

合成化学的手法による π 共役系分子会合体の構造 および励起状態ダイナミクスの制御に関する研究

平成 27 年度

佐久間 高央

主　論　文　要　旨

報告番号	甲　第	号	氏　名	佐久間　高央
主　論　文　題　目　：				
合成化学的手法による π 共役系分子会合体の構造および励起状態ダイナミクスの制御に関する研究				

(内容の要旨)

近年のX線構造解析やレーザー分光法の著しい進展により、自然界の光合成色素集合体において分子間の距離や配向がエネルギー変換機能に大きな影響を与えることが明らかとなっている。一方、合成化学的手法を適切に用いることで複数の有機分子の距離や配向など集積構造を精密に制御した分子集合体の構築も可能である。このように会合状態の構造を適切に制御することで、基底状態から励起状態への電子遷移過程だけでなく、励起状態からの緩和過程についても励起子相互作用等が関与し、光物理過程は大きく変化する。本論文では、まず、クロロフィル類似型のポルフィリン誘導体において、配位高分子型分子集合体の新規な合成法の提案とその励起状態の失活過程が集合体構造により大きく依存していることを述べている。次に、ベンゼン環が直線的に縮環したペンタセン誘導体へ展開し、光励起後の一重項分裂に伴う励起三重項状態の生成反応に着目した。2つのペンタセン骨格がねじれた一連の二量体の合成を行い、ペンタセン同士のねじれの変化と電子的カップリングの相関が示唆され、反応速度に影響を与えることを明らかにしている。

第1章では、研究背景を概説し、本論文の目的と概要を記した。

第2章では、高い光吸収能と電子移動特性を有するポルフィリン誘導体に対し、多孔性配位高分子的手法による分子組織化を行った。多孔性配位高分子錯体は強固な結合力に加え、結合の方向性も有しているため、距離や配向を考慮に入れた構造設計が可能となる。これら組織体における励起寿命は巨視的な形状には依存せず、近接分子間の内部構造に強く反映していることが分かった。特に、過去の報告例である $\pi-\pi$ 相互作用を利用した同様の分子集合体と比較して励起状態の長寿命化を観測することに成功した。

第3章では、第2章の内容を発展させて新たに柱状配位子を導入し、局所的な内部構造の異なるポルフィリンの多孔性配位高分子錯体を従来法とコロイド法により作り分けることに成功した。特に、ポルフィリン環内部の金属との配位結合の有無を選択的に制御し、配位結合がない場合は励起状態を長寿命化し、ゲスト分子導入に伴う錯形成定数の向上も観測された。

第4章では、新たに、分子会合形成に伴う量子収率100%を超える励起子生成とその長寿命化をめざし、ペンタセン二量体を用いた一重項分裂へ展開した。2つのペンタセン骨格のねじれの程度が一重項分裂の反応性に与える影響を検討するため、異なる3種類のペンタセン二量体を合成した。直線状にペンタセンを配置した二量体に対し、ねじれた二量体では、弱い分子間の電子的カップリングを示唆する結果となった。この違いは一重項分裂とその後の励起三重項状態の失活過程の速度定数を大幅に減少することを過渡吸収スペクトル測定で明らかにした。また、高粘性溶媒ではさらに速度定数が減少し、分子の構造や振動に起因した励起ダイナミクス制御を示した。

第5章では、本論文の総括および分子構造と励起状態の制御による今後の展望を記した。

SUMMARY OF Ph.D. DISSERTATION

School Fundamental Science and Technology	Student Identification Number	SURNAME, First name SAKUMA Takao
Title		
A Study on Synthetic Control of π -Conjugated Molecular Aggregates and Excited-State Dynamics		

Abstract

As efficient photoinduced processes such as electron and energy transfer are observed in molecular assembly on protein matrices in the natural photosynthetic systems, construction of light energy conversion systems composed of organic dyes have been developed using synthetic and supramolecular chemistry. Self-assembly is a spontaneous process occurring mainly through noncovalent bonds such as hydrogen and metal-coordination bondings. The possibility of controlling macroscopic structures utilizing covalent and noncovalent bondings opens a way to design and synthesize materials capable of exhibiting specific properties and functions. In particular, by utilizing the intermolecular stacking and sequence with the proximity, the photophysical properties are largely dependent on the orientation and distance between two neighboring units, which has a great effect on the light absorption and deactivation processes. However, in the aggregated molecules, the excited singlet and triplet state generally decay with relatively short lifetimes due to the exciton interaction. Namely, the undesirable quenching process occurs in the aggregates. Thus, rational design and synthesis of intermolecular structures of π -conjugated molecules is significantly important for control of excited state dynamics. In contrast, singlet fission (SF) is also regarded as multi-exciton generation (MEG) process whereby one excited singlet state converts into two excited triplet states. The electronic coupling largely depends on the orientation and distance between two neighboring chromophores. In particular, the systematic examination on the intramolecular SF in angular pentacene dimers have yet to be reported.

In chapter 1, the background, motivation and aim are summarized to highlight this study.

In chapter 2, the metal coordination-assisted porphyrin assemblies were successfully prepared to investigate the excited-state dynamics by metal organic frameworks (MOFs) technique. MOFs have a great advantage for controlled aggregated structures with well-defined internal structures. The longer lifetimes of triplet excited states was observed as compared to the related π -stacked macroscopic structures.

In chapter 3, as an extension of the previous chapter, we demonstrated nano- and micro-sized porphyrin crystalline structures utilizing pillar ligands (DABCO etc) by different two synthetic methods such as solvothermal and colloidal MOFs methods. The excited-state lifetimes of porphyrin assemblies prepared by colloidal method is much longer than those of the other systems.

In chapter 4, angular pentacene dimers were newly synthesized to examine the generation and decay processes of the triplet states by SF. In the angular dimers, the relatively weak electronic coupling between two pentacene units contributes to the slow kinetic constants of SF.

In chapter 5, the results in this study are summarized, and the perspective in this field was finally stated.