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Preface

The present thesis discusses the metric theory of Diophantine approximations for com-
plex numbers. In 1941, R. J. Duffin and A. C. Schaeffer made a conjecture on metric
theory of Diophantine approximations. As one of partial results, in 1978, J. D.Vaaler
proved this conjecture under an additional condition. For the exceptional sets of Dio-
phantine approximations, i.e., Lebesgue measures of the sets are 0, we use Hausdorff
dimension to measure their size. G. Harman generalized the result of V. Jarnik and
A. S. Besicovitch and proved that the Hausdorff dimension of the set which satisfies
the Duffin-Schaeffer conjecture is 1. In this thesis, we discuss the metric theory of
Diophantine approximation over an imaginary quadratic field and show that a Vaaler
type theorem holds in this case. Also we extend G. Harman’s results to the imaginary
quadratic fields.

Chapter 1 gives some results on metric theory of Diophantine approximations for
real numbers and complex numbers. In chapter 2, we extend the Duffin-Schaeffer
conjecture to the imaginary quadratic fields and gives our result about the Vaaler
type theorem over imaginary quadratic fields and its proof. Then in chapter 3, we
discuss Jarnik and Besicovitch’s result over imaginary quadratic fields and give the
Hausdorff dimension of the set of Duffin-Schaeffer conjecture over imaginary quadratic

fields without the co-prime condition.

Standing notation. We denote by R, Q, Z and N, the set of real numbers, rational

numbers, integers, and strictly positive integers, respectively.
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Introduction

Diophantine approximations deal with the problems of aproximations of real numbers
by using rational numbers. The first result of Diophantine approximations is given by
Dirichlet. Since then, many other interesting results have been given by many other
mathematicians. In the earlier of the 20th century, A. Y. Khintchine considered a
metric theory of Diophantine approximation problem, i.e., with what conditions a non-

negative real valued function 1(n) on R should be satisfied such that the inequality

()

m
a——| <
n n

, (m,n) =1, (1)
has infinitely many solutions of positive integers m and n for almost all real numbers «.
Here (m,n) = 1 denotes that m and n are co-prime, and the word “almost all” means
that the set of real numbers o € [0, 1) has full Lebesgue measure, i.e., in real number
case it is 1. Inversely, we use the word “almost no” to denote Lebesgue measure 0.
Then in 1941, R. J. Duffin and A. C. Schaeffer made a conjecture on a metric theory
of Diophantine approximation problem in their paper [7]. The conjecture states that
the inequality (1) has infinitely many solutions of positive integers m and n for almost

all real numbers « if and only if Y00, o(n)(n)n~*

= 00. Here ¢(n) is Euler function
which counts the positive integers less than or equal to n that are relatively prime
to n. If 300 p(n)(n)n~! converges, then we can easily see that the inequality (1)
has only finitely many solutions of positive integers m and n for almost all a. So the
only difficulty is proving the inequality (1) has infinitely many solutions for almost
all @ under the condition Y > ; ¢(n)y(n)n~! = co. R. J. Duffin and A. C. Schaeffer
also gave a sufficient condition on v (n) for having infinitely many solutions a.e., which
is called the Duffin-Schaeffer theorem. In 1950, J. W. S. Cassels [5] showed that the
inequality |& — m/n| < ¢ (n)/n without the condition of (m,n) = 1, has infinitely many

solutions for either almost all o or almost no a. Then in 1961, P. X. Gallagher [10]
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added the condition of (m,n) = 1 on and gave the conclusion that, the inequality (1)
has infinitely many solutions for either almost all a or almost no «. In 1970, P. Erdos
[8] showed that if 1»(n) = 0 or en~! for all n € N and some & > 0, then the inequality
(1) has infinitely many solutions of positive integers m and n for almost all & whenever
>0 L p(n)y(n)n~! diverges. In 1978, J. D. Vaaler [28] gave a more general result
following P. Erdos’ idea. More precisely, he proved that the inequality (1) has infinitely
many solutions of positive integers m and n for almost all a, if (n) = O(n~!) and
>0 L p(n)y(n)n~! diverges.

In metric theory of Diophantine approximations, we also need to measure the size
of the sets of a with Lebesgue measure 0. In this case, we usually use the Hausdorff
dimension to measure the size of the exceptional sets instead of the Lebesgue measure,
since the Hausdorff dimension of the sets can be not 0 even if their Lebesgue measures
are all 0. In 1929, V. Jarnik [16] proved that the Hausdorff dimension of the set of
a € R such that the inequality

oom L
n ny
has infinitely many solutions of rational numbers m/n is 2/ for v > 2, and also in
1934 A. S. Besicovitch [3] proved the same result. G. Harman [11] then showed a more
general result that the Hausdorff dimension of the set of & € R such that the inequality
Ina —m| < n™f with (m,n) = 1 and v = sup{0 < h : Y, .4, n~" diverges} for some
infinite set A of positive integers has infinitely many solutions of rational numbers m/n
equals to (1++)/(1+ p). We note that V. Jarnik and A. S. Besicovitch’s results can be
followed as its corollary. G. Harman also proved that the Hausdorff dimension of the
set of real numbers which have infinitely many solutions to the Diophantine inequality
concerning the Duffin-Schaeffer conjecture [7] is 1 by using this result.

Diophantine approximations for complex numbers was first considered in 1887-88
by A. Hurwitz [14], who discussed the Diophantine approximation problem by contin-
ued fractions over the imaginary quadratic fields Q(v/—1) and Q(v/—3). Since then, a
number of papers discussed this subject such as [9], [22] and [20]. In 1982, D.Sullivan
[26] gave a metric result of Diophantine approximation over an imaginary quadratic
field under a condition similar to the condition of the Duffin-Schaeffer theorem. In
1991, H. Nakada and G. Wagner proved a Duffin-Schaeffer type theorem over an imag-
inary quadratic field as well as a Gallagher type theorem [21]. In this thesis, we discuss

a further development of the metric theory of Diophantine approximations over an
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imaginary quadratic field. Our main result indicates that the difficulty of the complex
number version of the Duffin-Schaeffer conjecture is similar to that of the one dimen-
sional real case. Indeed, we will show that a Vaaler type theorem holds in this case
and then we find the same difficulty in case of real numbers for proving the complex
version of the Duffin-Schaeffer conjecture.

For a given square-free negative integer d, we consider
Qd) = {p+qVd:pqcq}

and its maximal order Z[w], i.e.
Zw] ={m+nw:m,n €},

where

[ (1+Vd)/2, ifd=1 (mod 4)
“_{\/&, ifd=2,3 (mod 4).

Define the set of fundamental area
F={z:z=z+4+yw, z,yeR, 0 <z,y <1}, (2)

which is a subset of C. In order to avoid the problem of different prime factor decom-
positions of an integer in Z[w|, we consider ideals for the uniqueness of the prime factor
decomposition. For an integer a € Z|w|, we denote by (a) the principal ideal generated
by a. Then we can give a complex number version of the Duffin-Schaeffer conjecture
as follows: suppose ¥((r)) is a non-negative real valued function defined on the set of
principal ideals of Z]w]|, then the inequality

-2 < M)

r 7]

) (T7 a) = (1)7 (3)

has infinitely many solutions r and a with r,a € Z[w] for almost all z € C if and only
if Y ®((r))W2((r))|r|~2 = co. Here (r,a) denotes the ideal in Z[w] generated by r and
a, and (r,a) = (1) denotes that r and a are co-prime in terms of ideals. ®((r)) is
the Euler functions over imaginary quadratic fields which counts the reduced residue
classes modulo (r) and it also counts the integers over imaginary quadratic fields in
the fundamental area [F that are relatively prime to r. Without loss of generality, we

discuss our problems for almost all z € F instead of z € C.
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As one of the main result of the thesis, we show that the Vaaler type theorem
for complex numbers holds, that is, if U((r)) = O(|r|~!), then the Duffin-Schaeffer
conjecture over imaginary quadratic fields is true. It is different from the real number
case, the difficulty of dealing this theorem over imaginary quadratic fields is that there
are many different ideals with the same norm. In real number case, the positive number
itself denotes the distance between the positive number and origin. However, this
doesn’t make sense for imaginary quadratic fields case. So it makes difficulties when
we consider the convergence of the sum of norm of ideals and sieve method of ideals.
In the last section of chapter 2, by following an idea of R. J. Duffin and A. C. Schaeffer
[7], we show an example by giving a sequence of ¥((r)) whose sum diverges but the
measure of the set of the Duffin-Schaeffer conjecture over imaginary quadratic fields
under our choice of {¥((r))} is less than 1. This shows that the convergence condition
of the Duffin-Schaeffer conjecture over imaginary quadratic fields is reasonable.

In this thesis, we also show the generalized Jarnik and Besicovitch’s theorem over the
imaginary quadratic fields and prove that the Hausdorff dimension of the set of complex
numbers satisfy the Duffin-Schaeffer conjecture over imaginary quadratic fields without

the co-prime condition is 2, by using this result.



Chapter 1

Background

1.1 On metric theory of Diophantine approximations for

real numbers

1.1.1 Diophantine approximations

The problem of Diophantine approximation is the approximation to irrational numbers
by rational numbers, and what we are interested in is that we want to know how the
irrational numbers can be approximated by rational numbers. The earliest result about
this problem is given by Dirichlet in 1842, see [25].

Given a real number «, let [a], the integer part of «, denote the greatest integer
smaller than or equals to «, and let {a} = a — [a]. Then {a} is the fractional part of
a, and satisfies 0 < {a} < 1. Also, let ||| denote the distance from « to the nearest
integer. Then always 0 < [|a| < 1/2.

Theorem 1.1.1 (Dirichlet (1842)). Let o and Q be real numbers with QQ > 1. Then

there exist integers m,n such that 1 <n < Q and |an —m| < %

It follows from Theorem 1.1.1 that if « is an irrational number, there are infinitely

many fractions m/n in lowest terms with
R R
n Qn ~ n?’
and we have the following corollary.

Corollary 1.1.2. Suppose that « is an irrational number. Then there exist infinitely
many pairs m,n of relatively prime integers with

m 1

-—| < —. 1.1

‘a n ‘ n2 (1.1)



1.1 On metric theory of Diophantine approximations for real numbers

Note that this corollary is not true if « is a rational number. For suppose that

a =u/v with u,v € Z. If a # m/n, then

1

=
wn

m u m
oO—— | =|-——| =
n (Y n

nu — muv

)
vn

and therefore (1.1) can be satisfied by only finitely many pairs m,n of relatively prime
integers.
In fact, for almost all a € R, the inequality
1

) m
2n2

0
n

has infinitely many solutions m, n with (m,n) = 1. It holds from the continued fractions

expansion of « as follows:

Theorem 1.1.3 (Vahlen (1895)). Let py—1/qe—1,pe/qe be consecutive convergents to c.

Then at least one of them satisfies

‘ m < 1

a——| < —.
n 2n?

Hurwitz [15] improved this further to %n_Q.

Theorem 1.1.4 (Hurwitz (1891)). (i) For every irrational number « there are infinitely

many distinct rationals m/n with

m 1
‘oz—— <

n \/gnQ ’
(ii) This would be wrong if \/5 were replaced by a constant A > /5.
This is best possible, as can be seen by considering a = (—1 4 v/5)/2. We have
a? +a—1=0, so for any fraction m/n:

(m/n)?+m/n—1 ! 1
m/n+ “n2m/n+ B’

|m/n —al = (1.2)

where 3 = (1 ++/5)/2. Now if |m/n — a| < n~2, then by (1.2) we have

1

im/n —af >

Hence the factor /5 is best possible.



1.1 On metric theory of Diophantine approximations for real numbers

It was shown by E. Borel [4] and F. Bernstein [2] in the earlier of 20th century that
almost all real numbers have unbounded partial quotients in their continued fraction
expansion, hence for irrational o we have

1
qeqe+1 ’

Dbe
a— 2

qe

<

where pg/qe is the fth convergent to ov. Thus for almost all & € R, there are infinitely
many fractions m/n with | —m/n| = o(n=2). A. Y. Khintchine [17] used the results
of E. Borel and F. Bernstein in conjunction with an estimate for the growth of ¢, to

prove the following very precise result.

1.1.2 On metric theory of Diophantine approximations

For some given approximation inequality, we want to know the size of the sets of all «
with the approximation inequality which has infinitely many solutions m/n. This is the
metric problem of Diophantine approximations. A. Y. Khinchine made an interesting

result as follows:

Theorem 1.1.5 (Khintchine (1924)). Let v (n) be a positive continuous function. Then
the inequality

’a—ﬂ‘ < vin) (1.3)

n n

(i) has infinitely many solutions in integers m,n > 0 for almost all real numbers o if

S w(n) (14)
n=1

diverges and nip(n) is non-increasing. (i) has at most finitely many solutions in inte-

gers myn > 0 for almost all real numbers « if the sum (1.4) converges.

Clearly, if (1.3) has infinitely many solutions, there will be infinitely many fractions
m/n in lowest terms satisfying (1.3), since xt(z) is non-increasing. It follows that
almost all real numbers have infinitely many approximations of the form | — m/n| <
(n?logn)~!, but only finitely many of the form |o — m/n| < n=2(logn)~'~¢ for any
€ > 0. Of course, this says nothing about approximating to a uniformly as in Dirichlet’s

theorem.



1.1 On metric theory of Diophantine approximations for real numbers

From Khinchine’s theorem, we consider the conditions of the non-negative real

valued function v such that the inequality
¥(n)

m
a——| < —=
n n

has infinitely many solutions m,n for almost all a. We can see a simple necessary

condition -
P(n)
d " p(n)—— = o0,
n
n=1
since we have

Theorem 1.1.6. Let 1)(n) be a non-negative-valued function such that

> v 2 (1)
n=1

converges. Then there are only a finite number of solutions to the inequality

m,n)=1, n>1 (1.6)

)
n

Rk

for almost all o € R.

This is easy to prove if we use the first Borel-Cantelli lemma.

Lemma 1.1.7 (the first Borel-Cantelli lemma). Let X be a measure space with measure
p. Let Aj(j=1,2,3,...) be a collection of measurable subsets of X. If

n=1

then almost all members of X (with respect to ) belong to only finitely many of the
Aj.

Consider a € [0,1) without lose of generality. Let

en=1[0,1)() U <m—w(n)’ m+¢(n)>

1 n n
m=
(m,n)=1

for all n. So if (1.6) has infinitely many solutions for some a € [0,1), then a €

Us°_, N, en. However, by the inequality

> Mew) <23 ofm) 2
n=1 n=1



1.1 On metric theory of Diophantine approximations for real numbers

and the first Borel-Cantelli lemma we see that for almost all « € [0, 1), it only belongs
to finitely many of €,, which means Theorem 1.1.6 holds.

In higher dimensions Khintchine extended his theorem to simultaneous approxima-
tion, and clearly Theorem 1.1.6 can be extended almost immediately.

In 1941, Duffin and Schaeffer [7] made the following conjecture which provoked
much research and remains to date one of the most important unsolved problems in

metric number theory.

Conjecture 1 (Duffin-Schaeffer conjecture (1941)). Let 1(n) be a non-negative-valued
function such that the sum (1.5) diverges. Then (1.6) has infinitely many solutions for
almost all o € R.

Duffin and Schaeffer also constructed a function 1 (n) to show that if we use (1.4)
instead of (1.5) in Duffin-Schaeffer conjecture, then the result of Duffin-Schaeffer con-
jecture does not hold. Thus, the condition of divergence of (1.3) can not guarantee the
existence of infinitely many solutions to (1.6). So the divergence of (1.5) is reasonable
for Duffin-Schaeffer conjecture.

Although the Duffin-Schaeffer conjecture has not been proved yet, the k-dimensional
Duffin-Schaeffer conjecture has been proved by A. D. Pollington and R. C. Vaughan
[23].

Theorem 1.1.8 (Pollington and Vaughan (1989)). Let k > 1 and let {53,} denote a

sequence of real numbers with

1
0< B, < 3
and suppose that
n=1 "
diverges. Then the inequalities
max(|ain — ail, ..., |agn — ag|) < B, (ai,n) =1, i=1, ..k,

have infinitely many solutions for almost all a = (ay, aa, ..., o) € RF.

Note that the theorem holds when k£ > 1, and we can not use it for the case k =1
to show that the Duffin-Schaeffer conjecture is true.

P. X. Gallagher [10] and J. W. S. Cassels [5] gave the following result:



1.1 On metric theory of Diophantine approximations for real numbers

Theorem 1.1.9. (A).(Cassels (1950)) Let 1)(n) be a sequence of non-negative reals.
Then the inequality

lan —m| < ¢(n) (1.7)

has infinitely many solutions for either almost all a or almost no «.
(B).(Gallagher (1961)) The conclusion of part (A) holds with the additional condition
(m,n) =1 imposed in (1.7).

The theorem shows that zero-one laws operate in both the problem of approximation
by all fractions and the problem of approximation by reduced fractions.

In 1970, P. Erdos [8] proved the Duffin-Schaeffer conjecture to be true when, for
some ¢ > 0, 1(n) takes on only the values 0 or £/n.

Theorem 1.1.10 (Erdds (1970)). The Duffin-Schaeffer conjecture is true when there
erists a subset A C N such that if

> ‘igg) = o0, (1.8)
neA

then for almost all o € R the inequality |« — m/n| < e/n for n € A has infinitely many

solutions m/n.

J. D. Vaaler [28] modified the P. Erdés’ method to obtain a more general result as

follows:

Theorem 1.1.11 (Vaaler (1978)). The Duffin-Schaeffer conjecture is true when ¢ (n) =
O(1/n).

Vaaler’s result is, so far, the best sufficient simple condition. We can see that the
theorem of Khintchine, 1.1.5, is a special case of Vaaler’s result. So the hard case
of proving Duffin-Schaeffer conjecture is if > ¢(n)w(n)n=1
hardly.

Catlin made a conjecture and showed that it is equivalent to the Duffin-Schaeffer

= oo and v (n) oscilating

conjecture. However, Vaaler also pointed out that Catlin’s proof of the equivalence of
two conjectures contains a serious flaw, see [28].

Recently, V. Beresnevich, G. Harman, A. Haynes and S. Velani [1] [13] gave an
divergent condition

Z (n)y(n) =00 for somec>0
S exp(c(loglogn)(logloglogn))

which is equivalent to the condition of the divergence of (1.5).

10



1.1 On metric theory of Diophantine approximations for real numbers

1.1.3 Hausdorff dimension of the exceptional sets

For some set of real numbers whose Lebesgue measure is positive, its Hausdorff dimen-
sion is 1. So for sets whose Lebesgue measure is 0, it is meaningful by using Hausdorff

dimension to measure the size of the sets.

Definition 1 (Hausdorff dimension). We denote by | - | the length of an interval. The
Hausdorff dimension of a set of real numbers o is d, i.e, dimpge = d if it satisfies the
following 2 conditions:

(1) For any B > d and any € > 0, there exists a sequence of intervals {J;} such that

ec|J3, D 191° <1, 19;] < e for all j.
j=1 j=1

(i) For any § < d, there exists € > 0 such that there exists no sequence of intervals

which satisfies all the three conditions above.

V. Jarnik, in 1929, and A. S. Besicovitch, in 1934, considered the Hausdorff di-
mension of the exceptional sets of real numbers such that the inequality has infinitely
many solutions with Y 1 (n) < co. Thus we see that the Lebesgue measure of these

exceptional sets is 0.

Theorem 1.1.12 (Jarnik(1929), Besicovitch(1934)). If v > 2, then the Hausdorff
dimension of the set of a € R such that the inequality
m 1
o= < =
n ny

has infinitely many solutions m,n is 2/7.
G. Harman generalized Jarnik and Besicovitch’s result as follows:

Theorem 1.1.13 (generalized Jarnik and Besicovitch’s theorem(by Harman, 1998)).
For an infinite subset A of N, let

fy:sup{h>0: Zn_h:oo}.
neA
For a real number p with p > =, then the Hausdorff dimension of the set of @ € R such
that the inequality
lna —m| <n?, (m,n)=1, neA

has infinitely many solutions m,n is %'

11



1.2 On metric theory of Diophantine approximations for complex numbers

We see that the result of Jarnik and Besicovitch is a corollary to Theorem (1.1.13).
Harman then estimated the Hausdorff dimension of the set of real numbers which
satisfy the properties in the statement of the Duffin-Schaeffer conjecture by using the
generalized Jarnik and Besicovitch’s theorem, and proved that its Hausdorff dimension

is 1.

Theorem 1.1.14 (Harman, 1998). The Hausdorff dimension of the set of real numbers
which satisfy the Duffin-Schaeffer conjecture is 1.

1.2 On metric theory of Diophantine approximations for

complex numbers

1.2.1 Diophantine approximations for complex numbers

A. Hurwitz [14] introduced, in 1887, continued fraction expansions for complex numbers
with Gaussian integers as partial quotients, via the nearest integer algorithm, known
as Hurwitz algorithm, and established some basic properties concerning convergence
of the sequence of convergents, and also proved an analogue of the classical Lagrange
theorem characterizing quadratic surds as the numbers with eventually periodic con-
tinued fractions; analogous results were also proved for the nearest integer algorithms
with respect to Eisenstein integers as partial quotients, in place of Gaussian integers.
Then in the earlier of the 20th century, L. R. Ford [9] and O. Perron [22] also did some

studies about these problems.

1.2.2 On metric theory of Diophantine approximations for complex
numbers

D. Sullivan [26], in 1983, and H. Nakada [20], in 1990, showed some results about the
metric theory of Diophantine approximations for complex numbers. Then in 1991, H.
Nakada and G. Wagner [21] showed Gallagher’s 0-1 laws over the complex numbers,
that is, either the set of complex numbers satisfying Duffin-Schaeffer conjecture or its

complement is a set of Lebesgue measure 0 even if

> W((r) = 0. (1.9)

reZlw\{0}

That is

12



1.2 On metric theory of Diophantine approximations for complex numbers

Theorem 1.2.1 (Nakada, Wagner, 1991). A(-) denotes Lebesgue measure. Consider
the inequality

< M, (a,v) =1,a,r € Z]w], (1.10)

7]

where f is a non-negative function defined on Z[w] with f(r) = f(u-r) for all units u
in Zlw]. Let Ay be the set of z(€ F), for which (1.10) has infinitely many solutions.

Then we have

AMAf)=0or1

for any non-negative function f, where \ denotes the normalized Lebesgue measure on

F.

By using this theorem, they proved a complex Duffin-Schaeffer theorem:

Theorem 1.2.2 (Nakada, Wagner, 1991). Suppose that

Y )=

reZw]

and there exist infinitely many R € N such that

Yoo Py <as D> ) )/

[r|<R,r€Zw] [r|<R,r€Z[w]

for some constant ¢; > 0. Then (1.10) has infinitely many solutions for almost all
zel.

If > ez oy ©((r)P2((r))|r|~2 < oo, then the normalized Lebesgue measure of
the set of complex numbers satisfying the properties in the statement of the Duffin-
Schaeffer conjecture is 0 due to the Borel-Cantelli lemma. We can not ignore the
possibility that the measure of the set of complex numbers satisfying the properties
in the statement of the Duffin-Schaeffer conjecture without co-prime condition equals
to 0 under the condition (1.9). In the last section of this paper, by following an idea
of Duffin and Schaeffer [7], we construct a counter example by giving a sequence of
U((r)) which satisfies (1.9) but the measure of the set of complex numbers satisfying
the properties in the statement of the Duffin-Schaeffer conjecture without co-prime

condition under our choice of {¥((r))} is not 1.

13



Chapter 2

Vaaler type theorem for complex

numbers

2.1 Vaaler type theorem over imaginary quadratic fields

Throughout this thesis we will use N(-) for the norm of an ideal over Z|w|, and use
P (and Pj) for the prime ideals. We also use ®(-) to denote the Euler function over
imaginary quadratic fields. Let F be the fundamental area, see (2).

The differences when we consider the Diophantine approximations over imaginary
quadratic fields are mainly two points:

(i) The prime factor decomposition of an integer of Z[w] is not unique. For example,
integral number 6 in Q(v/—5) has two prime factor decompositions, i.e., 6 = 2-3 =
(1+v/=5)(1 — /=5), so it is difficult to decide whether two integers over imaginary
quadratic fields are co-prime or not.

(ii) How to estimate the number of integers which are relatively prime to some given
integer r € Z[w].

For (i), it is easy if we consider our problem over ideals instead of over complex
numbers directly, since the factor decomposition of ideals is unique. For (ii), we use the
Euler function ®((r)) over Z[w] with ®((r)) = |r|2HP|(T)(1 — N7L(P)), which counts
the number of residue classes modulo the principal ideal (r). It is also equal to the
number of integers a € Z[w] that are relatively prime to r and a/r € F.

Thus it makes sense for us to give the Duffin-Schaeffer conjecture over imaginary

quadratic fields as follows:

14



2.1 Vaaler type theorem over imaginary quadratic fields

Conjecture 2 (Duffin-Schaeffer conjecture over imaginary quadratic fields). Let r,a €

Z|w] and let U((r)) be a non-negative real valued function on ideals. If

2 T
> @((r))qj|£(2)) = o0,

(r):principal ideal

then for almost all z € C, the inequality

, (ra) =(1) (2.1)
has infinitely many solutions r, a.

Our main result is the following

Theorem 2.1.1. If U((r)) = O(|r| "), then the inequality of (2.1) has infinitely many

solutions of r and a with r,a € Z[w] for almost all z € C, whenever

ZCD || 72 = .

We first define €,y as the set of complex number 2z which satisfies the inequality of

(2.1) for a given r € Zlw], i.e

en= U {oif-2< T ser},

a€Z[w)
+€F
(a,r)=(1)

It is enough for proving Theorem 2.1.1 to show

’ ]Ql 7»|2L£N8(r) B A}iinoo)\ |rgNE(r) - 22
holds under the conditions of ¥((r)) = O(|r|™") and 3= &((r))¥2((r))|r|~2 = oc. Here
A denotes the normalized Lebesgue measure on F.

We extend two theorems of Vaaler [28] (Theorem 2 and 3) to the imaginary quadratic
field as follows:

Theorem 2.1.2. Suppose there exist an integer k > 2 and a real number n > 0 such
that the following condition holds: every finite subset Z of {k,k+ 1,k+2,---} for
which 0 < A(Z) < n and

Z Z )\ )ﬂ 8(5) A(Z) (2.3)
|r|2€Z |s|2€Z
(r)#(s)

hold with A(Z) =}, 2e7 AE(r)), then 3 S((r))W2((r))|r|~2 = oo implies (2.2).
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2.2 Proof of some lemmas

Theorem 2.1.3. If U((r)) = O(|r| "), then there exists n > 0 such that if Z is a finite
subset of {2,3,4,- -} which satisfies 0 < A(Z) <, then

) 1)’
DY Mepy NEy) < (A(Z)) (mm A(Z)> . (2.4)
[r|2€Z |s|2€Z
(r)#(s)
We note that (2.4), the conclusion of Theorem 2.1.3, is stronger than (2.3) since

there exists a sufficiently large rational integer £ such that
A(Z)(InIn A(Z) 12 <1

with Z = {k,k+ 1,k + 2,...}. In the next section, we will prove Theorem 2.1.3 and
then prove Theorem 2.1.2 which completes the proof of Theorem 2.1.1. We note that
we do need the condition ¥((r)) = O(|r|~!) in the proof of Theorem 2.1.3 and do not
need it in the proof of Theorem 2.1.2.

The idea of the proof of Theorem 2.1.3 is based on Renyi-Lamperti’s Borel-Cantelli

type lemma:

Lemma 2.1.4 (Renyi-Lamperti’s Borel-Cantelli type lemma). Ay, Ag, ... is a sequence

of events and P(-) is the probability function with

> P(4,) = oc.
n=1

Then for the event set A = {w : there are infinitely many n € N which satisfies w € Ay},

we have N ,
P(A,
P(A) > limsup J(vanl (4n)) .
N—o00 P(An N Am)

m,n=1
The case of P(A) > 0 is showed by 0-1 law, and Theorem 2.1.3 is the case of
P(A) =1.

2.2 Proof of some lemmas

Before we give the proof of our result, first we state some results in algebraic number

theory which will be used later in our proof. See [24] and [19].
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2.2 Proof of some lemmas

Theorem 2.2.1 (Mertens’ 2nd theorem over algebraic number fields).
Z L—lnlnnv—i—B +0 1

N(P) ~ K Inz)’
N(P)<z

where Bg is a constant depending only on the algebraic number field K.

Theorem 2.2.2 (Mertens’ 3rd theorem over algebraic number fields).

H (1 - 1>1 =eaglnz + O0(1)

NP S NP |

where v > 0 and ag are constants depending only on the algebraic number field K.

Theorem 2.2.3 (Landau prime ideal theorem). The number of prime ideals of norm
Sy s
m(y) = Li(y) + O(ye™ Vi),

where cg is a constant depending only on the algebraic number field K and Li(y) =
fgy(l/lnt)dt.

Now we give some lemmas similar to Vaaler’s estimates [28]. We denote by g(R)

for an ideal R of Z[w] as the smallest positive integer v that satisfies

Then we have the following result:

Lemma 2.2.4. For an ideal R of Z|w], if g(R) = v, then we have

H 1-— ! <<(I)(R) as v — 00
N(P) N(R) '

P|R
N(P)<v

Proof. From the formula of Euler’s function over ideals, we have

®(R)=N(R)[] (1 — N(1P)> .

P|R

17



2.2 Proof of some lemmas

Then
L) e LT
IHR (1 N<P>> T N(R) IHR (1 N(P))
N(P)<v N(P)>v
_ 2R N
- N 2! (1 5m1)
N(P)>v
O(R) 1 =1
S NP & NP T2 NP
N(P)>v
Now we see
= 1 > 1
2L NPY S Py
1 1
RSN TN E RS 25)

Here ) ¢ is a sum over all ideals of Z[w]. In order to show that the right side of (2.5)
converges, we first estimate the number of ideals whose norm is less than or equal to
a given rational integer N. Denote by T(N) the number of ideals whose norm is less
than or equal to the given rational integer N. By [12], there exists a constant k(d) such
that (V)
ym =y = k),

which shows that uy = T'(N)/N is bounded. Denote by T; the number of ideals whose
norm is equal to ¢ € N. Then we have T'(N) = sz\il T;. From Ty = Nuy—(N—1)un_1,
we have

N

N
> g - L
2 - 2
N(S)=1 N*(9) ="
UN 1 1 3
= X = W (N—=Duny_q+---+2=
N+<(N_1)2 N2>( Jun—1+ -+ Ju
oy ANl AN TS et o
T N TN VPN (N (N =12 VR 4!
S I S
JE— 771/_ — _ DY 7’11/
N T NzUN-1 (N_1)2N2 521
N1
< Z? as N — oo.
. 7

s
I
-

18



2.2 Proof of some lemmas

So we see that the right side of (2.5) converges which implies

1 o(R)
}g% (1_N(P)><<N(R) as v — o0.
N(P)<v

This completes the proof of Lemma 2.2.4. O

We will give a corollary to Lemma 2.2.4 which we use later.
Corollary 2.2.5. For an ideal R of Z|w|, if g(R) = v, then we have

®(R) n

1<<W

(14+v) as v — 0.

Proof. From M. Rosen’s results of the 3rd Mertens’ theorem 2.2.2 on an algebraic

number field and Lemma 2.2.4, we have

©(R) 1
b s U (- 5m1)
N(P)<v
©(R) 1
= N (- 5)
< (R) In(l1+v) asv — oo

We define a collection N(§, z, v) of ideals of Z[w] by

N, z,v) =< R: Z N(lp)zij(R)éx ,
PIR

N(P)>v
where £ > 0, x > 0, v > 0. We denote by #N(&, z,v) the number of ideals in N (¢, z, v).

Then we can extend Vaaler’s estimate [28] to the complex number case as follows:

Lemma 2.2.6. For any e >0, £ > 0 and x > 0, we have

#N(E v, 2) <K as v — oo with B = €. (2.6)

X
evﬁ(l%)

19



2.2 Proof of some lemmas

Proof. Suppose 0 < e < 1— 6% =1- % It is enough to show Lemma 2.2.6 for such
e since the right side of (2.6) becomes larger if ¢ goes larger. Let [v,w]| be an interval
with w = v#1=39) Let {P1, Pa,---, Py} be the set of all prime ideals whose norms are
in [v,w] with N(P;) < N(P) < --- < N(Pyy). Let m be the prime-counting function in
the sense of ideals of Z[w], i.e. 7(w) is the number of prime ideals whose norm is less

than or equal to w. Then we see M > 7(w) — w(v). We have the equality

P1=3¢) B B(1—5)nv
Bo " mp 03 —B(1— £)pl-A1-3)

Since e < 1—1/3, we have 1 — (1 — 2¢) < 0. Hence there exists an integer vo(e, &) > 0

such that ﬁ - ﬁ > vﬁ(l_%a) for any v > vg and we have
w v
M>7n(w)—m(v)>» — — — > vP1=39) as v — 0o
Inw Inwv

by the prime ideal theorem.

Next, we divide all the ideals in N(§, z, v) into two classes.
Class 1. There are no less than M different prime ideal factors of ideal R and norms
of these prime ideal factors are all in the interval of [v,e"].

Denote by Nj the number of ideals in Class 1. By using the 2nd Mertens’ theorem

2.2.1 on an algebraic number field, we see

M M
1 1
2 N(P) 2 N(P)
N < =z v<N(P)<ew < N(P)<ew
! M! h M!
(Inw)M
< i as v — 00.

Here we note w < M?. From Stirling’s formula n! = v27n (n/e)" (14 0 (n71)), we
have

(lnw)M 2M(61n1nM)M
< M
2M6M+MlnlnM

X

<L
MM\ 27 M
T 1
< eM(In M—Inln M~2) VorM
T T
< GW < T%E) as v — Q. (27)
eU

Class 2. There are less than M different prime ideal factors of ideal R and norms of

these prime ideal factors are all in the interval of [v, e"].
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2.2 Proof of some lemmas

By using the 2nd Mertens’ theorem 2.2.1 on an algebraic number field, we have

1 1
ZN(PJ-)_ Z W < Inlnw-—Inlnv

Jj=1 v<N(P)<w
€
— ¢+ (1 . g)
€
< &— 3 as v — o0.
From
1 1 1 1
= _ _ >
> xp- X NPT X NPT X wp 2t
P|R P|R P|R P|R
N(P)zv=g(R) v<N(P)<w w<N(P)<e? N(P)>e¥

and the condition of Class 2, we see

1 1 1 5
> NG > Nig > NPy €3 v
P|R P|R v<N(P)<w
v<N(P)<w w<N(P)<e®
So we have the estimate
Z L > c as v — o0
N(P) 3 '
PIR
N(P)>e®
The number of ideals R of Class 2 is less than ZN( R)<z 1 and then we see
3 1
1 2 —
1< > T X
N(R)<z

N(R)<z P|R

N(P)>e®

< 1 1 T

€ N(Frmew N(P) N(P)
< 2 ( SR S : + >

e \(e®)?  ew(ew+1) (ew+1)(ew+2)

1 1

< f.i«,_% as v — o0. (2.8)

e ev € goP1739)

The estimates (2.7) and (2.8) imply (2.6), which completes the proof of Lemma
2.2.6. 0

We define two collections A, (&, v) and B,.(§,v) of ideals for a fixed r € Z]w] by

1
Ar(€,0) = { A A|(r), > sz’
P|A
N(P)>v>g((r))
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2.2 Proof of some lemmas

1
Bi&o) =4 BB D py <6
P|B
N(P)zvzg((r))

for £ >0,v>0.

Lemma 2.2.7. For anye >0, >0, and v > g((r)),

as v — 0o with B = é*.

1 In(1 + g((r
R
A€A(E)
Proof. Let w = P0-3) where 0 < e <1—e € =1-— L. Suppose there are M
different prime ideals P;, Py, - -+, Pyy whose norms are in [v, w] with N(P;) < N(P,) <
-+ < N(Pypr). Let g be the collection of M different prime ideals whose norms are all

in [v,00). Then from the proof of Lemma 2.2.6, we have

™

1 Mo
g — < g L £— < asv— 0.
o N(P) = N(Pj)

w

Since for any A € A,(§,v), we see

1
% Py 2 &
N(P)>v>g((r))

This implies that for all large v, there are at least no less than M different prime ideal
factors of A whose norms are all in [v,00). Let Q1,Q2,---,Q be all different prime
ideal factors of ().
Case 1. If J < M.

From the discussion in the above, we see that A,(§,v) = () for all large v, which
Means Y a4 () N=1(4) = 0.
Case 2. If J > M.

Since v > g((r)) and ijl N~HQ,) < 1, we see

M

1 1 j=1
N S 2 N M < N(A) | mv

AeA (&) Al(r)

Suppose (1) = Q]' Q3 - -- QY where Q1,Q2, -+ ,Q are all different prime ideal factors
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2.2 Proof of some lemmas

of (r) and 1,72, - ,7J are positive integers. By Corollary 2.2.5, we have

1 1 1 1
2Ny = O+N@0+N%&YP“+NW@J
1
(

Al(r)
1

1
@*N@ﬁ*wwg+m+NW@Q
-<1+ 1 1 T
N(Qy) (

_l’_
I (xg)
1— —
)
Ql(r) (@)
Q is prime ideal

N

= (W) < In(1+g((r))) asv— oo. (2.10)

From (2.7), (2.9), and (2.10), we have

3 1 In(1 4 ¢((r)))

<

N(A) pB(1—¢) as v — oo with /8 = eg_
e

A€A,(&v)

This completes the proof of Lemma 2.2.7. O

Lemma 2.2.8. Suppose (s), (r) are two principal ideals with s,r € Zw] and U = (s, 7).
Then fore >0,£>0,x >0,y >2,v>g((r)), we have

S e L
xN(U)<|(ss|)2v<xyN(U)
and
R TR r

(s)°
N~H(U)<|s]2<axyN—H(U)

with B = e¢. Here Z means the sum over (s) satisfying g((s)) = v.
(s)¥

Proof. The right sides of (2.11) and (2.12) are both independent of U and z. Thus, by

choosing x properly, we see that (2.11) and (2.12) are equivalent. So we only need to
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2.2 Proof of some lemmas

prove (2.11). Let (s) = US’ and (r) = UR/, then we see

1
2 T L e
() U|(r) (s)”

2N(U)<|s|2<zyN(U) ( )(s|,7"|)2:U -
zN(U)<|s|*<zyN(U

_ 3 1
B j < 5|2
UEAT(§7’U) ( (S))—U
2N(U)<|s[2<zyN(U)

+ > |81|2 (2.13)

veb g 7
2N(U)<|s[2<zyN(U)

Here we see

1
2 2 p s N0 NS

U€eA (3 v) (s) UeAr (ko) (US)
(s,r)=U (s,r)=U
2N(U)<|s|2<zyN(U) <N(S8")<zy
1 1

< -

- Z N(U) Z N(S’)

1 S’
UeAr(5,v) 2<N(3)<zy

By using the method as in the proof of Lemma 2.2.4, we estimate the number of ideals

whose norms are less than or equal to a given integer N. Then we have

1
Z N(S,)<<lny as y — Q.

/

<N(S")<zy

From Lemma 2.2.7 we have

1 In(1 +g((r)))
Zl N(U) <K evﬁﬁ—E) as v — o0,
UE.AT(§,U)
and then
1 In(1 1
Z Z 52 < al +vgﬁgl(f3))) Y as v — oo (2.14)
Ued, (L0) (s) ¢

(s,r)=U
2N(U)<|s]?<zyN(U)

Thus we get the desired estimate for the first term of the right side of (2.13) with
UeA (1/2,v).
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2.2 Proof of some lemmas

Now we consider the second term of the right side of (2.13) with U € B,(1/2,v)

and ¢((s)) = v. In this case we have

1 1 1
< — < — - —
1< Z N(P) — Z N + Z N 2 T Z N(P)’
PJ(s) P|U P|s’ p|s’
N(P)>v=g((s)) N(P)2v N(P)2v N(P)2v

which shows > pjsr N=1(P) > 1/2. From Lemma 2.2.6, we see

N(P)>v
1 1 #N(3,v,2z) 1
Z N(S) < Z 1 p < . < s as v — o0.
z<N(S")<2z T<N(S")<2z
Thus we have
[v]
1 1
<
I R VD VN e
e<N(S")<zy  ka<N(SH<(k+1)z
[y] 1
< - > - > 1
k=1 s’
Ez<N(S)<(k+1)z

N

e RIEI)
= 1f1<#N< (i + )
ety

< yﬁasy—)oo.
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2.3 Proof of main result

This gives the estimate for the second terms as follows:

1 1 1
Z Z W - Z Z WN(S’)

UeB,(4,0) ()@ UeB (3:0) (US)™)
(S,T):U (37r):U
2N(U)<|s|2<zyN(U) <N (8" <zy
1 1
g -
N(U) Z N(5")
UeB-(4v) s
z<N(S")<zy
1 Iny
<
N(U pB(l—e)
UeB,(5,v) () ) e
1 Iny
< X
~ N(U vB(1—¢)
TR
< H <1 1 >1 Iny
= T N(P vB(1—¢)
Pl(r) (P) ¢
_ Py
() e
Iny
< In(1+g((r)—5=5 asv— oo (2.15)
e’U
Hence we can deduce the assertion of Lemma 2.2.8 from (2.14) and (2.15). O

2.3 Proof of main result

Now we will give the proof of Theorem 2.1.3.

Proof of Theorem 2.1.3. Let r,s € Z|w]| be two integers such that the two principal
ideals (1) and (s) are different. Put
§ = min {W o) } A = max { ¥((r) ¥((s)) } and ¢ = max{g((r)), g((s))}.

Let R, and §;, for a,b € Z]w] be
L4
Ra:{Z: ‘Z—g‘ < ((T)),ZEIF}, Sb:{z:

r 7]

for given r and s. Then
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2.3 Proof of main result

If U((r)) < 1/2 and ¥((s)) < 1/2, then for any a; and as with a; # a2, we see
Ra; N Rq, = 0 and the same holds for 8. Then we have

)\(S(T)ﬂg(s)) = Z Z AR N 8p)

FEF ber
(a,r)=(1) (b,5)=(1)
2> > 1

weF  LeR

(a,r)=(1) (b,5)=(1)

t-tl<a

=5 ) > L (2.16)
€F ber

(a)=(1) (b,5)=(1)
las—br|<|r||s|A

IN

We define H (k) as a set of pairs of integers a, b € Z[w] by
b
H(k) = {{a,b} cas —br =k, (a,r) = (b,s) = (1), with g,f € IF}
r’s

We denote by #H (k) the cardinality of H(k) and we will estimate #H (k). Let U =
(r,s) and S” and R’ be ideals determined by (s) = US’ and (r) = UR'. Since ((a), R') =
(1) and (S, R) = (1), we have (a)S’ # (b)R’, which shows #H (0) = 0. Since U | (as)
and U | (br) imply U | (k), we have #H (k) = 0 if U 1 (k). So we only need to consider
k € Z|w] with U | (k). In this case, the principal ideal (k) can be uniquely represented
as (k) = U - Uy, - K1. Here Uy, is the ideal whose all prime ideal factors are also the
prime ideal factors of U and (K1,U) = (1).

If (K1,UR'S") # (1), then we can find some prime ideal P such that P | K; and
P|UR'S'". Since (K1,U) = (1), either P | R' or P | S’ holds. If P | R/, we see P | (br)
and P 1 (s). Here P | R’ implies P t (a) and we have P f (as), which is impossible
since P | (k). We can use the same approach for the case of P | S" and get the same
conclusion. Hence if (K1,UR'S’) # (1), then we have #H (k) = 0.

If (Ugy, R'S") # (1), then we can find some prime ideal P with P | Uy, and P | R'S".
If P | R, then there exists a positive integer n such that P* | U and P"*1 { U. So
we see P"T1 | (r), which means br € P*""!. From P"™! | (k), we see P | (a), which is
impossible since ((a), R') = (1) and P | R’. We can use the same method for the case
P | S" and get the same conclusion. So if (U, R'S") # (1), then #H (k) = 0.

Consequently we only need to estimate #H (k) in the case of (K1, UR'S’) = (1),
(U, R'S") = (1) and N(U) < |k|*. Suppose {a1,b1} and {az, by} are two different
pairs of integers in H (k) for a given k € Z[w]. Then (a1 — a2)(s) = (b1 — b2)(r). So we
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2.3 Proof of main result

have
R/ | (a1 - CLQ) and S/ ‘ (bl - bg). (2.17)

This means that a; and as are in the same residue class modulo R’ as well as b;
and by are in the same residue class modulo S’. We consider the set of pairs (a,b)
with a/r,b/s € F such that each two of them satisfy (2.17). In order to estimate the
cardinality of this set, let us consider the number of a; of the left side of (2.17). The
ideal R’ can be represented by the standard basis form that there exist ry, 7o € Z(v/d)
such that R’ = [r1,79) = {71 +y-1r2: 2,y € Z}. Let Z(v/d) = W = [1,w], then there

exists a rational integer matrix

mip M2
M =
ma1  1M22

whose terms are all rational integers such that R' = MW. Also, for the matrix M there
exists two rational integer matrices M;, M, with det(M;) = £1 and det(M,) = £1 such

that
€1 0

MMM, = [
0 €9

], e1,es € 7.

Here det(:) denotes the determinant of metrix. Let a = [a1, 0], = [B1, f2] with
o= MR and W = M, 3. Then we see

. €1 0
L

Thus we can consider o and § instead of R and W. Since for any ¢ € Z(v/d) there
exist x1,29 € Z such that ¢ = x161 + 22082, if a3 = az (mod R') then there are

x1, Ta, T}, € Z such that

a1 = 2101 + 12832, as = |1 + 255s. (2.18)
Since a1 — ag € R/, there exist t1,ts € Z such that

ap —az = t1oq + teag = t1e1 1 + taeaBa.
By (2.18), we have

r1=x7 (modey), zo =25 (mod es).

From [27], we see N(R’) = ejez and it is the number of residue classes modulo R’. Next,

we estimate the number of a € Z|w| such that a/r € F. We express a/r under the basis
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2.3 Proof of main result

[1/r,w/r] and for each a € Z[w], there are a’,a” € Z such that a = @’ - 2 +d” - 2.
Then this problem is equivalent to count the lattice points under the basis [1/r,w/r]
in the fundamental area, and we see that it is exactly |r|2. If there exist two different
lattice points ay/r,az/r € F with (r) | (a1 — ag), then N(a; — a2) > |r|?> which shows
that either a;/r or ag/r are out of the fundamental area. So each a € Z[w] with
a/r € F is in the different residue class modulo (7). Then we see that the cardinality
of the set of pairs (a,b) with a/r,b/s € F such that each two of them satisfy (2.17), is
I7>2N"Y(R') = N(U).

Next, we estimate the number of pairs of integers a, b in the above set with (a,U) =
(1) and (b,U) = (1). For this reason we consider the pairs of integers a, b with (a,U) #
(1) or (b,U) # (1) and exclude them from the pairs of integers a, b in the above set with
la|] < |r| and |b] < |s|. Here we assume a;, b; and a;, b; are two different pairs of solutions
of (2.17). Now we estimate the nunber of pairs of integers a,b with (a,U) # (1) or
(b,U) # (1). Since U can be decomposed into U = P/* P)* - --Pj%, we consider two
cases of P(= Pj).

Case 1. P|U, PtUy, and Pt R'S".

We will show that P | (a;) implies P { (bj), which means that integers a,b are in
the different residue class modulo P. Indeed, since R’ | (a; — a;), S" | (bj — b;) and
ged(N(P),N(R')) = ged(N(P),N(5")) = 1, we have P | (a; — a;) and P | (b; — by).
These show UP { (k) and UP | (a;s), which means UP { (b;r) and thus P { (b;).

Case 2. P |U and either P | Uy, or P | R'S".

(i) P|Ugy and Pt R'S".

As the same discussions in case 1, we have P | (a; — a;) and P | (b; — b;). Since
UP | (k) and UP | (a;s), we have UP | (bjr), which implies P | (b;). So in this case,
P | (aj) implies P | (bj), which means that integers a,b are in the same residue class
modulo P.

(i) P | R'S".

Assume P | R and Pt S’. Note that P t (a;) holds in this case. Since (P, S") = (1),
all the integers b will be in the same residue class modulo P. In this case, we only need
to exclude the pairs of integers a,b with P | (b). Similarly, for the case of P { R’ and
P | S’ we only need to exclude the pairs of integers a,b with P | (a).
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2.3 Proof of main result

From the above discussion, we have

#H(E) < NOU) ] (1‘1\1(213)) IHU <1_N(1P)>

[N
Z
S
—
7N
—

|
3~
NG
—
7N
—

|
/\}_‘
NG
—
7N
—

|

:
’,_E —
NG

PlU PIU PlU
PiU(3 PiU, PUy
PIR'S’ PIR'S’ P|R'S’
1 1
- 1— ——
I (= 5tm) T (- 5m7)
P|U(k> P\U(k)
PIR'S’ P|R'S’
1 1
= o I (t-555) 1T (1= 57)
P|lU PlU
PIU (3 PiR'S’
1 1 \!
= o) [] <1—N(P)> 11 (1—N(P)> : (2.19)
PIU P\U<k)
PIR'S’

Now we use some notations, following Vaaler’s method, see [28]:

do = {P:P|UPIRSY,

J1 = {P:Pejo,NP) <t}

Jo = {P:Pe€jo,NP) >t}

I = {{:I=PI'P}* - P PPy, ...; P € Jp. 11,72, s Wi € L}
with m =0,1,2.

Since U(k) € Jg, we divide U(k) into two parts of I; € J; and I € J9, with U(k) =1 I5.
Then, together with (2.19), we have the following estimate:

“o) 11 (=) 1L (i)

P|I, 15

#H (k)

N

IN
iy
S
N
—_

|

Z
/% —
N
N
—_

|

Z
’,:a —
N
I

o
o
e
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2.3 Proof of main result

Let

K=LK ,Q= ][] P
P|R'S'U
N(P)<t

Since (K1,U) = (1) and (U, R'S") = (1), we have (K1, R'S'U) = (1) and (I2, R'S") =
(1), which imply (K, Q) = (1). Then by using (2.16) and (2.20), we get

MEmNEw) < 6% Y #H(k)
keZ|w)
1<|k[<r|[s|A

1
< 62 NP
<oy 2 el (1)

= % s Pejy
1<N(K)<%
(K,Q)=(1)
(- 5t5)
P\ N(P)
. o
= 820) [] <1 N(P)
Pejy

I (1—N(1P)>_1 > 1. (221

1€,y P|11 ‘2‘ \2A2
S

K
-
LN <wmyw)

(K,Q)=(1)

By the Landau prime ideal theorem 2.2.3, we have (7(y)(In2 +Iny) + Inlny)y~! <« 1
as y — 0o. Then there exists b > 0 such that for any y > b, we have 7(y)(In2 +1Iny) +
Inlny < yln3. We will estimate

YD A NE)

[r|2€Z |s|2€Z
(r)#(s)

by dividing it into two cases.
Case A. t > b and |r?|s|?A? > 3'N(U).

By the sieve method for the imaginary quadratic fields and binomial theorem, we
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2.3 Proof of main result

see

Y= 2o (@i )

Ir|?|s2a? e
ISNIK)<xmy~
(K,Q)=(1)
[7]?[s[>A%
D
< 2 NN
wu(D) |r?|s|>A2 r|?|s|2A?
- T oo 2 O OGN
D|Q D|Q
[r[?[s[*A% < 1 >
< 1———— |+ D
oy L 5y )+ 2 0@
PlQ D|Q
r[*]s]*A% 1 (t)
< L= 1—— ) +2 t : 2.22
N(UIN(T) Np)y) TP astoee, (222)
PlQ
where p is the ideal version of Mobius function, that is,
~1)*, if D=PP---P
0, if 3P such that P? | D,

and T'(-) is the function we have used in the proof of Lemma 2.2.4. Next we use the

3rd Mertens’ theorem 2.2.2 for an algebraic number field, we have

3t o 7 |2|s|2 A2 1

o7 (t) <
— " Int NWW) t®1Int
7 |?| 5|2 A2 1 1
_— - — . 2.2
N H 1 NP ) 70 ast— oo (2.23)

PlQ

32



2.3 Proof of main result

If N(I;) < t™®), we take (2.22) and (2.23) into (2.21) and get

MemnEw) < P psPa I (1_1>

N(©) LN
1 1
(1 5m) &
(P) 1
Pegy nen N() T (1 - =——
1 PrI[ ( N(P))
o(U) 1 1 1
- 52WIT|2\SI2A2 Ig) (1 - N(}J)) Pgl (1 - N(P)> IIZE;I 50
< 521(1\;?&7«?\5\%211( —Nlp))

PlQ

(
i (1-57) (+ my 2m)

() B2 (5) B(U) |
N(©) [1 <1 - N<P>>

P|R'S'U

1 (1+ sorEr=D)

v2((r)) T2((s)) L
d((r)) EE ®((s)) BE H <1+N(P)(N(P)—1)>

P|U
PIR'S'
N(P)<t

< A (8(7,)) A (8(8)) as t — o0. (2.24)

N

—~

N

If N(I;) > ™), then there exist a prime ideal P € J; and ~ € Z such that P?Y | I,
N(P) < t, and (N(P))? > t. This implies that there exists an ideal D such that D? | I
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2.3 Proof of main result

and (N(D))? > #3. Then we have

1 N(I
)\(g(r)ﬂg(S)) < 52@((]) H <1_N<P)> Z (I)E;;
Pedy 1< 1
N(Il)>t7"(t>
Z 1
Km?\sFA?
L<N(K) < s~
(K,Q)=(1)
< 52‘13(U) Z Z '
JERSN K 2151272
N(I1)>t™(®) L<N(K)< Koy
< SeU) Y 2 :
D
e
LEN()< el
o(U) :
22 2U) o . (2.2
" N(U)M ] Z N as t — oo. (2.25)

, D
[t3]<N(D)<oo

We use a method similar to the proof of Lemma 2.2.4 to estimate the term

72 .
Z[t%]gN(D)@o N"XD):

1 <1 1
Z W<<Z$<<T as t — oo.
s
13 )<N(D)<o0 n=[t3] ’

We take this estimate into (2.25) with Corollary 2.2.5 and get

1
AME NE)) < \1/2((7«))\112((5))75—%
2 2 1
< o) o)V Py L
] s t3
In?¢
< AEm) A (&) T
< A (E(T)) A (8(5)) as t — o0. (2.26)
Together with (2.24) and (2.26), we conclude, in Case A, that,
D> D2 MEMNE < D D AEm) M () (2.27)
[r|2€Z |s|2€Z |r|2€Z |s|2€Z
(r)#(s) (r)#(s)

Case B. If t < b or |r[?|s|?A? < 3IN(U).
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2.3 Proof of main result

Let ng = e MaX{b.Cv0} and suppose 0 < A(Z) < no. We put L = ln(ﬁ) and get
Pedy I en
< w2 [T (1- <o
11 (571
Pgdy

1 1
A UTNE) TNENE) - ) (N(P))2(N(P)—1)>
< T()T()
2 r 2 s
< L8+ o)™ o) i + (o)

< /\(8(7")))‘(8(5)) 1112(1 + t) ast — oo. (2.28)

I (1
)

If t < L, which implies L > b, then from (2.28) we have

> 2 MEWNEE) < D D AMEM) A (Ew) (1L +1)

[r|2€Z |s|?€Z |r|2€Z |s|?€Z

(r)#(s) (r)#(s)
i<L
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2.3 Proof of main result

If t > L and N(U) < |r|?|s]?A% < 3!N(U), then

YD MEmNnE)

Ir|2€Z|s|?€Z
(r)#(s)
<)Y WE((r)T((s))
|r|2€Z |s|2€Z
(r)#£(s)

N

> > 2 ((r)¥*((s))
m=L n=1 (r)ym™ (s)™

|r|2€Z |s|2€Z
N(U)<|r|?|s|2A2<3™N(U)

= > 2| 2 ¥ > W ((r))
e \s(\Z)EnZ |r(r2):z

NU)<|r|?|s|?A2<3mN(U)

1|2z N(U)<[r|2|s|2A2 <3N (V)

< Y| D ME) (L +n) 3 w2((r)
(s)™

< DoW+m) Y| Y AE) 3 w2 ((r)
m=L

= n=11 (s)" (r)m™
|s|?€Z N(U)<|r|?|s]2A2<3™N(U)

(2.30)

If U((r)[r[~h < W((s))ls| ", then A = ¥((s))[s|™" and |r[*[s]?A% = [r[*¥?((s)).
By using Lemma 2.2.7 with £ = 1/2 and e'/?(1 — ¢) = 3/2, we have

1

2
(; V() < C > o
N(U)<|r|>¥2((s))<3™N(U) N(U)<|r|202((s))<3™N(U)
< C(In(1+n))(In Sm)e*mﬁ(l—a
3
< Cm(In(l+m))e™, (2.31)

where C' > 0 is a constant which satisfies ¥((r)) < C|r|~! for all principal ideals (7).
This constant exists by the assumption U((r)) = O(|r|~1). I ((r))|r|~t > ¥((s))|s| 7,
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2.3 Proof of main result

then we can use the same approach as Vaaler’s to divide the set Z into some small pieces,
that is, let

C C
Wi ={ese el o < lePu(e) < 5 |
with j = 0,1,2.... For r € W, and N(U) < |s]?¥%((r)) < 3™N(U), we see
Ols|*277 137" N1 (U) < |r|* < C|s|*27IN~1(U).

From Lemma 2.2.8, we have

> w((r)

(r)
N(U)<|r[>®2((s))<3™N(U) Cls|?

IN

Mg

1 1
Cd 5 > e

(r)™

3
<.

Il
o

stk iy << S5 iy
< 0251 n(1+g((s))) In(3™)e *
7=0
3
< Cm(In(1 +m))e ™, (2.32)
By using (2.30), (2.31) and (2.32), we find
> 2 MEmNéw)
|r|2€Z |s|2€Z
(r)#(s)
< Z In(1+m) Z Z A(E(5))Cm(In(1 +m))e™™*
m=L n=1
E PEZ
o0 3 m
= C Z mIn®(1 4 m)e ™* Z Z AE(s))
m=L n=1 (s)"
|s|?€Z
< C) mInP(L+m)e™™ [ Y > AE)
m=L n=1 (5)"
|s|2€Z
1 2
< e—LA(Z) = (A(Z))". (2.33)
Then (2.29) and (2.33) imply the following
1 \2
2
S AEMNE) < (AZ) (lnln A(Z)> (2.34)
|r|2€Z |s|2€Z
(r)#(s)
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2.4 An example

in Case B. From (2.27) and (2.34), we get the assertion of Theorem 2.1.3. O

Now we will show Theorem 2.1.2.

Proof of Theorem 2.1.2. Since Y. ®((r))¥2((r))|r|~2 = oo, by using the Gallagher type
result over an imaginary quadratic field, see [21], we have limy 00 A(Ujrj2=y €(r) =0
or 1.

Suppose limpy o0 (UMg ~ €¢y) = 0. This also implies

|r\2—>oo

We can choose a large rational integer m where A(U|r|2,m Em) < %n. Let j =
max{k,m}. From Y ®((r))¥2((r))|r|2 = = > 21 A(€(r)) = 00 and (2.35), it follows
that there exists a finite subset Z of {j,j + 1,j + 2,...} such that 2/3n < A(Z) < 7.
Since U\rPEZ & C U|T|2:m €(r), we have

%77 > MU e =al ew

[r|2=m |r|2ez
1
> D AEm) =5 X 2 MEmNEw)
Ir|2ez |r|2€Z |s|2€Z
(r)#(s)
1

> @) iA@)

s> 1

= 377a
which is impossible. This implies limy oo )\(Umgz ~ €@)) # 0 which shows the asser-
tion of Theorem 2.1.1. O

2.4 An example

In this section, we give an example following the example of [7], and show that the
divergence condition in the Duffin-Schaeffer conjecture over imaginary quadratic fields
is reasonable.
Let
Y= {(a,r) ta,r € Lw|,r # 0,% € F}.

Define the sets

LG
D, = {z elF: ‘z - E‘ < (r)) has in finitely many (a,r) € ¥ with (a,r) = (1)}

r 7]
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2.4 An example

and

Y
Dy = {z elF: ‘z — ﬂ‘ < (|(T)) has infinitely many (a,r) € Z} .
r r

We denote by A in this section the normalized Lebesgue measure of F, i.e., A(F) = 1,
and give a sequence {W((r))} with 3>, <z (01 U2((r)) = oo such that A\(Dy) < 1. First,

we give the complex version of Lemma V in [7] as follows:

Lemma 2.4.1. Let R and € be given positive numbers. There is an infinite sequence
{U((r))} of non-negative numbers with ¥((r)) = 0 for all but finitely many r such that

2((r
Z‘I"Q((T)) > 1, Z@((T))w < cqe, Y((r)) =0 whenever |r| < R,

where cq is some constant depending on d, but for z € F the inequality

’Z a‘< v((r)

A

for some a,r € Z[w| can be satisfied only in a set of \-measure smaller than e.

Proof. Let Ny be the number of units of the imaginary quadratic field Q(v/d). Fix some
a > 0 with a < v/—deg/(2Ng4k'(d)7) and we can choose prime numbers p1,pa, -+ , Pk

such that
()1
paley pi Naa’

where p; > R for 1 <1 < k, since

>

p:prime

diverges. Denote by (u) a principal ideal as

(w) = (p)(p2) -+ (o) = [ P
P|(u)

where P denotes the prime ideal and ¢ > 0. Note that we do not need (p;) be all prime

ideals, and for any ideal U with U | (u) it can be represented as U = H P with
P|\U
0 < d < c. We define ¥((r)) as follows:

a1/2|r\1/2 f
Gl el > 1 and

‘IJ((T’)) — ‘u|1/2 1 |7“ ‘ an (T) | (u)
0, otherwise.
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2.4 An example

Define the set

Eqy = U {zEIE‘: ‘2_2‘ < \Ij((r))}
a2 <2 " I
a€Zlw]
and put
E= ] Ey
(r)](u)
(M#(1)
Since E(y C E(y) for all (r) with (r)|(u), we have
Ngao 2 2Nk (d)7
ME) =MNEy) < 15 - — - K(d)|u]* = ——="— .
(E) = MEw) "WE T=d (d)|ul N a<e
Also we have
k
«o
Z 2((r)) = Tl Z Il > Ndm < (1+pi) —1>
reZw]\{0} reZw)\{0} i=1
(M) (u) (M) (u)
(M#(1) (m)#(1)
b 1
> Nda< <1+>—1)>1
i=1 pi
and
3 () L) _ Naa B((r)  Naa g~ 2O)
|r[? |ul 7| lu| 4= (N(U))'/?
reZiw]\{0} (r)|(u) U:ideals
(r)(w) (r)#(1) Ul(w)
(r)#(1)
NdOé Z 1 /
= 1Y sy )
vl
|U’ U:ideals (N(U)) / PIU
Nyo < d(P) O(P°)
= — 1+ — 4+ — 7
o 1L U wp oy
2Nda \/Td
N(P))¥/? = 2N, .
< S o) 0 < e

P(u)

)

Thus, we see that the sequence {¥((r))} with U((r)) defined above is the required finite

sequence.

O

Now let R; = 1 and we have a sequence {¥()((r))} which satisfies Lemma 2.4.1
with R = R; and € = 21, Then for some Ry with U()((r)) = 0 for all |r| > Ry, let

R = R, and € = 22 and we have another sequence {¥(?)((r))} which satisfies Lemma
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2.4 An example

2.4.1. We do this process infinitely many times and obtain infinitely many sequences

of (UM (1)}, LWD((r)}, LT}, Let B((r) = 352, ¥O((r)) for all
r € Zlw]\{0}. Then we see

Y V() =

reZ[w]\{0}

whereas

Z @((r))qw < 0.

rezZw\{0}
However, A\-measure of the set of z € F satisfying inequality |z — a/r| < U((r))/|r|
is smaller than 1 by our choice of {¥((r))}, which means A(D3) < 1. Thus even
2 rezw\{0} U2((r)) = oo, we cannot ignore the possibility of the case A(D3) = 0, and
from our choice of {¥((r))} we see >_ @((r))¥2((r))|r|~2 < oo in this case.
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Chapter 3

Hausdorff dimension of the
exceptional set for complex

numbers

3.1 Generalized Jarnik and Besicovitch’s theorem over

imaginary quadratic fields

First, we define closed disc J in the complex plane by

3:{216((3:‘,2—g

r

<o}

where ¢ is a positive real number and a,r € Z[w] with r # 0. We adopt the following
as the definition of the Hausdorff dimension of a subset of complex numbers (see [3]

and G. Harman [11] chapter 10).

Definition 2. Suppose that D is a set of complex numbers. The Hausdorff dimension
of D is equal to d (dimyD = d) if it satisfies the next two conditions:
(i) For any B > d and any € > 0, there exists a sequence of closed discs {J;}72, such
that
(a) D C U32,75,

0o

(b) Z(diam(ﬂj))ﬂ < 1, where diam(-) denotes the diameter of the closed disc,
=1

]:
(c¢) diam(J;) < e, for any j € N.
(i) For any B < d, there exists ¢ > 0 such that there is no sequence of closed discs
satiesfying all of the above (a), (b) and (c).
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3.2 Generalized Harman’s result over imaginary quadratic fields

Our main result is the following, which is a complex number version of Theorem

10.6 in [11].
Theorem 3.1.1. For an infinite subset A of Z[w]\{0}, let

VzSUp{h)O:Z(,rlP)h:oo}.

reA

For a real number p with p > v, define the set
D= {z elF: ’z - ﬂ‘ < |r|7*P) has infinitely many (a,r) € X with r € A}.
r

2(1+v)
1+p

Then we have dimgD =

If the class number of Q(v/d) is 1 and A = Z[w]\{0}, then we have v = 1 and
we see that for any z € D there exist infinitely many pairs of a and r in Z[w] with
r # 0 such that |z — a/r| < |r|~0*?) holds and (a,r) = (1), where (a,7) = (1)
means that the ideals (a) and (r) are coprime. This is because of the following: (i)
if o /v = a/r, |z —d/r'| < |7'|70F) and || > |r| hold, then |z — a/r| < |r|~(1+P)
also holds, (ii) there are at most finitely many pairs of o’ and 7’ with o'/’ = a/r such
that |z —a’/r'| < |r/|~(1*#) holds. Thus, in this case, there is no difference between the
inequality with and without the coprime condition on a and r. This situation is the
same as V. Jarnik and A. S. Besicovitch’s result for real numbers. However, it seems

to be not obvious if the class number is not 1.

Corollary 3.1.2. Suppose that the class number of Q(\/g) 1s 1 and put
Dy = {z elF: ’z - E‘ < |r|=*?) has infinitely many (a,7) € £ with (a,r) = (1)}
T

then dimpyg Do = %ﬂ for p > 1.

3.2 Generalized Harman’s result over imaginary quadratic
fields

We also consider the set of solutions related to the Duffin-Schaeffer conjecture for

complex numbers from Theorem 3.1.1.
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3.3 Proof of some lemmas

Theorem 3.2.1. Suppose that ¥((r)) is a non-negative function such that

2 T
> e

reZw]\{0}

diverges. Then we have dimg Dy = 2.

Remark 3.2.2. The author believes that Theorems 3.1.1 and 3.2.1 hold with the co-
prime condition (a,r) = (1). However, the distribution of a/r with (a,7) = (1) in
the fundamental region F is not uniform for some r € Zlw|\{0} and this fact makes

difficulty to prove them.

3.3 Proof of some lemmas

Before we prove Theorem 3.1.1, we first give two lemmas which will be used later.
Let § be a positive real number. For any a,r € Z|w| with r # 0, put
Jo(a,r,9) := {z eC: ‘z — ﬂ) < 5}.
r

Moreover, for any r € Z[w| with r # 0 and any closed disc J in C, we denote by N(r,J)
(resp. N'(r,J)) the number of a € Z|w] satisfying Jo NI # ¢ (resp. Jo(a,r,0) C J).

Lemma 3.3.1. Let J be a closed disc with diameter ( and 6, n real numbers with
0<d<(¢/4and0<n<1. Then there exist positive constants c1(d,n), co(d,n) and
Ro(d,n), depending only on d and n, satisfying the following: for any r € Z[w]\{0}
with ¢ > |r[""L and |r| > Ro(d,n), we have

N(r,9) < er(d,m)¢?Irl?,

N'(r,9) = e2(d, m)¢r[*.
Proof. We only consider the case of d = 1 (mod 4). In fact, we can prove the case
of d = 2,3 (mod 4) in the same way. Suppose zp € C is the center of J, i.e., J =
{z € C:|z—2 < %} If Jo(a,r,d) intersects J, then we consider the bigger disc
I={2e€C:|z—2| < % + ¢} and count the number of lattice points of a € Z[w] with
a/r € J for a fixed r € Z[w]\{0} to estimate N(r,J). Let ¢1(d) = v/9—d/2 be the
diameter and ca(d) = v/—d/2 be the area of the parallelgram F. Then we have

c1(d
((§ +0) + 24D’
ca(d)

Irl®

m 2
w(dﬂ + c1(d))

. ﬁ(@m? +2c1(d)C|r| + i (d))-

N(r,J) <

N
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3.3 Proof of some lemmas

Since ¢ > |r["71, (Y|t — 0 as |r| tends to co. So we see that for |r| > Ry(d,n) with
some large Ry(d,n), there is some c¢1(d,n) > 0 such that

N(r,9) < e1(d, )|

Similarly we count the number of lattice points in a smaller disc to estimate N'(r,J) as

follows:

N'(r,3) > ()
I
> @G -a@?
T ¢ c1(d)
= L@l - o+ @)

So for |r| > Ro(d,n), there is some ca(d,n) > 0 such that
N'(r,9) = ea(d, n)¢|r[*.
O

The next lemma gives the estimate for the number of two different closed discs

which intersect each other described in Lemma 3.3.1.

Lemma 3.3.2. Given a positive integer Q. For § > 0 and a,r € Zlw| with r # 0 and
a/r € F, put

j(a,r,é):{zEF: ‘z—%‘ <5}.

Consider
§=1{9(a,r0): (a,r) € X,r € C}

for any subset € of {r € A:|r|* € (0,Q]}, where A is any infinite subset of Z[w]\{0}.
Then there is some constant k'(d) > 0 depending on d such that

> 1| AN (d)5*Q e, (3.1)
J,d€$
I£3,9N3#¢

where Ny is the number of units of Q(v/d).
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3.3 Proof of some lemmas

Proof. We have

)SEEE D SEED DI ED SR DR

1,d€$9 r,s€C  a,beZ[w] r,s€C a,b€Z|w]
J#3,IN3#¢ E,QE]F E,QGF
'S8 'S8
0<|%_§|<2§ 0<|as—br|<d|rs|

< Z Z 1, (3.2)

r,5€C a,k€Z|w]
2. bef
0<|k|<26Q
as=k (mod (1))
for k = as —br. Let U = (r, s) and then there are ideals R’ and S’ such that (r) = UR’

and (s) = US’. First, we consider the number of k with
U| (k) and 1< |k|? <46%°Q% (3.3)

Let’s denote by T'(t) the number of ideals whose norms are smaller than or equal to
t > 0 and by N(-) the norm of ideal. Put (k) = UU’ with an ideal U’, then the
number of (k) satisfying (3.3) equals to the number of U’ with N(U’) < 462Q?/N(U),
which is smaller than 7T'(402Q?/N(U)). Fix one k € Z[w] which satisfies (3.3) and
suppose that ag,byp € Z[w] and a1,b1 € Z[w] are two different pairs of integers with
k = ags —bor = a1s —byr. Then we have (ag —a1)S’ = (bgp — b1)R’, which shows that ag
and a; are in the same residue class modulo the ideal R’. Since the number of residue
classes modulo the ideal R’ is N(R') and the number of a € Z[w] with a/r € F is |r|?
and these integers a are all in different residue classes modulo the ideal (), the number
of pairs of a,b € Z[w] with k = as — br is |[r|?N"L(R') = N(U) for fixed k € Z[w]. Thus

we have

452@2 , 52@2
< . - =% ). < .
> 1 < Ny T<N(U)> N(U) < 4Ngk (d)N(U) N(U)
a,k€Z[w]

2 2¢cF

0<|k|<26Q
as=k (mod (1))

= 4NgK'(d)5*Q?,

with some £’(d) > 0. Note that N, is always a constant. The constant k'(d), depending
on d, exists since the number of units in an imaginary quadratic field is finite and the

sequence {T'(n)/n} converges to some constant depending on d by Theorem 1.114 in
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3.4 Proof of main results

[18]. By the above result and inequality (3.2) we have

Y1 <) ANGK (d)5*Q% = ANgK (d)5* Q% (€.
J,J€5 r,s€C
140,9N0%¢

3.4 Proof of main results

Now we will give the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. First, we show (i) of Definition 2 holds for the set D. For any
B >2(1+v)/(1+p)and any € > 0, we can choose a sufficiently large X > 0 with

2
D D ——]

This is possible since (p3 + 3)/2 — 1 > v, which means
pB+B8 —1

>(m)

reA

We denote by {Jq,Js,- - -} the collection of the discs of the form Jo(a,r, [r|~177), where
a € Zlw], r € A, [r]> > X, and a/r € F. Then the set D can be covered by the union

of {J;}32, and this satisfies condition (a) in Definition 2. Next, we have

s 5 2\’ 28
Y (am@))’= > (5] = > ——mm <L
- I (Ir[2) 57
j=1 (a,r)ex reA r

|T26AX |r|2>X

re>

which satisfies condition (b) in Definition 2. Condition (c) holds for our choice of the
closed discs with |r|? > X, which satisfies

2

BGEE

diam(J;) <e

T4p
2

for all 7 € N. Thus we see that the set D satisfies (i) of Definition 2, i.e., dimygD <
2(14+v)/(1+ p) holds.
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Next, we show that the set D satisfies (ii) of Definition 2, i.e., dimgD > 2(1 +

v)/(1+ p). Pick some g with 0 < g < v such that

> ()79 = oo

reA
Then there are infinitely many integers K satisfying

K9
o1 R
reA 0g K

LKL r)?<K

(3.4)

We show this by a contradiction. Suppose there are only finitely many rational integers

of {K1, K, ..., Ky} which satisfy (3.4) with some N € N. Let
1
§K0 = max(Kl, KQ, N KN)
Then we have
1 g9
(i) <=

reA
‘T‘2<%K0

K9
> o
log®= K

For any K > Ky we have

reA
LrrP<K
This shows
Z <1 )g 1 . 1 n
112 = 1129 T2g 7000
2 T 2pET 2
Ir|?>3 Ko 3 Ko<|r|?<Ko Ko<|r|*<2Ko

N

(55) et (35) e

1 1 1
= 29 + —+ 4+ ..
(10g2(K0) log?(2Ky)  log?(22K,) >

- 1
T;) (ko + mk )z =
with kg = log(Kp) and k' = log 2. Hence we have

> ()77 < oo,

reA

which gives the contradiction.

48

(3.5)



3.4 Proof of main results

Next, let 8 < 2(1+¢g)/(1+ p) and choose n > 0 for Lemma 3.3.1 with

1 1
némin(4(p—g) 1 (Ji—g))-

Choose a sequence of integers of {K; }?io satisfying the following conditions:

(I)KO = 1
1 1
(ii) K1 > max{2R3(d,n), (4Ngk'(d))2n, 2477, (ﬁ@lm))
(iii)21og?(2|r|?) < |r[*" for all r € Z[w ]\{O} with |r|? > K7,
iv)K 1 > KHP and K; > 4K, 1 for all j > (3.6)
i—
K;)9 l
(v) Z 1>(J)and(j)9<1— )>2forallj>1

20K .
reA log (KJ)
s Ki<IrP<K;

10g2 Kj

where ¢a(d,n) and Ry(d,n) are from Lemma 3.3.1 and £'(d) is the constant from Lemma
3.3.2. Let D' = DNF, where F’ is a subset of F defined by

F = eC: <
{Z 2 1

Since dimy D" < dimy D, it is enough to show that dimyD’ > 2(11:_:) by checking (ii)
of Definition 2. Put ¢ = 2K, 1/2 and we will show that for any sequence of closed discs

of {J;}32, which satisfies conditions (b) and (c) in Definition 2 does not satisfy (a),
that is, if

i(diam(ﬂj))ﬁ <1 (3.7)
Jj=1

and .
1\2
diam(J;) <e =2 () for all j € N
K,

hold, then D’ ¢ U32,J;. We construct a collection of nested sets {J;}72; with 1 D
JoDd3 D -+ so that d=n3,3; C D' and J ¢ U32,9;. Then we have D ¢ U22,395,
which completes our proof.

To do this, we define a sequence of positive real numbers {EJ 2o with g; =
2(K;)" 2 ® for any j > 0. We construct the nested sets {3,152, satisfying the fol-
lowing four properties by induction:

(P1) g; is a union of M; disjoint closed discs with diameters €; = 2([@)‘#.
(P2) For any J,, with diameter between ¢; and ¢;_1, we have J,,, N J; = ¢.
(P3) For any z € J;, there exist a € Z[w] and r € A with (1/2)K; < |r|*> < K; such
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3.4 Proof of main results

that |z —a/r| < (Kj)_% with a/r € F';

(P4) M; > (K;)'+o=2n,

By (P3), we have J C D'. Since J; is compact for all j € N, J = N32,d; # ¢. By (P2),

for any a € J we have a ¢ J; for all j € N, so a ¢ U;2,J; which shows J ¢ U32,J;. Thus

it is enough to construct {J; G with the above four properties to show D’ ¢ U7217;
By (3.6), we can choose a set C; C {r € A: K1/2 < |r|? < K;} such that

(51)?
log? K,

<le] < (K, (3.8)

where |C;| denotes the cardinality of the set €;. Then we construct J; by using the
closed discs centered at a/r € F/ with r € €; and their radius are £1/2 which are wholly
within F/. By Lemma 3.3.1, the number of closed discs we could choose is more than
(ca(d,n)/4) X e, |7|2. It’s obvious that these closed discs all satisfy the property (P3).
By the choice of ¢, they also satisfy the property (P2). By Lemma 3.3.2 for 6 = ¢1/2,
the number of pairs of discs intersecting to each other is at most 4Ngk'(d) (K1) =?|C1|%.
Remove one disc from each pairs of discs intersecting to each other and denote by M;
the number of the left closed discs such that property (P1) holds. Now we confirm that
M, satisfies the property (P4). Indeed we have

d
‘2\4—1 2 62( 777) T2_4Ndk/ d Kl 1—p (.312
4
reCy
> LIS (1210 Log? alr?) — AN () (1)) 0
reCy
y
N 2 Czl(ldﬂﬂ (Kl)lfn logQ(Kl)‘eﬂ _ (Kl)lJrngTl
> (27702((2 n) K _ 1) (K1)1+gf277

> (K1)1+g_277.

The above discussion implies that J; can actually be constructed. Suppose J; has
already been constructed and now we will construct g;41. Similarly to the choice of
€1, we can find €41 C {r € A: K;+1/2 < |r|> < Kj4+1} which satisfies

(Kj+1)?

< €| < (K1) (3.9)
10g2 Kj+l J J

We only use the closed discs of {z € C: |z—a/r| <ej1/2} with a/r € F/ and r € €41

which are wholly within J; C J1 C F’ to construct J;;1 satisfying (P3). The steps of

our construction of J;j41 are as follows:
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3.4 Proof of main results

(step 1) Choose all the closed discs {z € F' : |z — a/r| < ej41/2} which are wholly
within J;.
(step 2) Remove the closed discs which intersect to each other such that all the left
closed discs are all disjoint.
(step 3) Remove all the closed discs which intersect some closed discs in {J;}72, whose
diameter is between ;1 and ¢;.
(step 4) Confirm the number of closed discs, that is, whether M; 1 > (Kj41)9727 or
not.
(step 5) If (step 4) satisfies property (P4), then define ;1 as the union of the left
closed discs.

Let ( =¢jand § = ¢541/2 = (KjH)*HTp. By our choice of {K} in (3.6) we have
J < (4Kj)_1+7p < (1/4)e; = (1/4)¢. From our choice of K in (3.6) with (Kj41)"7 >

(K;)'°, the number of closed discs which are wholly within J; is more than

ca(d,)Mjed Y |rf? (3.10)

TEQj+1

by using Lemma 3.3.1. By Lemma 3.3.2 for § = £;41/2, we have that the number of

pairs of closed discs which intersect to each other is less than

€j+1\2 -
ANGK' () () (K 40)21€512 = ANak' () (K1) ~#]€5a 2 (3.11)
Define
T ={7 €{3;}72 : gj1 < diam(J) < g},
and put
1—
(1) LY E
g, ={0€7;:2 o < diam(J) < g5},

1—n

1 2
T = {9€ 9 gj1 < diam(J) < 2 (K ) }.
Jj+1

By Lemma 3.3.1, we see that the number of closed discs in ;41 which intersect some

closed discs in J; is less than

2
Y aldp)(dam@)? P+ Yo > <g(diam(a)+gj+1)\r|> (3.12)

jESV](-l) T€€j+1 Jestj@) re€j+1
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3.4 Proof of main results

for some ¢1(d,n) > 0. From (3.7) we see

> aldn)(diam(@)® > 7 = Y e(d,n)(diam(9))* P (diam(3))" > |rf?

jeg:(_U TECJ+1 363~<1) Teej+1
J J

< ald ()| Y (dam@)? | | Y 1P

je?;l) ’I"E@j+1

< aldn)E)* | Y P

TEejJrl
Since
(14p) (1+p)
1\ =2 (2-8) 1\ 2 (2=B)—dnp 1 \P9+4n
V26— 92-8 (L AL <a =
(&) <Kg> = (Kg> K; ’
we have

> a(dn)(diam(3)® D |r* <de(dm) (KO > P (3.13)

geF(M r€Cj+1 re€Cj+1
J

The estimate of the second sum in (3.12) is

2 1 (1;27])(2*5) )
Z Z ( (diam(J +£j+1)|r\> < 100< Z |7]
) K .
9eF ) T+ reCii1
1\ )
< 100 r , (3.14
() (2] o
TEe]Jrl
since
(1—mn) BB Bn
9 B)—3p=1—dp— 2 4+21 P> o.
- (2=8)=3n 3t ” 1+p+2>0

Finally, we estimate M, in (step 4). From (3.10), (3.11), (3.13), and (3.14) we have

My > cold,n)Mies > [P = ANgK (d)(K ;1) 1€y

TGCJ+1

= de(d ) (E)T L Y P = 100(8) T Y 1] (3.15)

r€€j+1 r€€j+1

(3.16)
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3.4 Proof of main results

By (3.6) and 4n < p — g, we have
AN (@) (Kj20) 71€51 < AN (D) (K1) (41)

(d)
ANGH (d) (K1) 974

(d)

(d)

NN

ANgK' (d (Ka+1)g( K1) (K )™
(Kj11)?
log? (K1)

= 4NgK'(d N (Kjq) T

1

22
1 1=n

2 <2Kj+1> log®(Kj+1)

< ANGE (d)(Kj) 2 | >0 I (3.17)

reCj1

From (3.15) and (3.17), we get

M > | X f

TEGJ+1

(ca(d, n)Mje? — der(d,n)(K;)9 P~ — (ANgK' (d) + 100)(K41) ")

> | 2 I
T€€j+1

(4ea(d, n)(K;)97P721 — dey (dyn) (K)9 P4 — (ANgK' (d) + 100)(K41) ") .

Here, we can add some more conditions to our choice of {K} for all j > 1:

1

261 (d7 77) / n
Ky > <02(d,77) + (2Ngk'(d) + 50)> , (3.18)
(Kj_l)/ﬂr?nfg 7
o (S ) 9

By (3.19), we have
(K30) ™1 < ()20 (Kyia) ™ < (K3) ™20~ 2ea(dm) ()90~

and then we see
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3.4 Proof of main results

Since

Dol > > 2 (k) e @)

r€Cjit1 reC i
(Fp)? (1. N\
otie o 2 (g ) g )
j
= 9K )
and by (3.19), we have

. Kjq)™"

K.)9—P 2n > ( Jj+ '

( j) 202(d>7])

This gives

_ Kitq)™
Mj1 > 20(Kj0) 79 2c9(d,n) - (20;2:)3)77)

= (K ) T S (K ),

which satisfies the property (P4). So we can actually construct J;4; from J;. By

this construction, we have D" ¢ US2,J;. Thus we see that dimpyD" > 2(11::), which

completes the proof of Theorem 3.1.1. O

Next, we give the proof of Theorem 3.2.1 by using Theorem 3.1.1.

Proof of Theorem 3.2.1. From Theorem 1.1 in [6] we see if ¥((r)) = O(|r|~!) then Dy
has the full Lebesgue measure which also means dimg Dy = 2. Thus it is enough to
consider only the case where W((r)) = O(|r|~!) doesn’t hold, i.e., there are infinitely
many 7 € Z[w]\{0} such that ¥((r)) > |r|~!. Let’s define

§ { W((r), W) > |r

0, otherwise,

and put A’ = {r € ZWw\{0} : ((r)) # 0}. If 3,0 ®((r)T2((r))|7| =2 converges,
then >, .4/ ®((r))¥%((r))|r|~2 diverges. By Theorem 1.1 in [6] again, the Hausdorff
dimension of the set Dy is 2 for the sequence {¥((r))}. Now let’s consider the case of
Y e ®((r))W2((r))|r|~2 diverges. In this case, it is enough to prove it with {¥((r))}
instead of {¥((r))}.

We restrict W((r)) < 1 for all 7 € Z[w]\{0} without loss of generality. For any given
e >0, let

A(m) = {r e A"« |r[70"HD2 < W((r)) < 7|7}
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3.4 Proof of main results

for 0 < m < [¢7!] and put
AT = {re A 7 < B(() < IrF7F)
Since
Y V() = V() = oo,
reA’ m=0reA(m)
there is at least one m with 0 < m < [¢7}] such that

> P((r) = o0 (3.20)

reA(m)
with [A(m)| = co. By (3.20) and (|r|*)~™¢ < 1, there exists a sequence of {B,} of
pairwise disjoint nonempty subsets of A(m) satisfying the following conditions:
(1) A =U2,B,.
(2) Let n < n’ be any positive integers. Then, for any r € B,, and r’ € B,,, we have
r| < Ir'l.
(3) For any positive integer n, we have

1 me
1<% (5p) <2

Tegn

For any n € N, put n, = 27". Then there exists k, € N such that

1 Me+n 1
> (\7“!2) = (3.21)

reBy

holds for any k > k,. So we have a sequence {k,} with k1 < ko < k3 < --- which
satisfies (3.21). Put B = U72, By, then B is an infinite subset of A(m) and obviously

satisfies L\
= (i) =

reB
For any h > me, there exists some ng € N with h > me + 7, for all n > ng, which

shows

S s (s s T

reB EU?EIlBk]. Jj=no reBy
—5 — <00
no—1 ’T’2 = 2j_1
TGUj91 Bkj J=no



3.4 Proof of main results

Thus B is an infinite subset of A(m) satisfying

1 h
Z(W) = 00, 1fh<m5,

reB

1\"
Z<|T|2> < oo, if h > me.

reB
Let

1

, | a
DQ{zGIF.‘z | < e

has in finitely many (a,r) € ¥ with r € B} .

Then we have dimgy Dy > dimy D} since D) C Dy. Let v = me and p = (m + 1)e. By
Theorem 3.1.1 we see
2(1+v)  2(1+me)

22 dimDy > dimp Dy = == % = 7

> 2 — 2¢.

Since € > 0 is arbitrary, we have dimyg Dy = 2. ]
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