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Preface

The present thesis discusses the metric theory of Diophantine approximations for com-

plex numbers. In 1941, R. J. Duffin and A. C. Schaeffer made a conjecture on metric

theory of Diophantine approximations. As one of partial results, in 1978, J. D.Vaaler

proved this conjecture under an additional condition. For the exceptional sets of Dio-

phantine approximations, i.e., Lebesgue measures of the sets are 0, we use Hausdorff

dimension to measure their size. G. Harman generalized the result of V. Jarńık and

A. S. Besicovitch and proved that the Hausdorff dimension of the set which satisfies

the Duffin-Schaeffer conjecture is 1. In this thesis, we discuss the metric theory of

Diophantine approximation over an imaginary quadratic field and show that a Vaaler

type theorem holds in this case. Also we extend G. Harman’s results to the imaginary

quadratic fields.

Chapter 1 gives some results on metric theory of Diophantine approximations for

real numbers and complex numbers. In chapter 2, we extend the Duffin-Schaeffer

conjecture to the imaginary quadratic fields and gives our result about the Vaaler

type theorem over imaginary quadratic fields and its proof. Then in chapter 3, we

discuss Jarńık and Besicovitch’s result over imaginary quadratic fields and give the

Hausdorff dimension of the set of Duffin-Schaeffer conjecture over imaginary quadratic

fields without the co-prime condition.

Standing notation. We denote by R, Q, Z and N, the set of real numbers, rational

numbers, integers, and strictly positive integers, respectively.
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3.1 Generalized Jarńık and Besicovitch’s theorem over imaginary quadratic

fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Generalized Harman’s result over imaginary quadratic fields . . . . . . . 43

3.3 Proof of some lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Proof of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ii



CONTENTS

Acknowledgements 57

Bibliography 58

iii



Introduction

Diophantine approximations deal with the problems of aproximations of real numbers

by using rational numbers. The first result of Diophantine approximations is given by

Dirichlet. Since then, many other interesting results have been given by many other

mathematicians. In the earlier of the 20th century, A. Y. Khintchine considered a

metric theory of Diophantine approximation problem, i.e., with what conditions a non-

negative real valued function ψ(n) on R should be satisfied such that the inequality

∣∣∣α− m

n

∣∣∣ < ψ(n)

n
, (m,n) = 1, (1)

has infinitely many solutions of positive integers m and n for almost all real numbers α.

Here (m,n) = 1 denotes that m and n are co-prime, and the word “almost all” means

that the set of real numbers α ∈ [0, 1) has full Lebesgue measure, i.e., in real number

case it is 1. Inversely, we use the word “almost no” to denote Lebesgue measure 0.

Then in 1941, R. J. Duffin and A. C. Schaeffer made a conjecture on a metric theory

of Diophantine approximation problem in their paper [7]. The conjecture states that

the inequality (1) has infinitely many solutions of positive integers m and n for almost

all real numbers α if and only if
∑∞

n=1 φ(n)ψ(n)n
−1 = ∞. Here φ(n) is Euler function

which counts the positive integers less than or equal to n that are relatively prime

to n. If
∑∞

n=1 φ(n)ψ(n)n
−1 converges, then we can easily see that the inequality (1)

has only finitely many solutions of positive integers m and n for almost all α. So the

only difficulty is proving the inequality (1) has infinitely many solutions for almost

all α under the condition
∑∞

n=1 φ(n)ψ(n)n
−1 = ∞. R. J. Duffin and A. C. Schaeffer

also gave a sufficient condition on ψ(n) for having infinitely many solutions a.e., which

is called the Duffin-Schaeffer theorem. In 1950, J. W. S. Cassels [5] showed that the

inequality |α−m/n| < ψ(n)/n without the condition of (m,n) = 1, has infinitely many

solutions for either almost all α or almost no α. Then in 1961, P. X. Gallagher [10]
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added the condition of (m,n) = 1 on and gave the conclusion that, the inequality (1)

has infinitely many solutions for either almost all α or almost no α. In 1970, P. Erdös

[8] showed that if ψ(n) = 0 or εn−1 for all n ∈ N and some ε > 0, then the inequality

(1) has infinitely many solutions of positive integers m and n for almost all α whenever∑∞
n=1 φ(n)ψ(n)n

−1 diverges. In 1978, J. D. Vaaler [28] gave a more general result

following P. Erdös’ idea. More precisely, he proved that the inequality (1) has infinitely

many solutions of positive integers m and n for almost all α, if ψ(n) = O(n−1) and∑∞
n=1 φ(n)ψ(n)n

−1 diverges.

In metric theory of Diophantine approximations, we also need to measure the size

of the sets of α with Lebesgue measure 0. In this case, we usually use the Hausdorff

dimension to measure the size of the exceptional sets instead of the Lebesgue measure,

since the Hausdorff dimension of the sets can be not 0 even if their Lebesgue measures

are all 0. In 1929, V. Jarnik [16] proved that the Hausdorff dimension of the set of

α ∈ R such that the inequality ∣∣∣α− m

n

∣∣∣ < 1

nγ

has infinitely many solutions of rational numbers m/n is 2/γ for γ > 2, and also in

1934 A. S. Besicovitch [3] proved the same result. G. Harman [11] then showed a more

general result that the Hausdorff dimension of the set of α ∈ R such that the inequality

|nα −m| < n−ρ with (m,n) = 1 and γ = sup{0 ⩽ h :
∑

n∈A n
−h diverges} for some

infinite set A of positive integers has infinitely many solutions of rational numbers m/n

equals to (1+γ)/(1+ρ). We note that V. Jarnik and A. S. Besicovitch’s results can be

followed as its corollary. G. Harman also proved that the Hausdorff dimension of the

set of real numbers which have infinitely many solutions to the Diophantine inequality

concerning the Duffin-Schaeffer conjecture [7] is 1 by using this result.

Diophantine approximations for complex numbers was first considered in 1887-88

by A. Hurwitz [14], who discussed the Diophantine approximation problem by contin-

ued fractions over the imaginary quadratic fields Q(
√
−1) and Q(

√
−3). Since then, a

number of papers discussed this subject such as [9], [22] and [20]. In 1982, D.Sullivan

[26] gave a metric result of Diophantine approximation over an imaginary quadratic

field under a condition similar to the condition of the Duffin-Schaeffer theorem. In

1991, H. Nakada and G. Wagner proved a Duffin-Schaeffer type theorem over an imag-

inary quadratic field as well as a Gallagher type theorem [21]. In this thesis, we discuss

a further development of the metric theory of Diophantine approximations over an
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imaginary quadratic field. Our main result indicates that the difficulty of the complex

number version of the Duffin-Schaeffer conjecture is similar to that of the one dimen-

sional real case. Indeed, we will show that a Vaaler type theorem holds in this case

and then we find the same difficulty in case of real numbers for proving the complex

version of the Duffin-Schaeffer conjecture.

For a given square-free negative integer d, we consider

Q(
√
d) =

{
p+ q

√
d : p, q ∈ Q

}
and its maximal order Z[ω], i.e.

Z[ω] = {m+ nω : m,n ∈ Z} ,

where

ω =

{
(1 +

√
d)/2, if d ≡ 1 (mod 4)√

d, if d ≡ 2, 3 (mod 4).

Define the set of fundamental area

F = {z : z = x+ yω, x, y ∈ R, 0 ≤ x, y < 1} , (2)

which is a subset of C. In order to avoid the problem of different prime factor decom-

positions of an integer in Z[ω], we consider ideals for the uniqueness of the prime factor

decomposition. For an integer a ∈ Z[ω], we denote by (a) the principal ideal generated

by a. Then we can give a complex number version of the Duffin-Schaeffer conjecture

as follows: suppose Ψ((r)) is a non-negative real valued function defined on the set of

principal ideals of Z[ω], then the inequality∣∣∣z − a

r

∣∣∣ < Ψ((r))

|r|
, (r, a) = (1), (3)

has infinitely many solutions r and a with r, a ∈ Z[ω] for almost all z ∈ C if and only

if
∑

Φ((r))Ψ2((r))|r|−2 = ∞. Here (r, a) denotes the ideal in Z[ω] generated by r and

a, and (r, a) = (1) denotes that r and a are co-prime in terms of ideals. Φ((r)) is

the Euler functions over imaginary quadratic fields which counts the reduced residue

classes modulo (r) and it also counts the integers over imaginary quadratic fields in

the fundamental area F that are relatively prime to r. Without loss of generality, we

discuss our problems for almost all z ∈ F instead of z ∈ C.
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As one of the main result of the thesis, we show that the Vaaler type theorem

for complex numbers holds, that is, if Ψ((r)) = O(|r|−1), then the Duffin-Schaeffer

conjecture over imaginary quadratic fields is true. It is different from the real number

case, the difficulty of dealing this theorem over imaginary quadratic fields is that there

are many different ideals with the same norm. In real number case, the positive number

itself denotes the distance between the positive number and origin. However, this

doesn’t make sense for imaginary quadratic fields case. So it makes difficulties when

we consider the convergence of the sum of norm of ideals and sieve method of ideals.

In the last section of chapter 2, by following an idea of R. J. Duffin and A. C. Schaeffer

[7], we show an example by giving a sequence of Ψ((r)) whose sum diverges but the

measure of the set of the Duffin-Schaeffer conjecture over imaginary quadratic fields

under our choice of {Ψ((r))} is less than 1. This shows that the convergence condition

of the Duffin-Schaeffer conjecture over imaginary quadratic fields is reasonable.

In this thesis, we also show the generalized Jarńık and Besicovitch’s theorem over the

imaginary quadratic fields and prove that the Hausdorff dimension of the set of complex

numbers satisfy the Duffin-Schaeffer conjecture over imaginary quadratic fields without

the co-prime condition is 2, by using this result.
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Chapter 1

Background

1.1 On metric theory of Diophantine approximations for

real numbers

1.1.1 Diophantine approximations

The problem of Diophantine approximation is the approximation to irrational numbers

by rational numbers, and what we are interested in is that we want to know how the

irrational numbers can be approximated by rational numbers. The earliest result about

this problem is given by Dirichlet in 1842, see [25].

Given a real number α, let [α], the integer part of α, denote the greatest integer

smaller than or equals to α, and let {α} = α− [α]. Then {α} is the fractional part of

α, and satisfies 0 ⩽ {α} < 1. Also, let ∥α∥ denote the distance from α to the nearest

integer. Then always 0 ⩽ ∥α∥ ⩽ 1/2.

Theorem 1.1.1 (Dirichlet (1842)). Let α and Q be real numbers with Q > 1. Then

there exist integers m,n such that 1 ⩽ n < Q and |αn−m| ⩽ 1
Q .

It follows from Theorem 1.1.1 that if α is an irrational number, there are infinitely

many fractions m/n in lowest terms with∣∣∣α− m

n

∣∣∣ ⩽ 1

Qn
<

1

n2
,

and we have the following corollary.

Corollary 1.1.2. Suppose that α is an irrational number. Then there exist infinitely

many pairs m,n of relatively prime integers with∣∣∣α− m

n

∣∣∣ < 1

n2
. (1.1)
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1.1 On metric theory of Diophantine approximations for real numbers

Note that this corollary is not true if α is a rational number. For suppose that

α = u/v with u, v ∈ Z. If α ̸= m/n, then∣∣∣α− m

n

∣∣∣ = ∣∣∣u
v
− m

n

∣∣∣ = ∣∣∣∣nu−mv

vn

∣∣∣∣ ⩾ 1

vn
,

and therefore (1.1) can be satisfied by only finitely many pairs m,n of relatively prime

integers.

In fact, for almost all α ∈ R, the inequality∣∣∣α− m

n

∣∣∣ < 1

2n2

has infinitely many solutionsm,n with (m,n) = 1. It holds from the continued fractions

expansion of α as follows:

Theorem 1.1.3 (Vahlen (1895)). Let pℓ−1/qℓ−1, pℓ/qℓ be consecutive convergents to α.

Then at least one of them satisfies ∣∣∣α− m

n

∣∣∣ < 1

2n2
.

Hurwitz [15] improved this further to 1√
5
n−2.

Theorem 1.1.4 (Hurwitz (1891)). (i) For every irrational number α there are infinitely

many distinct rationals m/n with ∣∣∣α− m

n

∣∣∣ < 1√
5n2

.

(ii) This would be wrong if
√
5 were replaced by a constant A >

√
5.

This is best possible, as can be seen by considering α = (−1 +
√
5)/2. We have

α2 + α− 1 = 0, so for any fraction m/n:

|m/n− α| =
∣∣∣∣(m/n)2 +m/n− 1

m/n+ β

∣∣∣∣ ⩾ 1

n2
1

m/n+ β
, (1.2)

where β = (1 +
√
5)/2. Now if |m/n− α| < n−2, then by (1.2) we have

|m/n− α| ⩾ 1

n2(
√
5 + n−2)

.

Hence the factor
√
5 is best possible.
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1.1 On metric theory of Diophantine approximations for real numbers

It was shown by E. Borel [4] and F. Bernstein [2] in the earlier of 20th century that

almost all real numbers have unbounded partial quotients in their continued fraction

expansion, hence for irrational α we have∣∣∣∣α− pℓ
qℓ

∣∣∣∣ < 1

qℓqℓ+1
,

where pℓ/qℓ is the ℓth convergent to α. Thus for almost all α ∈ R, there are infinitely

many fractions m/n with |α−m/n| = o(n−2). A. Y. Khintchine [17] used the results

of E. Borel and F. Bernstein in conjunction with an estimate for the growth of qℓ to

prove the following very precise result.

1.1.2 On metric theory of Diophantine approximations

For some given approximation inequality, we want to know the size of the sets of all α

with the approximation inequality which has infinitely many solutions m/n. This is the

metric problem of Diophantine approximations. A. Y. Khinchine made an interesting

result as follows:

Theorem 1.1.5 (Khintchine (1924)). Let ψ(n) be a positive continuous function. Then

the inequality ∣∣∣α− m

n

∣∣∣ < ψ(n)

n
(1.3)

(i) has infinitely many solutions in integers m,n > 0 for almost all real numbers α if

∞∑
n=1

ψ(n) (1.4)

diverges and nψ(n) is non-increasing. (ii) has at most finitely many solutions in inte-

gers m,n > 0 for almost all real numbers α if the sum (1.4) converges.

Clearly, if (1.3) has infinitely many solutions, there will be infinitely many fractions

m/n in lowest terms satisfying (1.3), since xψ(x) is non-increasing. It follows that

almost all real numbers have infinitely many approximations of the form |α−m/n| <
(n2 log n)−1, but only finitely many of the form |α − m/n| < n−2(log n)−1−ε for any

ε > 0. Of course, this says nothing about approximating to α uniformly as in Dirichlet’s

theorem.

7



1.1 On metric theory of Diophantine approximations for real numbers

From Khinchine’s theorem, we consider the conditions of the non-negative real

valued function ψ such that the inequality∣∣∣α− m

n

∣∣∣ < ψ(n)

n

has infinitely many solutions m,n for almost all α. We can see a simple necessary

condition
∞∑
n=1

φ(n)
ψ(n)

n
= ∞,

since we have

Theorem 1.1.6. Let ψ(n) be a non-negative-valued function such that

∞∑
n=1

ψ(n)
φ(n)

n
(1.5)

converges. Then there are only a finite number of solutions to the inequality∣∣∣α− m

n

∣∣∣ < ψ(n)

n
, (m,n) = 1, n ⩾ 1 (1.6)

for almost all α ∈ R.

This is easy to prove if we use the first Borel-Cantelli lemma.

Lemma 1.1.7 (the first Borel-Cantelli lemma). Let X be a measure space with measure

µ. Let Aj(j = 1, 2, 3, ...) be a collection of measurable subsets of X. If

∞∑
n=1

µ(Aj) <∞,

then almost all members of X (with respect to µ) belong to only finitely many of the

Aj.

Consider α ∈ [0, 1) without lose of generality. Let

εn = [0, 1)
∩ n−1∪

m=1
(m,n)=1

(
m− ψ(n)

n
,
m+ ψ(n)

n

)
for all n. So if (1.6) has infinitely many solutions for some α ∈ [0, 1), then α ∈
∪∞
m=1 ∩m

n=1 εn. However, by the inequality

∞∑
n=1

λ(εn) ⩽ 2
∞∑
n=1

φ(n)
ψ(n)

n

8



1.1 On metric theory of Diophantine approximations for real numbers

and the first Borel-Cantelli lemma we see that for almost all α ∈ [0, 1), it only belongs

to finitely many of εn, which means Theorem 1.1.6 holds.

In higher dimensions Khintchine extended his theorem to simultaneous approxima-

tion, and clearly Theorem 1.1.6 can be extended almost immediately.

In 1941, Duffin and Schaeffer [7] made the following conjecture which provoked

much research and remains to date one of the most important unsolved problems in

metric number theory.

Conjecture 1 (Duffin-Schaeffer conjecture (1941)). Let ψ(n) be a non-negative-valued

function such that the sum (1.5) diverges. Then (1.6) has infinitely many solutions for

almost all α ∈ R.

Duffin and Schaeffer also constructed a function ψ(n) to show that if we use (1.4)

instead of (1.5) in Duffin-Schaeffer conjecture, then the result of Duffin-Schaeffer con-

jecture does not hold. Thus, the condition of divergence of (1.3) can not guarantee the

existence of infinitely many solutions to (1.6). So the divergence of (1.5) is reasonable

for Duffin-Schaeffer conjecture.

Although the Duffin-Schaeffer conjecture has not been proved yet, the k-dimensional

Duffin-Schaeffer conjecture has been proved by A. D. Pollington and R. C. Vaughan

[23].

Theorem 1.1.8 (Pollington and Vaughan (1989)). Let k > 1 and let {βn} denote a

sequence of real numbers with

0 ⩽ βn <
1

2

and suppose that
∞∑
n=1

(
βnφ(n)

n

)k

diverges. Then the inequalities

max(|α1n− a1|, ..., |αkn− ak|) < βn, (ai, n) = 1, i = 1, ..., k,

have infinitely many solutions for almost all α = (α1, α2, ..., αk) ∈ Rk.

Note that the theorem holds when k > 1, and we can not use it for the case k = 1

to show that the Duffin-Schaeffer conjecture is true.

P. X. Gallagher [10] and J. W. S. Cassels [5] gave the following result:

9



1.1 On metric theory of Diophantine approximations for real numbers

Theorem 1.1.9. (A).(Cassels (1950)) Let ψ(n) be a sequence of non-negative reals.

Then the inequality

|αn−m| < ψ(n) (1.7)

has infinitely many solutions for either almost all α or almost no α.

(B).(Gallagher (1961)) The conclusion of part (A) holds with the additional condition

(m,n) = 1 imposed in (1.7).

The theorem shows that zero-one laws operate in both the problem of approximation

by all fractions and the problem of approximation by reduced fractions.

In 1970, P. Erdös [8] proved the Duffin-Schaeffer conjecture to be true when, for

some ε > 0, ψ(n) takes on only the values 0 or ε/n.

Theorem 1.1.10 (Erdös (1970)). The Duffin-Schaeffer conjecture is true when there

exists a subset A ⊂ N such that if∑
n∈A

ϕ(n)

n2
= ∞, (1.8)

then for almost all α ∈ R the inequality |α−m/n| < ε/n for n ∈ A has infinitely many

solutions m/n.

J. D. Vaaler [28] modified the P. Erdös’ method to obtain a more general result as

follows:

Theorem 1.1.11 (Vaaler (1978)). The Duffin-Schaeffer conjecture is true when ψ(n) =

O(1/n).

Vaaler’s result is, so far, the best sufficient simple condition. We can see that the

theorem of Khintchine, 1.1.5, is a special case of Vaaler’s result. So the hard case

of proving Duffin-Schaeffer conjecture is if
∑
ϕ(n)ψ(n)n−1 = ∞ and ψ(n) oscilating

hardly.

Catlin made a conjecture and showed that it is equivalent to the Duffin-Schaeffer

conjecture. However, Vaaler also pointed out that Catlin’s proof of the equivalence of

two conjectures contains a serious flaw, see [28].

Recently, V. Beresnevich, G. Harman, A. Haynes and S. Velani [1] [13] gave an

divergent condition∑
n⩾16

φ(n)ψ(n)

n · exp(c(log log n)(log log log n))
= ∞ for some c > 0

which is equivalent to the condition of the divergence of (1.5).

10



1.1 On metric theory of Diophantine approximations for real numbers

1.1.3 Hausdorff dimension of the exceptional sets

For some set of real numbers whose Lebesgue measure is positive, its Hausdorff dimen-

sion is 1. So for sets whose Lebesgue measure is 0, it is meaningful by using Hausdorff

dimension to measure the size of the sets.

Definition 1 (Hausdorff dimension). We denote by | · | the length of an interval. The

Hausdorff dimension of a set of real numbers φ is d, i.e, dimHφ = d if it satisfies the

following 2 conditions:

(i) For any β > d and any ε > 0, there exists a sequence of intervals {Ij} such that

φ ⊂
∞∪
j=1

Ij ,
∞∑
j=1

|Ij |β < 1, |Ij | < ε for all j.

(ii) For any β < d, there exists ε > 0 such that there exists no sequence of intervals

which satisfies all the three conditions above.

V. Jarńık, in 1929, and A. S. Besicovitch, in 1934, considered the Hausdorff di-

mension of the exceptional sets of real numbers such that the inequality has infinitely

many solutions with
∑
ψ(n) < ∞. Thus we see that the Lebesgue measure of these

exceptional sets is 0.

Theorem 1.1.12 (Jarńık(1929), Besicovitch(1934)). If γ > 2, then the Hausdorff

dimension of the set of α ∈ R such that the inequality∣∣∣α− m

n

∣∣∣ < 1

nγ

has infinitely many solutions m,n is 2/γ.

G. Harman generalized Jarńık and Besicovitch’s result as follows:

Theorem 1.1.13 (generalized Jarńık and Besicovitch’s theorem(by Harman, 1998)).

For an infinite subset A of N, let

γ = sup

{
h ⩾ 0 :

∑
n∈A

n−h = ∞

}
.

For a real number ρ with ρ > γ, then the Hausdorff dimension of the set of α ∈ R such

that the inequality

|nα−m| < n−ρ, (m,n) = 1, n ∈ A

has infinitely many solutions m,n is 1+γ
1+ρ .

11



1.2 On metric theory of Diophantine approximations for complex numbers

We see that the result of Jarńık and Besicovitch is a corollary to Theorem (1.1.13).

Harman then estimated the Hausdorff dimension of the set of real numbers which

satisfy the properties in the statement of the Duffin-Schaeffer conjecture by using the

generalized Jarńık and Besicovitch’s theorem, and proved that its Hausdorff dimension

is 1.

Theorem 1.1.14 (Harman, 1998). The Hausdorff dimension of the set of real numbers

which satisfy the Duffin-Schaeffer conjecture is 1.

1.2 On metric theory of Diophantine approximations for

complex numbers

1.2.1 Diophantine approximations for complex numbers

A. Hurwitz [14] introduced, in 1887, continued fraction expansions for complex numbers

with Gaussian integers as partial quotients, via the nearest integer algorithm, known

as Hurwitz algorithm, and established some basic properties concerning convergence

of the sequence of convergents, and also proved an analogue of the classical Lagrange

theorem characterizing quadratic surds as the numbers with eventually periodic con-

tinued fractions; analogous results were also proved for the nearest integer algorithms

with respect to Eisenstein integers as partial quotients, in place of Gaussian integers.

Then in the earlier of the 20th century, L. R. Ford [9] and O. Perron [22] also did some

studies about these problems.

1.2.2 On metric theory of Diophantine approximations for complex

numbers

D. Sullivan [26], in 1983, and H. Nakada [20], in 1990, showed some results about the

metric theory of Diophantine approximations for complex numbers. Then in 1991, H.

Nakada and G. Wagner [21] showed Gallagher’s 0-1 laws over the complex numbers,

that is, either the set of complex numbers satisfying Duffin-Schaeffer conjecture or its

complement is a set of Lebesgue measure 0 even if∑
r∈Z[ω]\{0}

Ψ2((r)) = ∞. (1.9)

That is
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1.2 On metric theory of Diophantine approximations for complex numbers

Theorem 1.2.1 (Nakada, Wagner, 1991). λ(·) denotes Lebesgue measure. Consider

the inequality ∣∣∣z − a

r

∣∣∣ < f(r)

|r|
, (a, r) = 1, a, r ∈ Z[ω], (1.10)

where f is a non-negative function defined on Z[ω] with f(r) = f(u · r) for all units u

in Z[ω]. Let Af be the set of z(∈ F), for which (1.10) has infinitely many solutions.

Then we have

λ(Af ) = 0 or 1

for any non-negative function f , where λ denotes the normalized Lebesgue measure on

F.

By using this theorem, they proved a complex Duffin-Schaeffer theorem:

Theorem 1.2.2 (Nakada, Wagner, 1991). Suppose that∑
r∈Z[ω]

f2(r) = ∞

and there exist infinitely many R ∈ N such that∑
|r|<R,r∈Z[ω]

f2(r) < c1 ·
∑

|r|<R,r∈Z[ω]

f2(r) · φ(r)/|r|2

for some constant c1 > 0. Then (1.10) has infinitely many solutions for almost all

z ∈ F.

If
∑

r∈Z[ω]\{0} φ((r))Ψ
2((r))|r|−2 < ∞, then the normalized Lebesgue measure of

the set of complex numbers satisfying the properties in the statement of the Duffin-

Schaeffer conjecture is 0 due to the Borel-Cantelli lemma. We can not ignore the

possibility that the measure of the set of complex numbers satisfying the properties

in the statement of the Duffin-Schaeffer conjecture without co-prime condition equals

to 0 under the condition (1.9). In the last section of this paper, by following an idea

of Duffin and Schaeffer [7], we construct a counter example by giving a sequence of

Ψ((r)) which satisfies (1.9) but the measure of the set of complex numbers satisfying

the properties in the statement of the Duffin-Schaeffer conjecture without co-prime

condition under our choice of {Ψ((r))} is not 1.

13



Chapter 2

Vaaler type theorem for complex

numbers

2.1 Vaaler type theorem over imaginary quadratic fields

Throughout this thesis we will use N(·) for the norm of an ideal over Z[ω], and use

P (and Pj) for the prime ideals. We also use Φ(·) to denote the Euler function over

imaginary quadratic fields. Let F be the fundamental area, see (2).

The differences when we consider the Diophantine approximations over imaginary

quadratic fields are mainly two points:

(i) The prime factor decomposition of an integer of Z[ω] is not unique. For example,

integral number 6 in Q(
√
−5) has two prime factor decompositions, i.e., 6 = 2 · 3 =

(1 +
√
−5)(1 −

√
−5), so it is difficult to decide whether two integers over imaginary

quadratic fields are co-prime or not.

(ii) How to estimate the number of integers which are relatively prime to some given

integer r ∈ Z[ω].
For (i), it is easy if we consider our problem over ideals instead of over complex

numbers directly, since the factor decomposition of ideals is unique. For (ii), we use the

Euler function Φ((r)) over Z[ω] with Φ((r)) = |r|2
∏

P |(r)(1 − N−1(P )), which counts

the number of residue classes modulo the principal ideal (r). It is also equal to the

number of integers a ∈ Z[ω] that are relatively prime to r and a/r ∈ F.
Thus it makes sense for us to give the Duffin-Schaeffer conjecture over imaginary

quadratic fields as follows:

14



2.1 Vaaler type theorem over imaginary quadratic fields

Conjecture 2 (Duffin-Schaeffer conjecture over imaginary quadratic fields). Let r, a ∈
Z[ω] and let Ψ((r)) be a non-negative real valued function on ideals. If∑

(r):principal ideal

Φ((r))
Ψ2((r))

|r|2
= ∞,

then for almost all z ∈ C, the inequality∣∣∣z − a

r

∣∣∣ < Ψ((r))

|r|
, (r, a) = (1) (2.1)

has infinitely many solutions r, a.

Our main result is the following

Theorem 2.1.1. If Ψ((r)) = O(|r|−1), then the inequality of (2.1) has infinitely many

solutions of r and a with r, a ∈ Z[ω] for almost all z ∈ C, whenever∑
Φ((r))Ψ2((r))|r|−2 = ∞.

We first define E(r) as the set of complex number z which satisfies the inequality of

(2.1) for a given r ∈ Z[ω], i.e.

E(r) =
∪

a∈Z[ω]
a
r
∈F

(a,r)=(1)

{
z :
∣∣∣z − a

r

∣∣∣ < Ψ((r))

|r|
, z ∈ F

}
.

It is enough for proving Theorem 2.1.1 to show

λ

 ∞∩
N=1

∞∪
|r|2=N

E(r)

 = lim
N→∞

λ

 ∞∪
|r|2=N

E(r)

 = 1 (2.2)

holds under the conditions of Ψ((r)) = O(|r|−1) and
∑

Φ((r))Ψ2((r))|r|−2 = ∞. Here

λ denotes the normalized Lebesgue measure on F.
We extend two theorems of Vaaler [28] (Theorem 2 and 3) to the imaginary quadratic

field as follows:

Theorem 2.1.2. Suppose there exist an integer k ≥ 2 and a real number η > 0 such

that the following condition holds: every finite subset Z of {k, k + 1, k + 2, · · ·} for

which 0 ⩽ Λ(Z) ⩽ η and ∑
|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)

λ(E(r) ∩ E(s)) ⩽ Λ(Z) (2.3)

hold with Λ(Z) =
∑

|r|2∈Z λ(E(r)), then
∑

Φ((r))Ψ2((r))|r|−2 = ∞ implies (2.2).
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2.2 Proof of some lemmas

Theorem 2.1.3. If Ψ((r)) = O(|r|−1), then there exists η > 0 such that if Z is a finite

subset of {2, 3, 4, · · ·} which satisfies 0 < Λ(Z) ⩽ η, then

∑
|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)

λ(E(r) ∩ E(s)) ≪ (Λ(Z))2
(
ln ln

1

Λ(Z)

)2

. (2.4)

We note that (2.4), the conclusion of Theorem 2.1.3, is stronger than (2.3) since

there exists a sufficiently large rational integer k such that

Λ(Z)(ln lnΛ(Z)−1)2 < 1

with Z = {k, k + 1, k + 2, ...}. In the next section, we will prove Theorem 2.1.3 and

then prove Theorem 2.1.2 which completes the proof of Theorem 2.1.1. We note that

we do need the condition Ψ((r)) = O(|r|−1) in the proof of Theorem 2.1.3 and do not

need it in the proof of Theorem 2.1.2.

The idea of the proof of Theorem 2.1.3 is based on Renyi-Lamperti’s Borel-Cantelli

type lemma:

Lemma 2.1.4 (Renyi-Lamperti’s Borel-Cantelli type lemma). A1, A2, ... is a sequence

of events and P (·) is the probability function with

∞∑
n=1

P (An) = ∞.

Then for the event set A = {ω : there are infinitely many n ∈ N which satisfies ω ∈ An},
we have

P (A) ⩾ lim sup
N→∞

(
∑N

n=1 P (An))
2∑N

m,n=1 P (An ∩Am)
.

The case of P (A) > 0 is showed by 0-1 law, and Theorem 2.1.3 is the case of

P (A) = 1.

2.2 Proof of some lemmas

Before we give the proof of our result, first we state some results in algebraic number

theory which will be used later in our proof. See [24] and [19].
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2.2 Proof of some lemmas

Theorem 2.2.1 (Mertens’ 2nd theorem over algebraic number fields).∑
N(P )⩽x

1

N(P )
= ln lnx+BK + O

(
1

lnx

)
,

where BK is a constant depending only on the algebraic number field K.

Theorem 2.2.2 (Mertens’ 3rd theorem over algebraic number fields).

∏
N(P )⩽x

(
1− 1

N(P )

)−1

= eγαK lnx+ O(1),

where γ > 0 and αK are constants depending only on the algebraic number field K.

Theorem 2.2.3 (Landau prime ideal theorem). The number of prime ideals of norm

⩽ y is

π(y) = Li(y) + O(ye−cK
√
ln y),

where cK is a constant depending only on the algebraic number field K and Li(y) =∫ y
2 (1/ ln t)dt.

Now we give some lemmas similar to Vaaler’s estimates [28]. We denote by g(R)

for an ideal R of Z[ω] as the smallest positive integer v that satisfies∑
P |R

N(P )>v

1

N(P )
< 1.

Then we have the following result:

Lemma 2.2.4. For an ideal R of Z[ω], if g(R) = v, then we have∏
P |R

N(P )⩽v

(
1− 1

N(P )

)
≪ Φ(R)

N(R)
as v → ∞.

Proof. From the formula of Euler’s function over ideals, we have

Φ(R) = N(R)
∏
P |R

(
1− 1

N(P )

)
.
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2.2 Proof of some lemmas

Then ∏
P |R

N(P )⩽v

(
1− 1

N(P )

)
=

Φ(R)

N(R)

∏
P |R

N(P )>v

(
1− 1

N(P )

)−1

=
Φ(R)

N(R)
exp


∑
P |R

N(P )>v

ln

(
1− 1

N(P )

)−1


⩽ Φ(R)

N(R)
exp


∑
P |R

N(P )>v

1

N(P )
+
∑
P

∞∑
j=2

1

j(N(P ))j

 .

Now we see ∑
P

∞∑
j=2

1

j(N(P ))j
⩽

∑
P

∞∑
j=2

1

(N(P ))j

⩽
∑
P

1

N(P ) (N(P )− 1)
<
∑
S

1

N2(S)
. (2.5)

Here
∑

S is a sum over all ideals of Z[ω]. In order to show that the right side of (2.5)

converges, we first estimate the number of ideals whose norm is less than or equal to

a given rational integer N . Denote by T (N) the number of ideals whose norm is less

than or equal to the given rational integer N . By [12], there exists a constant k(d) such

that

lim
N→∞

T (N)

N
= k(d),

which shows that uN = T (N)/N is bounded. Denote by Ti the number of ideals whose

norm is equal to i ∈ N. Then we have T (N) =
∑N

i=1 Ti. From TN = NuN−(N−1)uN−1,

we have

N∑
N(S)=1

1

N2(S)
=

N∑
i=1

Ti
i2

=
uN
N

+

(
1

(N − 1)2
− 1

N2

)
(N − 1)uN−1 + · · ·+ 3

4
u1

=
uN
N

+
2N − 1

(N − 1)N2
uN−1 +

2N − 3

(N − 2)(N − 1)2
uN−2 + · · ·+ 3

4
u1

<
uN
N

+
2

N2
uN−1 +

2

(N − 1)2
uN−2 + · · ·+ 2

22
u1

≪
N∑
i=1

1

i2
as N → ∞.
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2.2 Proof of some lemmas

So we see that the right side of (2.5) converges which implies∏
P |R

N(P )⩽v

(
1− 1

N(P )

)
≪ Φ(R)

N(R)
as v → ∞.

This completes the proof of Lemma 2.2.4.

We will give a corollary to Lemma 2.2.4 which we use later.

Corollary 2.2.5. For an ideal R of Z[ω], if g(R) = v, then we have

1 ≪ Φ(R)

N(R)
ln(1 + v) as v → ∞.

Proof. From M. Rosen’s results of the 3rd Mertens’ theorem 2.2.2 on an algebraic

number field and Lemma 2.2.4, we have

1 ≪ Φ(R)

N(R)

∏
P |R

N(P )⩽v

(
1− 1

N(P )

)−1

≤ Φ(R)

N(R)

∏
N(P )⩽v

(
1− 1

N(P )

)−1

≪ Φ(R)

N(R)
ln(1 + v) as v → ∞.

We define a collection N(ξ, x, v) of ideals of Z[ω] by

N(ξ, x, v) =

R :
∑
P |R

N(P )≥v

1

N(P )
≥ ξ ,N(R) ⩽ x

 ,

where ξ > 0, x > 0, v > 0. We denote by #N(ξ, x, v) the number of ideals in N(ξ, x, v).

Then we can extend Vaaler’s estimate [28] to the complex number case as follows:

Lemma 2.2.6. For any ε > 0, ξ > 0 and x > 0, we have

#N(ξ, v, x) ≪ x

ev
β(1−ε)

as v → ∞ with β = eξ. (2.6)
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2.2 Proof of some lemmas

Proof. Suppose 0 < ε < 1 − 1
eξ

= 1 − 1
β . It is enough to show Lemma 2.2.6 for such

ε since the right side of (2.6) becomes larger if ε goes larger. Let [v, w] be an interval

with w = vβ(1−
2
3
ε). Let {P1, P2, · · ·, PM} be the set of all prime ideals whose norms are

in [v, w] with N(P1) ⩽ N(P2) ⩽ · · · ⩽ N(PM ). Let π be the prime-counting function in

the sense of ideals of Z[ω], i.e. π(w) is the number of prime ideals whose norm is less

than or equal to w. Then we see M ≥ π(w)− π(v). We have the equality

vβ(1−
2
3
ε)

w
lnw − v

ln v

=
β(1− ε

3) ln v

v
βε
3 − β(1− ε

3)v
1−β(1− 2

3
ε)
.

Since ε < 1−1/β, we have 1−β(1− 2
3ε) < 0. Hence there exists an integer v0(ε, ξ) > 0

such that w
lnw − v

ln v ≥ vβ(1−
2
3
ε) for any v ≥ v0 and we have

M ≥ π(w)− π(v) ≫ w

lnw
− v

ln v
≥ vβ(1−

2
3
ε) as v → ∞

by the prime ideal theorem.

Next, we divide all the ideals in N(ξ, x, v) into two classes.

Class 1. There are no less than M different prime ideal factors of ideal R and norms

of these prime ideal factors are all in the interval of [v, ew].

Denote by N1 the number of ideals in Class 1. By using the 2nd Mertens’ theorem

2.2.1 on an algebraic number field, we see

N1 ≪ x

 ∑
v⩽N(P )⩽ew

1

N(P )

M

M !
⩽ x

 ∑
N(P )⩽ew

1

N(P )

M

M !

≪ x
(lnw)M

M !
as v → ∞.

Here we note w ⩽ M2. From Stirling’s formula n! =
√
2πn (n/e)n

(
1 + O

(
n−1

))
, we

have

x
(lnw)M

M !
≪ 2M (eln lnM )M

M !

≪ x
2MeM+M ln lnM

MM
√
2πM

<
x

eM(lnM−ln lnM−2)
· 1√

2πM

≪ x

eM
≪ x

ev
β(1− 2

3 ε)
as v → ∞. (2.7)

Class 2. There are less than M different prime ideal factors of ideal R and norms of

these prime ideal factors are all in the interval of [v, ew].
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2.2 Proof of some lemmas

By using the 2nd Mertens’ theorem 2.2.1 on an algebraic number field, we have

M∑
j=1

1

N(Pj)
=

∑
v⩽N(P )⩽w

1

N(P )
≪ ln lnw − ln ln v

= ξ + ln
(
1− ε

3

)
< ξ − ε

3
as v → ∞.

From ∑
P |R

N(P )⩾v⩾g(R)

1

N(P )
=

∑
P |R

v⩽N(P )⩽w

1

N(P )
+

∑
P |R

w<N(P )⩽ew

1

N(P )
+

∑
P |R

N(P )>ew

1

N(P )
≥ ξ

and the condition of Class 2, we see∑
P |R

v⩽N(P )⩽w

1

N(P )
+

∑
P |R

w<N(P )⩽ew

1

N(P )
⩽

∑
v⩽N(P )⩽w

1

N(P )
≪ ξ − ε

3
as v → ∞.

So we have the estimate ∑
P |R

N(P )>ew

1

N(P )
≫ ε

3
as v → ∞.

The number of ideals R of Class 2 is less than
∑

N(R)⩽x 1 and then we see∑
N(R)⩽x

1 ≪
∑

N(R)⩽x

3

ε

∑
P |R

N(P )>ew

1

N(P )

≪ 1

ε

∑
N(P )>ew

1

N(P )
· x

N(P )

<
x

ε

(
1

(ew)2
+

1

ew(ew + 1)
+

1

(ew + 1)(ew + 2)
+ · · ·

)
≪ x

ε
· 1

ew
≪ 1

ε
· x

ev
β(1− 2

3 ε)
as v → ∞. (2.8)

The estimates (2.7) and (2.8) imply (2.6), which completes the proof of Lemma

2.2.6.

We define two collections Ar(ξ, v) and Br(ξ, v) of ideals for a fixed r ∈ Z[ω] by

Ar(ξ, v) =

A : A|(r),
∑
P |A

N(P )≥v≥g((r))

1

N(P )
≥ ξ

 ,
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2.2 Proof of some lemmas

Br(ξ, v) =

B : B|(r),
∑
P |B

N(P )≥v≥g((r))

1

N(P )
< ξ

 ,

for ξ > 0, v > 0.

Lemma 2.2.7. For any ε > 0, ξ > 0, and v ≥ g((r)),∑
A∈Ar(ξ,v)

1

N(A)
≪ ln(1 + g((r)))

ev
β(1−ε)

as v → ∞ with β = eξ.

Proof. Let w = vβ(1−
ε
3
), where 0 < ε < 1 − e−ξ = 1 − β−1. Suppose there are M

different prime ideals P1, P2, · · · , PM whose norms are in [v, w] with N(P1) ⩽ N(P2) ⩽
· · · ⩽ N(PM ). Let J be the collection of M different prime ideals whose norms are all

in [v,∞). Then from the proof of Lemma 2.2.6, we have

∑
P∈J

1

N(P )
⩽

M∑
j=1

1

N(Pj)
≪ ξ − ε

3
as v → ∞.

Since for any A ∈ Ar(ξ, v), we see ∑
P |A

N(P )≥v≥g((r))

1

N(P )
≥ ξ.

This implies that for all large v, there are at least no less than M different prime ideal

factors of A whose norms are all in [v,∞). Let Q1, Q2, · · · , QJ be all different prime

ideal factors of (r).

Case 1. If J < M .

From the discussion in the above, we see that Ar(ξ, v) = ∅ for all large v, which

means
∑

A∈Ar(ξ,v)
N−1(A) = 0.

Case 2. If J ≥M .

Since v ≥ g((r)) and
∑J

j=1N
−1(Qj) < 1, we see

∑
A∈Ar(ξ,v)

1

N(A)
⩽
∑
A|(r)

1

N(A)
·

 J∑
j=1

1

N(Qj)

M

M !
<

∑
A|(r)

1

N(A)

 1

M !
. (2.9)

Suppose (r) = Qγ1
1 Q

γ2
2 · · ·QγJ

J where Q1, Q2, · · · , QJ are all different prime ideal factors
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2.2 Proof of some lemmas

of (r) and γ1, γ2, · · · , γJ are positive integers. By Corollary 2.2.5, we have∑
A|(r)

1

N(A)
=

(
1 +

1

N(Q1)
+

1

N2(Q1)
+ · · ·+ 1

Nγ1(Q1)

)

·
(
1 +

1

N(Q2)
+

1

N2(Q2)
+ · · ·+ 1

Nγ2(Q2)

)
· · · · ·

(
1 +

1

N(QJ)
+

1

N2(QJ)
+ · · ·+ 1

NγJ (QJ)

)
⩽

∏
Q|(r)

Q is prime ideal

(
1− 1

N(Q)

)−1

=
|r|2

Φ((r))
≪ ln(1 + g((r))) as v → ∞. (2.10)

From (2.7), (2.9), and (2.10), we have∑
A∈Ar(ξ,v)

1

N(A)
≪ ln(1 + g((r)))

ev
β(1−ε)

as v → ∞ with β = eξ.

This completes the proof of Lemma 2.2.7.

Lemma 2.2.8. Suppose (s), (r) are two principal ideals with s, r ∈ Z[ω] and U = (s, r).

Then for ε > 0, ξ > 0, x > 0, y ≥ 2, v ≥ g((r)), we have∑
(s)v

xN(U)<|s|2<xyN(U)

1

|s|2
≪ ln(1 + g((r))) ln y

ev
β(1−ε)

as v → ∞, (2.11)

and ∑
(s)v

xN−1(U)<|s|2<xyN−1(U)

1

|s|2
≪ ln(1 + g((r))) ln y

ev
β(1−ε)

as v → ∞, (2.12)

with β = eξ. Here
∑
(s)v

means the sum over (s) satisfying g((s)) = v.

Proof. The right sides of (2.11) and (2.12) are both independent of U and x. Thus, by

choosing x properly, we see that (2.11) and (2.12) are equivalent. So we only need to
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2.2 Proof of some lemmas

prove (2.11). Let (s) = US′ and (r) = UR′, then we see∑
(s)v

xN(U)<|s|2<xyN(U)

1

|s|2
=

∑
U |(r)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2

=
∑

U∈Ar(
1
2
,v)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2

+
∑

U∈Br(
1
2
,v)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2
. (2.13)

Here we see∑
U∈Ar(

1
2
,v)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2
=

∑
U∈Ar(

1
2
,v)

∑
(US′)v

(s,r)=U
x<N(S′)<xy

1

N(U)

1

N(S′)

≤

 ∑
U∈Ar(

1
2
,v)

1

N(U)


 ∑

S′
x<N(S′)<xy

1

N(S′)

 .

By using the method as in the proof of Lemma 2.2.4, we estimate the number of ideals

whose norms are less than or equal to a given integer N . Then we have∑
S′

x<N(S′)<xy

1

N(S′)
≪ ln y as y → ∞.

From Lemma 2.2.7 we have∑
U∈Ar(

1
2
,v)

1

N(U)
≪ ln(1 + g((r)))

ev
β(1−ε)

as v → ∞,

and then ∑
U∈Ar(

1
2
,v)

∑
(s)v

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2
≪ ln(1 + g((r))) ln y

ev
β(1−ε)

as v → ∞. (2.14)

Thus we get the desired estimate for the first term of the right side of (2.13) with

U ∈ Ar(1/2, v).
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2.2 Proof of some lemmas

Now we consider the second term of the right side of (2.13) with U ∈ Br(1/2, v)

and g((s)) = v. In this case we have

1 ⩽
∑
P |(s)

N(P )≥v=g((s))

1

N(P )
≤

∑
P |U

N(P )≥v

1

N(P )
+

∑
P |S′

N(P )≥v

1

N(P )
<

1

2
+

∑
P |S′

N(P )≥v

1

N(P )
,

which shows
∑

P |S′

N(P )≥v

N−1(P ) > 1/2. From Lemma 2.2.6, we see

∑
S′

x<N(S′)⩽2x

1

N(S′)
<

 ∑
S′

x<N(S′)⩽2x

1

 1

x
⩽

#N(12 , v, 2x)

x
≪ 1

ev
β(1−ε)

as v → ∞.

Thus we have

∑
S′

x<N(S′)<xy

1

N(S′)
≤

[y]∑
k=1

∑
S′

kx<N(S′)≤(k+1)x

1

N(S′)

<
1

x

[y]∑
k=1

1

k

 ∑
S′

kx<N(S′)⩽(k+1)x

1


⩽ 1

x

(
1− 1

2

)(
#N

(
1

2
, v, 2x

))
+

1

x

(
1

2
− 1

3

)(
#N

(
1

2
, v, 3x

))
+ · · ·+ 1

x

1

[y]

(
#N

(
1

2
, v, ([y] + 1)x

))
≪

(
1 +

1

2
+

1

3
+ · · ·+ 1

[y]

)
· 1

ev
β(1−ε)

≪ ln y · 1

ev
β(1−ε)

as y → ∞.
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2.3 Proof of main result

This gives the estimate for the second terms as follows:∑
U∈Br(

1
2
,v)

∑
(s)(v)

(s,r)=U
xN(U)<|s|2<xyN(U)

1

|s|2
=

∑
U∈Br(

1
2
,v)

∑
(US′)(v)

(s,r)=U
x<N(S′)<xy

1

N(U)

1

N(S′)

⩽

 ∑
U∈Br(

1
2
,v)

1

N(U)


 ∑

S′
x<N(S′)<xy

1

N(S′)


≪

 ∑
U∈Br(

1
2
,v)

1

N(U)

 ln y

ev
β(1−ε)

⩽

∑
U |(r)

1

N(U)

 ln y

ev
β(1−ε)

≤

∏
P |(r)

(
1− 1

N(P )

)−1
 ln y

ev
β(1−ε)

=
|r|2

Φ((r))

ln y

ev
β(1−ε)

≪ ln(1 + g((r)))
ln y

ev
β(1−ε)

as v → ∞. (2.15)

Hence we can deduce the assertion of Lemma 2.2.8 from (2.14) and (2.15).

2.3 Proof of main result

Now we will give the proof of Theorem 2.1.3.

Proof of Theorem 2.1.3. Let r, s ∈ Z[ω] be two integers such that the two principal

ideals (r) and (s) are different. Put

δ = min
{

Ψ((r))
|r| , Ψ((s))

|s|

}
, ∆ = max

{
Ψ((r))
|r| , Ψ((s))

|s|

}
, and t = max{g((r)), g((s))}.

Let Ra and Sb for a, b ∈ Z[ω] be

Ra =

{
z :
∣∣∣z − a

r

∣∣∣ < Ψ((r))

|r|
, z ∈ F

}
, Sb =

{
z :

∣∣∣∣z − b

s

∣∣∣∣ < Ψ((s))

|s|
, z ∈ F

}
for given r and s. Then

E(r) =
∪

a∈Z[ω]
a
r
∈F

(a,r)=(1)

Ra , E(s) =
∪

b∈Z[ω]
b
s
∈F

(b,s)=(1)

Sb.
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2.3 Proof of main result

If Ψ((r)) ⩽ 1/2 and Ψ((s)) ⩽ 1/2, then for any a1 and a2 with a1 ̸= a2, we see

Ra1 ∩ Ra2 = ∅ and the same holds for Sb. Then we have

λ(E(r) ∩ E(s)) =
∑
a
r
∈F

(a,r)=(1)

∑
b
s
∈F

(b,s)=(1)

λ(Ra ∩ Sb)

≤ δ2
∑
a
r
∈F

(a,r)=(1)

∑
b
s
∈F

(b,s)=(1)

|a
r
− b

s
|<∆

1

= δ2
∑
a
r
∈F

(a,r)=(1)

∑
b
s
∈F

(b,s)=(1)

|as−br|<|r||s|∆

1. (2.16)

We define H(k) as a set of pairs of integers a, b ∈ Z[ω] by

H(k) =

{
{a, b} : as− br = k, (a, r) = (b, s) = (1), with

a

r
,
b

s
∈ F
}
.

We denote by #H(k) the cardinality of H(k) and we will estimate #H(k). Let U =

(r, s) and S′ and R′ be ideals determined by (s) = US′ and (r) = UR′. Since ((a), R′) =

(1) and (S′, R′) = (1), we have (a)S′ ̸= (b)R′, which shows #H(0) = 0. Since U | (as)
and U | (br) imply U | (k), we have #H(k) = 0 if U ∤ (k). So we only need to consider

k ∈ Z[ω] with U | (k). In this case, the principal ideal (k) can be uniquely represented

as (k) = U · U(k) ·K1. Here U(k) is the ideal whose all prime ideal factors are also the

prime ideal factors of U and (K1, U) = (1).

If (K1, UR
′S′) ̸= (1), then we can find some prime ideal P such that P | K1 and

P | UR′S′. Since (K1, U) = (1), either P | R′ or P | S′ holds. If P | R′, we see P | (br)
and P ∤ (s). Here P | R′ implies P ∤ (a) and we have P ∤ (as), which is impossible

since P | (k). We can use the same approach for the case of P | S′ and get the same

conclusion. Hence if (K1, UR
′S′) ̸= (1), then we have #H(k) = 0.

If (U(k), R
′S′) ̸= (1), then we can find some prime ideal P with P | U(k) and P | R′S′.

If P | R′, then there exists a positive integer n such that Pn | U and Pn+1 ∤ U . So

we see Pn+1 | (r), which means br ∈ Pn+1. From Pn+1 | (k), we see P | (a), which is

impossible since ((a), R′) = (1) and P | R′. We can use the same method for the case

P | S′ and get the same conclusion. So if (U(k), R
′S′) ̸= (1), then #H(k) = 0.

Consequently we only need to estimate #H(k) in the case of (K1, UR
′S′) = (1),

(U(k), R
′S′) = (1) and N(U) ⩽ |k|2. Suppose {a1, b1} and {a2, b2} are two different

pairs of integers in H(k) for a given k ∈ Z[ω]. Then (a1 − a2)(s) = (b1 − b2)(r). So we
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2.3 Proof of main result

have

R′ | (a1 − a2) and S′ | (b1 − b2). (2.17)

This means that a1 and a2 are in the same residue class modulo R′ as well as b1

and b2 are in the same residue class modulo S′. We consider the set of pairs (a, b)

with a/r, b/s ∈ F such that each two of them satisfy (2.17). In order to estimate the

cardinality of this set, let us consider the number of ai of the left side of (2.17). The

ideal R′ can be represented by the standard basis form that there exist r1, r2 ∈ Z(
√
d)

such that R′ = [r1, r2] = {x · r1 + y · r2 : x, y ∈ Z}. Let Z(
√
d) =W = [1, ω], then there

exists a rational integer matrix

M =

[
m11 m12

m21 m22

]

whose terms are all rational integers such that R′ =MW . Also, for the matrixM there

exists two rational integer matricesMl, Mr with det(Ml) = ±1 and det(Mr) = ±1 such

that

MlMMr =

[
e1 0

0 e2

]
, e1, e2 ∈ Z.

Here det(·) denotes the determinant of metrix. Let α = [α1, α2], β = [β1, β2] with

α =MlR
′ and W =Mrβ. Then we see

α =

[
e1 0

0 e2

]
β.

Thus we can consider α and β instead of R′ and W . Since for any c ∈ Z(
√
d) there

exist x1, x2 ∈ Z such that c = x1β1 + x2β2, if a1 ≡ a2 (mod R′) then there are

x1, x2, x
′
1, x

′
2 ∈ Z such that

a1 = x1β1 + x2β2, a2 = x′1β1 + x′2β2. (2.18)

Since a1 − a2 ∈ R′, there exist t1, t2 ∈ Z such that

a1 − a2 = t1α1 + t2α2 = t1e1β1 + t2e2β2.

By (2.18), we have

x1 ≡ x′1 (mod e1) , x2 ≡ x′2 (mod e2).

From [27], we see N(R′) = e1e2 and it is the number of residue classes modulo R′. Next,

we estimate the number of a ∈ Z[ω] such that a/r ∈ F. We express a/r under the basis
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2.3 Proof of main result

[1/r, ω/r] and for each a ∈ Z[ω], there are a′, a′′ ∈ Z such that a = a′ · 1
r + a′′ · ω

r .

Then this problem is equivalent to count the lattice points under the basis [1/r, ω/r]

in the fundamental area, and we see that it is exactly |r|2. If there exist two different

lattice points a1/r, a2/r ∈ F with (r) | (a1 − a2), then N(a1 − a2) > |r|2 which shows

that either a1/r or a2/r are out of the fundamental area. So each a ∈ Z[ω] with

a/r ∈ F is in the different residue class modulo (r). Then we see that the cardinality

of the set of pairs (a, b) with a/r, b/s ∈ F such that each two of them satisfy (2.17), is

|r|2N−1(R′) = N(U).

Next, we estimate the number of pairs of integers a, b in the above set with (a, U) =

(1) and (b, U) = (1). For this reason we consider the pairs of integers a, b with (a, U) ̸=
(1) or (b, U) ̸= (1) and exclude them from the pairs of integers a, b in the above set with

|a| ⩽ |r| and |b| ⩽ |s|. Here we assume aj , bj and al, bl are two different pairs of solutions

of (2.17). Now we estimate the nunber of pairs of integers a, b with (a, U) ̸= (1) or

(b, U) ̸= (1). Since U can be decomposed into U = P γ1
1 P γ2

2 · · ·P γj
j , we consider two

cases of P (= Pj).

Case 1. P | U , P ∤ U(k), and P ∤ R′S′.

We will show that P | (aj) implies P ∤ (bj), which means that integers a, b are in

the different residue class modulo P . Indeed, since R′ | (aj − al), S
′ | (bj − bl) and

gcd(N(P ),N(R′)) = gcd(N(P ),N(S′)) = 1, we have P | (aj − al) and P | (bj − bl).

These show UP ∤ (k) and UP | (ajs), which means UP ∤ (bjr) and thus P ∤ (bj).
Case 2. P | U and either P | U(k) or P | R′S′.

(i) P | U(k) and P ∤ R′S′.

As the same discussions in case 1, we have P | (aj − al) and P | (bj − bl). Since

UP | (k) and UP | (ajs), we have UP | (bjr), which implies P | (bj). So in this case,

P | (aj) implies P | (bj), which means that integers a, b are in the same residue class

modulo P .

(ii) P | R′S′.

Assume P | R′ and P ∤ S′. Note that P ∤ (aj) holds in this case. Since (P, S′) = (1),

all the integers b will be in the same residue class modulo P . In this case, we only need

to exclude the pairs of integers a, b with P | (b). Similarly, for the case of P ∤ R′ and

P | S′, we only need to exclude the pairs of integers a, b with P | (a).
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2.3 Proof of main result

From the above discussion, we have

#H(k) ≤ N(U)
∏
P |U

P ∤U(k)

P ∤R′S′

(
1− 2

N(P )

) ∏
P |U

P |U(k)R
′S′

(
1− 1

N(P )

)

≤ N(U)
∏
P |U

P ∤U(k)

P ∤R′S′

(
1− 1

N(P )

) ∏
P |U

P ∤U(k)

P ∤R′S′

(
1− 1

N(P )

) ∏
P |U

P ∤U(k)

P |R′S′

(
1− 1

N(P )

)

·
∏
P |U

P |U(k)

P ∤R′S′

(
1− 1

N(P )

) ∏
P |U

P |U(k)

P |R′S′

(
1− 1

N(P )

)

= N(U)
∏
P |U

P ∤U(k)

(
1− 1

N(P )

) ∏
P |U

P ∤R′S′

(
1− 1

N(P )

)

= Φ(U)
∏
P |U

P ∤R′S′

(
1− 1

N(P )

) ∏
P |U(k)

(
1− 1

N(P )

)−1

. (2.19)

Now we use some notations, following Vaaler’s method, see [28]:

J0 = {P : P | U,P ∤ R′S′},

J1 = {P : P ∈ J0,N(P ) ⩽ t},

J2 = {P : P ∈ J0,N(P ) > t},

Im = {I : I = P γ1
1 P γ2

2 · · ·P γk
k , P1, P2, ..., Pk ∈ Jm, γ1, γ2, ..., γk ∈ Z}

with m = 0, 1, 2.

Since U(k) ∈ I0, we divide U(k) into two parts of I1 ∈ I1 and I2 ∈ I2, with U(k) = I1I2.

Then, together with (2.19), we have the following estimate:

#H(k) ⩽ Φ(U)
∏
P∈J0

(
1− 1

N(P )

) ∏
P |I1I2

(
1− 1

N(P )

)−1

= Φ(U)
∏
P∈J1

(
1− 1

N(P )

)∏
P |I1

(
1− 1

N(P )

)−1
∏

P∈J2

(
1− 1

N(P )

)
∏

P |I2

(
1− 1

N(P )

)
≤ Φ(U)

∏
P∈J1

(
1− 1

N(P )

)∏
P |I1

(
1− 1

N(P )

)−1

. (2.20)
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2.3 Proof of main result

Let

K = I2K1 , Q =
∏

P |R′S′U
N(P )⩽t

P.

Since (K1, U) = (1) and (U(k), R
′S′) = (1), we have (K1, R

′S′U) = (1) and (I2, R
′S′) =

(1), which imply (K,Q) = (1). Then by using (2.16) and (2.20), we get

λ(E(r) ∩ E(s)) ≤ δ2
∑

k∈Z[ω]
1⩽|k|⩽|r||s|∆

#H(k)

≤ δ2
∑
I1∈I1

∑
K

1⩽N(K)⩽ |r|2|s|2∆2

N(U)N(I1)

(K,Q)=(1)

Φ(U)
∏
P∈J1

(
1− 1

N(P )

)

·
∏
P |I1

(
1− 1

N(P )

)−1

= δ2Φ(U)
∏
P∈J1

(
1− 1

N(P )

)

·
∑
I1∈I1


∏
P |I1

(
1− 1

N(P )

)−1 ∑
K

1⩽N(K)⩽ |r|2|s|2∆2

N(U)N(I1)

(K,Q)=(1)

1


. (2.21)

By the Landau prime ideal theorem 2.2.3, we have (π(y)(ln 2 + ln y) + ln ln y)y−1 ≪ 1

as y → ∞. Then there exists b ≥ 0 such that for any y ≥ b, we have π(y)(ln 2+ ln y) +

ln ln y ⩽ y ln 3. We will estimate∑
|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)

λ(E(r) ∩ E(s))

by dividing it into two cases.

Case A. t ≥ b and |r|2|s|2∆2 ≥ 3tN(U).

By the sieve method for the imaginary quadratic fields and binomial theorem, we
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2.3 Proof of main result

see ∑
K

1⩽N(K)⩽ |r|2|s|2∆2

N(U)N(I1)

(K,Q)=(1)

1 =
∑
D|Q

µ(D)T

([
|r|2|s|2∆2

N(U)N(I1)N(D)

])

≪
∑
D|Q

µ(D)

[
|r|2|s|2∆2

N(U)N(I1)N(D)

]

=
∑
D|Q

µ(D)

N(D)

|r|2|s|2∆2

N(U)N(I1)
−
∑
D|Q

µ(D)

{
|r|2|s|2∆2

N(U)N(I1)N(D)

}

⩽ |r|2|s|2∆2

N(U)N(I1)

∏
P |Q

(
1− 1

N(P )

)
+
∑
D|Q

|µ(D)|

⩽ |r|2|s|2∆2

N(U)N(I1)

∏
P |Q

(
1− 1

N(P )

)
+ 2π(t) as t→ ∞, (2.22)

where µ is the ideal version of Möbius function, that is,

µ(D) =

{
(−1)k, if D = P1P2 · · ·Pk,

0, if ∃P such that P 2 | D,

and T (·) is the function we have used in the proof of Lemma 2.2.4. Next we use the

3rd Mertens’ theorem 2.2.2 for an algebraic number field, we have

2π(t) ≤ 3t

tπ(t) ln t
⩽ |r|2|s|2∆2

N(U)

1

tπ(t) ln t

≪ |r|2|s|2∆2

N(U)

∏
P |Q

(
1− 1

N(P )

)
1

tπ(t)
as t→ ∞. (2.23)
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2.3 Proof of main result

If N(I1) ⩽ tπ(t), we take (2.22) and (2.23) into (2.21) and get

λ(E(r) ∩ E(s)) ≪ δ2
Φ(U)

N(U)
|r|2|s|2∆2

∏
P |Q

(
1− 1

N(P )

)

·
∏
P∈J1

(
1− 1

N(P )

) ∑
I1∈I1

1

N(I1)
∏
P |I1

(
1− 1

N(P )

)

= δ2
Φ(U)

N(U)
|r|2|s|2∆2

∏
P |Q

(
1− 1

N(P )

) ∏
P∈J1

(
1− 1

N(P )

) ∑
I1∈I1

1

Φ(I1)

≪ δ2
Φ(U)

N(U)
|r|2|s|2∆2

∏
P |Q

(
1− 1

N(P )

)

·
∏
P∈J1

(
1− 1

N(P )

)(
1 +

N(P )

(N(P )− 1)2

)

⩽ Ψ2(r)Ψ2(s)Φ(U)

N(U)

∏
P |R′S′U

(
1− 1

N(P )

)

·
∏
P∈J1

(
1 +

1

N(P )(N(P )− 1)

)

⩽ Φ((r))
Ψ2((r))

|r|2
Φ((s))

Ψ2((s))

|s|2
∏
P |U

P ∤R′S′

N(P )⩽t

(
1 +

1

N(P )(N(P )− 1)

)

≪ λ
(
E(r)

)
λ
(
E(s)

)
as t→ ∞. (2.24)

If N(I1) > tπ(t), then there exist a prime ideal P ∈ J1 and γ ∈ Z such that P γ | I1,
N(P ) ⩽ t, and (N(P ))γ > t. This implies that there exists an ideal D such that D2 | I1
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2.3 Proof of main result

and (N(D))2 ≥ t
2
3 . Then we have

λ(E(r) ∩ E(s)) ≪ δ2Φ(U)
∏
P∈J1

(
1− 1

N(P )

) ∑
I1∈I1

N(I1)>tπ(t)

N(I1)

Φ(I1)

·
∑
K

1≤N(K)≤ |r|2|s|2∆2

N(U)N(I1)

(K,Q)=(1)

1

≪ δ2Φ(U)
∑
I1∈I1

N(I1)>tπ(t)

∑
K

1⩽N(K)⩽ |r|2|s|2∆2

N(U)N(I1)

1

≤ δ2Φ(U)
∑
D

[t
1
3 ]⩽N(D)<∞

∑
J

D2|J
1⩽N(J)⩽ |r|2|s|2∆2

N(U)

1

≪ δ2∆2Φ(U)

N(U)
|r|2|s|2

∑
D

[t
1
3 ]⩽N(D)<∞

1

(N(D))2
as t→ ∞. (2.25)

We use a method similar to the proof of Lemma 2.2.4 to estimate the term∑
[t

1
3 ]⩽N(D)<∞

N−2(D):

∑
[t

1
3 ]⩽N(D)<∞

1

(N(D))2
≪

∞∑
n=[t

1
3 ]

1

n2
≪ 1

t
1
3

as t→ ∞.

We take this estimate into (2.25) with Corollary 2.2.5 and get

λ(E(r) ∩ E(s)) ≪ Ψ2((r))Ψ2((s))
1

t
1
3

≪ Φ((r))
Ψ2((r))

|r|2
(ln t)Φ((s))

Ψ2((s))

|s|2
(ln t)

1

t
1
3

≪ λ
(
E(r)

)
λ
(
E(s)

) ln2 t
t
1
3

≪ λ
(
E(r)

)
λ
(
E(s)

)
as t→ ∞. (2.26)

Together with (2.24) and (2.26), we conclude, in Case A, that,∑
|r|2∈Z

∑
|s|2∈Z

(r) ̸=(s)

λ(E(r) ∩ E(s)) ≪
∑

|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)

λ
(
E(r)

)
λ
(
E(s)

)
. (2.27)

Case B. If t < b or |r|2|s|2∆2 < 3tN(U).
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2.3 Proof of main result

Let η0 = e−max{b,C,v0} and suppose 0 < Λ(Z) ⩽ η0. We put L = ln( 1
Λ(Z)) and get

λ(E(r) ∩ E(s)) ≪ Ψ2((r))Ψ2((s))
Φ(U)

N(U)

∏
P∈J1

(
1− 1

N(P )

) ∑
I1∈I1

1

Φ(I1)

< Ψ2((r))Ψ2((s))
∏
P |U
P ̸∈J1

(
1− 1

N(P )

)

·
∏
P∈J1

(
1− 1

N(P )
+

1

N(P )(N(P )− 1)
− 1

(N(P ))2(N(P )− 1)

)
< Ψ2((r))Ψ2((s))

≪ Ψ2((r))

|r|2
Φ((r)) ln(1 + g((r)))

Ψ2((s))

|s|2
Φ((s)) ln(1 + g((s)))

≪ λ(E(r))λ(E(s)) ln
2(1 + t) as t→ ∞. (2.28)

If t < L, which implies L ≥ b, then from (2.28) we have∑
|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)

λ
(
E(r) ∩ E(s)

)
≪

∑
|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)
t<L

λ
(
E(r)

)
λ
(
E(s)

)
ln2(1 + t)

< (Λ(Z))2
(
ln

(
1 + ln

1

Λ(Z)

))2

≪ (Λ(Z))2
(
ln ln

1

Λ(Z)

)2

as t→ ∞. (2.29)
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2.3 Proof of main result

If t ≥ L and N(U) < |r|2|s|2∆2 < 3tN(U), then∑
|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)

λ
(
E(r) ∩ E(s)

)

≪
∑

|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)

Ψ2((r))Ψ2((s))

⩽
∞∑

m=L

m∑
n=1


∑
(r)m

|r|2∈Z

∑
(s)n

|s|2∈Z
N(U)<|r|2|s|2∆2<3mN(U)

Ψ2((r))Ψ2((s))



=
∞∑

m=L

m∑
n=1


∑
(s)n

|s|2∈Z

Ψ2((s))
∑
(r)m

|r|2∈Z
N(U)<|r|2|s|2∆2<3mN(U)

Ψ2((r))



≪
∞∑

m=L

m∑
n=1

 ∑
(s)n

|s|2∈Z

λ(E(s)) ln(1 + n)
∑
(r)m

N(U)<|r|2|s|2∆2<3mN(U)

Ψ2((r))



≪
∞∑

m=L

ln(1 +m)

m∑
n=1

 ∑
(s)n

|s|2∈Z

λ(E(s))
∑
(r)m

N(U)<|r|2|s|2∆2<3mN(U)

Ψ2((r))

 .

(2.30)

If Ψ((r))|r|−1 ⩽ Ψ((s))|s|−1, then ∆ = Ψ((s))|s|−1 and |r|2|s|2∆2 = |r|2Ψ2((s)).

By using Lemma 2.2.7 with ξ = 1/2 and e1/2(1− ε) = 3/2, we have∑
(r)m

N(U)<|r|2Ψ2((s))<3mN(U)

Ψ2((r)) ≪ C
∑
(r)m

N(U)<|r|2Ψ2((s))<3mN(U)

1

|r|2

≪ C(ln(1 + n))(ln 3m)e−mβ(1−ε)

≪ Cm(ln(1 +m))e−m
3
2 , (2.31)

where C > 0 is a constant which satisfies Ψ((r)) ⩽ C|r|−1 for all principal ideals (r).

This constant exists by the assumption Ψ((r)) = O(|r|−1). If Ψ((r))|r|−1 > Ψ((s))|s|−1,
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2.3 Proof of main result

then we can use the same approach as Vaaler’s to divide the set Z into some small pieces,

that is, let

Wj =

{
e : e ∈ Z[ω],

C

2j+1
< |e|2Ψ2((e)) ⩽ C

2j

}
with j = 0, 1, 2.... For r ∈Wj and N(U) < |s|2Ψ2((r)) < 3mN(U), we see

C|s|22−j−13−mN−1(U) < |r|2 < C|s|22−jN−1(U).

From Lemma 2.2.8, we have∑
(r)m

N(U)<|r|2Ψ2((s))<3mN(U)

Ψ2((r)) ≤ C
∞∑
j=0

1

2j

∑
(r)m

C|s|2

2j+13m
1

N(U)
<|r|2<C|s|2

2j
1

N(U)

1

|r|2

≪ C

∞∑
j=0

1

2j
ln(1 + g((s))) ln(3m)e−v

3
2

≪ Cm(ln(1 +m))e−m
3
2 . (2.32)

By using (2.30), (2.31) and (2.32), we find∑
|r|2∈Z

∑
|s|2∈Z

(r) ̸=(s)

λ
(
E(r) ∩ E(s)

)

≪
∞∑

m=L

ln(1 +m)
m∑

n=1

 ∑
(s)n

|s|2∈Z

λ(E(s))Cm(ln(1 +m))e−m
3
2



= C

∞∑
m=L

m ln2(1 +m)e−m
3
2


m∑

n=1

∑
(s)n

|s|2∈Z

λ(E(s))



< C
∞∑

m=L

m ln2(1 +m)e−m
3
2


∞∑
n=1

∑
(s)n

|s|2∈Z

λ(E(s))


≪ 1

eL
Λ(Z) = (Λ(Z))2. (2.33)

Then (2.29) and (2.33) imply the following∑
|r|2∈Z

∑
|s|2∈Z

(r)̸=(s)

λ
(
E(r) ∩ E(s)

)
≪ (Λ(Z))2

(
ln ln

1

Λ(Z)

)2

(2.34)
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2.4 An example

in Case B. From (2.27) and (2.34), we get the assertion of Theorem 2.1.3.

Now we will show Theorem 2.1.2.

Proof of Theorem 2.1.2. Since
∑

Φ((r))Ψ2((r))|r|−2 = ∞, by using the Gallagher type

result over an imaginary quadratic field, see [21], we have limN→∞ λ(
∪∞

|r|2=N E(r)) = 0

or 1.

Suppose limN→∞ λ(
∪∞

|r|2=N E(r)) = 0. This also implies

lim
|r|2→∞

λ(E(r)) = 0. (2.35)

We can choose a large rational integer m where λ(
∪∞

|r|2=m E(r)) ⩽ 1
4η. Let j =

max{k,m}. From
∑

Φ((r))Ψ2((r))|r|−2 =
∑∞

|r|2=1 λ(E(r)) = ∞ and (2.35), it follows

that there exists a finite subset Z of {j, j + 1, j + 2, ...} such that 2/3η ⩽ Λ(Z) ⩽ η.

Since
∪

|r|2∈Z E(r) ⊆
∪

|r|2=m E(r), we have

1

4
η ≥ λ(

∪
|r|2=m

E(r)) ≥ λ(
∪

|r|2∈Z

E(r))

≥
∑

|r|2∈Z

λ(E(r))−
1

2

∑
|r|2∈Z

∑
|s|2∈Z

(r) ̸=(s)

λ
(
E(r) ∩ E(s)

)

≥ Λ(Z)− 1

2
Λ(Z)

≥ 1

3
η,

which is impossible. This implies limN→∞ λ(
∪∞

|r|2=N E(r)) ̸= 0 which shows the asser-

tion of Theorem 2.1.1.

2.4 An example

In this section, we give an example following the example of [7], and show that the

divergence condition in the Duffin-Schaeffer conjecture over imaginary quadratic fields

is reasonable.

Let

Σ =
{
(a, r) : a, r ∈ Z[ω], r ̸= 0,

a

r
∈ F
}
.

Define the sets

D1 =

{
z ∈ F :

∣∣∣z − a

r

∣∣∣ < Ψ((r))

|r|
has infinitely many (a, r) ∈ Σ with (a, r) = (1)

}
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2.4 An example

and

D2 =

{
z ∈ F :

∣∣∣z − a

r

∣∣∣ < Ψ((r))

|r|
has infinitely many (a, r) ∈ Σ

}
.

We denote by λ in this section the normalized Lebesgue measure of F, i.e., λ(F) = 1,

and give a sequence {Ψ((r))} with
∑

r∈Z[ω]\{0}Ψ
2((r)) = ∞ such that λ(D2) < 1. First,

we give the complex version of Lemma V in [7] as follows:

Lemma 2.4.1. Let R and ε be given positive numbers. There is an infinite sequence

{Ψ((r))} of non-negative numbers with Ψ((r)) = 0 for all but finitely many r such that

∑
Ψ2((r)) > 1,

∑
Φ((r))

Ψ2((r))

|r|2
< cdε, Ψ((r)) = 0 whenever |r| ⩽ R,

where cd is some constant depending on d, but for z ∈ F the inequality∣∣∣z − a

r

∣∣∣ < Ψ((r))

|r|

for some a, r ∈ Z[ω] can be satisfied only in a set of λ-measure smaller than ε.

Proof. Let Nd be the number of units of the imaginary quadratic field Q(
√
d). Fix some

α > 0 with α <
√
−dε/(2Ndk

′(d)π) and we can choose prime numbers p1, p2, · · · , pk
such that

k∏
i=1

(
1 +

1

pi

)
> 1 +

1

Ndα
,

where pi > R for 1 ⩽ i ⩽ k, since ∑
p:prime

1

p

diverges. Denote by (u) a principal ideal as

(u) = (p1)(p2) · · · (pk) =
∏
P |(u)

P c,

where P denotes the prime ideal and c ⩾ 0. Note that we do not need (pi) be all prime

ideals, and for any ideal U with U | (u) it can be represented as U =
∏
P |U

P c′ with

0 ⩽ c′ ⩽ c. We define Ψ((r)) as follows:

Ψ((r)) =

{
α1/2|r|1/2

|u|1/2 , if |r| > 1 and (r) | (u)
0, otherwise.
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2.4 An example

Define the set

E(r) =
∪

|a|2⩽|r|2
a∈Z[ω]

{
z ∈ F :

∣∣∣z − a

r

∣∣∣ < Ψ((r))

|r|

}

and put

E =
∪

(r)|(u)
(r)̸=(1)

E(r).

Since E(r) ⊂ E(u) for all (r) with (r)|(u), we have

λ(E) = λ(E(u)) ⩽ π
Ndα

|u|2
· 2√

−d
· k′(d)|u|2 = 2Ndk

′(d)π√
−d

α < ε.

Also we have

∑
r∈Z[ω]\{0}

(r)|(u)
(r)̸=(1)

Ψ2((r)) =
α

|u|
∑

r∈Z[ω]\{0}
(r)|(u)
(r)̸=(1)

|r| ⩾ Nd
α

|u|

(
k∏

i=1

(1 + pi)− 1

)

⩾ Ndα

(
k∏

i=1

(
1 +

1

pi

)
− 1

)
> 1

and ∑
r∈Z[ω]\{0}

(r)|(u)
(r) ̸=(1)

Φ((r))
Ψ2((r))

|r|2
=

Ndα

|u|
∑

(r)|(u)
(r) ̸=(1)

Φ((r))

|r|
⩽ Ndα

|u|
∑

U :ideals
U |(u)

Φ(U)

(N(U))1/2

=
Ndα

|u|
∑

U :ideals
U |(u)

1

(N(U))1/2

∏
P |U

Φ(P c′)

=
Ndα

|u|
∏
P |(u)

(
1 +

Φ(P )

(N(P ))1/2
+ · · ·+ Φ(P c)

(N(P c))1/2

)

<
2Ndα

|u|
∏
P |(u)

(N(P ))c/2 = 2Ndα <

√
−d

k′(d)π
ε.

Thus, we see that the sequence {Ψ((r))} with Ψ((r)) defined above is the required finite

sequence.

Now let R1 = 1 and we have a sequence {Ψ(1)((r))} which satisfies Lemma 2.4.1

with R = R1 and ε = 2−1. Then for some R2 with Ψ(1)((r)) = 0 for all |r| ⩾ R2, let

R = R2 and ε = 2−2 and we have another sequence {Ψ(2)((r))} which satisfies Lemma
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2.4 An example

2.4.1. We do this process infinitely many times and obtain infinitely many sequences

of {Ψ(1)((r))}, {Ψ(2)((r))}, · · · , {Ψ(n)((r))}, · · · . Let Ψ((r)) =
∑∞

k=1Ψ
(k)((r)) for all

r ∈ Z[ω]\{0}. Then we see ∑
r∈Z[ω]\{0}

Ψ2((r)) = ∞,

whereas ∑
r∈Z[ω]\{0}

Φ((r))
Ψ2((r))

|r|2
<∞.

However, λ-measure of the set of z ∈ F satisfying inequality |z − a/r| < Ψ((r))/|r|
is smaller than 1 by our choice of {Ψ((r))}, which means λ(D2) < 1. Thus even∑

r∈Z[ω]\{0}Ψ
2((r)) = ∞, we cannot ignore the possibility of the case λ(D2) = 0, and

from our choice of {Ψ((r))} we see
∑

Φ((r))Ψ2((r))|r|−2 <∞ in this case.

41



Chapter 3

Hausdorff dimension of the

exceptional set for complex

numbers

3.1 Generalized Jarńık and Besicovitch’s theorem over

imaginary quadratic fields

First, we define closed disc I in the complex plane by

I =
{
z ∈ C :

∣∣∣z − a

r

∣∣∣ ⩽ δ
}
,

where δ is a positive real number and a, r ∈ Z[ω] with r ̸= 0. We adopt the following

as the definition of the Hausdorff dimension of a subset of complex numbers (see [3]

and G. Harman [11] chapter 10).

Definition 2. Suppose that D is a set of complex numbers. The Hausdorff dimension

of D is equal to d (dimHD = d) if it satisfies the next two conditions:

(i) For any β > d and any ε > 0, there exists a sequence of closed discs {Ij}∞j=1 such

that

(a) D ⊂ ∪∞
j=1Ij,

(b)

∞∑
j=1

(diam(Ij))
β < 1, where diam(·) denotes the diameter of the closed disc,

(c) diam(Ij) < ε, for any j ∈ N.
(ii) For any β < d, there exists ε > 0 such that there is no sequence of closed discs

satiesfying all of the above (a), (b) and (c).

42



3.2 Generalized Harman’s result over imaginary quadratic fields

Our main result is the following, which is a complex number version of Theorem

10.6 in [11].

Theorem 3.1.1. For an infinite subset A of Z[ω]\{0}, let

ν = sup

{
h ⩾ 0 :

∑
r∈A

(
1

|r|2

)h

= ∞

}
.

For a real number ρ with ρ > ν, define the set

D =
{
z ∈ F :

∣∣∣z − a

r

∣∣∣ < |r|−(1+ρ) has infinitely many (a, r) ∈ Σ with r ∈ A
}
.

Then we have dimHD = 2(1+ν)
1+ρ .

If the class number of Q(
√
d) is 1 and A = Z[ω]\{0}, then we have ν = 1 and

we see that for any z ∈ D there exist infinitely many pairs of a and r in Z[ω] with
r ̸= 0 such that |z − a/r| < |r|−(1+ρ) holds and (a, r) = (1), where (a, r) = (1)

means that the ideals (a) and (r) are coprime. This is because of the following: (i)

if a′/r′ = a/r, |z − a′/r′| < |r′|−(1+ρ) and |r′| > |r| hold, then |z − a/r| < |r|−(1+ρ)

also holds, (ii) there are at most finitely many pairs of a′ and r′ with a′/r′ = a/r such

that |z− a′/r′| < |r′|−(1+ρ) holds. Thus, in this case, there is no difference between the

inequality with and without the coprime condition on a and r. This situation is the

same as V. Jarnik and A. S. Besicovitch’s result for real numbers. However, it seems

to be not obvious if the class number is not 1.

Corollary 3.1.2. Suppose that the class number of Q(
√
d) is 1 and put

D0 =
{
z ∈ F :

∣∣∣z − a

r

∣∣∣ < |r|−(1+ρ) has infinitely many (a, r) ∈ Σ with (a, r) = (1)
}
.

then dimHD0 =
4

1+ρ for ρ > 1.

3.2 Generalized Harman’s result over imaginary quadratic

fields

We also consider the set of solutions related to the Duffin-Schaeffer conjecture for

complex numbers from Theorem 3.1.1.
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3.3 Proof of some lemmas

Theorem 3.2.1. Suppose that Ψ((r)) is a non-negative function such that∑
r∈Z[ω]\{0}

Φ((r))
Ψ2((r))

|r|2

diverges. Then we have dimHD2 = 2.

Remark 3.2.2. The author believes that Theorems 3.1.1 and 3.2.1 hold with the co-

prime condition (a, r) = (1). However, the distribution of a/r with (a, r) = (1) in

the fundamental region F is not uniform for some r ∈ Z[ω]\{0} and this fact makes

difficulty to prove them.

3.3 Proof of some lemmas

Before we prove Theorem 3.1.1, we first give two lemmas which will be used later.

Let δ be a positive real number. For any a, r ∈ Z[ω] with r ̸= 0, put

I0(a, r, δ) :=
{
z ∈ C :

∣∣∣z − a

r

∣∣∣ ⩽ δ
}
.

Moreover, for any r ∈ Z[ω] with r ̸= 0 and any closed disc I in C, we denote by N(r, I)

(resp. N ′(r, I)) the number of a ∈ Z[ω] satisfying I0 ∩ I ̸= ϕ (resp. I0(a, r, δ) ⊂ I).

Lemma 3.3.1. Let I be a closed disc with diameter ζ and δ, η real numbers with

0 < δ < ζ/4 and 0 < η < 1. Then there exist positive constants c1(d, η), c2(d, η) and

R0(d, η), depending only on d and η, satisfying the following: for any r ∈ Z[ω]\{0}
with ζ > |r|η−1 and |r| > R0(d, η), we have

N(r, I) ⩽ c1(d, η)ζ
2|r|2,

N ′(r, I) ⩾ c2(d, η)ζ
2|r|2.

Proof. We only consider the case of d ≡ 1 (mod 4). In fact, we can prove the case

of d ≡ 2, 3 (mod 4) in the same way. Suppose z0 ∈ C is the center of I, i.e., I =

{z ∈ C : |z − z0| ⩽ ζ
2}. If I0(a, r, δ) intersects I, then we consider the bigger disc

I′ = {z ∈ C : |z − z0| ⩽ ζ
2 + δ} and count the number of lattice points of a ∈ Z[ω] with

a/r ∈ I′ for a fixed r ∈ Z[ω]\{0} to estimate N(r, I). Let c1(d) =
√
9− d/2 be the

diameter and c2(d) =
√
−d/2 be the area of the parallelgram F. Then we have

N(r, I) ⩽
π(( ζ2 + δ) + c1(d)

|r| )2

c2(d)
|r|2

⩽ π

c2(d)
(ζ|r|+ c1(d))

2

=
π

c2(d)
(ζ2|r|2 + 2c1(d)ζ|r|+ c21(d)).
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3.3 Proof of some lemmas

Since ζ > |r|η−1, ζ−1|r|−1 → 0 as |r| tends to ∞. So we see that for |r| > R0(d, η) with

some large R0(d, η), there is some c1(d, η) > 0 such that

N(r, I) ⩽ c1(d, η)ζ
2|r|2.

Similarly we count the number of lattice points in a smaller disc to estimate N ′(r, I) as

follows:

N ′(r, I) ⩾
π(( ζ2 − δ)− c1(d)

|r| )2

c2(d)
|r|2

⩾ π

c2(d)
(
ζ

4
|r| − c1(d))

2

=
π

c2(d)
(
ζ2

16
|r|2 − c1(d)

2
ζ|r|+ c21(d)).

So for |r| > R0(d, η), there is some c2(d, η) > 0 such that

N ′(r, I) ⩾ c2(d, η)ζ
2|r|2.

The next lemma gives the estimate for the number of two different closed discs

which intersect each other described in Lemma 3.3.1.

Lemma 3.3.2. Given a positive integer Q. For δ > 0 and a, r ∈ Z[ω] with r ̸= 0 and

a/r ∈ F, put
I(a, r, δ) =

{
z ∈ F :

∣∣∣z − a

r

∣∣∣ ⩽ δ
}
.

Consider

G = {I(a, r, δ) : (a, r) ∈ Σ, r ∈ C}

for any subset C of
{
r ∈ A : |r|2 ∈ (0, Q]

}
, where A is any infinite subset of Z[ω]\{0}.

Then there is some constant k′(d) > 0 depending on d such that ∑
I,J∈G

I̸=J,I∩J ̸=ϕ

1

 ⩽ 4Ndk
′(d)δ2Q2|C|2, (3.1)

where Nd is the number of units of Q(
√
d).
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3.3 Proof of some lemmas

Proof. We have ∑
I,J∈G

I ̸=J,I∩J̸=ϕ

1

 ⩽
∑
r,s∈C

∑
a,b∈Z[ω]
a
r
, b
s
∈F

0<|ar− b
s |⩽2δ

1 =
∑
r,s∈C

∑
a,b∈Z[ω]
a
r
, b
s
∈F

0<|as−br|⩽δ|rs|

1

⩽
∑
r,s∈C

∑
a,k∈Z[ω]
a
r
, b
s
∈F

0<|k|⩽2δQ
as≡k (mod (r))

1, (3.2)

for k = as− br. Let U = (r, s) and then there are ideals R′ and S′ such that (r) = UR′

and (s) = US′. First, we consider the number of k with

U | (k) and 1 ⩽ |k|2 ⩽ 4δ2Q2. (3.3)

Let’s denote by T (t) the number of ideals whose norms are smaller than or equal to

t > 0 and by N(·) the norm of ideal. Put (k) = UU ′ with an ideal U ′, then the

number of (k) satisfying (3.3) equals to the number of U ′ with N(U ′) ⩽ 4δ2Q2/N(U),

which is smaller than T (4δ2Q2/N(U)). Fix one k ∈ Z[ω] which satisfies (3.3) and

suppose that a0, b0 ∈ Z[ω] and a1, b1 ∈ Z[ω] are two different pairs of integers with

k = a0s− b0r = a1s− b1r. Then we have (a0−a1)S′ = (b0− b1)R′, which shows that a0

and a1 are in the same residue class modulo the ideal R′. Since the number of residue

classes modulo the ideal R′ is N(R′) and the number of a ∈ Z[ω] with a/r ∈ F is |r|2

and these integers a are all in different residue classes modulo the ideal (r), the number

of pairs of a, b ∈ Z[ω] with k = as− br is |r|2N−1(R′) = N(U) for fixed k ∈ Z[ω]. Thus
we have ∑

a,k∈Z[ω]
a
r
, b
s
∈F

0<|k|⩽2δQ
as≡k (mod (r))

1 ⩽ Nd · T
(
4δ2Q2

N(U)

)
·N(U) ⩽ 4Ndk

′(d)
δ2Q2

N(U)
·N(U)

= 4Ndk
′(d)δ2Q2,

with some k′(d) > 0. Note that Nd is always a constant. The constant k′(d), depending

on d, exists since the number of units in an imaginary quadratic field is finite and the

sequence {T (n)/n} converges to some constant depending on d by Theorem 1.114 in
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3.4 Proof of main results

[18]. By the above result and inequality (3.2) we have ∑
I,J∈G

I̸=J,I∩J̸=ϕ

1

 ⩽
∑
r,s∈C

4Ndk
′(d)δ2Q2 = 4Ndk

′(d)δ2Q2|C|2.

3.4 Proof of main results

Now we will give the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. First, we show (i) of Definition 2 holds for the set D. For any

β > 2(1 + ν)/(1 + ρ) and any ε > 0, we can choose a sufficiently large X > 0 with

2

(X)
1+ρ
2

< ε and
∑
r∈A

|r|2>X

2β

(|r|2)(
ρβ+β

2
−1)

< 1.

This is possible since (ρβ + β)/2− 1 > ν, which means

∑
r∈A

(
1

|r|2

) ρβ+β
2

−1

<∞.

We denote by {I1, I2, · · · } the collection of the discs of the form I0(a, r, |r|−1−ρ), where

a ∈ Z[ω], r ∈ A, |r|2 > X, and a/r ∈ F. Then the set D can be covered by the union

of {Ij}∞j=1 and this satisfies condition (a) in Definition 2. Next, we have

∞∑
j=1

(diam(Ij))
β =

∑
(a,r)∈Σ
r∈A

|r|2>X

(
2

|r|1+ρ

)β

=
∑
r∈A

|r|2>X

2β

(|r|2)
ρβ+β

2
−1

< 1,

which satisfies condition (b) in Definition 2. Condition (c) holds for our choice of the

closed discs with |r|2 > X, which satisfies

diam(Ij) =
2

|r|1+ρ
<

2

X
1+ρ
2

< ε

for all j ∈ N. Thus we see that the set D satisfies (i) of Definition 2, i.e., dimHD ⩽
2(1 + ν)/(1 + ρ) holds.

47



3.4 Proof of main results

Next, we show that the set D satisfies (ii) of Definition 2, i.e., dimHD ⩾ 2(1 +

ν)/(1 + ρ). Pick some g with 0 ⩽ g ⩽ ν such that∑
r∈A

(|r|2)−g = ∞.

Then there are infinitely many integers K satisfying∑
r∈A

1
2
K⩽|r|2<K

1 >
Kg

log2K
. (3.4)

We show this by a contradiction. Suppose there are only finitely many rational integers

of {K1,K2, ...,KN} which satisfy (3.4) with some N ∈ N. Let

1

2
K0 = max(K1,K2, ...,KN ).

Then we have ∑
r∈A

|r|2< 1
2
K0

(
1

|r|2

)g

<∞.

For any K ⩾ K0 we have ∑
r∈A

1
2
K⩽|r|2<K

1 ⩽ Kg

log2K
.

This shows∑
r∈A

|r|2⩾ 1
2
K0

(
1

|r|2

)g

=
∑
r∈A

1
2
K0⩽|r|2<K0

1

|r|2g
+

∑
r∈A

K0⩽|r|2<2K0

1

|r|2g
+ · · ·

⩽
(

2

K0

)g (K0)
g

log2(K0)
+

(
1

K0

)g (2K0)
g

log2(2K0)
+ · · ·

= 2g
(

1

log2(K0)
+

1

log2(2K0)
+

1

log2(22K0)
+ · · ·

)
= 2g

∞∑
m=0

1

(k0 +mk′)2
<∞ (3.5)

with k0 = log(K0) and k
′ = log 2. Hence we have∑

r∈A
(|r|2)−g <∞,

which gives the contradiction.
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Next, let β < 2(1 + g)/(1 + ρ) and choose η > 0 for Lemma 3.3.1 with

η ⩽ min

(
1

4
(ρ− g) ,

1

4

(
1 + g

1 + ρ
− β

2

))
.

Choose a sequence of integers of {Kj}∞j=0 satisfying the following conditions:

(i)K0 = 1,

(ii)K1 > max{2R2
0(d, η), (4Ndk

′(d))
1
2η , 2 · 4

1
1−η , ( 8

2ηc2(d,η)
)
1
η , 64

1
1+ρ },

(iii)2 log2(2|r|2) < |r|2η for all r ∈ Z[ω]\{0} with |r|2 ⩾ K1,

(iv)K1−η
j > K1+ρ

j−1 and Kj > 4Kj−1 for all j ⩾ 1,

(v)
∑
r∈A

1
2
Kj⩽|r|2<Kj

1 >
(Kj)

g

log2(Kj)
and (Kj)

g

(
1− 1

log2Kj

)
⩾ 2 for all j ⩾ 1,

(3.6)

where c2(d, η) and R0(d, η) are from Lemma 3.3.1 and k′(d) is the constant from Lemma

3.3.2. Let D′ = D ∩ F′, where F′ is a subset of F defined by

F′ =

{
z ∈ C :

∣∣∣∣z − 1 + ω

2

∣∣∣∣ ⩽ 1

4

}
.

Since dimHD
′ ⩽ dimHD, it is enough to show that dimHD

′ ⩾ 2(1+ν)
1+ρ by checking (ii)

of Definition 2. Put ε = 2K
−1/2
2 and we will show that for any sequence of closed discs

of {Ij}∞j=1 which satisfies conditions (b) and (c) in Definition 2 does not satisfy (a),

that is, if

∞∑
j=1

(diam(Ij))
β < 1 (3.7)

and

diam(Ij) < ε = 2

(
1

K2

) 1
2

for all j ∈ N

hold, then D′ ̸⊂ ∪∞
j=1Ij . We construct a collection of nested sets {Jj}∞j=1 with J1 ⊃

J2 ⊃ J3 ⊃ · · · so that J = ∩∞
j=1Jj ⊂ D′ and J ̸⊂ ∪∞

j=1Ij . Then we have D′ ̸⊂ ∪∞
j=1Ij ,

which completes our proof.

To do this, we define a sequence of positive real numbers {εj}∞j=0 with εj =

2(Kj)
− 1+ρ

2 for any j ⩾ 0. We construct the nested sets {Jj}∞j=1 satisfying the fol-

lowing four properties by induction:

(P1) Jj is a union of Mj disjoint closed discs with diameters εj = 2(Kj)
− 1+ρ

2 .

(P2) For any Im with diameter between εj and εj−1, we have Im ∩ Jj = ϕ.

(P3) For any z ∈ Jj , there exist a ∈ Z[ω] and r ∈ A with (1/2)Kj ⩽ |r|2 < Kj such
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3.4 Proof of main results

that |z − a/r| ⩽ (Kj)
− 1+ρ

2 with a/r ∈ F′;

(P4) Mj ⩾ (Kj)
1+g−2η.

By (P3), we have J ⊂ D′. Since Jj is compact for all j ∈ N, J = ∩∞
j=1Jj ̸= ϕ. By (P2),

for any a ∈ J we have a /∈ Ij for all j ∈ N, so a /∈ ∪∞
j=1Ij which shows J ̸⊂ ∪∞

j=1Ij . Thus

it is enough to construct {Jj}∞j=1 with the above four properties to show D′ ̸⊂ ∪∞
j=1Ij .

By (3.6), we can choose a set C1 ⊂ {r ∈ A : K1/2 ⩽ |r|2 < K1} such that

(K1)
g

log2K1

⩽ |C1| ⩽ (K1)
g, (3.8)

where |C1| denotes the cardinality of the set C1. Then we construct J1 by using the

closed discs centered at a/r ∈ F′ with r ∈ C1 and their radius are ε1/2 which are wholly

within F′. By Lemma 3.3.1, the number of closed discs we could choose is more than

(c2(d, η)/4)
∑

r∈C1
|r|2. It’s obvious that these closed discs all satisfy the property (P3).

By the choice of ε, they also satisfy the property (P2). By Lemma 3.3.2 for δ = ε1/2,

the number of pairs of discs intersecting to each other is at most 4Ndk
′(d)(K1)

1−ρ|C1|2.
Remove one disc from each pairs of discs intersecting to each other and denote by M1

the number of the left closed discs such that property (P1) holds. Now we confirm that

M1 satisfies the property (P4). Indeed we have

M1 ⩾ c2(d, η)

4

∑
r∈C1

|r|2 − 4Ndk
′(d)(K1)

1−ρ|C1|2

>
c2(d, η)

4

∑
r∈C1

2(|r|2)1−η log2(2|r|2)− 4Ndk
′(d)(K1)

−2η(K1)
1+g−2η

>
2ηc2(d, η)

4
(K1)

1−η log2(K1)|C1| − (K1)
1+g−2η

>

(
2ηc2(d, η)K

η
1

4
− 1

)
(K1)

1+g−2η

> (K1)
1+g−2η.

The above discussion implies that J1 can actually be constructed. Suppose Jj has

already been constructed and now we will construct Jj+1. Similarly to the choice of

C1, we can find Cj+1 ⊂ {r ∈ A : Kj+1/2 ⩽ |r|2 < Kj+1} which satisfies

(Kj+1)
g

log2Kj+1

⩽ |Cj+1| ⩽ (Kj+1)
g. (3.9)

We only use the closed discs of {z ∈ C : |z−a/r| ⩽ εj+1/2} with a/r ∈ F′ and r ∈ Cj+1

which are wholly within Jj ⊂ J1 ⊂ F′ to construct Jj+1 satisfying (P3). The steps of

our construction of Jj+1 are as follows:
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3.4 Proof of main results

(step 1) Choose all the closed discs {z ∈ F′ : |z − a/r| ⩽ εj+1/2} which are wholly

within Jj .

(step 2) Remove the closed discs which intersect to each other such that all the left

closed discs are all disjoint.

(step 3) Remove all the closed discs which intersect some closed discs in {Ij}∞j=1 whose

diameter is between εj+1 and εj .

(step 4) Confirm the number of closed discs, that is, whether Mj+1 ⩾ (Kj+1)
1+g−2η or

not.

(step 5) If (step 4) satisfies property (P4), then define Jj+1 as the union of the left

closed discs.

Let ζ = εj and δ = εj+1/2 = (Kj+1)
− 1+ρ

2 . By our choice of {Kj} in (3.6) we have

δ < (4Kj)
− 1+ρ

2 < (1/4)εj = (1/4)ζ. From our choice of Kj in (3.6) with (Kj+1)
1−η >

(Kj)
1+ρ, the number of closed discs which are wholly within Jj is more than

c2(d, η)Mjε
2
j

∑
r∈Cj+1

|r|2 (3.10)

by using Lemma 3.3.1. By Lemma 3.3.2 for δ = εj+1/2, we have that the number of

pairs of closed discs which intersect to each other is less than

4Ndk
′(d)

(εj+1

2

)2
(Kj+1)

2|Cj+1|2 = 4Ndk
′(d)(Kj+1)

1−ρ|Cj+1|2. (3.11)

Define

Fj = {I ∈ {Ij}∞j=1 : εj+1 ⩽ diam(I) < εj},

and put

F
(1)
j = {I ∈ Fj : 2

(
1

Kj+1

) 1−η
2

⩽ diam(I) < εj},

F
(2)
j = {I ∈ Fj : εj+1 ⩽ diam(I) < 2

(
1

Kj+1

) 1−η
2

}.

By Lemma 3.3.1, we see that the number of closed discs in Jj+1 which intersect some

closed discs in Fj is less than

∑
I∈F(1)

j

∑
r∈Cj+1

c1(d, η)(diam(I))2|r|2 +
∑

I∈F(2)
j

∑
r∈Cj+1

(
5

2
(diam(I) + εj+1)|r|

)2

(3.12)
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3.4 Proof of main results

for some c1(d, η) > 0. From (3.7) we see∑
I∈F(1)

j

c1(d, η)(diam(I))2
∑

r∈Cj+1

|r|2 =
∑

I∈F(1)
j

c1(d, η)(diam(I))2−β(diam(I))β
∑

r∈Cj+1

|r|2

⩽ c1(d, η)(εj)
2−β

 ∑
I∈F(1)

j

(diam(I))β


 ∑

r∈Cj+1

|r|2


< c1(d, η)(εj)
2−β

 ∑
r∈Cj+1

|r|2
 .

Since

(εj)
2−β = 22−β

(
1

Kj

) (1+ρ)
2

(2−β)

< 4

(
1

Kj

) (1+ρ)
2

(2−β)−4ηρ

⩽ 4

(
1

Kj

)ρ−g+4η

,

we have

∑
I∈F(1)

j

c1(d, η)(diam(I))2
∑

r∈Cj+1

|r|2 < 4c1(d, η)(Kj)
g−ρ−4η

 ∑
r∈Cj+1

|r|2
 . (3.13)

The estimate of the second sum in (3.12) is

∑
I∈F(2)

j

∑
r∈Cj+1

(
5

2
(diam(I) + εj+1)|r|

)2

< 100

(
1

Kj+1

) (1−η)
2

(2−β) ∑
r∈Cj+1

|r|2

< 100

(
1

Kj+1

)3η
 ∑

r∈Cj+1

|r|2
 , (3.14)

since

(1− η)

2
(2− β)− 3η = 1− 4η − β

2
+
βη

2
⩾ ρ− g

1 + ρ
+
βη

2
> 0.

Finally, we estimate Mj+1 in (step 4). From (3.10), (3.11), (3.13), and (3.14) we have

Mj+1 ⩾ c2(d, η)Mjε
2
j

∑
r∈Cj+1

|r|2 − 4Ndk
′(d)(Kj+1)

1−ρ|Cj+1|2

− 4c1(d, η)(Kj)
g−ρ−4η

 ∑
r∈Cj+1

|r|2
− 100(Kj+1)

−3η

 ∑
r∈Cj+1

|r|2
 .(3.15)

(3.16)

52



3.4 Proof of main results

By (3.6) and 4η ⩽ ρ− g, we have

4Ndk
′(d)(Kj+1)

1−ρ|Cj+1|2 ⩽ 4Ndk
′(d)(Kj+1)

1−ρ(Kj+1)
2g

⩽ 4Ndk
′(d)(Kj+1)

1+g−4η

= 4Ndk
′(d)(Kj+1)

g(Kj+1)
1−η(Kj+1)

−3η

= 4Ndk
′(d)

1

2
· 21−η · (Kj+1)

−3η (Kj+1)
g

log2(Kj+1)

· 2

(
1

2
Kj+1

)1−η

log2(Kj+1)

< 4Ndk
′(d)(Kj+1)

−3η

 ∑
r∈Cj+1

|r|2
 . (3.17)

From (3.15) and (3.17), we get

Mj+1 >

 ∑
r∈Cj+1

|r|2


·
(
c2(d, η)Mjε

2
j − 4c1(d, η)(Kj)

g−ρ−4η − (4Ndk
′(d) + 100)(Kj+1)

−3η
)

⩾

 ∑
r∈Cj+1

|r|2


·
(
4c2(d, η)(Kj)

g−ρ−2η − 4c1(d, η)(Kj)
g−ρ−4η − (4Ndk

′(d) + 100)(Kj+1)
−3η
)
.

Here, we can add some more conditions to our choice of {Kj} for all j ⩾ 1:

K1 >

(
2c1(d, η)

c2(d, η)
+ (2Ndk

′(d) + 50)

) 1
η

, (3.18)

Kj >

(
(Kj−1)

ρ+2η−g

2c2(d, η)

) 1
η

. (3.19)

By (3.19), we have

(Kj+1)
−3η < (Kj)

−2η · (Kj+1)
−η < (Kj)

−2η · 2c2(d, η)(Kj)
g−ρ−2η

and then we see

Mj+1 >

 ∑
r∈Cj+1

|r|2
 2c2(d, η)(Kj)

g−ρ−2η

·
(
2−

(
2c1(d, η)

c2(d, η)
+ (2Ndk

′(d) + 50)

)
(Kj)

−2η

)

>

 ∑
r∈Cj+1

|r|2
 2c2(d, η)(Kj)

g−ρ−2η.
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Since  ∑
r∈Cj+1

|r|2
 >

∑
r∈Cj+1

2 · (|r|2)1−η log2(2|r|2)

⩾ (Kj+1)
g

log2(Kj+1)
· 2
(
1

2
Kj+1

)1−η

log2(Kj+1)

= 2η(Kj+1)
1−η+g

and by (3.19), we have

(Kj)
g−ρ−2η >

(Kj+1)
−η

2c2(d, η)
.

This gives

Mj+1 > 2η(Kj+1)
1−η+g · 2c2(d, η) ·

(Kj+1)
−η

2c2(d, η)

= 2η(Kj+1)
1+g−2η > (Kj+1)

1+g−2η,

which satisfies the property (P4). So we can actually construct Jj+1 from Jj . By

this construction, we have D′ ̸⊂ ∪∞
j=1Ij . Thus we see that dimHD

′ ⩾ 2(1+ν)
1+ρ , which

completes the proof of Theorem 3.1.1.

Next, we give the proof of Theorem 3.2.1 by using Theorem 3.1.1.

Proof of Theorem 3.2.1. From Theorem 1.1 in [6] we see if Ψ((r)) = O(|r|−1) then D2

has the full Lebesgue measure which also means dimHD2 = 2. Thus it is enough to

consider only the case where Ψ((r)) = O(|r|−1) doesn’t hold, i.e., there are infinitely

many r ∈ Z[ω]\{0} such that Ψ((r)) > |r|−1. Let’s define

Ψ̂((r)) =

{
Ψ((r)), if Ψ((r)) > |r|−1,

0, otherwise,

and put A′ = {r ∈ Z[ω]\{0} : Ψ̂((r)) ̸= 0}. If
∑

r∈A′ Φ((r))Ψ̂2((r))|r|−2 converges,

then
∑

r/∈A′ Φ((r))Ψ2((r))|r|−2 diverges. By Theorem 1.1 in [6] again, the Hausdorff

dimension of the set D2 is 2 for the sequence {Ψ((r))}. Now let’s consider the case of∑
r∈A′ Φ((r))Ψ̂2((r))|r|−2 diverges. In this case, it is enough to prove it with {Ψ̂((r))}

instead of {Ψ((r))}.
We restrict Ψ̂((r)) ⩽ 1 for all r ∈ Z[ω]\{0} without loss of generality. For any given

ε > 0, let

A(m) = {r ∈ A′ : |r|−(m+1)ε < Ψ̂((r)) ⩽ |r|−mε}
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for 0 ⩽ m < [ε−1] and put

A([ε−1]) = {r ∈ A′ : |r|−1 < Ψ̂((r)) ⩽ |r|−[ε−1]ε}.

Since ∑
r∈A′

Ψ̂2((r)) =

[ 1ε ]∑
m=0

∑
r∈A(m)

Ψ̂2((r)) = ∞,

there is at least one m with 0 ⩽ m ⩽ [ε−1] such that∑
r∈A(m)

Ψ̂2((r)) = ∞ (3.20)

with |A(m)| = ∞. By (3.20) and (|r|2)−mε ⩽ 1, there exists a sequence of {Bn} of

pairwise disjoint nonempty subsets of A(m) satisfying the following conditions:

(1) A = ∪∞
n=1Bn.

(2) Let n ⩽ n′ be any positive integers. Then, for any r ∈ Bn and r′ ∈ Bn′ , we have

|r| ⩽ |r′|.
(3) For any positive integer n, we have

1 ⩽
∑
r∈Bn

(
1

|r|2

)mε

⩽ 2.

For any n ∈ N, put ηn = 2−n. Then there exists kn ∈ N such that

∑
r∈Bk

(
1

|r|2

)mε+ηn

<
1

2n−1
(3.21)

holds for any k ⩾ kn. So we have a sequence {kn} with k1 < k2 < k3 < · · · which

satisfies (3.21). Put B = ∪∞
j=1Bkj , then B is an infinite subset of A(m) and obviously

satisfies ∑
r∈B

(
1

|r|2

)mε

= ∞.

For any h > mε, there exists some n0 ∈ N with h > mε + ηn for all n ⩾ n0, which

shows ∑
r∈B

(
1

|r|2

)h

<
∑

r∈∪n0−1
j=1 Bkj

(
1

|r|2

)h

+

∞∑
j=n0

∑
r∈Bkj

(
1

|r|2

)mε+ηj

<
∑

r∈∪n0−1
j=1 Bkj

(
1

|r|2

)h

+

∞∑
j=n0

1

2j−1
<∞.
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Thus B is an infinite subset of A(m) satisfying
∑
r∈B

(
1

|r|2

)h

= ∞, if h ⩽ mε,

∑
r∈B

(
1

|r|2

)h

<∞, if h > mε.

Let

D′
2 =

{
z ∈ F :

∣∣∣z − a

r

∣∣∣ < 1

|r|1+(m+1)ε
has infinitely many (a, r) ∈ Σ with r ∈ B

}
.

Then we have dimHD2 ⩾ dimHD
′
2 since D′

2 ⊂ D2. Let ν = mε and ρ = (m+ 1)ε. By

Theorem 3.1.1 we see

2 ⩾ dimHD2 ⩾ dimHD
′
2 =

2(1 + ν)

1 + ρ
=

2(1 +mε)

1 +mε+ ε
> 2− 2ε.

Since ε > 0 is arbitrary, we have dimHD2 = 2.
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Brüche, Math. Ann. 46 (1891), 279–84.

[16] V. Jarnik, Diophantische Approximationen und hausdorffisches, Mass. Mat. Sb. 36

(1929), 371–382.

[17] A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie
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jecture, Journal de Théorie des Nombres de Nordeaux, 1 (1989), 81–87.

59



BIBLIOGRAPHY

[24] M. Rosen, A Generalization of Mertens’ Theorem, J. Ramanujan Math. Soc. 14

(1999), No.1 1–19.

[25] W. M. Schmidt, Diophantine Approximation, Lecture notes in Mathematics,

Springer-Verlag, Berlin, Vol.785, 1996

[26] D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers and

the logarithm law for geodesics, Acta Arith. 149 (1983), 215–239.
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