI from user B. (b) RSSI from user C. These users (A, B, and C)
were walking in the same group. Here, we omit the RSSI values of user A because we
consider its own values as zero in our setup.

Obtained Results

During our experiments, as stated earlier, we demanded the mobile users in the

same group to walk apart from one another at a maximum distance of two meters.

They keep walking with this distance during ten minutes, i.e., the period of time ∆t

required to the mobile users to be together in order to consider them as co-located. In

our implementation, however, we took the data signals collected during three minute,

as explained earlier. From this, we consider that two mobile users are co-localized

(i.e., forming a cluster) if the distance between them is less than or equal to two

meters and they pass a certain amount of time together (∆t = 3 min).

For the inference of the optimum value of the similarity threshold ∆, here again

we follow our standard procedure. That is, we compute its values in function of the

number of users correctly clustered at each step size. The correct clustering of mobile

users at each step size is defined as the number of users clustered together by the

proposed algorithm that is in accordance with our experimental setup. That is, if
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User A and User B are inferred by the proposed algorithm to be in the same walking

group and it turns out that, in our experiments, these users were actually walking

together, we consider this inference as a correct clustering by the algorithm.

Figure 4-10: Effect of the similarity threshold ∆ on co-localized walking groups of
users from the experiments.

To set the optimum value of the similarity threshold ∆ for our configuration setup,

we also performed an offline analysis, as we did in Subsection 4.3.2. Figure 4-10 de-

picts the impact of this threshold on co-location accuracy. Its values are computed in

function of the number of users correctly clustered at each step size. Here again, the

similar analysis, as we did in Subsection 4.3.2, is carried out to choose the optimum

value of this threshold. Thus, we take the value of the threshold ∆ where its effect on

co-location accuracy is the best, i.e., we set its value to 3 meters. However, accord-

ing to the conducted analysis, other values can also be chosen, as it can be seen in

Figure 4-10.

Figure 4-11 shows the obtained result, after feeding the observed data set into

the algorithm, in the form of a tree. Each one of the red circle at the bottom of the

tree corresponds to a walking user, and each black rectangle surrounding red circles

indicates walking users as part of the same group discovered by the algorithm.

Note that, from this experiment, the proposed algorithm successfully discovered
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Figure 4-11: Experimental result. Each red circle at the bottom of the tree repre-
sents a user walking in the corridor during the experiment. The black rectangles
surrounding red circles indicate the discovered group of users walking in the same
group.

the cluster of all users, and the obtained result is in tune with our offline analysis

on the similarity threshold. It should also be emphasized the fact that the value of

the threshold changes in different situations. Indeed, different environments (indoor

and outdoor) may have different effect on the choice of the threshold. Its value also

varies respecting application requirements. More underlying situations need to be

investigated, in the evaluation process, such as people are walking together sometimes

and then they separate into two or more walking groups. It would be very interesting

to see how the algorithm behaves in this kind of situation. We did not carry out

experiments to show how the value of the threshold varies with different environments

and how the accuracy of the algorithm varies in different situations. However, it can

be addressed in the future research.

4.5 Conclusion

This chapter focused on analyzing a new method able to cluster people when

they are walking together as part of the same group. It is especially designed as an

extension of the method proposed in Chapter 3. Therefore, the proposed schemes,

discussed throughout this thesis, are not only able to cluster mobile users when they

remain in the same place but also when they are walking together as part of the same

group, for a predefined period of time.

We proposed to exploit the environmental radio signals when users are in the

same place, and the strength of their connections over time to cluster them when
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they are walking together. To overcome this latter challenge, we inferred walking

groups of users by analyzing two key network properties, i.e., the edge betweenness

and the average shortest path length among all pairs of users in the wireless networks.

The connection strength between pairs of mobile users is constructed with the radio

signals broadcast by Bluetooth low energy device (e.g., iBeacon).

We first evaluated the proposed algorithm, in this chapter, with computer-generated

data set. Then, we carried out experiment to demonstrate its performance, in terms

of clustering accuracy, with data set from real-world settings. In both cases, the

proposed algorithm correctly identified and co-localized all groups of mobile walking

users.
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Chapter 5

Conclusions and Directions for Future

Work

5.1 Conclusions

The core objective of this thesis was to show how to cluster mobile users, for the

purposes of proximity-based services, when they are in the same place or are walking

together as part of the same group, during the same time interval. In Chapter 1,

we gave the background and the motivations for doing research in this topic. We

highlighted some real-world applications and the benefits that this research brings to

our ever connected society. The contributions and the relationship among techniques

and chapters of this dissertation are also discussed on this chapter. A review on

related works is presented in Chapter 2.

In Chapter 3, we derived a method that clusters mobile users based on the simi-

larity of their measured environmental radio signals. It is conceived for mobile users

that have been in the same place. To this end, we applied a nonparametric Bayesian

method called infinite Gaussian mixture model to model the observed data signals

and used Gibbs sampling technique to classify these observed radio signals while users

are in the same place. A modified version of Gibbs sampling method is proposed with

a similarity threshold to best fit the application requirements. The proposed frame-

work operates in real-time to infer co-located mobile users. Its design allows the
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co-location server to manage all the aspects of the formation of the user groups in

a centralized manner. We first analyzed the proposed algorithm numerically. Then,

we carried out experiments to demonstrate its performance, in terms of clustering

accuracy, with data signals from a real-world setting. We have also presented a com-

parative analysis on its performance against the state-of-the-art clustering method.

Results on experiments favor our approach.

With the aim at improving the framework designed in Chapter 3, we investigated

in Chapter 4 a new way of clustering method when users are walking together as part

of the same group. In this case, we exploited the distance between pairwise users to

construct a matrix of interactions in which each entry represents a connection strength

between a pair of mobile users. This matrix of interactions is constructed with the

radio signals transmitted by Bluetooth low energy (BLE) devices (e.g., iBeacon de-

vice). The co-located mobile users are then inferred based on the analysis of two

key network properties, i.e., the edge betweenness techniques and the average path

length among all pairs of users in the network. Then, we derived a modified version

the edge betweenness techniques in order to fit the requirements of the co-location

systems. Finally, we evaluated the proposed algorithm with computer-generated and

experimental data set. In both cases, we demonstrated that the proposed framework

is robust in inferring co-located mobile users and it can even achieve one hundred

percent of accuracy in some situations. It should be emphasized that even though

this algorithm is mainly designed for walking groups of people, it can also be applied

when users remain in the same place.

5.2 Directions for Future Work

Throughout this thesis, two new robust frameworks have been proposed, designed,

and evaluated for the purpose of proximity-based services. We have shown, through

numerical and experimental analysis, that they are indeed effective in inferring co-

localized group of mobile users. However, our focus was only on physical proximity

entities. Many other factors can influence the cluster of people such as their social
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attributes, for instance. In the following, we will highlight some important related

issues that need to be addressed in order to fulfill the potential of proximity-based

services.

The models presented in this thesis can thus be extended and improved in several

deferent ways, as for examples:

∙ It is well known that in many natural groups, there is a hierarchical structure.

Therefore, further analysis in each discovered group of mobile users may uncover

more important information such as group dynamics, role of each mobile user,

etc. It would be very interesting, for example, to know in each group of people

who is the leader, as in many natural groups it happens to be. Thus, the leader,

who has an overall knowledge of his group, can be in charge of that group and

be able to predict and prevent unwanted situations within his respective group

and take command, if it is necessary.

∙ Throughout this thesis, we analyze the case where mobile users are physically

close to one another. That is, we only consider their physical proximity. How-

ever, the context in which they are is another important issue. Normally, people

form a group with an objective, a purpose, for example for data exchange. An-

other important point is that their social relationships can also influence the

group formation. Therefore, their physical distance, their purposes, and their

social attributes should also be object of analysis as well in the clustering pro-

cess.

∙ The best value of our co-location criterion, i.e., the value of the similarity

threshold, is determined in an off-line analysis from the data signals obtained

through our experiments. However, different environments (indoors and out-

doors), buildings, materials, the number of people, their activities, and so on,

may have different impact on the choice of the value of the similarity threshold.

In addition, the value of the similarity threshold may vary with application re-

quirements. Further research should be carried out in order to show how the

value of the similarity threshold varies with these aforementioned conditions.
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∙ In our first proposal, we utilized Wi-Fi radio signals transmitted at 2.4 GHz,

from different access points, to cluster mobile users, when they are in the same

place. However, the proposed scheme can also be analyzed with dual band Wi-Fi

radio signals. The fact is that many Wi-Fi networks suffer from increase wire-

less interference and degrade performance due to the predominance of 2.4 GHz

consumer gadgets. Therefore, utilizing 5.0 GHz on a dual band Wi-Fi router

can help circumvent these issues. Moreover, power delay profile measurements

can also be utilized as radio frequency fingerprints. It fully characterizes the

multipath channel features, which are widely applied in the localization systems,

as it represents a more unique location signature than received signal strength.

∙ It will be very interesting to see the implementation of these algorithms running

in real life.
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