
A Thesis for the Degree of Ph.D. in Engineering

A Study on Faults and Error
Propagation in the Linux Operating

System

March 2016

Graduate School of Science and Technology
Keio University

Takeshi Yoshimura

Acknowledgement

I would like to thank my adviser, Prof. Kenji Kono. His guidance helped me in all

the time of research. I would like to express my sincere gratitude to Prof. Hiroshi

Yamada. This dissertation would not have been possible without their advice and

encouragement.

I am also grateful to the members of my thesis committee: Prof. Shingo

Takada, Prof. Hiroaki Saito, and Prof. Kenichi Kourai. This dissertation was

greatly improved by their invaluable feedback.

During my Ph.D., I did an internship at NEC. I enjoyed working with Dr.

Masato Asahara and the opportunity had a significant impact on my research

skills. He also taught me LDA, which is the core of the fault study in this dis-

sertation.

I am also thankful to my colleagues in the sslab. Their surprising enthusiasm

and skills have always inspired me.

I appreciate the financial supports from the Research Fellowships of the Japan

Society for the Promotion of Science for Young Scientists and the Core Re-

search for Evolutional Science and Technology of Japan Science and Technology

Agency.

Finally, I would like to thank my family, my parents, sister for their support all

these years. Without their support and encouragement, many accomplishments in

my life including this dissertation would not have been possible.

2

Abstract

A Study on Faults and Error Propagation in the
Linux Operating System

Takeshi Yoshimura

Operating systems are crucial for application reliability. Applications run-

ning on an operating system cannot run correctly if the operating system fails.

Recent studies reveal that naive faults such as NULL pointer dereferences are still

prevalent in the Linux operating system, which is widely used in productions such

as Android smartphones, cloud platforms, and air traffic control systems. Existing

approaches to prevent operating system failures are twofold: fault detection and

failure recovery. Fault detection is the approach to find and fix as many faults as

possible before shipping, using techniques such as static analysis and software

tests. Failure recovery is the approach to tolerating or mitigating the failures

caused by undetected faults, using the techniques such as software rejuvenation.

To advance the state of the art of fault detection and failure recovery for op-

erating systems, this dissertation conducts detailed analysis of faults and error

propagations in the Linux operating system. Many efforts have been devoted to

improving the quality of fault detection and failure recovery for operating systems.

However, existing techniques rely on ad hoc intuitions and experiences of oper-

ating system developers without understanding the overall trends in Linux faults

and error propagations. For example, if the developers notice that there are many

faults in which NULL pointer check is missing, a static code checker is developed

3

to check for missing NULL checks. Failure recovery is pessimistic and assumes

the entire kernel is always corrupted by a single error.

To understand faults in Linux, this dissertation analyzes more than 370,000

Linux patches, code modification records for Linux in English. To extract top-

ics in the patches, Latent Dirichlet Allocation, a technique of natural language

processing is applied and the patches are classified into 66 clusters based on the

extracted topics. To demonstrate the resulting clusters can contain useful infor-

mation to develop sophisticated code checkers, one cluster is deeply investigated

and 160 patches for fixing faults related to interrupt handling are extracted. Based

on the knowledge obtained from the extracted patches, a static code analyzer has

been developed and detected five unknown faults in Linux 4.1.

This dissertation also investigates error propagations in Linux. To analyze er-

ror propagations, a new concept called error propagation scope is proposed. Error

propagation scope specifies how far an error can propagate. In the dissertation,

two scopes, process-local and kernel-global errors, are introduced. Process-local

errors do not propagate beyond process contexts inside the kernel. Kernel-global

errors corrupt shared data structures and propagate beyond process contexts. This

dissertation shows 73% of errors are process-local and do not propagate beyond

the in-kernel process contexts in the experiments. This result indicates that there

are chances to avoid kernel crashes in Linux by killing a failing process.

The contribution of this dissertation is twofold. First, an analysis of fault re-

ports helps develop new static code checkers that can detect faults overlooked in

an ad hoc approach. Second, partial recovery of the Linux operating system de-

serves further investigation and research to achieve lightweight countermeasures

for system failures.

4

Table of Contents

1 Introduction 1

1.1 Preventing Failures in Operating Systems 2

1.1.1 Fault Detection . 2

1.1.2 Failure Recovery . 3

1.2 Motivation . 4

1.3 Study Overview . 5

1.4 Organization . 6

2 Failure Preventions for Operating Systems 8

2.1 Fault detection . 8

2.1.1 Static Analysis . 8

2.1.2 Software Testing . 10

2.1.3 Formal Proof . 11

2.1.4 System Diagnosis . 12

2.2 Failure Recovery and Mitigation 13

2.2.1 Fault Tolerance . 13

2.2.2 Software Rejuvenation 15

2.2.3 Fault Isolation . 15

2.3 Summary . 16

3 Related Work 18

3.1 Faults in Operating Systems . 18

3.2 Hardware Faults . 19

i

3.3 Operating System Behaviors Under Errors 20

3.4 Environment Evolutions Around Operating Systems 21

3.5 Summary . 22

4 Faults in the Linux Operating System 24

4.1 Linux Patch Characteristics . 25

4.2 Methodology . 27

4.2.1 Natural Language Processing 27

4.2.2 Top-Down Clustering . 29

4.2.3 Parameter Tuning . 30

4.3 Clustering Results . 33

4.4 Extracting Faults in Interrupt Handling 39

4.4.1 API Semantics and the Programming Model 39

4.4.2 Fault Patterns . 40

4.4.3 Candidates of Fault Sites 45

4.4.4 Summary and Discussion 45

4.5 Static Analysis of IRQ handling 46

4.5.1 Workflow . 46

4.5.2 IRQ State Tracking . 47

4.5.3 Execution-flow Emulation 50

4.6 Implementation . 53

4.6.1 IRQ State Tracker . 54

4.6.2 Code injector . 55

4.7 Experiments . 56

4.8 Summary . 61

5 Error Propagation in the Linux Operating System 63

5.1 Fault Injector . 64

5.1.1 Overview . 64

5.1.2 Injected Faults . 64

5.2 Methodology . 67

5.3 Experiments . 69

ii

5.3.1 Experimental Setup . 69

5.3.2 Error Propagation Scope 69

5.3.3 Estimating Reliability after Kernel Oops 71

5.4 Detailed Analysis of Error Propagation 75

5.4.1 Failures . 77

5.4.2 Error Propagation Scope 78

5.4.3 Not-Manifested Errors 86

5.5 Summary and Discussion . 91

6 Conclusion 94

6.1 Contribution Summary . 94

6.2 Future Directions . 95

Appendix A Extracted Patch Documents 96

A.1 Example Patch Document in memori Cluster 96

A.2 Example Patch Document in irq Cluster 97

iii

List of Figures

4.1 An example patch . 26

4.2 Example Dendrograms Generated by Top-down Clustering 32

4.3 Two checked API declarations and comments for each argument

(declared in include/linux/interrupt.h) 39

4.4 Typical API usages . 41

4.5 Example of Leak fault in an error path 43

4.6 Example of Leak fault depending on user inputs 44

4.7 Analysis workflow . 47

4.8 IRQ state transitions . 48

4.9 PCI driver execution-flow . 51

4.10 Example of injected code . 52

4.11 An example of callbacks . 55

4.12 Code snippet for a DoubleFree on a power charger 59

4.13 Code snippet for a Leak fault on a Cardbus driver 60

4.14 Code snippet for a FreeRequestFailed fault 61

5.1 Activated/Not Activated Faults 70

5.2 Observed Failures . 71

5.3 Error Propagation Scope . 72

5.4 Kernel behavior after oops . 73

5.5 Fault Injection Sites . 75

5.6 Fault Activation Sites . 76

5.7 Observed Failures . 77

5.8 Error Propagation Scope . 78

iv

5.9 Failure Type by Scope . 79

v

List of Tables

4.1 Topics That LDA Generates with Different Numbers of Topics . . 31

4.2 Cluster Examples . 34

4.3 Nearest fault description of a cluster centroid. 35

4.4 Clusters about device controls 36

4.5 Clusters about operating system features 37

4.6 Clusters about general software 38

4.7 Investigated faults . 42

4.8 Callbacks for registering and releasing IRQs 44

4.9 Result . 57

5.1 C-Language Level View of the Injected Software Faults. 65

5.2 Segmentation Failure . 80

5.3 BUG ON . 80

5.4 Panic . 81

5.5 Fail silence violation . 81

5.6 Hang . 82

5.7 A Kernel-global error . 85

5.8 Summary of Not-Manifested Errors. 87

5.9 Corrected . 87

5.10 Not affecting . 88

5.11 Error processing omitted . 88

5.12 Incorrect warning . 89

5.13 Almost correction operation . 89

5.14 Aging . 90

vi

5.15 Lucky . 90

5.16 Untraceable . 91

vii

Chapter 1

Introduction

Operating systems are crucial for computer systems reliability. Operating system

kernels fail less frequently than applications, but failures on them cause a severe

impact on the entire software stacks. Even if applications running on an operating

system are highly available, a kernel fault results in a failure of the applications.

It may lead to a serious service outage, security vulnerability, or performance

degradation. Any failures on computer systems are never negligible because they

are the basis of modern internet services. For example, the estimated cost of

Amazon Web Service outages in 2013 was $1,104 per second on average [64].

Linux is a widely used operating system in products that are essential for daily

life. In 2015, Android smartphones had 1.4 billion active users [93]. As well

as in personal devices, Linux is used in 97% of Web front-end servers [96]. In

the Amazon cloud, there are more than 200 thousand instances of Linux-based

operating systems [94]. Recently, mission-critical systems also run on Linux to

reduce development costs. In Germany, an air traffic control system runs on top

of Linux [35].

However, as shown by Palix et al., faults in Linux are not eliminated for a

decade [76]. The study shows that new features in Linux introduced new faults

while developers fixed many faults. As a matter of fact, file systems in the Linux

kernel is evolving and introducing faults [62] although they seem more stable

than other kernel components. Moreover, according to a study of reports in Com-

1

mon Vulnerabilities and Exposures [19], kernel developers cannot avoid introduc-

ing known security problems such as arbitrary memory corruption and denial-of-

service. In Amazon’s recommend virtual machine instance, 40 updates for kernel

vulnerabilities have been published since it was born in September 2011 [1].

Throughout this dissertation, software bugs are described by three terminolo-

gies: fault, error, and failure [77]. A fault is a defect in a component. This work

focuses on defects that are derived from programming mistakes in the C language

code of the Linux kernel. “Inject a fault” means introducing a defect artificially

in a component. “Activate a fault” means that a fault becomes effective; a faulty

region in a component is executed. An error is a state that is changed by a defect.

An error is caused by a fault activation. An error often propagates from one com-

ponent to another, thereby creating new errors. “Manifest an error” means that a

defect affects a delivered service by triggering a failure, which is deviant behavior

(e.g., a kernel crash).

1.1 Preventing Failures in Operating Systems

Existing approaches to prevent operating system failures are twofold: fault de-

tections and failure recovery. Many efforts have been devoted to improving the

quality of the two approaches.

1.1.1 Fault Detection

Fault detection is the approach to find and fix as many faults as possible before

shipping. This dissertation classifies the techniques into static analysis, software

testing, formal proof, and system diagnosis.

Static analysis enables developers to check typical faults in large-scale code.

In particular, this technology easily validates execution flows in exceptional con-

ditions, which developers often overlook. Much work uses static analysis to find

various kinds of faults in Linux: resource-release omissions [86], integer over-

flows [97], hardware failure mishandling [48], and so on.

2

Software testing enables developers to confirm that target software runs cor-

rectly under given test cases. The advantage of testing is to validate dynamically

invoked code that static analysis cannot easily track. For example, concurrency

faults [63] in Linux are detected by a specialized virtual machine monitor that en-

forces kernel interleavings [36]. Another example is to validate the virtual CPU

implementation [2].

Formal proofs verify the satisfaction of given specifications including no se-

mantic violations. seL4 [51] guarantees no buffer overruns and dangling pointer

accesses, which cause serious security vulnerabilities. In Linux, there are efforts

of proving the functional correctness of BSD packet filtering [98] and file system

robustness [20].

System diagnosis with crash dumps and runtime logs is necessary for fixing

broad ranges of complex faults. In the case of Microsoft, developers found bugs

in Windows NT and Office that had existed for over five years through their large-

scale analysis of crash dumps [38].

1.1.2 Failure Recovery

Failure recovery is the approach to tolerating or mitigating the failures caused by

undetected faults. In this dissertation, techniques for failure recovery is classified

into fault tolerance, software rejuvenation, and fault isolation1.

Fault tolerance mechanisms can undo erroneous actions without reboots. It is

derived from the requirement for tolerating hardware faults in software. However,

it is also applied for mechanisms to recover systems from transient software er-

rors [90] [57] [47]. Transient errors can happen in systems by concurrency faults,

timing dependent behaviors of devices, and so on. A primary challenge of fault

tolerance is large runtime overheads of execution logging to undo erroneous ac-

tions afterward.

Software rejuvenation is a lightweight technique to prevent software aging-

related failures. Aging-related failures in Linux mostly happen by memory

1The terminology “fault” is used for the names although they do not remove faults in software

as Chapter 2 describes in detail. Thus, this dissertation classifies them as failure recovery.

3

leaks [23], which cause high memory pressures on systems that run for a long

time. To prevent aging-related failures in operating systems, fast reboot mech-

anisms are effective to reset the accumulative errors in a system without long

downtime [30] [104].

Fault isolations logically separate software domains and cure errors by

restarting a faulty domain. For example, a dedicated address space for device

drivers [91] [44] will avoid errors due to buffer overflows and dangling pointer

accesses in a device driver. Ensuring API2 integrity [67] prevents error propaga-

tion at the interface between device drivers and the kernel core. Kuznetsov et al.

introduce the concept of code-pointer integrity from the fact that many security

vulnerabilities exploit arbitrary memory writes to craft function pointers [54].

1.2 Motivation

Section 1.1 implies that each technique to prevent operating system failures fo-

cuses on particular types of faults. However, faults are derived from human mis-

takes, and thus, it is difficult for developers to predict what kinds of faults they

should target.

As a result, existing techniques rely on ad hoc intuitions and experiences of

developers without understanding the overall trends in Linux faults and error prop-

agations. For example, if the developers notice that there are many faults in which

NULL pointer check is missing, a static code checker is developed to check for

missing NULL checks. Failure recovery is pessimistic and assumes the entire

kernel is always corrupted by a single error.

Unfortunately, it is not an easy task to obtain deep experience of target sys-

tems. In open-source projects such as Linux, there are many contributors, but no

formal means to share experiences. In addition, a large-scale software system con-

sists of many components, each of which requires different expertise to develop

mechanisms for fault detection and failure recoveries such as static analysis and

2In operating system research, API (Application Programming Interface) often refers to in-

kernel functions that are exposed to third-party device drivers and file systems

4

software rejuvenation.

1.3 Study Overview

This dissertation conducts detailed analysis of faults and error propagations in the

Linux operating system. The result leads to some insights to advance the state of

the art of fault detection and failure recovery for operating systems.

To understand faults in Linux, this dissertation analyzes 370,000 and more

Linux patches, code modification records for Linux in English. The analysis uses

natural language processing and machine learning to extract fault patterns whose

occurrence is statistically frequent in the fault-fix repositories. Using a technique

of natural language processing, Latent Dirichlet Allocation (LDA) [10], the fault

reports in the repositories are classified based on topic. Closely related fault re-

ports are expected to contain similar fault patterns.

As a result of the clustering, the patches are classified into 66 clusters. To

demonstrate the resulting clusters can contain useful information to develop so-

phisticated code checkers, one cluster is deeply investigated and 160 patches for

fixing faults related to interrupt handling are extracted. Based on the knowledge

obtained from the extracted patches, a static code analyzer has been developed

and detected five unknown faults in Linux 4.1.

This dissertation also investigates Linux behaviors under error propagations.

To analyze error propagation, This dissertation introduces a concept of error prop-

agation scope. Error propagation scope specifies how far an error can propagate.

The error propagation scope is process-local if an error is confined in the process

context that activated it. The scope is kernel-global if an error propagates to other

processes’ contexts or global data structures.

The experimental result shows that 73% of errors are process-local and do

not propagate beyond the in-kernel process contexts. This result indicates that

Linux could continue to run safely in 73% of failures if a failing process is killed.

Since an error was not propagated to other process contexts, the kernel could be

recovered to a consistent state simply by revoking the context of the faulty process.

5

The contribution of this dissertation is the following:

• A large-scale analysis of fault reports helps develop new static code check-

ers that can detect faults overlooked in an ad hoc approach. Concretely,

five fixes that the static analysis found were accepted by Linux maintainers

and landed on the upstream kernel. All the bugs the static analysis found

have existed for three to ten years in Linux, although it is one of the most

frequently-used software in the world for decades. The result implies the

utilization of software repositories for static analysis is promising to en-

hance the future software quality by detecting bugs that many developers

overlook.

• Partial recovery of the Linux operating system deserves further investiga-

tion and research. According to the study of error propagation scope, there

are chances to avoid kernel crashes in Linux. The detailed analysis of er-

rors shows that global error propagation is prevented by frequent defensive

coding in the Linux kernel.

1.4 Organization

This dissertation is organized as follows. Chapter 2 describes existing techniques

to prevent failures of operating systems in detail. Discussions in the chapter mo-

tivate the field study of faults and error propagation in this dissertation. Chapter 3

overviews a large number of field studies that are conducted to lead to new insights

into operating systems developments. Studies in this dissertation can be regarded

as a field study of operating systems like existing ones. Chapter 4 shows the result

of using natural language processing to study faults in Linux. The chapter also

includes the detail of a demonstration to use the extracted knowledge to develop

static analysis. Chapter 5 describes the introduction of error propagation scope

and the results of studying errors in Linux using fault injections. The chapter ad-

ditionally shows an in-depth analysis of error propagation in Linux from the view

of the C-language code. Chapter 6 concludes this dissertation and discusses the

6

future directions.

7

Chapter 2

Failure Preventions for Operating

Systems

A primary topic of operating systems research is countermeasures for faults and

errors in operating systems. They tackle wide varieties of issues of low availabil-

ity, security vulnerabilities, and performance degradations. Despite the diversity

of solved issues, their approaches are twofold: fault detection and failure recov-

ery as shown in Chapter 1. This chapter briefly overviews these existing work to

motivate studies in this dissertation.

2.1 Fault detection

2.1.1 Static Analysis

Static analysis helps developers check if given implementations match to partic-

ular code patterns. The primary advantage of static analysis is the scalability to

large-scale code like Linux due to its fully-automated checking. Furthermore,

static analysis is useful to check code in exception error handling, which is diffi-

cult for software testing to check.

Engler et al. introduce checking implicit system rules in the code of operating

system kernels with their meta-level compiler [33]. The work enables developers

8

to define various rules such as “Releasing locks after acquiring them” by hand.

Since then, numerous work proposes to check various code patterns for de-

tecting faults specific to operating systems. Collateral evolutions [74] [75] is

API usage changes that often cause developers’ mistakes. Their idea is derived

from the unstable property of Linux in-kernel APIs [53]. Carburizer [48] checks

code patterns that do not tolerate hardware failures. KINT [97] detects integer

overflow, which potentially lead to security vulnerabilities of operating systems.

STACK [99] searches ill-formed code that compilers inappropriately optimize.

Unfortunately, it is unclear how developers obtain new patterns like the above

efforts.

In fact, an obstacle to finding faults by static analysis remains how to know

what to check. A concept of “specification mining” aims to extract particular pat-

terns from given code by using techniques such as statistical methods [34] [60].

However, they still cannot avoid a primary limitation such as false positives and

negatives of checked patterns due to the characteristics of static analysis. Hec-

tor [86] focuses on resource-release omissions to reduce a large number of the

false patterns. However, they cannot extract code patterns involving dynamically

called code sequences, which are frequently contained in operating systems. Yang

et al. [105] extract file system specifications from a source code by tracking file

system behavior, although they do not answer if the idea can be applied for more

complex interactions between other types of drivers and devices.

Consequently, existing techniques for static analysis often rely on ad hoc OS

developers’ experiences and intuitions. An example of static analysis accepted by

Linux developers is Coccinelle [56]. It extracts Linux API protocols by utilizing

the insights of experienced developers. In the case of Windows, Static Driver

Verifier (SDV) [5] focuses on Windows stable in-kernel APIs to detect faults in

Windows device drivers. SDVRP [7] enables developers to apply the SDV concept

for other software with a more robust and efficient analysis engine (SLAM2) [6]

[87].

However, especially in Linux, it remains unclear if there can be other faults

that developers should check during their development. Currently, DDVer-

9

ify [102] [101] [29] verifies 1642 properties of 31 device drivers in Linux

2.6.16 [101]. Linux Driver Verifier [110] verifies more than 40 rules of 3,300

drivers in Linux. To determine faults specific to operating systems, develop-

ers need to obtain the overall trend of faults in operating systems like efforts in

distributed systems [106]. They investigate a sufficient number of catastrophic

failures like data losses in distributed file systems and found the effectiveness of

checking exception handling.

2.1.2 Software Testing

Software testing reduces developers’ debugging efforts as well as static analysis.

It automates the process of ensuring the functional correctness of software under

given test cases. An advantage of testing is the ease of validating much functional

correctness in no matter how complex and large-scale software is. In particular,

static analysis cannot conduct join testing involving hardware unlike the validation

by software testing.

An example of complex functionalities that existing work validated is CPU

virtualization [2] because they involve hardware-specific behaviors with multi-

tier software stacks. Another example is concurrent behaviors [36] because these

faults are activated in very narrow time windows. However, the biggest challenge

of software testing is to obtain test cases that validate as many software behaviors

(including exceptional ones) as possible.

A primary solution to obtaining test cases is to utilize symbolic executions

of static analysis. Symbolic executions conceptually fork all possible paths in a

code, calculating and preserving all variable constraints in contexts. Klee [13] uti-

lizes the property to automatically find inputs that cause failures. SymDrive [82]

running on top of S2E [21] introduces symbolic devices to check driver behav-

iors with various device models. However, exceptional behaviors that test cases

should often cover happen in deep inter-procedural flows, and thus, the problem of

path explosions arises. Deep inter-procedural analysis mostly suffers from mem-

ory pressures and heavy scheduling of a large number of contexts. The work

for software testing using symbolic executions has to give up scheduling low-

10

priority contexts and reduce the number of the parallelism. However, it may not

be a primary limitation because distributed symbolic executions can mitigate the

impact [12]. Unfortunately, there remains the limitation of static analysis as Sec-

tion 2.1.1 discusses.

An alternative approach is to artificially reproduce exceptional behaviors using

fault injections. LFI [68] emulates failures inside user libraries to validate error

handling in applications. LFI may need to be extended to validate using tightly-

coupled in-kernel libraries since LFI focuses on well-defined interfaces of user

libraries. G-SWFIT [31] [24] and FINE[50] mutate binary instructions to emu-

late general faults in software or hardware. SAFE [71] focuses on open source

code to emulate general software faults to improve the accuracy of fault injec-

tions. CloudVal [78] is a framework to inject faults into operating systems under

virtualized environments. Faults specific to operating systems can be emulated

by the means of fault injection techniques here. However, it requires appropriate

fault characteristics to be emulated.

In real-world software developments, testing tends to be ad hoc. For the ex-

ample of LLVM [55] development, it offers every patch submission to attach test

scripts [81]. Test scripts are often simple C language code that reproduce fail-

ures of the compiler without a submitted patch. The scripts are accumulated in

the public repository as well as the main source code and directly used as test

suites that are included in the development package. In the case of Linux, there

is a public testing project [80] although it is currently separated from the kernel

main developments. Although this dissertation does not focus on software testing,

understanding faults in the wild potentially leads to finding overlooked test cases

with the “bird’s-eye” view.

2.1.3 Formal Proof

The theorem proof of programs with Hoare logic directly guarantees the func-

tional correctness of target software under the given specifications. The obstacle

to applying formal proofs for operating systems is type safety and determinism,

which are main assumptions for the logic. Operating systems in productions like

11

Linux and Windows are developed with the C language, which is difficult to pre-

serve the arbitrary type safety. Moreover, operating systems parallelize many

resource usages with interrupts and polling in various components to avoid low

resource utilization.

seL4 [51] [32] [9] solves the two issues with Haskell prototyping and verifica-

tion friendly architecture. However, the work reveals that theorem proofs require

person-year-long efforts whenever the specification is modified although the pro-

cess of coding and proving is semi-automated. Besides, a fully-verified kernel

is difficult to be achieved without modifying fundamental operating system de-

signs such as interrupts and memory managements. The partial verifications in

Linux are performed on particular features: a file system [20] and BSD packet

filtering [98].

As a deviant of formal proofs, there are attempts to automatic generation of

kernel code by formal specifications. Formal specifications enable third-party

developers to (semi-)automate the device driver development without the extra

expertise of operating system internals and potentially avoid faults that developers

make [84] [85]. Unfortunately, existing work of formal specifications supports

limited device types and features.

Deductive verification efforts in practice are incomplete because there are

many faults in the Linux kernel core as shown in a study of vulnerability re-

ports [19]. Besides, the correctness of specifications, which every proof assume,

requires appropriate knowledge of what code is unpreferable. For example, devel-

opers know that buffer overflows should be avoided while there can be uncovered

semantics that developers should verify as shown in recent studies in rules of

packet filtering [18].

2.1.4 System Diagnosis

Runtime logs and dumps help developers diagnose systems and often result in

fixing wide varieties of faults. They include even crashes involving complex de-

pendencies of software stacks and performance degradations. However, primary

issues on system diagnosis are to reduce developers’ efforts by automating the

12

process.

Logs enable developers to obtain runtime information that developers can cus-

tomize to find root causes easily. SherLog [107] automates the process of narrow-

ing down failed control-flows from log messages. However, SherLog assumes all

the logs have sufficient information at appropriate places to track control-flows.

LogEnhancer [109] automatically re-writes existing logs to contain sufficient con-

tents so that developers can trace failed control-flows. Errlog [108] detects error

paths and insert logs in the path. However, the above techniques inherently as-

sume static analysis, which have limitations to solve complex problems in code as

shown in Section 2.1.1.

Another issue of system diagnosis is to reduce efforts to understand large

amounts of data. Xu et al. [103] use machine learning to extract anomaly informa-

tion from millions of lines of console logs. Windows Error Reporting prioritizes

billions of Windows crash dumps with clustering and heuristics [38] [27].

A problem specific to analyze Linux crash dumps is the diversity of kernel

images. Guo et al. mitigate the issue by extracting the line of C language code

that incurs a crash from binary-level information [42]. In Linux, crash dumps are

emitted through a crash procedure that is called kernel oops. The procedure is

very naive but lightweight compared to Windows bluescreen event. The concept

of error propagation scope that this dissertation introduces is derived from the

property of killing a faulty process at the kernel oops. Thus, the study in this

dissertation can be regarded as the evaluation of the reliability of crash procedure

in Linux. In other words, the error study in this dissertation also may lead to

efficient collections of crash dumps to advance post-mortem of operating systems.

2.2 Failure Recovery and Mitigation

2.2.1 Fault Tolerance

Failure recovery and mitigations are derived from the requirements of highly

available systems with fault-tolerant mechanisms. Fault tolerance recovers sys-

13

tems from errors before failures happen. A primary method of fault tolerance in

operating systems is the additional execution monitor to roll back them. Conven-

tional fault-tolerance by redundant hardware is usually not preferable regarding

the cost-effectiveness and strong constraints of available environments.

Shadow driver [90] intercepts and records device inputs and perform replaying

records to recover from transient failures involving device behaviors. However,

shadow driver cannot be applied to file systems because their states are not tran-

sient. Membrane [89] achieves restartable file systems by checkpointing of per-

sistent states on disk platters. However, Membrane focuses on file systems, and

thus, also assumes characteristics of particular kernel components. Recovery Do-

main [57] generalizes the concept by separating general kernel contexts into pro-

tection domains that can be undone. In virtualized environments, an adapted vir-

tual machine monitor can simplify the mechanisms of interpositions. Remus [26]

intercepts all the inputs of guest OSes at the virtual machine monitor layer to

asynchronously replicate their states.

However, these techniques cause high runtime overheads. FGFT [47] focuses

on protecting a single driver that users specify with fine-grained checkpointing

and a speedy fault isolation [70]. However, it requires developers’ efforts to iden-

tify and specify the isolation area in device drivers. Tardigrade [61] replicates only

lightweight applications built with a Library operating system for Windows [79]

by monitoring library interfaces [8]. However, it assumes virtualized environ-

ments and services can be built with the library. As a result, existing fault tolerant

mechanisms are often difficult to be applied for many environments such as smart-

phones.

In the real world, there have been attempts at creating operating system ker-

nels capable of failure recovery. Multics and MVS [4] are known products of

recoverable kernels, although the recovery code dominates half of the operating

system code. Unfortunately, even these systems cannot avoid critical faults and

outages that require reboots [88].

14

2.2.2 Software Rejuvenation

Software rejuvenation [45] is a concept that re-uses initializations of software

modules to error recoveries. Using re-initializations for error recoveries enables

systems to avoid complex routines for recovery events that rarely happen but often

become huge runtime overheads. This technique assumes that operating system

failures are often transient. Transient failures are caused by timing dependent

concurrency faults, accumulated memory leaks, and other faults that are difficult

for developers to fix before shipping.

An issue of software rejuvenation is to determine fine-grained modules for

high efficiency. Microreboot [15] increases service availability by fine-grained

modules and reboots. The work also shows the required properties of microre-

booting such as crash-only property [14].

For operating systems, the simplest approach of software rejuvenation is

kernel-level reboots. Otherworld [30] gives applications opportunities to survive

operating system failures. The technique omits the time of hardware resets and

service downtime. However, applications need to be added extra, application-

specific crash procedures so that the applications can preserve application-specific

states during kernel rebooting. Phase-based reboot [104] shortens downtime by

utilizing virtual machine snapshots. Both of the two techniques are based on the

pessimistic idea to error propagations; they always try to recover systems from

extreme situations where a single error causes the entire system corruption.

2.2.3 Fault Isolation

Numerous proposals in software fault isolation for operating systems often fo-

cus on isolating kernel extensions such as device drivers and file systems. They

try driver-level reboots (reinitializations of kernel extensions) to recover systems

from errors detected by isolation mechanisms. As well as kernel-level software re-

juvenation, driver-level reboots assume that a single error causes the entire driver

corruption.

Microkernel architectures such as MINIX3 [44], seL4 [51], and CuriOS [28]

15

ensures fault isolations of each server in the architecture-level. In Linux,

Nooks [91] separates address spaces for device drivers to prevent buffer overflows

and preserve in-kernel API semantics. However, Nooks require additional mod-

ifications of device drivers. SUD [11] enables user-level drivers to access privi-

leged functionalities such as direct memory access (DMA) and interrupts with few

driver modifications. Recently, security concerns in hypervisors arise due to the

widespread use of cloud computing. Hyperlock [100] ensures that each guest op-

erating system runs on top of a dedicated KVM module to protect host operating

systems from being exploited by a crafted guest.

These existing work reveals that fine-grained isolations by microkernel-like

architectures often cause high latency or low throughput by added complex inter-

faces for safe message passing. To reduce the runtime overhead, optimizations by

compile-time instrumentations are proposed [111] [16] [67]. However, they addi-

tionally require developers’ efforts to write in-kernel API wrappers or annotations,

which are necessary for accurate isolations.

2.3 Summary

Existing techniques for failure preventions lack the view of the characteristics of

faults and errors. As a result, they tend to rely on ad hoc developers’ experiences

and intuitions.

As shown in Section 2.1.1, static analysis is useful to validate software thor-

oughly. A limitation of static analysis is the difficulty of validating complex code.

However, Section 2.1.2 shows that software testing can cover the complex cases

with appropriate test cases. Unfortunately, advanced software testing also relies

on static analysis and does not solve the primary challenge to obtaining what to

check. Section 2.1.3 implies that formal proofs may be promising to ensure the

quality of code, but there remain strong limitations to apply for Linux, currently.

Section 2.2.1 shows that failure recovery is derived from the notion of fault-

tolerance and explored to reduce runtime overheads. However, the efforts often

focus on particular environments regardless of modern environment diversity. Ex-

16

isting software rejuvenations for operating systems are pessimistic and assume the

entire kernel is always corrupted by a single error. As discussed in Section 2.2.2,

coarse-grained modules may cause unnecessary recovery of states. However, ex-

ceedingly fine-grained isolations may cause complex dependencies and runtime

overheads as shown in Section 2.2.3. Moreover, determining fine-grained isola-

tions requires deep knowledge and experiences of system implementations as well

as the issue of static analysis.

17

Chapter 3

Related Work

Decades ago, failure analysis of Tandem operating system [39] revealed that soft-

ware faults are the biggest cause of the system failures. Since then, numerous

studies of software faults and errors have been conducted. This chapter overviews

existing studies to discuss the importance of this dissertation.

3.1 Faults in Operating Systems

Field studies of faults are useful to enhance existing fault detection techniques

as Chapter 4 shows. These studies are usually performed with past failure logs

and bug reports for target systems. The fault study in this dissertation is also

investigating the fault reports in the Linux GIT repository.

Lu et al. study over 5,000 patches in Linux 2.6 file systems [62]. They show

file systems evolution including the distribution of typical software faults. The

file systems study gives the first comprehensive view of file system faults in the

wild. However, the investigation is limited to particular file systems and difficult

to scale to other components because the study is conducted manually. The issue

can be solved by using static analysis to study faults [76] [22] while they cannot

capture all types of faults as shown in Section 2.1.1. The study of faults in this

dissertation avoids the issue with the help of natural language processing.

The file systems study [62] shows that concurrency faults are frequent in Linux

18

file systems. Most of the code in Linux can be invoked concurrently, and thus,

careless code can easily cause atomicity violations, deadlocks, and so on. The

detailed classes of concurrency faults are defined and studied by Lu et al. [63]. The

fault study in this dissertation focuses on faults that potentially cause atomicity

violations in device drivers, which the file systems study [62] does not cover.

An analysis of CVE reports shows a taxonomy of Linux faults related to se-

curity vulnerabilities [19]. It includes memory-related faults such as buffer over-

flows and dangling pointer accesses, which appear in the file systems study [62].

The result of the clustering in this dissertation does not contain security vulnera-

bilities as a representative cluster. This dissertation focuses on frequent patterns,

and thus, do not extract such rare but serious faults.

Numerous work for static analysis shown in Section 2.1.1 can be regarded

as studies of particular fault types. These studies indicate detailed and focused

views of particular faults instead of comprehensive views of target software. There

are studies of resource-release omissions [86], integer overflows [97], hardware

failure mishandling [48], and so on. However, it is unclear how the knowledge of

these fault patterns is obtained. This dissertation extracts the knowledge from a

large number of fault reports.

Field studies of faults usually suffer from a large amount of noise in the target

resources. Information retrieval and/or machine learning is useful for identifying

fault fixes [92] and de-duplicating fault reports [83] [46]. They focus on extracting

a particular collection of fault reports by analyzing the textual characteristics of

the reports. In this dissertation, the study of faults analyzes textual data in fault

reports as well as their work. However, the study focuses on extracting the content

of fault descriptions using latent Dirichlet allocation [10].

3.2 Hardware Faults

Kadav et al. show faults of handling hardware failures in device drivers [48]. For

example, many device drivers mistakenly assume that devices always output cor-

rect values. Such wrong assumptions potentially cause system hangups by infinite

19

loops in device drivers. The study implies that an important role of operating sys-

tem is to detect hardware faults and display it to users. Thus, it is essential for

operating system developers to know characteristics of hardware failures.

The largest-scale study of hardware failures is an empirical study of millions

of Windows crash dumps [73]. They focus on personal computers, which often

consist of commodity hardware. The work shows that the recurrent property of

hardware failures: a machine that encountered hardware failures cause the second

one intermittently. Ganapathi et al. also analyze crash dumps of Windows XP to

show failures of device drivers [37]. However, they do not provide details of error

propagation because crash dumps do not directly show fault information. This

dissertation does not use crash dumps in the study of error propagation, unlike

these two analysis.

The empirical study [73] also shows that DRAM is sometimes unreliable. For

example, cosmic rays cause transient bit-flips on DRAM chips [112]. Li et al.

show that non-transient or persistent errors on DRAM chips cause impacts on

software stacks as well as transient errors [59]. In this dissertation, hardware

faults are out of scope but bit-flips on DRAM may cause similar faults that the

error study in this dissertation focuses on. In other words, recovering software

failures may lead to tolerating transient faults in DRAM.

3.3 Operating System Behaviors Under Errors

Understanding the operating system behaviors under errors can be an aid for ker-

nel developers to improve the kernel dependability or develop the mechanisms for

kernel recoveries. However, real faults in operating systems are difficult to repro-

duce in experiments. Consequently, existing study of error propagation in Linux

is investigated by using fault reports or fault injection as well as studies in this

dissertation.

Gu et al. use fault injection to characterize Linux behaviors under errors [41].

Their analysis shows that crash latencies are often within ten cycles and also

shows how an error propagates between Linux subsystems. Chen et al. [17] and

20

another paper from Gu et al. [40] investigate behavioral differences caused by

different combinations of CPU models and operating systems. However, the fault

models considered in these studies are device-level transient faults such as DRAM

bit-flips. The study of error propagation focuses on low- and high-level program-

ming mistakes.

Kouwe et al. automate the study of fail silence violations by comparing normal

and faulty executions of an operating system [52]. Fail silence violations are not

obvious crashes but prevent applications from continuing their execution. Unfor-

tunately, they focus on external anomalies, i.e., do not conduct in-depth analysis

of error propagations inside operating systems. This dissertation shows the detail

of error propagation that cause fail silence violations in the view of C language

code.

Cotroneo et al. analyze software aging in the Linux kernel with reports in

Bugzilla [23]. They also investigate software aging in file systems [25]. Soft-

ware aging is an error type that requires a long period for error manifestations.

However, the error study in this dissertation tracks every kernel executions, and

thus, this dissertation does not show the characteristics of error propagation that

such long-running workloads cause. To cover these failures, this dissertation also

investigates not-manifested errors and show the reason the errors do not result in

failures.

3.4 Environment Evolutions Around Operating

Systems

Lu et al. show that file systems in Linux are still evolving although the evolution

causes software faults [62]. Their result implies that the environment evolutions

that surround operating systems cannot be ignored when discussing operating sys-

tem reliability.

For example, storages are turning into flash drives due to their performance su-

periority compared to conventional hard disk drives. However, a large-scale study

of Facebook flash storages [69] shows uncovered limitations of flash drives. They

21

include the fact that the failure rate of flash storages increases at high tempera-

tures, which are correlated with device power consumptions. As a result of this

study, future device drivers potentially change the current policy of device power

managements to reduce failure rates of flash drives. On the other hand, an in-depth

analysis of faults in this dissertation shows that faults in interrupt handling also

appear in the code for device suspends and resumes. The results imply that it will

be important to check power management code as this dissertation does because

the code may become more complex.

In addition to storage movements, application behaviors evolve as Harter et al.

shows [43]. The study reveals that applications for multimedia and productivity do

not access files sequentially although operating systems assume that file accesses

are often sequential. On the other hand, the trend changes by applications are not

observed in the study of faults in this dissertation. This is because the objective of

the study is to overview the patches in the past; such recent trends may appear if

the given data set is changed into patches within recent periods.

As well as storages, modern devices are evolving. Kadav et al. study the char-

acteristics of modern devices and show the future direction of improving device

drivers reliability [49]. For example, they investigate the interactions between de-

vices and drivers. It results that some modern device classes and buses such as

USB are loosely-decoupled with each other by well-defined interfaces. The au-

thors expect that the interfaces are useful for future fault isolations. However, for

current Linux device drivers, the fault study in Section 4 also implies that such

interactions may be error-prone due to the increases of software complexity.

3.5 Summary

According to Section 3.4, operating systems still need to evolve although the evo-

lution causes new faults. As a result, there is numerous work to study software

faults and errors in operating systems. Unfortunately, these studies still cover a

limited portion of faults in operating systems due to limitations of their method-

ologies.

22

Section 3.1 shows that operating systems also contain well-known faults such

as buffer overflows and concurrency faults. Faults specific to operating systems

are caused by mishandling hardware failures that Section 3.2 shows. However,

studies of faults tend to focus on particular kernel components and fault patterns:

they lack top-down views of software faults in operating systems. The limitation

is derived from the difficulty of manual investigations on a large number of study

resources (e.g., fault reports). The study of faults in this dissertation avoids the

issue with the help of natural language processing on a large number of fault

reports.

Errors in operating systems are mostly unclear due to a limited number of

studies as shown in Section 3.3. In particular, the influences of software faults are

less studied although numerous work attempts to solve software faults as shown in

Chapter 2. This dissertation focuses on software errors as well as software faults.

23

Chapter 4

Faults in the Linux Operating

System

The objective of this chapter is to understand typical faults with more than 370,000

fault fixes in Linux GIT repository. As shown in Chapter 3, the biggest challenge

of field studies is that the size of target resources is too large for developers to read

in full.

A simple solution is to limit the number of investigations by selecting random

resources within a particular period. The drawback of this approach is that it

cannot determine whether the contents of sampled resources are rare cases or not.

Another method is to extract the resources that contain bug-like keywords that

developers already know (e.g., “NULL” or “race”). However, developers do not

always know such keywords, especially when they attempt to study faults related

to operating system semantics.

The solution of this dissertation to the issue is to use natural language pro-

cessing to extract fault patterns whose occurrence is statistically frequent in the

repository. Additionally, this chapter shows an experience of developing checkers

with the knowledge extracted from the fault reports.

24

4.1 Linux Patch Characteristics

Linux patches have abundant information about faults that a system experienced.

Target resources in existing work [62] are also patch documents written in natu-

ral languages. In particular, useful information about faults is provided as a form

of natural languages. This section briefly describes observations of Linux patch

characteristics, which lead to natural language processing shown in the next sec-

tion.

Figure 4.1 shows a typical Linux patch on August 13, 2013. The example

shows a typical race condition whose cause was a lock missing (missing call-

ing functions genl_lock() and genl_unlock()) when dumping generic

netlink families. Function genl_lock wraps mutex_lock() that is a com-

mon synchronization API in Linux kernel. At the very least, the function can

be speculated as a synchronization family from the name without knowing the

detail of the implementation. In addition, it reports a crash by unprotected list

addition/removal. The author indirectly explains that they can activate the error

only after the second call of ctrl_dumpfamily(). Then, the fault is fixed by

adding a lock and unlock on function ctrl_dumpfamily() in a .c file under

net/ directory, which is a part of network stack code in the Linux kernel. The

author reports the fault can exist in old Linux kernels, and finally, the patch is

signed off by related developers. The patch document consists of a title, two body

paragraphs, the last paragraph for the signature, and code change. However, the

second body paragraph and the last signature are not useful for the objective of

this chapter.

The example shows that developers can obtain all the above information on a

real fault in the Linux kernel by understanding the context of the explanation part

written in natural languages. As the example shows, patch documents are well-

written and easy to understand even if there are mentions about device or model-

specific problems. This is because developers other than the patch authors almost

always review patches in the development process of Linux kernel. However,

developers still need to determine problems on some patches and speculate what

problems the code change can remove. Note that this is not a difficult task in many

25

commit 58ad436fcf49810aa006016107f494c9ac9013db

Author: Johannes Berg <johannes.berg@intel.com>

Date: Tue Aug 13 09:04:05 2013 +0200

genetlink: fix family dump race

When dumping generic netlink families, only the first dump call is locked with

genl lock(), which protects the list of families, and thus subsequent calls can ac-

cess the data without locking, racing against family addition/removal. This can

cause a crash....

A similar bug was reported to me on an old kernel (3.4.47) but the exact scenario

that happened there is no longer possible ...

Signed-off-by: Johannes Berg <johannes.berg@...>

...

diff a/net/netlink/genetlink.c...

ctrl_dumpfamily(...)

struct net *net = sock_net(skb->sk);

...

+ bool need_locking = chains_to_skip||...;

+

+ if (need_locking)

+ genl_lock();

...

+ if (need_locking)

+ genl_unlock();

+

return skb->len;

}

Figure 4.1: An example patch

26

cases because documents in Linux kernel are often well-structured by paragraphs

as the example shows.

4.2 Methodology

This section shows the method for extracting typical faults from a large number

of patches in Linux kernel. To this end, the study in this chapter uses natural

language processing and clustering for extracting common patches from a large

number of patches. The key idea of the method in this chapter is based on the

observation of patches in Linux, which was described in the previous section.

In short, patch clustering is performed through patch weighing with latent

Dirichlet allocation (LDA) [10] and top-down clustering [66], with the weight

calculated by LDA. Top-down clustering with LDA groups similar patches while

ensuring that their contents frequently appear among all the target patches. Fi-

nally, I perform manual inspections on patches that the clustering automatically

extract to understand Linux faults.

This dissertation uses fault reports from the Linux upstream git repository

excluding merge commits. The target resource in this chapter is 370,403 patch

descriptions from Linux 2.6.12-rc2 on April 2005 to Linux 3.12-rc5 on October

2013.

4.2.1 Natural Language Processing

The previous section showed that patches in natural language,, i.e., English has

abundant information about the faults. However, English has many kinds of well-

known noise such as variation of verbs and nouns. Thus, the analysis first stems

and drops noisy words as well as common natural language processing [66].

“Stemming” means grouping together words that have the same meaning but

different grammatical variations (e.g., ‘leaks’, ‘leak’, and ‘leaking’). This dis-

sertation uses the Porter’s stemmer, which is the de facto standard for stemming

English [66]. It utilizes suffix stripping based on a rule to conflate inflected words

27

to a root. Stemming does not always preserve the root as a valid word, so the

results contain partially mutated words such as “memori” instead of “memory”.

Noise words are not only well-known “stopwords” (frequently appearing

words in English documents such as ‘is’, ‘a’, ‘that’) but also decimal and hex-

adecimal numbers (e.g., ‘8’, ‘16’, ‘0xff’, ‘1e’), except for ones that are bonded

to other letters e.g., “x86”. Since the information about the development process

is not relevant to the objective of this chapter, The natural language processing

in this chapter also gets rid of paragraphs that include “Signed-off-by:”, which

always appears in the signature paragraph in Linux patch reports.

The Linux coding style is well organized, and function names fre-

quently appear in fault descriptions for Linux patches. For example,

fat_alloc_inode() and ext3_alloc_inode() are functions for an in-

ode allocation in FAT and ext3. In this case, clustering should probably extract

general inode allocation failures by regarding them as similar words. To do so,

the natural language processing in this chapter uses non-alphabet and non-digit

words as split tokens in addition to spaces. From the example functions, two sets

of words are obtained, e.g., (“fat”, “alloc”, “inode”) and (“ext3”, “alloc”, “in-

ode”). The example appearing in the previous section, i.e., wrapping function

genl_lock() and genl_unlock() should be divided into (“genl”, “lock”,

and “unlock”), so that LDA can weigh the example document as heavy as other

documents with “_lock()” functions.

LDA weighs documents with abstract “topics” that occur in a collection of

documents. For example, when a developer finds a bug, he or she describes it

using words such as “bug”, “problem”, “failure”, “crash”, or similar. When sev-

eral such words occur frequently within a document, such word occurrences may

shape the document’s semantics or context. Furthermore, they may appear more

often in documents that contain similar topics. LDA automates the process of

learning the topics by recognizing the pattern of word co-occurrences.

LDA is one of the main topic models in natural language processing. In LDA,

a document is assumed to be generated by multiple topics, and the topics are

assumed to be generated by multiple words that appear in the collection of docu-

28

ments. LDA infers a topic with the frequency of word co-occurrences in a given

document. For example, if “memory” and “leak” frequently appear in the same

report, LDA assigns a topic that weighs these two words high and other words

low. LDA then weighs the assigned topic for reports that contain “memory” and

“leak”. Documents can be translated into probability sets of topics that the clus-

tering can use as the weight of each document. This chapter uses the Apache

Mahout [65] implementation of LDA. The detail of LDA algorithms is available

in the original research [10] and Mahout documentation [65].

4.2.2 Top-Down Clustering

LDA produces the probability distribution of topics for each document. However,

it is difficult to understand the meaning of the probability values themselves. For

example, suppose that LDA estimates two documents as 0.3 and 0.4 for the prob-

ability of generating a particular topic. In that case, developers cannot determine

if the two documents are similar or not by only reading these values. Thus, an ad-

ditional method is necessary to group relatively similar documents among all the

documents. In other words, this chapter uses LDA as a dimensionality reduction

for improving clustering results [10].

To do that, the study in this chapter uses top-down clustering, which is a hier-

archical clustering in which the algorithm starts from one cluster containing all the

data and divides the cluster into two recursively. The division stops when all clus-

ters become small enough and understandable (currently, less than 5,000 patches).

The content similarity is calculated by the squared Euclidean distance between

two vectors. The implementation of the division part is 2-means (k-means given k

= 2) on top of Hadoop MapReduce [95] due to its scalable and concurrent-friendly

properties, suitable for the processing of large amounts of data.

The example in the previous section mentions that old kernels have similar

issues, which are not interesting for the objective of this chapter. Many patches for

Linux can contain such noisy paragraphs as references to Bugzilla’s URL, error

logs, oops call traces, device ID tables, and test scripts. They frequently appear

in fault descriptions, and LDA might mistakenly weigh the phrases higher and

29

weaken the actual fault descriptions. To avoid this issue, the clustering divides

fault descriptions into paragraphs (such noisy phrases in Linux often appear as

a paragraph) and then merge their results when top-down clustering checks the

convergence.

This merging strategy is just to regard patches in the same cluster as their

employing paragraphs. For example, when a patch has three paragraphs, p1, p2,

and p3, whose clusters are c1, c2, and c1, respectively, This study regards the

clusters to which the patch belongs as c1 and c2 (i.e., the frequency of each cluster

is ignored). As a result, if the cluster c1 is not interesting, the results for c1 can be

ignored while the interesting cluster c2 can be extracted independently.

4.2.3 Parameter Tuning

Mahout LDA provides parameters for the number of topics, number of iterations,

two smoothing parameters, and so on. When the number of topics is small, LDA

tends to weigh unrelated words into a topic, which potentially leads to clusters

that gather unrelated patches. A large number of topics can capture more detailed

contexts of documents. Although too many topics may result in it being too com-

plicated for humans to understand, top-down clustering is also useful to filter out

trivial topics among the corpus.

Table 4.1 shows example results of LDA that is executed with different num-

bers of topics (100, 250, and 500). In 100 topics, LDA generates a topic that is

composed of “null”, “local”, “d”, “g”, and so on. Documents that have this topic

with high probability are expected to have topics for NULL, but there can be many

noise. Small numbers of topics often result in many noisy words such as “d” and

“g” in a single topic. Furthermore, some words such as “local” imply that the

topic also contains uninteresting ones such as local variables.

In 250 topics, LDA generates a topic that is composed of “pointer”, “null”,

“reserv”, and so on. With larger numbers of topics, LDA often allocates noisy

words in other topics. However, the topic still weighs the word “reserv” higher

than “derefef”. In 500 topics, LDA generates a topic that is “null”, “derefer”,

“dereferencc”, and so on. The topic is expected to have topics for NULL derefer-

30

Table 4.1: Topics That LDA Generates with Different Numbers of Topics
This table describes topics that LDA generates with different numbers of topics.

The upper row in each table lists words that compose the topic. From left, words

generate a topic with higher probability as shown in the below row. For example,

with 100 topics, LDA generates a topic that “null” composes with the highest

probability, 0.14.

Num. of Topics Words Representing a Topic

100 topics
Word null local d g r

Prob. 0.14 0.077 0.058 0.052 0.037

250 topics
Word pointer null reserv derefer dereferenc

Prob. 0.37 0.34 0.12 0.072 0.0020

500 topics
Word null derefer dereferenc deref upgrad

Prob. 0.71 0.15 0.043 0.017 0.014

ences while the topic is generated by the word “upgrad” with lower probability.

As shown in the table, LDA detects a detailed topic for “null” in 250 and 500

topics, compared to one for 100 topics. This study executes LDA with various

numbers of topics until topics are enough detailed as demonstrated in this exam-

ple. Unfortunately, due to time constraints, this study could not investigate more

than 500 topics although some topics (e.g., “fs” topic shown in Section 4.3) can

be divided.

The top-down clustering also has parameters for the number of patches that

should be gathered into a cluster, measurements of the similarity among patches,

and so on. As well as LDA topics, a small number of patches in a cluster can

capture more detailed and focused faults. However, it increases the difficulty of

overviewing all of the faults, because of an explosive increase in the number of

clusters.

To determine how many patches should be included in a cluster, this study ex-

plored a visualized dendrogram (Figure 4.2.3 shows a few examples), which the

top-down clustering generates. Each cluster is divided by 2-means as described

31

��������	��
��
����

�������
������	�	��

���
������
����	�	��

���
��
������	�	��

����������
��
����

�������
������	����

������������ ������	�	�!

�

�

�"������	�	��

������#���
��
����

���
������
����	�	!!

���
��
������	�	##

���
��
����
����	�	#

�������	##�
��
����

���
������
����	����

���
��
������	�	��

���
��
����
����	�	��

���#����#�
��
����

���
��
������	�	#�

���
������
����	�	#�

���
��
����
����	�	#�

��������	
��
����

���
������
����	����

���
��
������	�	��

���
��
����
����	�	��

��������!�
��
����

���
������
����	���!

���
��
������	�	#�

���
������$�
���	�	�#

���!����#�
��
����

���
������
����	��	!

�
��������%���	�	��

�"%���������	�	#�

���������
��
����

���
������
����	���!

���
��
������	�	��

���
��
����
����	�	��

����	�����!�
��
����

�����
���	����

�"�"��% �������	�	��

����&��"����
���	�	��

�����������
��
����

�����
���	�	�!

�"�"��% �������	�	�!

����&��"����
���	�	��

��������#���
��
����

�����
���	���#

�"�"��% �������	�	�

�
�'��%��������	�	�#

������������
��
����

�����
���	����

�
�'��%��������	�	�!

�&�'����"���	�	��

�����������
��
����

�����
���	��#�

�"�"��% �������	���#

���%''���%%����	��	�

��������!�
��
����

���%''���%%����	����

�����
���	����

�"�"��% �������	�	�!

����#���	��
��
����

�����
���	����

�"�"��% �������	����

���%''���%%����	�	��

��������#��
��
����

�"�"��% �������	����

�����
���	��!�

�(�������
�%
������	�	�

����!���#��
��
����

�����
���	����

�"�"��% �������	��	�

���%''���%%����	�	��

�������!	�!�
��
����

�
�'��%��������	�	�!

�"�
���	�	�!

��
����%��
����	�	��

����	�����!�
��
����

�
�'��%��������	�	�#

��
����%��
����	�	�!

�"�
���	�	��

������������
��
����

�
�
� �&)�
����	�	�!

��%��% �����	�	�

�"�"��% �������	�	�!

�����������
��
����

�
�
� �&)�
����	����

����&��"����
���	�	��

�(�������
�%
������	�	��

���������#��
��
����

��%��% �����	�	��

�"�"��% �������	�	�

�(�������
�%
������	�	��

��������	��
��
����

�(�������
�%
������	���

��
�
��%�����	�	��

����&��"����
���	�	��

����#���#���
��
����

��%��% �����	�	��

�"�"��% �������	�	��

�*"
�'����	�	��

�����������
��
����

�(�������
�%
������	���

��
�
��%�����	�	��

����&��"����
���	�	�#

����������
��
����

�(�������
�%
������	���

������� %���"�
���	��	

������+%����	�	��

Figure 4.2: Example Dendrograms Generated by Top-down Clustering

Each rectangle shows a cluster that has a cluster ID, the number of patches, and

the three most probable topics for the centroid of the cluster. Two edges of a

rectangle show a parent-child relationships. Each topic is expressed by two most

probable words of a topic (if highest probability is >0.9, expressed only by the

word). Note that all the words are partially mutated by Porter’s stemmer.

in Section 4.2.2. Note that the total numbers of patches in a pair of child clus-

ters do not match ones in the parent cluster because of clustering with paragraphs.

The figure shows that clusters with approximately 10,000 patches tend to include

more than 1,000 unrelated patches. For example, the cluster ID=1 contained more

32

than 9,000 patches, but top-down clustering divided into two clusters that con-

tained approximately 5,000 patches. The major topics for these centroids were

also changed into scheduling and locking. Through the observation, this disserta-

tion focuses on the results of clusters containing 5,000 to 10,000 patches.

Another known problem of LDA and top-down clustering is that they can fall

into “local minimum” results depending on the initial result that they randomly

generate. A workaround on this problem is to run them as many times as possible

and explore better parameters. However, it is impossible to determine if or not

the phenomena happens. Instead of tackling the issue, this dissertation indirectly

shows the value of the clustering results by finding faults in Linux as described in

Section 4.7.

This study takes numerous efforts towards parameter tuning as well as pos-

sible, but there might be better parameters. Parameter tuning requires a large

number of computations with various combinations of parameters, and thus, time

constraints become the primary problem for the accuracy of machine learning. In

other words, the accuracy of this fault study can be improved by speeding up the

methodology that efficiently distributes and parallelizes machine learning [58].

The proposed method in a research [3] also potentially improves the study accu-

racy by deciding better smoothing parameters in LDA.

4.3 Clustering Results

By extracting clusters containing 5,000 to 10,000 patches, LDA and top-down

clustering resulted in 66 clusters.As discussed in Section 4.2.3, This study runs

LDA with 1,000 iterations on 500 topics for inferring LDA parameters. Other

hyper-parameters are given as suggested by Mahout’s documentaters.

Although this study cannot give the absolute overview of Linux patches with-

out inspecting all the patches, this section alternatively reports an overview of rep-

resentative patches, which are nearer centroids for each cluster. LDA estimates a

set of words that frequently appear in similar contexts among all the patches. In

addition, each centroid for a cluster roughly reflects the average content of patches

33

Table 4.2: Cluster Examples
From left, ID of a cluster, number of patches, and three most probable topics of

centroids for a cluster. Each topic is expressed by two most probable words of a

topic (if highest probability is >0.9, expressed only by the word).

ID Size 3 top topics for cluster

http 7021 (http, org), (fault, show), (id, cd)

thank 8921 (thank, cc), (manag, appli), (miss, add)

tx 5005 (tx, rx), (queue, blk), (packet, skb)

irq 5334 (irq), (interrupt, msi), (handler, c)

dma 5514 (dma, channel), (map), (id, cd)

x86 5005 (x86, iommu), (pci, slot), (max, min)

arm 5331 (arm, mach), (h, asm), (omap, omap2)

drm 5025 (drm, radeon), (auto, engin), (i915, pipe)

pci 5348 (pci, slot), (bu, driver), (cmd, pcie)

page 8078 (page, insert), (map), (scan, direct)

lock 5697 (lock, unlock), (lock, poll), (lock, protect)

null 6955 (null, derefer), (pointer, cast), (close, cap)

in the cluster. Thus, I expect words that represent the most probable topics for each

cluster to also represent popular topics among all the patches for the Linux kernel.

Table 4.2 shows examples of clusters and their topics. For example, topic

“(null derefer)” in null cluster in Table 4.2 implies that there were a significant

number of contexts where “null” and “dereference” appeared in patches for Linux

kernel. Like null cluster, this section mentions obtained clusters by correspond-

ing cluster IDs in Table 4.2 in this disseration. Note that LDA estimates word

co-occurrences with probabilistic; they do not always co-occur but tend to be in

similar contexts.

Each cluster is characterized by words that represent topics for the centroid

of a cluster. The biggest categories of clusters have topics about operating sys-

tem semantics, including common features (irq (interrupt requests), dma (Direct

34

Table 4.3: Nearest fault description of a cluster centroid.

Cluster arm, commit 9cff337 3rd paragraph

Topic: (arm, mach), (watchdog, nmi), (specif, code)

So far as I am aware this problem is ARM specific, because only ARM sup-

ports software change of the CPU (memory system) byte sex, however the

partition table parsing is in generic MTD code. The patch below has been

tested on NSLU2 (an IXP4XX based system) with a patch, 10-ixp4xx-copy-

from.patch (submitted to Linux-arm-kernel - it’s ARM specific) required to

make the maps/ixp4xx.c driver work with an LE kernel.

memory access), and page), devices (tx (network transmissions), drm (direct

rendering manager), pci, x86, and arm). Furthermore, there are general, well-

known faults such as lock and null in Linux. Other clusters consist of words

that often show up in development discussions such as http and thank.

Table 4.3 shows an example of the bug description and calculated topics in

cluster arm. Words that represent topics characterized bug descriptions.

This study also investigated more than 20 patches for each cluster and con-

firmed that the centroid topics mostly represent the patches of each cluster. Since

the concern of this dissertation is faults in operating systems, the study first filters

out 30 uninteresting clusters before manual investigation. Then, some clusters

are ignored if they obviously had topics unrelated to fixes, for example, thanks,

com, and comment clusters. Other examples of ignored clusters are kernel-builds

such as build and select clusters. Powerpc cluster were mostly relevant to

builds, so this dissertation does not show the results.

In the Linux kernel, most of the topics were about device controls. Table 4.4

shows the clusters for controling devices. The table shows topics for 1) disks: ATA

“(ata libata)”, SCSI/Fiber Channel “(scsi fc)”, and Block I/O “(bio segment)”, 2)

graphics: direct rendering manager/Radeon GPU “(drm radeon)” and other video

“(media video)”, 3) networks: transmission “(tx rx)”, Ethernet “(flow ethtool)”,

and wireless networks/access points “(ap beacon)”, and 4) Bus: PCI “(pci slot)”

and USB “(usb gadget)”. This result indicates Linux developers spent more efforts

35

Table 4.4: Clusters about device controls
From left, ID of a cluster, number of patches, and three most probable topics of

centroids for a cluster. Each topic is expressed by two most probable words of

a topic (if highest probability is >0.9, expressed only by the word). Values after

topics are the probabilities of the topic occurrences in centroids (1.00 means 100%

occurrence of the topic).

ID size most probable 2 topics (top 2 words)

block 5733 (block transact):0.088 (queue blk):0.031

bio 7029 (bio segment):0.056 (mark receiv):0.041

ata 5002 (ata libata):0.252 (id cd):0.025

scsi 5436 (scsi fc):0.153 (save sa):0.018

ap 5167 (ap beacon):0.169 (frame mac80211):0.028

tx 5005 (tx rx):0.137 (queue blk):0.017

flow 5909 (flow ethtool):0.197 (tx rx):0.013

drm 5025 (drm radeon):0.242 (auto engin):0.02

media 5062 (media video):0.146 (v4l2 sensor):0.023

usb 5135 (usb gadget):0.158 (cpufreq frequenc):0.02

pci 5348 (pci slot):0.116 (bu driver):0.011

x86 5005 (x86 iommu):0.155 (pci slot):0.008

arm 5331 (arm mach):0.116 (h asm):0.012

s390 5186 (s390 facil):0.132 (dirti nr):0.108

sh 5777 (sh migrat):0.23 (info displai):0.013

dvb 7018 (dvb v4l):0.214 (media video):0.059

soc 5790 (soc asoc):0.141 (detect pin):0.012

quirk 6493 (quirk laptop):0.161 (report hid):0.094

on commodity devices. On the other hand, there were some topics for specialized

hardware like system-on-a-chip “(soc asoc)”, digital video broadcasting/video for

Linux “(dvb v4l)”, and laptop-specific devices “(quirk laptop)”. most of the SoC

and laptop-specific devices were often sound devices and keyboards, respectively.

36

Table 4.5: Clusters about operating system features
From left, ID of a cluster, number of patches, and three most probable topics of

centroids for a cluster. Each topic is expressed by two most probable words of

a topic (if highest probability is >0.9, expressed only by the word). Values after

topics are the probabilities of the topic occurrences in centroids (1.00 means 100%

occurrence of the topic).

ID size most probable 2 topics (top 2 words)

net 5557 (net linu):0.126 (ocf2 truncat):0.11

nf 5804 (nf netfilt):0.178 (addr ipv6):0.017

socket 5498 (socket y):0.187 (addr ipv6):0.015

irq 5334 (irq):0.158 (interrupt msi):0.017

dma 5514 (dma channel):0.166 (map):0.011

pm 7843 (pm resum):0.077 (serial consol):0.074

memori 5296 (memori leak):0.152 (cpu hotplug):0.01

page 8078 (page insert):0.038 (map):0.018

crypto 5385 (crypto bss):0.256 (o drive):0.011

fs 5211 (fs uml):0.083 (declar static):0.082

Another category of device topics in Linux was CPU/platforms. There were top-

ics “(arm mach)”, “(x86 iommu)”, “(s390 facil)”, and “(sh migrat)” among the

Linux patches. Recent trends towards virtualization were reflected on topic “(x86

iommu)”, however, I did not observe virtualization-related topics in other clusters.

An example document for arm cluster is shown in Table 4.3.

Table 4.5 shows that there are topics for operating system features such as page

“(page insert)”, interrupt “(irq)”, DMA “(dma channel)”, and power management

“(pm resum)” in Linux. In addition, there are also topics for other software stacks.

In particular, topics for network protocol stacks were significant as shown in topics

for network filtering “(nf netfilt)”, miscellaneous network-related materials “(net

linu)”, and sockets “(socket y)”. Topic (crypto bss) indicates cryptography was

also developed eagerly in the Linux kernel. Another software topic was about

37

Table 4.6: Clusters about general software
From left, ID of a cluster, number of patches, and three most probable topics of

centroids for a cluster. Each topic is expressed by two most probable words of

a topic (if highest probability is >0.9, expressed only by the word). Values after

topics are the probabilities of the topic occurrences in centroids (1.00 means 100%

occurrence of the topic).

ID size most probable 2 topics (top 2 words)

alloc 6318 (alloc):0.111 (memori leak):0.019

null 6955 (null derefer):0.071 (pointer cast):0.069

lock 5697 (lock unlock):0.088 (lock poll):0.055

bit 5133 (bit):0.105 (mask bit):0.05

limit 5314 (limit increas):0.066 (number calcul):0.049

debug 5745 (debug messag):0.128 (level format):0.018

timer 7763 (timer idl):0.109 (watchdog nmi):0.097

debugging/diagnosing like perf “(perf counter)”, and kernel messages “(debug

messag)”. Unfortunately, there were no outstanding topics for file systems. “(fs

uml)” represented not only file systems but also User-mode Linux. However, the

cluster for transactions on block devices “(block transact)” gathered problems on

journaling and block handling. An example patch for irq cluster is shown in

Appendix A.2.

Finally, Linux kernel had topics for well-known programming materials (e.g.,

memory, lock) as shown in Table 4.6. For example, there are topics for NULL

“(null deref)”, lock “(lock unlock)”, allocation “(alloc)”, and timer “(timer idl)”.

Unfortunately, memori cluster did not contain a quite number of memory leaks,

but it consists of problems on memory managements such as look-ups of OOM

killers. In addition, there are arithmetic mistakes on data in bit and limit

clusters. An example patch for memori cluster is shown in Appendix A.1.

38

//return 0 on success (negative on failures)

int request_irq(

unsigned int irq, // Interrupt line

irq_handler_t handler, // interrupt handler func.

unsigned long irqflags, // Interrupt type flags

const char * devname, // Device name

void * dev_id); // Device identity

void free_irq(

unsigned int irq, // Interrupt line

void * dev_id); // Device identity

Figure 4.3: Two checked API declarations and comments for each argument (de-

clared in include/linux/interrupt.h)

4.4 Extracting Faults in Interrupt Handling

As a demonstration, developers can learn fault patterns from cluster irq. This

section focuses on patches containing the topic “(free, descriptor)”, which ap-

pears in 331 patches in this cluster. In the 331 patches, 160 are identified as device

driver faults. Most fault patterns are identified as mistakes on the release of inter-

rupt request handlers (IRQs) in device drivers. In the observation, request irq(),

request threaded irq() and free irq() are frequently used APIs. To classify reports,

the words representing the topics of each report are useful. For example, a report is

classified as “irq leak on an error path during a device probing” because the report

was represented by five topics of which the highly probable words are “(memori,

leak)”, “(irq)”, “(probe, driver)”, “(error)”, and “(path)”. Note that topics do not

always reflect a fault directly, so this section performs manual analysis to learn

the faults precisely.

4.4.1 API Semantics and the Programming Model

39

Before discussing the investigated faults, this section briefly describes API

specification for ease of understanding the issue discussed. API specifications

this section focuses on are in Figure 4.3. Request irq() and free irq() are in-kernel

APIs for the registration of IRQ handler in Linux. They require various arguments,

including an interrupt request number (irq), a flag of interrupt types, a function

pointer for the interrupt handler corresponding to the irq, and an extra variable

(dev id). Free irq() is an API for releasing a requested irq by specifying the irq

and dev id. Linux uses dev id to validate requesting and releasing an irq shared

among multiple drivers.

Also, it is necessary to consider the programming model of Linux device

drivers so as to understand the problem. In particular, Linux device drivers of-

ten offer event-driven programming. The Linux kernel core dynamically invokes

driver callbacks that the driver initialization routine registered for each external

event such as physical device probe, removal, and power management.

Figure 4.4 shows typical API usages in device drivers to be checked. Drivers

often store driver-specific states like IRQ numbers to given callback arguments

(struct X *x in the example). The usage of the APIs is similar to that of other

typical pairwise APIs (e.g., malloc/free, lock/unlock). However, there are some

differences for checker implementation in practice. For example, when checking

a shared IRQ, it is necessary to validate the consistency of two arguments unlike

malloc/free, lock/unlock. Another difference is that drivers know the IRQ num-

ber before calling request irq(). This means it is necessary to avoid accidental

free irq() on request-failed IRQs while failed malloc() returns NULL pointer that

free() ignores. In practice, catching request irq() failures is more error-prone than

expected, especially when requesting multiple IRQs as shown in an example in

Section 4.4.2.

4.4.2 Fault Patterns

Table 4.7 shows the observation results of faults that the clustering extracts. There

are four fault types: Argument, Leak, DoubleFree, Order. Inconsistent ar-

guments (Argument) is the major category of fault patterns. Missing free irq()

40

int x_probe(struct X * x) {

/* various resource initializations */

...

if (request_irq(x->irq, x_isr, ..., x))

goto err1;

x->some_src = some_src_alloc();

if (!x->some_src)

goto err2;

return 0;

err2:

// request_irq() must be revoked on failures

free_irq(x->irq, x);

err1:

/* release resources */

return err;

}

void x_remove(struct X * x) {

/* various release resources */

...

free_irq(x->irq, x);

...

}

Figure 4.4: Typical API usages

is the second largest category in the observation (Leak), although Argument

faults consequently cause the same effect as Leak faults. Similar to general

faults, double-frees (DoubleFree) and order violations of releasing resources

(Order) were observed. Order types had seven cases that were not for interrupt

handler registrations. Table 4.7 shows all but Order type were the wrong usages

of a paired API.

Figure 4.5 shows an Argument fault in the unified diff format of its fix. One

of the typical mistakes of freeing IRQs occurs during the failure paths like that in

41

Table 4.7: Investigated faults
The table lists identified 160 faults in the cluster irq

fault type Description Num.

Argument free irq() with inconsistent dev id 41

Argument free irq() with an invalid irq number 25

Leak missing free irq() at driver initialization er-

rors

25

Leak missing free irq() at driver unloading 13

Leak missing free irq() before device is suspended 6

DoubleFree double free irq() 9

Order releasing other src before free irq() 7

Order releasing pages with interrupt disabled 7

Order freeing shraed irq with interrupt disabled 5

Other 22

Total 160

the example. Typical device drivers initialize their IRQ handlers as well as other

resources. However, the resource initializations might fail. This means drivers

have to revoke all the acquired resources as if the system did not load the driver

in such cases. Before fixing the fault in Figure 4.5, the driver frees only an IRQ

after failing to request an IRQ although she intended to free all the allocated IRQs.

These kind of faults in failure paths are difficult to find by testing in defaultging

environments. In this case, requesting IRQs rarely fails; users may encounter such

rare cases when they load a particular device driver that (un)intentionally uses the

same IRQ number.

Figure 4.6 is an example of a Leak fault. The driver requests an IRQ

when it opens a serial port and frees the IRQ when it shutdowns the se-

rial port. Developers can check the example fault by loading and unload-

ing the driver with specific models of Samsung system-on-chips that make

s3c24xx serial has interrupt mask(port) true. However, not all the maintainers

have the specific models, and the models might be rare or old ones in the future.

42

drivers/misc/max8997-muic.c, Linux 3.4-rc3, commit 3241d56edda5

max8997_muic_probe(...) {

for (i = 0; i < ARRAY_SIZE(muic_irqs); i++) {

ret = request_threaded_irq(...);

if (ret) {

...

- for (i = i - 1; i >= 0; i--)

- free_irq(muic_irq->irq, info);

goto err_irq;

...

err_irq:

+ while (--i >= 0)

+ free_irq(pdata->irq_base

+ + muic_irqs[i].irq, info);

err_pdata:

kfree(info);

Figure 4.5: Example of Leak fault in an error path

Also, there are too many device drivers that handle IRQs as described in the next

section. Thus, such runtime testing by using physical devices is time-consuming

and not cost-effective for checking a large number of drivers.

Most faults in Table 4.7 potentially cause serious consequences in systems al-

though they are difficult to test by running systems. For example, no other device

drivers can use an IRQ number until the system shutdowns as the consequences

of Leak faults like in the example in Figure 4.6. In the case of Argument faults,

developers may also unintentionally release IRQ handlers in other running device

drivers. In other words, they do not release an IRQ handler in Argument faults

like the example in Figure 4.5. DoubleFree faults cause either just redundant

executions or missing free irq() calls, depending on the developers’ intention. The

manifestation of Order faults depend on the timing of device interrupts, context

switches, and concurrent executions. For example, an interrupt handler may ac-

43

drivers/tty/serial/samsung.c, Linux 3.9-rc3, commit b6ad29355560

s3c64xx_serial_startup(struct uart_port *port) {

...

ret = request_irq(port->irq,..., ourport);

...

}

...

s3c24xx_serial_shutdown(struct uart_port *port) {

if (s3c24xx_serial_has_interrupt_mask(port)) {

+ free_irq(port->irq, ourport);

wr_regl(port, S3C64XX_UINTP, 0xf);

...

Figure 4.6: Example of Leak fault depending on user inputs

Table 4.8: Callbacks for registering and releasing IRQs

Callers of request irq() Callers of free irq()

struct name::member name Num. struct name::member name Num.

platform driver::probe 398 pci driver::remove 253

pci driver::probe 329 platform driver::probe 240

i2c driver::probe 204 pci driver::probe 210

net device ops::ndo open 121 platform driver::remove 175

spi driver::probe 72 i2c driver::probe 145

platform driver::remove 62 net device ops::ndo stop 116

pci driver::resume 42 i2c driver::remove 108

work struct::func 38 comedi driver::detach 102

pcmcia driver::probe 34 net device ops::ndo open 67

comedi driver::auto attach 31 spi driver::probe 56

cess invalid heap memory, and memory-mapped I/O (MMIO) if the driver releases

the MMIO and memory earlier than IRQ.

44

4.4.3 Candidates of Fault Sites

The examples in Figures 4.5 and 4.6 suggest mistakes on IRQ releases happen

on device drivers, i.e., loadable kernel modules in Linux kernel. An existing tool

to detect intra-procedural resource-release omissions [86] shows the cases for ini-

tialization failures like in Figure 4.5. However, the example also implies there can

be more difficult cases involving user operations like in Figure 4.6.

To confirm the validity of the implication, I analyzed at which event device

drivers call request irq() and free irq() in Linux 4.1-rc1. The analysis first detects

the root functions whose call graph includes at least one of the calls of two API and

their family such as request threaded irq(). Then, it searches for an event callback

in a device-specific struct (e.g., pci driver). Finally, the two analysis results are

joined so as to obtain event callbacks that call the two API families. This chapter

describes the details of extracting event callbacks in Section 4.6.2.

Table 4.8 shows a part of the analysis results. The biggest users of the

IRQ handler APIs were generic device drivers (function pointers in struct plat-

form driver) and PCI drivers (function pointers in struct pci driver). As the ex-

ample indicates, drivers call request irq() at driver constructions such as device

probes, opens, and resumes. Free irq() occurs at driver destructions such as de-

vice removal and failure paths in device probes. The result shows that checkers

should consider not only API pairwise confined within an event callback like in

Figure 4.5, but also API pairwise crossing event callbacks like in Figure 4.6. Also,

it shows there are many kinds of device drivers that request IRQs that potentially

cause faults described in Section 4.4.2.

4.4.4 Summary and Discussion

The observation of IRQ faults in this section shows that there are many imbal-

ances of request irq() and free irq() in the real world. This indicates that develop-

ing static checkers specific to validating the balance of the pairwise like [86] can

effectively reduce debugging efforts during device driver developments. This is

because the fault characteristics offer high coverages that dynamic testing cannot

45

achieve.

However, Table 4.8 and past examples show that it is necessary to track API

pairwise crossing event callbacks. This dissertation does not focus on Order

faults in this work because they are less frequent than wrong API pairwise, and

such timing-dependent faults should be covered by fuzzing tests like [36].

4.5 Static Analysis of IRQ handling

This dissertation uses symbolic execution for an inter-procedural, path-sensitive

static analysis to find IRQ faults on the basis of the observation in Section 4.4.

One of the biggest advantages of symbolic execution is it can achieve high cov-

erage from normal paths to exceptional, rarely executed paths even without run-

ning a target system [82]. Table 4.7 shows 25 faults appeared on rarely-executed

paths such as error paths in driver initializations. Furthermore, there are many

Argument faults on failure paths like the example in Figure 4.5. Symbolic ex-

ecution is also effective to check such inconsistency of symbolic (or concrete, if

possible) values for corresponding arguments.

4.5.1 Workflow

Figure 4.7 shows the abstract workflow to detect IRQ faults. First, the tool gener-

ates checked code from the original driver code and specifications of driver life-

cycle (i.e., event callback execution-flows) given by users. Then, the execution

engine runs on each translation unit (e.g., single .c file and included .h files) until

it completes analyzing all the translation units. During the execution, the analyzer

simply checks the state of each IRQ handler to validate the API pair. After all the

analyses have finished, the fault-finding tool summarizes fault reports in HTML

formats.

In this dissertation, driver complete binaries are not analyzed because pairwise

APIs like IRQ handling mostly appeared in the same .c file. In other words, the

tool ensures that device drivers confine their unit of system rules [33] within a

46

�����

�����	�
������
��	

���	�
����

���

�

���

��

�

�

����

�

�
���

�
��

�
���

���������

�������

�
��

Figure 4.7: Analysis workflow

translation unit. For example, the tool alerts developers of a potential fault if a

pair of request irq() and free irq() appears in different .c files.

4.5.2 IRQ State Tracking

Figure 4.8 shows the simplified version of an IRQ state transitions that the tool

tracks and checks. At the beginning of analyzing a driver, the checker assumes

the state is not tracked (Untracked). When the analyzed driver calls request irq(),

the analyzer stores the symbolic value for the arguments and moves the state to

Requesting. Then, it bifurcates the state into Requested and RequestFailed for the

succeeded and failed paths, respectively. FreeRequestFailed represents erroneous

cases where drivers free non-existing IRQs specialized for request-failed (i.e., not-

allocated) ones. By the bifurcation with symbolic executions, the checker can in-

dependently check two possible state transitions after request irq() returns. Thus,

after RequestFailed, the analyzer checks if free irq() is called or not. Finally, it

moves a Requested state to Freed when the driver calls free irq() with the consis-

tent symbolic values of the arguments. In current Linux, free irq() never fails, and

thus, there are no bifurcations after free irq(). The report of a Leak fault appears

when the driver does not call free irq() for a Requested state at the end of the anal-

47

Untracked

Freed

free_irq()

Requesting

request_irq()

No bugs

driver exit

DoubleFree

free_irq()

Escaped

free_irq()

MayLeak

driver exit

Requested

free_irq()

escaped

Leak/Argument

driver exit

success

RequestFailed

failure

driver exit

FreeRequestFailed

free_irq()

Figure 4.8: IRQ state transitions

Circles are the main states of IRQs, while rectangles are the consequence of state

transitions

ysis. The symbolic execution engine keeps the value pairs even after freed IRQs

so that DoubleFree faults can be reported if a driver frees an IRQ twice without

requesting it again.

48

An analysis focusing on a translation unit potentially overlooks faults when an

analyzed driver passes tracked states via pointers to external functions outside of

a translation unit. For an example of IRQ numbers, drivers often store them inside

a single struct variable instantiated for each driver (see the first argument of re-

quest irq() in Figure 4.6). When the driver passes the pointer to the variable to an

external function, the analyzer cannot detect the modification of tracked states by

the function. As other checkers do in the Clang Static Analyzer, the issue can be

mitigated by introducing an Escaped state. The Escaped state may confuse users

by emitting false reports, but it enables users to prioritize inspecting reports with

fewer false negatives. Thus, users can start their report inspections by using more

doubtful reports such as FreeRequestFailed, Double Free, and Leak/Argument be-

fore less doubtful ones like MayLeak. Thus, the Escaped state is important for

users to reduce manual efforts to find faults in large-scale, complex source code

such as operating systems.

When the driver passes the pointer to the variable representing a Requested

state to an external function, the analyzer turns the state to Escaped. The ana-

lyzer does not change states other than Requested because there are few external

functions that call free irq() i.e., Double Free and FreeRequestFailed rarely hap-

pen in external functions. The analyzer treats Escaped states like Requested states

except for tracked values. For Escaped states, it tracks symbolic values of the

address that stores the values that the analyzer tracked for the Requested state

beforehand. When the analyzer detects the symbolic value of the address for ar-

guments of free irq(), it moves the Escaped state to Freed. Note that the analyzer

reports all the analysis results that went through Escaped states (e.g., MayLeak)

in order to avoid false negatives.

However, Escaped states cannot always be tracked. For example, it gener-

ates Leak reports when the address for the tracked state is potentially modified,

although they might be false ones. This limitation affects the strategy of detecting

Argument faults. In Figure 4.8, free irq() to an Untracked state transits the state

to a Freed state. The analyzer could report Argument faults when there was no

consistent pair of arguments of free irq() in stored arguments. In that case, how-

49

ever, escaped states cause false reports. Thus, the analyzer alternatively detects

Argument faults as Leak faults.

4.5.3 Execution-flow Emulation

The previous section described how the analyzer manages and checks state tran-

sitions inside a static execution-flow. However, execution-flows of Linux device

drivers are not always static because of the programming model of Linux device

drivers.

To forge events at symbolic execution time, an emulating function is injected.

The function simply calls registered callbacks for events in a typical order. It does

not modify existing execution engines so that it increases the complexity of IRQ

state tracking. Existing symbolic execution engines for C language can already

emulate execution-flows that mainly appear in every function definition because

of the nature of C language. Thus, it can emulate execution-flows at static analysis

by adding a function that invokes callbacks in a typical event order.

To write the emulating function, it is necessary to identify the typical event

order at runtime. This section describes it with an example of PCI device drivers

in this section. A typical PCI driver execution-flow is shown in Figure 4.9.

Focusing on the exeuction-flow in Figure 4.9, the emulation code should first

call probing callback in PCI device drivers immediately after the symbolic execu-

tion starts. Then, the symbolic execution engine bifurcates the checker execution

into two because PCI device drivers in Linux sometimes fail to initialize their

resources in probing functions. After probing devices, the driver might have to

handle suspending or physical removal events. A suspending event can fail, so the

execution engine bifurcates the checker execution as well as for probing events.

On the other hand, removal and resuming events do not fail in Linux. Note that re-

moval events can always happen physically except that Linux guarantees the event

atomicity like resuming; device drivers have to handle even when users remove

suspended devices or re-probe removed devices.

Figure 4.10 is the simplified version of injected code. The code is injected

simply by appending a code fragment like in Figure 4.10 to existing .c files. Each

50

Probing

probe

Probed

probe success

probe error

Suspending

suspend

Removed

remove

suspend error

Suspended

suspend success

Resuming

resume remove

re-probe

Figure 4.9: PCI driver execution-flow

51

#ifdef __clang_analyzer__

extern int random();

static void TestPCIDriver(struct pci_dev *pdev,

const struct pci_device_id *id) {

int loop = 0;

enum PCI_STATE state;

reprobe:

if (x_probe(pdev, id)) return;

state = PCI_STATE_PROBED;

normal_operation:

switch(random() % 4) {

case PCI_EVENT_PM:

x_power(pdev, &state);

break;

case PCI_EVENT_REMOVE:

x_remove(pdev);

state = PCI_STATE_REMOVED;

if (random() % 2 && loop++ < 10) goto reprobe;

break;

default:

/* do nothing */

}

if (random() % 2 && loop++ < 10

&& state == PCI_STATE_PROBED)

goto normal_operation;

x_shutdown(pdev);

}

#endif

Figure 4.10: Example of injected code

x probe, x remove, etc. are calling pci driver::probe(), remove(), etc. x power is

a function to emulate the state transition of suspends, hibernations, etc.

52

step of the driver invocation corresponds to driver callbacks (e.g., for a device

probe, the injected code calls a struct pci driver::probe()). The Linux documenta-

tion describes that the kernel core invokes PCI drivers by calling function pointers

in struct pci driver registered at the initialization of a device driver. The injector

detects the defined callbacks by traversing abstract syntax tree to find initialization

of function pointers in struct pci driver as well as static analysis in Section 4.4.3.

Templates of the specification are manually written as shown in Figure 4.10 and

automatically replace x * function with the functions obtained in the static analy-

sis.

The code injection is to utilize symbolic execution properties. The injected

code uses an external dummy function (random() in the figure) to bifurcate the

execution into more than two. Also, symbolic execution engine stores a single

generic driver state (pdev in the figure), and it can be shared among callback

invocations by passing it as a function argument. In the Linux kernel, most of the

drivers store dynamically allocated driver-specific states like IRQ numbers to the

generic driver states. Thus, the injected function has parameters including driver

state to create symbolic values for IRQ numbers in any invoked function. If the

driver modifies the symbolic value for irq or dev id after calling request irq(), the

tool can detect wrong usages of IRQ handling APIs.

Additionally, the code injection is to utilize rich C expressions to define driver

execution-flows. For example, it uses a loop counter to conduct a bounded num-

ber of re-probing. It also uses a local variable to maintain the current state of the

PCI driver. The extra requirements for learning domain-specific languages to de-

fine driver execution-flow are not necessary. Thus, the emulating function can be

extended to other driver classes easily.

4.6 Implementation

The fault-finding tool is implemented as a plugin of Clang 3.7. The tool consists of

two components: IRQ state tracker and code injector for emulating typical driver

execution-flows in static analysis. The Clang Static Analyzer hooks compiler in-

53

vocations and runs the analysis with the code and the same compiler options. The

analysis of the Linux kernel is performed with all options enabled (i.e., allyescon-

fig).

The IRQ state tracker described in Section 4.6.1 utilizes rich compiler-level

information such as ASTs, call graphs, symbolic value information, and so on.

The implementation consists of 1374 lines of C++11 and 264 lines of Python

script. Clang provides developers the framework for customized static analysis

including the symbolic execution engine.

4.6.1 IRQ State Tracker

During symbolic execution, the state tracker hooks the calls of request irq() and

free irq() to track IRQ state transitions. However, to analyze only specified driver

execution-flows, it ignores these two call expressions when the root of the tra-

versed call sequence is not a specified entry function (“Test*” in the prototype).

At request irq(), the state tracker makes new concrete value and symbolic

value for both succeeded and failed return code of the API. Specifically, the suc-

ceeded value is zero (constant), and the failed value is a symbolic value for lower

than zero. Then, the state tracker creates two execution contexts that add the

new value constraints to the current symbolic execution state to emulate both suc-

ceeded and failure path of request irq(). Request irq() and free irq() are external

functions for checked drivers, and thus, it is necessary for the static analysis

When the execution hits an expression that calls APIs request irq() or

free irq(), the state tracker extracts symbolic or concrete values for two arguments

of the APIs: irq and dev id. In the Linux kernel, paired values of the irq and dev id

represent IRQ identification. Thus, the analyzer uses symbolic or concrete values

of them to identify if the released pair was already requested by the driver, for

example. If the state tracker confirms an IRQ state remains Requested at the end

of the entry function, it generates a Leak fault report.

Escaped states can appear on the expression of function calls with any point-

ers. After detecting the expression, the analyzer identifies type information of

a pointed variable if the pointer passing potentially modifies values of irq and

54

drivers/net/ethernet/intel/e1000/e1000 main.c

static struct pci_driver e1000_driver = {

.name = e1000_driver_name,

.id_table = e1000_pci_tbl,

.probe = e1000_probe,

.remove = e1000_remove,

#ifdef CONFIG_PM

/* Power Management Hooks */

.suspend = e1000_suspend,

.resume = e1000_resume,

#endif

.shutdown = e1000_shutdown,

.err_handler = &e1000_err_handler

};

Figure 4.11: An example of callbacks

dev id. If the escaped pointer can reach either irq or dev id via struct member

access or others, the analyzer marks the IRQ state Escaped. it assumes no buffer

overruns that modify irq and dev id because buffer overruns should be detected in

other fault-finding tools. Other statements such as temporarily copying to global

variables can cause Escaped states, but it does not handle such cases currently be-

cause such cases are few and can be recognized when developers manually check

fault reports.

4.6.2 Code injector

Manual implementations in Figure 4.10 for each driver costs too much in terms

of engineering. Thus, a code injector is implemented so that developers can au-

tomate the process of identifying the registered callbacks and generating injected

functions.

Linux device drivers often register callbacks stored in constant variables like in

55

Figure 4.11. The injector recursively parses all the initialization statements to pick

up declared function names passed as function pointer. Specifically, it looks up the

left-hand side whose type is a function pointer. If so, it records the identifier of the

left-hand side (with the struct type name), and the right-hand side. In the example,

there are ‘pci driver’, ‘probe’, and ‘e1000 probe’. The callback interface allows

developers to modify the callback functions, but the injector ignores such cases

because drivers often do not change them dynamically.

After the callback identification, the injected code is generated from the tem-

plate. The template is written carefully so that developers can emulate possible

event orders as described in Section 4.5.3. For PCI drivers, the example code in

Figure 4.10 is extended to track physical device errors that typical PCI protocol

defines (err handler in Figure 4.11). On the basis of the observation in Section 4.4,

this dissertatoin focuses on 8 driver classes: generic (platform drivers in Linux),

Peripheral Component Interconnect (PCI), Serial Peripheral Interface (SPI), Inter-

Integrated Circuit (I2C), network operations (open, close), control and measure-

ment device interface (Comedi), and PCMCIA devices. Finally, 588 lines of C

code are written for the template.

4.7 Experiments

In this experiment, emulation code is injected into 2287 drivers in the Linux 4.1-

rc1 and finally checked 598 drivers that managed IRQ handlers. The tool gener-

ated 60 fault reports (i.e., Leak/Arguments, Double Free, and FreeRequestFailed),

177 MayLeak reports, and 294 Escaped reports. The 60 fault reports are more

likely to contain faults because the analyzer completely tracked symbolic values

related to IRQ API uses. MayLeak reports may contain Leak faults in which the

analyzer detects no free irq() calls with a requested IRQ, although it can track

state transitions to MayLeak in Fig. 4.8. Escaped reports may contain faults that

the analyzer cannot track (MayLeak reports are excluded), but are more likely to

be false positives than other report types. This experiment runs on a single thread

with Intel Xeon X5650 2.67GHz and 15 Gbytes RAM on HP ProLiant DL360

56

Table 4.9: Result
The table lists the overview of each fault the analyzer found. For precisely calcu-

lating the date of fault introductions (Since), the changes of file names are tracked.

The beginning date of the Linux git repository. Thus, the lifetime of the fault in

yenta socket.c is longer than ten years.

Fixed file: drivers/power/88pm860x charger.c

Class: Generic, callback: platform driver::remove()

Fault type: DoubleFree, Path: Normal, Since Jul 27 2012

Fixed file: drivers/media/pci/ddbridge/ddbridge-core.c

Class: PCI, callback: pci driver::probe()

Fault type: FreeRequestFailed, Path: Error, Since Jul 3 2011

Fixed file: drivers/pcmcia/yenta socket.c

Class: PCI, callback: pci driver::probe()

Fault type: Leak, Path: Error, Since Apr 16 2005*

Fixed file: drivers/power/wm831x power.c

Class: Generic: callback: platform driver::probe()

Fault type: FreeRequestFailed, Path: Error, Since Aug 10 2009

Fixed file: drivers/usb/gadget/udc/fotg210-udc.c

Class: Generic, callback: platform driver::probe()

Fault type: FreeRequestFailed, Path: Error, Since May 30 2013

Fixed file: drivers/clocksource/sh mtu2.c

Class: Generic, callback: platform driver::probe() Fault type: Leak, Path: Error,

Since Apr 30 2009

G7. The static analysis required 13.2 hours for generating emulation code of

driver lifecycles and 7.4 hours for checking state transitions.

The manual investigation started with the more suspicious of the 60 fault re-

ports and then moved on to the less suspicious ones and found six cases of real

faults within two weeks. When the analyzer detected suspicious code, a patch was

written and sent to Linux maintainers in order to validate the results. Five out of

57

six patches were accepted and will be merged into the upstream version of Linux.

At the time of writing, the patch for the bug for drivers/clocksource/sh mtu2.c had

not been accepted. This is because a developer responding to the report pointed

out problems of the patch in code other than fixed IRQ handling.

Table 4.9 overviews the result of the checking. five out of six are on error

paths at driver initializations. This is not suprising because developers can check

normal paths for their drivers by reloading on their sites. However, one driver calls

free irq() twice at the normal path for a driver removal. Three FreeRequestFailed

shows the effectiveness of path-sensitive analysis to validate the balances of two

APIs.

Surprisingly, all the faults have existed since the driver was introduced into the

Linux kernel. Thus, detected faults have survived a large number of code reviews,

testing, and production runs for three to ten years. The faults potentially cause

typical transient failures as discussed in Section 4.4.2.

Although the analyzer tries to prioritize emitted reports, there are a large num-

ber of false negatives. The 60 fault reports the analyzer detected contain one report

for DoubleFree and three reports for FreeRequestFailed in Table 4.9 (=93.3% false

positives). On the other hand, two Leak faults in Table 4.9 appear in 177 MayLeak

reports (= 97.5% false positives). The 294 Escaped reports do not contain faults.

Thus, there are at most 525 false positives out of 531 reports (= 98.9% false pos-

itives). Obviously, the false positive rate is very high. However, the analyzer

reduces manual inspections from 2287 drivers to 531 reports.

Figure 4.12 shows the double free on the driver for a power charger. The fault

can be found by simple intra-procedural analysis, but detecting it also requires

loop extractions. The fix is to simply remove the redundant free irq() before the

loop.

Figure 4.13 shows a Leak fault in a Cardbus driver. Static analysis reported

MayLeak on this fault because socket->cb_irq was potentially updated via

a pointer socket in line 1256. At runtime, the failure can be manifested only

when pcmcia register socket() fails and the device delivers an interrupt. Miss-

ing free irq() lets the interrupt handler read from or write to resources freed by

58

drivers/power/88pm860x charger.c

L739: pm860x_charger_remove(...)

L740: {

L741: struct pm860x_charger_info *info = ...;

L742: int i;

L743:

L744: power_supply_unregister(info->usb);

- free_irq(info->irq[0], info);

L746: for (i = 0; i < info->irq_nums; i++)

L747: free_irq(info->irq[i], info);

L748: return 0;

L749: }

Figure 4.12: Code snippet for a DoubleFree on a power charger

the error handling of pcmcia register socket(). The fix is simply to add missing

free irq().

Interestingly, the example in Figure 4.13 also has four other resource-release

omissions in the error paths for the driver probe. The maintainer found the prob-

lem and I fixed them as well as the IRQ leak. For example, a timer created by

setup timer(...) was not destroyed at the failure paths after the false condition of

the first branch in Figure 4.13. This implies that the analyzer can even detect

other kinds of faults that frequently co-occur at the same path of IRQ handling by

validating IRQ handling.

Figure 4.14 shows a FreeRequestFailed fault. The code inappropriately uni-

fies two error handling codes that are located after the goto label fail1. The

checker tracked every paths and detected free irq() after request irq() fails, while

it is difficult to reproduce the problem with dynamic testing. After request irq() in

line 1600, the symbolic execution engine in the Clang Static Analyzer bifurcates

(or forks) the execution of checking state transitions. The bifurcated analyzer ex-

ecutions independently check state transitions after the transition to Requested or

RequestFailed. The fix adds a branch condition before calling free irq() because

59

drivers/pcmcia/yenta socket.c

L1143: static int yenta_probe(...)

L1144: {

L1233: if (... || request_irq(socket->cb_irq, ...)) {

L1235: socket->cb_irq = 0;

L1236: setup_timer(...);

L1243: } else {

L1244: socket->socket.features |= SS_CAP_CARDBUS;

L1245: }

L1255: dev_printk(KERN_INFO, &dev->dev,

L1256: "..." ,cb_readl(socket, ...));

L1261: ret = pcmcia_register_socket(...);

L1257: if (ret == 0) {

L1259: ret = device_create_file(...);

L1260: if (ret == 0)

L1261: goto out;

L1262:

L1263: /* error path... */

L1264: pcmcia_unregister_socket(&socket->socket);

L1265: }

L1266:

+ if (socket->cb_irq)

+ free_irq(socket->cb_irq, socket);

L1267: unmap: /* pcmcia_register_socket failure */

L1268: iounmap(socket->base);

L1275: out:

L1276: return ret;

Figure 4.13: Code snippet for a Leak fault on a Cardbus driver

the driver should call free irq() in the case where the driver in the Requested state

60

drivers/media/pci/ddbridge/ddbridge-core.c

L1563: wm831x_power_probe(...) {

L1600: stat = request_irq(dev->pdev->irq, irq_handler,

L1601: irq_flag, "DDBridge", (void *) dev);

L1602: if (stat < 0)

L1603: goto fail1;

L1610: if (ddb_i2c_init(dev) < 0)

L1611: goto fail1;

L1629: fail1:

L1630: printk(KERN_ERR "fail1\n");

L1631: if (dev->msi)

L1632: pci_disable_msi(dev->pdev);

- free_irq(dev->pdev->irq, dev);

+ if (stat == 0)

+ free_irq(dev->pdev->irq, dev);

Figure 4.14: Code snippet for a FreeRequestFailed fault

encounters another failure in line 1610.

4.8 Summary

This chapter has studied faults in the Linux operating system. Natural language

processing helped overview the past problems of Linux by grouping 370,403

patches into 66 clusters. The clusters represented the characteristics of patches

in operating systems: operating system features, devices, and general software.

As a case study, this chapter investigated the cluster for interrupt handling. The

cluster extracted 160 patches for mishandling IRQs in device drivers.

The result indicated insights towards future directions of fault detection in

operating systems. For example, most of the faults were not surprising ones;

61

existing tools for detecting and avoiding faults are expected to work effectively in

real operating systems. On the other hand, the frequent observation of low-level

semantics shows that testing and/or formal proof techniques with physical devices

are desirable in some cases.

In addition to the study, this chapter presented an experience for checking

fault patterns that are derived from the 160 patches. The checking succeeded in

contributing five fault reductions in Linux device drivers. All the detected faults

were serious but hard to find due to their non-deterministic and rarely executed

properties. This chapter shows that utilizing software repositories is promising

and should be further researched to enhance the future software quality.

However, there remains a gap between fault pattern recognitions and checker

development to achieve practical fault avoidance. For example, all process for

finding faults such as identifying faults and implementing static analysis are very

labor-intensive. Also, even if they are automated in the future, the static checking

spends too much time for checking a large number of fault patterns.

In addition, this study is just an initial work for understanding faults in real

operating systems by using natural language processing. First, more manual in-

vestigations can be conducted. Second, there can be better parameters and algo-

rithms of natural language processing. For example, clusters that have less than

5,000 patches and more than 10,000 can be investigated, although it is expected

that inspections on such clusters result in more detailed and overviewed results

compared to ours in this dissertation. The combination of supervised machine

learning might speed up the process of studying common faults that reflect the

real issues more exactly by filtering out more noises in the data set such as non-

bug-fixes. As well as better parameter tuning, it can be effective to investigate

narrow targets such as focusing on fs/ directories and specific time periods. Fi-

nally, there are possibilities of studying other systems such as FreeBSD and Xen

if the target system has a large number of documents such as issue trackers and

changelogs.

62

Chapter 5

Error Propagation in the Linux

Operating System

The objective of this chapter is to understand error propagation in Linux. Chap-

ter 4 shows an overview of faults and results for six detected faults in Linux. How-

ever, Chapter 3 also shows that it remains necessary for advanced failure recovery

to investigate operating system behaviors after software faults are activated.

This dissertation introduces the concept of error propagation scope. The prop-

agation scope is process-local if the erroneous value is not propagated outside the

process context that activated it. The scope is kernel-global if the erroneous value

is propagated outside the process context that activated it.

This distinction between process-local and kernel-global errors is significant.

If most errors are process-local, the kernel can recover from most errors simply

by killing and revoking the resources of the faulty process. This implies that the

Linux kernel can be partially rejuvenated without rebooting the entire operating

system because the kernel does not need to verify every kernel state. If most errors

are kernel-global, the recovery becomes hopeless because corrupted global data

structures must be recovered to continue processing. In this case, a mechanism

isolating propagated errors should be developed rather than recovery mechanisms.

63

5.1 Fault Injector

This chapter investigates error propagation scope in Linux under errors. To this

end, an experiment was conducted where faults were injected into Linux code to

see how it reacts to them.

5.1.1 Overview

The injector [72] emulates low- and high-level programming mistakes specific

to operating system kernels. It rewrites the binary code of the running kernel to

inject each type of fault. These injected faults approximate the assembly-level

manifestation of real C-level programming errors. For example, the injector emu-

lates missing initialization by deleting instructions that are responsible for variable

initialization.

The injector disassembles the binary of a randomly selected function in the

kernel text segment. Since the injected faults are context-dependent, it analyzes

the disassembled code and searches for proper locations to which each type of

fault can be injected. The details of the faults are described in Section 5.1.2.

The injector runs in the kernel and provides a system call interface to specify the

parameters of fault injection.

The injector is widely used to evaluate and validate recovery mechanisms in

the operating system research community. For example, it has been used to eval-

uate the fault tolerance of the file system cache [72], recovery mechanisms for

device drivers [91] [90], and quick reboot-based recoveries [30] [104].

5.1.2 Injected Faults

The injector emulates 15 types of faults. For ease of understanding, Table 5.1 lists

examples of injected faults at the C-language level.

INIT fault: INIT fault creates a situation where the initialization of variables

is not done. To create such a situation, the injector deletes instructions which ini-

tializes a variable with a constant value. More concretely, it deletes an instruction

64

Table 5.1: C-Language Level View of the Injected Software Faults.
This table shows examples of the injected faults at the C-language level.

Fault Before After

INIT int x = 0; int x;

IRQ arch_local_irq_restore() deleted.

OFF BY ONE while (x < 10) while (x <= 10)

BCOPY memcpy(p, p2, 256) memcpy(p, p2, 512)

SIZE kmalloc(256, ...) kmalloc(128, ...)

FREE kfree(p) deleted.

NULL if (p == NULL) return; deleted.

BRANCH if (cond) return; deleted.

DST&SRC x += 1; x += 2;

INVERSE if (cond) {...} if (!cond) {...}

PTR q = p->a; q = p->b;

VAR f(){char x[128];... f(){char x[4096];...

ALLOC p = kmalloc(...) p = NULL

LOOP while (x < 10) {...} while (x < 20) {...}

INTERFACE func(1, 2, 3); func(1, 214, 3);

that assigns an immediate value to the address lower than the stack pointer.

IRQ fault: When an IRQ fault is injected, the injector creates a situation

where a kernel developer forgets to enable interrupts after disabling them. The in-

jector removes arch_local_irq_restore() calls in Linux 2.6.38. When

the call is removed, the interrupt mask is not restored, and thus, the disabled

interrupts continue to be disabled. Note that the removed function should be

updated for other versions of the Linux kernel. For example, in Linux 2.6.18,

local_irq_restore() calls are removed.

OFF BY ONE fault: This fault imitates loop boundary condition errors. The

injector changes conditions such as > to >=, < to <=, and so on. For example,

65

“jae” is changed into “ja”.

BCOPY fault: Linux developers often mistake the use of mem* functions as

well as application developers. The cases are emulated by BCOPY faults. The

injector first searches a mem* function call at the random address of the kernel

text. Then, it mutates an instruction that stores the constant value for the size of

the copy to a register for the last argument. When the specified value for the last

argument is not constant, the injection attempts to search another instruction for a

mem* function call.

SIZE fault: buffer overruns happen when the size of heap allocations are in-

sufficient. The fault injection also emulates the cases by searching kmalloc()

call and mutating the first argument as well as it emulates BCOPY faults.

kmalloc() is the most frequently used runtime API for dynamic memory al-

locations in device drivers.

FREE fault: This fault emulates a situation where the memory is not appro-

priately released. The injector removes the call to kfree(), which is responsible

for releasing the unused heap memory. Since kfree() does not return any val-

ues, the injector simply deletes the call to kfree().

NULL fault: Forgetting NULL checks are observed in field studies of Linux

faults [22] [76]. This fault injection mutates an instruction that conditionally

jumps if the return value of a kmalloc() is zero.

BRANCH fault: This fault emulates an incorrect control flow by deleting a

jump instruction involved in the conditional statement. By doing this, the injector

emulates branch errors and error handling faults.

DST&SRC fault: This fault corrupts assignment statements. This creates a

situation where the assignment is incorrect due to a programming error. To do

this, the injector corrupts the value of the source or the destination by flipping the

bits of the value.

INVERSE fault: The injector also reverses the predicates of conditional state-

ments to inject incorrect control flows. For example, this fault changes “je” into

“jne” to reverse the predicate.

PTR fault: This fault emulates pointer corruption by corrupting the address-

66

ing bytes of instructions. The injector either flips a bit within the addressing-form

specifier byte (ModR/M) or the scale, index or base (SIB) byte following the in-

struction opcode.

VAR fault: The size of kernel stacks is limited in the Linux kernel. It causes

stack overflows as existing work [22] observes. The cases are emulated by en-

larging the size of a stack frame in a kernel stack. The injector searches two

instructions that add and substitute the same immediate value to a stack pointer

(rsp). Then, it increases the value of the immediate value for the two instruc-

tions. Adding and substituting rsp can also happen when the function calls with

variable arguments such as printk(). However, the injector avoids such false

emulations by searching it from the beginning and end of functions.

ALLOC fault: This fault makes kmalloc() return NULL to emulate the

shortage of the heap memory. In x86 64, kmalloc() returns the address of the

allocated memory through the rax register. Thus, call kmalloc is changed

into xor rax, rax to inject the ALLOC fault.

LOOP fault: In x86, loops are often compiled into conditional jumps to neg-

ative offsets. Thus, the injector searches a conditional jump with a negative con-

stant value and mutates the immediate value for the compare instruction that hap-

pen before the jump.

INTERFACE fault: This fault corrupts one of the arguments passed to a pro-

cedure. To create this situation, the injector deletes an instruction that copies a

value at an address below the base pointer to registers or memory. For exam-

ple, the injector can change the call foo(a, b) to foo(X, b), where X is a

corrupted value, by deleting the instruction that copies a to a register or memory.

5.2 Methodology

To investigate the scope of error propagation, the Linux kernel behavior is tracked

when an injected fault is activated. To track how the Linux kernel reacts to the

injected faults, this study takes the following steps manually:

(1) Injecting a fault: In the experiments, the text segment is modified to

67

inject faults as the target of this chapter is programming errors. The injected

erroneous instructions may corrupt data in heap or stack. To trace the kernel

execution after the fault is activated, a breakpoint is set at the instruction to which

a fault is injected. When the breakpoint is hit the control is transferred to KDB, a

built-in kernel debugger for Linux.

(2) Running a workload: This study uses six benchmarks that all stress the

kernel. The six workloads are, 1) UnixBench on ext4, 2) UnixBench on fat, 3)

UnixBench on USB, 4) Netperf, 5) Apaly, and 6) Restartd. UnixBench calls a lot

of file- and process-related system calls and puts a heavy workload on current file

systems. Netperf calls network-related system calls. Aplay invokes sound device

drivers. As a benchmark, this study plays a wav file for 10 seconds. Restartd is a

benchmark to restart all the system daemons. Since the daemons extensively issue

system calls, the kernel code runs very frequently while the daemons are restarted.

(3) Tracing error propagation: After the fault is activated, the scope of error

propagation is analyzed in the same way as taint analysis. If the kernel executes

the injected fault and produces an erroneous value, the value is marked as an

“error”. When the value marked as an “error” is used to calculate another value,

the calculated value is also marked as an “error”. If the value marked as an “error”

is used in the prediction of conditional branches, all the values updated in the taken

clause are marked as an “error”. If no value marked as an “error” is written to a

heap, the error is concluded to be process-local. Otherwise, the error is concluded

to be kernel-global. The kernel execution is tracked until kernel failures (e.g.,

kernel panic). If the workload finishes successfully, the failure is classified into

“not manifested”.

The previous study using fault-injection shows crash latencies are within 10

cycles in most cases [41]. However, this ignores, for instance, aging-related fail-

ures. The workload used in this experiment runs only within less than one minute.

To cover these failures, this chapter shows the brief discussions of not-manifested

errors in Section 5.4.

Note that error propagation is investigated at the assembly code level in the

experiments, although this section describes the analysis of error propagation at

68

the source code level for readability. Error propagation can be analyzed more

precisely if it is analyzed at the assembly level. For example, compilers generate

optimized code that shares common expressions. Suppose that there are two ex-

pressions: x = a + b and y = (a + b) * c. If a fault is injected into the former a + b,

it propagates to the latter.

5.3 Experiments

5.3.1 Experimental Setup

In this chapter, an experiment of fault injection is carried out on VMware Work-

station 8 running on Windows 7. It runs Fedora 8 (Linux 2.6.38) in a guest virtual

machine that consists of 1 CPU, 1 GB of memory and 20 GB hard disk drive. The

host CPU is 2.53 GB Core2 Extreme CPU. The kernel configuration is default.

Note that the failures encountered in this experiment are triggered by injected

faults, not faults in the Linux kernel. The target system runs on a VMware work-

station to reduce the time for rebooting the kernel after failures. The VMware

workstation sometimes detects a critical error in the guest operating system and

terminates the execution of it.

5.3.2 Error Propagation Scope

Figure 5.1 and 5.2 shows the overall results of the fault injection experiments.

There are a total of 6,738 faults injected in the experiments and 13% of the injected

faults are activated.

In the Linux kernel, there are two crash procedures: “kernel oops” and “kernel

panic”. The kernel oops are called in 14% (124 out of 887) and panic() is called

in 1.1% (10 out of 887). Linux kernel oops is invoked when the kernel detects

an erroneous state inside itself. It kills an offending process and allows Linux

to continue its operation under a compromised reliability. Kernel panics happen

when the crash procedure fails. For example, Linux enters a panic state when it

crashes during interrupt contexts because they cannot be safely terminated.

69

0%

20%

40%

60%

80%

100%

b
ra

n
c
h

in
v
e

rs
e

p
tr

d
s
ts

rc

in
te

rf
a

c
e

in
it

ir
q

o
ff

-b
y
-o

n
e

a
llo

c

fr
e

e

s
iz

e

b
c
o

p
y

lo
o

p

v
a

r

n
u

ll

to
ta

l

5
7

6

5
7

6

5
7

6

5
7

1

1
5

0

5
4

0

9
7

5
6

6

3
4

9

5
0

4

2
4

0

5
2

2

5
7

1

3
2

4

5
7

6

6
7

3
8activated not activated

Figure 5.1: Activated/Not Activated Faults

This figure shows the relative frequency with which injected faults are activated

or not. The number at the end of each bar represents the total number of injected

faults.

However, Linux does not always detect failures. There were three types of fail-

ures that Linux did not detect. 9.9% of the manifested errors result in fail silence

violations (“FSV”), hangs, and unexpected terminations by VMM (“TERM”).

75% of the faults are not manifested.

Figure 5.3 shows the result of error propagation scope for the 124 kernel oops

and the 10 panic (because most panic() is called by the oops procedure). Accord-

ing to the experiments, 73% (98 out of 134) of the kernel oops are process-local,

while 27% (36 out of 134) of them are kernel-global. This suggests that three

quarters of the kernel oops can be recovered simply by revoking the faulty pro-

cess. For BCOPY and SIZE faults, over 50% of errors are kernel-global because

of buffer overruns.

70

0%

20%

40%

60%

80%

100%

b
ra

n
c
h

in
v
e

rs
e

p
tr

d
s
ts

rc

in
te

rf
a

c
e

in
it

ir
q

o
ff

-b
y
-o

n
e

a
llo

c

fr
e

e

s
iz

e

b
c
o

p
y

lo
o

p

v
a

r

n
u

ll

to
ta

l

7
2

7
3

9
0

6
5

1
8

1
0

2

3
7

5
5

5
5

4
4

2 4
8

7
0

6
5

7
1

8
8

7

panic oops FSV hang TERM not manifested

Figure 5.2: Observed Failures

This figure shows the relative frequency with which activated faults manifest dif-

ferent categories of failures. The number at the end of each bar represents the total

number of activated faults.

This high rate of process-local errors is attributed to a defensive style of coding

in Linux. For example, BUG ON macro, which is similar to assert() in C,

checks a given predicate and calls a kernel oops if the predicate is true. Some

errors injected by the injector are caught by BUG ON and their propagation is

prevented.

5.3.3 Estimating Reliability after Kernel Oops

According to the results in the previous section, Linux is expected to be reliable

with a probability of 73% after killing a failing process. This section investigates

what happens if another workload runs after killing a faulty process. Just after

killing a process, injected faults are removed to analyze the effect of the error

propagation caused by it.

71

0%

20%

40%

60%

80%

100%

b
ra

n
c
h

in
v
e

rs
e

p
tr

d
s
ts

rc in
it

ir
q

o
ff

-b
y
-o

n
e

s
iz

e

b
c
o

p
y

lo
o

p

v
a

r

n
u

ll

to
ta

l

4 7 3
4

2
5

1
1

1 6 2 1
6

9 4 1
5

1
3

4

process-local kernel-global

Figure 5.3: Error Propagation Scope

This figure shows the relative frequency with which propagated errors are process-

local or kernel-global. The number at the end of each bar indicates the total num-

ber of investigated errors.

Figure 5.4 shows the summary of the kernel behavior after killing a faulty

process. Note that killing a faulty process is the default crash procedure of the

Linux kernel, which is called as the “kernel oops”. Thus, the converge of the

workloads run after the kernel oops are quite important for precisely estimating

the reliability of the Linux kernel. To this end, an identical fault is injected again

and again that caused the kernel oops in the previous experiment and run different

workloads after the kernel oops.

No errors manifest in 68% of the process-local errors after the kernel oops.

This probability is less than expected, where no errors manifest in almost all the

cases. Even after the process-local errors, deadlock occurs in 29% (132 out of

463). This is because a faulty process is killed with the lock acquired. Although

no global data structures are corrupted in process-local errors, the faulty process

72

0%

20%

40%

60%

80%

100%

process-local kernel-global total

4
6

3

1
2

6

5
8

9

not manifested
deadlock

no proc
oops

panic
erroneous

Figure 5.4: Kernel behavior after oops

This figure shows the relative frequency with which the kernel manifests different

failure categories after oops recovery. The number at the end of each bar indicates

the total number of investigated kernel behaviors. “erroneous” means cases where

workloads fail due to internal errors of the Linux kernel without panic, oops, and

other kinds of failures.

holds locks and killing it results in deadlocks after the kernel oops.

In kernel-global errors, no errors manifest in 25% after the kernel oops. This

is because the workloads run after the kernel oops do not access the shared data

corrupted by the faulty process. When the corrupted data is accessed after the

kernel oops, deadlock occurs in most cases. In the experiments, deadlock occurs

in 47%.

An error inside a critical section tends to result in a failure within the critical

section because an error does not usually propagate a long way. Since the accesses

to global data structures are controlled by synchronization primitives, the offend-

ing process is killed with the lock held and deadlocks are caused afterwards. This

73

behavior of the Linux kernel is preferable because it contributes to fail-stopness

after the kernel oops. This result is interesting because no further data corruption

occurs even after kernel-global errors in 72% (= 25% + 47%).

In summary, if Linux does not stop after the kernel oops, it runs reliably or

stops its execution before trying to access corrupted data with a probability of 91%

(not manifested and deadlock in Figure 5.4). While the kernel compromised by

the process-local errors does not always succeed in continuing execution, kernel-

global errors do not cause fatal failures in which the operation continues using

inconsistent and corrupted data. In other words, the Linux kernel has a good fail-

stopness property after the kernel oops.

Killing a faulty process sometimes leads to another problem. No proc in

Figure 5.4 indicates cases where workloads running after the kernel oops cannot

run as usual because the killed process is mandatory to continue the execution of

the workloads. For example, UnixBench on USB cannot be started after kernel

oops because a kernel daemon monitoring the plugs for USB devices is killed.

In process-local errors, panic() is called in 1.5% of the cases. It is observed

when the kernel detects a buffer overrun in a kernel stack with a canary value, or

the kernel finds that the faulty contexts are those for interrupts or the init process

in the kernel oops procedure. The kernel determines to call panic() regardless of

the state of its data structure, and therefore, panic() is observed even when errors

are process-local.

In kernel-global errors, oops and panic() are called in 23% of the cases. In

these cases, the errors that propagate to global data structures are simple, so ac-

cess to them can be caught with the kernel oops. Unfortunately, there are three

cases (labeled as erroneous in Figure 5.4) in which the Linux kernel contin-

ues its operation using inconsistent and corrupted data structures. However, this

terrible situation happens only in 0.5% (3 out of 589 errors) of the cases in the

experiments.

74

0%

20%

40%

60%

80%

100%

B
R

A
N

C
H

D
S

T
&

S
R

C

IN
IT

IN
T

E
R

F
A

C
E

IN
V

E
R

S
E

P
T

R

IR
Q

to
ta

l

1
5
0

1
5
0

9
7

1
1
7

1
5
0

1
5
0

5
0

8
6
4

arch
drivers

fs
net

kernel
mm

other

Figure 5.5: Fault Injection Sites

This figure shows the relative frequency on which directory in the kernel source

code faults are injected. The number at the end of each bar represents the total

number of injected faults.

5.4 Detailed Analysis of Error Propagation

Section 5.3 shows the overall results of error propagation scope before and after

kernel crashes. This section reports in-depth observations of error propagation

in Linux 2.6.18. The experiments in this section focus on seven faults in Ta-

ble 5.1: INIT, IRQ, BRANCH, DST&SRC, INVERSE, PTR, and INTERFACE

faults. Note that Section 5.3 discusses results with Linux 2.6.38 and 15 fault types,

which is a different environment from the experiment in this section. However, the

overall results of two different experiments did not significantly differ as shown

later.

For the in-depth analysis, 864 faults are injected and 20% of them are activated

in total. Figure 5.5 shows the ratio of fault injection sites in terms of the directory

75

0%

20%

40%

60%

80%

100%

B
R

A
N

C
H

D
S

T
&

S
R

C

IN
IT

IN
T

E
R

F
A

C
E

IN
V

E
R

S
E

P
T

R

IR
Q

to
ta

l

2
8

2
7

1
6

2
9

3
2

2
7

1
7

1
7
6

arch
drivers

fs
net

kernel
mm

other

Figure 5.6: Fault Activation Sites

This figure shows the relative frequency on which directory in the kernel source

code faults are activated. The number at the end of each bar represents the total

number of activated faults.

name in the kernel source code. Figure 5.6 shows the ratio of fault activation

sites in terms of the directory name. The fault injector selects injected location

randomly from the kernel text segment, so the ratio depends on the size of each

subsystem that is built in the kernel. INIT, INTERFACE, and IRQ faults cover

relatively small number of directories because their target instructions (initializing

with the base register and restoring the flags) are limited compared to other faults.

These figures show the fault injection experiments cover all the common kernel

subsystems. This result implies that injecting more errors will show the same

categorization trend of errors.

76

0%

20%

40%

60%

80%

100%

B
R

A
N

C
H

D
S

T
&

S
R

C

IN
IT

IN
T

E
R

F
A

C
E

IN
V

E
R

S
E

P
T

R

IR
Q

to
ta

l

2
8

2
7

1
6

2
9

3
2

2
7

1
7

1
7

6

SEG_F
BUG_ON

Panic
Hang

FSV
not manifested

Figure 5.7: Observed Failures

This figure shows the relative frequency of not-manifested errors and the failure

categories of manifested errors. The number at the end of each bar represents the

total number of activated faults.

5.4.1 Failures

Figure 5.7 shows the failures which are observed after the fault activations. Seg-

mentation failures (“SEG F” in Figure 5.7) are caused in 20% of the fault acti-

vations. They occur when the kernel attempts to access illegal pages. Intentional

kernel crashes caused by BUG ON are observed in 6% (“BUG ON in Figure 5.7).

BUG ON denotes a situation where Linux BUG ON macro, similar to C assert, de-

tects an erroneous state in the kernel. The other failures are panic, hangs and

fail silence violations (“FSV” in Figure 5.7). 64% of the activated faults do not

manifest themselves.

77

0%

20%

40%

60%

80%

100%

B
R

A
N

C
H

D
S

T
&

S
R

C

IN
T

E
R

F
A

C
E

IN
V

E
R

S
E

P
T

R

IR
Q

to
ta

l

4 1
7

1
5

9 1
3

6 6
4

process-local kernel-global

Figure 5.8: Error Propagation Scope

This figure shows the relative frequency of process-local or kernel-global errors.

The number at the end of each bar represents the total number of investigated

errors.

5.4.2 Error Propagation Scope

Figure 5.8 and 5.9 summarize the results of the scope analysis. 84% of the man-

ifested errors are process-local, while 16% of them are kernel-global. BRANCH

and IRQ faults are not propagated outside a faulty context, while INTERFACE

faults are the highest rate of kernel-global errors. IRQ faults and their error prop-

agation are described in Section 5.4.2 (b). INTERFACE faults tend to corrupt the

linked lists for kernel descriptors. The typical case is shown in Section 5.4.2. The

manifested BRANCH faults tend to be injected to a branch instruction for a NULL

check. Checked pointers are usually used in the clauses. Thus, a crash tends to

occur soon after the fault activation. The short crash latency leads to the errors

which are confined within a faulty context.

78

0%

20%

40%

60%

80%

100%

process-local kernel-global total

5
3

1
1

6
4

segmentation failure
BUG_ON
panic

hang
FSV

Figure 5.9: Failure Type by Scope

This figure shows the relative frequency with which the kernel causes different

failure categories after fault activations. The number at the end of each bar repre-

sents the total number of investigated errors.

Figure 5.9 summarizes observed failures in terms of their error propagation

scope. These segmentation failures occur in both propagation scopes with the

highest probability out of all the observed failures (56% of all the manifested

errors). All of the fail silence violations and BUG ON are caused only by process-

local errors. This result implies that BUG ON effectively prevents global propaga-

tion in the kernel as described in Section 5.4.2.

This experimental environment uses ext3 file system, which is the default con-

figuration of Fedora 8. Real bugs inside the kernel might destroy the file system

structure. However, none of the experimental results showed such cases.

79

Table 5.2: Segmentation Failure

Fault INVERSE FAULT

Memory Address sysfs_new_inode+0x5c

Code Location fs/sysfs/inode.c, line:134

Original Instruction je sysfs_new_inode+0x97

Modified Instruction jne sysfs_new_inode+0x97

Original Code if (sd->s_iattr) {

Modified Code if (!sd->s_iattr) {

Table 5.3: BUG ON
Fault IRQ FAULT

Memory Address kfree+0x5f

Code Location mm/slab.c line: 3463

Original Instruction push %esi popf

Modified nstruction nop nop

Original Code local_irq_restore(flags);

Modified Code deleted

Process-local errors

Table 5.2, 5.3 5.4, 5.5, and 5.6 show typical examples of each failure type caused

by process-local errors. Each table lists an injected fault type, a memory address

where the fault is injected, the location at the source code level, and the instruc-

tions and C-code before/after the fault injection.

(a) Segmentation Failure: As shown in Figure 5.9, 56% of the process-local

errors lead to segmentation failures. Table 5.2 shows the detail of a typical case

that leads to a segmentation failure. In this case, a null pointer is passed to a

function that expects the passed pointer not to be null. This fault is injected by

INVERSE FAULT. More concretely, the code

if (sd->s_iattr) {

set_inode_attr(inode, sd->s_iattr);

...

80

Table 5.4: Panic
Fault INTERFACE FAULT

Memory Address neigh_update+0x1ed

Code Location
net/core/neighbour.c

line:894-895

Original Instruction mov 0xc(%ebp), %eax

Modified Instruction nop nop nop

Original Code

void (*update)(...) =

neigh->dev->

header_cache_update;

Modified Code

void (*update)(...) =

(struct netdevice *)(0x6)->

header_cache_update;

Table 5.5: Fail silence violation
Fault SRC&DST FAULT

Memory Address sock_alloc_fd+0xb

Code Location net/socket.c, line:380

Original Instruction mov %eax, %ebx

Modified Instruction mov %esp, %ebx

Original Code fd = get_unused_fd();

Modified Code get_unused_fd();

is modified to

if (!sd->s_iattr) { // FAULT injected here

set_inode_attr(inode, sd->s_iattr);

...

In the original code, set inode attr is called only when sd->s_iattr

is not NULL. However, set inode attr is called when sd->s_iattr is

NULL in the modified code. As a result, parameter iattr in set inode attr

becomes NULL as shown below. The dereference of iattr causes a segmenta-

81

Table 5.6: Hang

Fault IRQ FAULT

Memory Address do_softirq+0x48

Code Location kernel/softirq.c, line:215

Original Instruction push %esi popf

Modified Instruction nop nop

Original Code local_irq_restore(flags);

Modified Code deleted

tion fault.

void set_inode_attr(inode, iattr)

{

// Failure

inode->i_mode = iattr->ia_mode; // iattr is NULL

In this case, a null pointer is passed across function calls but no global data

structures are updated with the incorrect null pointer. Thus, the scope of error

propagation is process-local.

(b) BUG ON: As shown in Figure 5.9, 19% of the process-local errors lead

to BUG ON. An example of this failure (Table 5.3) is caused by IRQ FAULT,

which removes the call to local irq restore to forget to enable disabled

interrupts. After this fault is activated, the kernel continues to run with the

interrupts disabled. Meanwhile, lookup bh lru(bdev, block, size)

is invoked. This function eventually calls check irqs on, which executes

BUG ON(irq disabled()). Since the interrupts are disabled here (if the fault

is not injected, the interrupts are enabled here), BUG ON macro successfully de-

tects this incorrect status of interrupts.

This experimental result suggests that BUG ON macro is effective to prevent

global error propagation. If BUG ON is not used to check the status of interrupts,

blocking functions are called with the interrupts disabled and thus, the deadlock

or other serious situations would result. In the current versions of Linux, BUG ON

macro is inserted manually according to the developers’ experiences and intu-

itions. Thus, more systematic methods are required in order to help the developers

82

insert BUG ON macros correctly.

(c) Panic: As shown in Figure 5.9, 6% of the process-local errors cause

kernel panic. Table 5.4 shows a typical example of panic. In this case, a fault

is injected into an interrupt handler. More concretely, an argument to function

neigh update is corrupted and thus the address of neigh->dev, which is

calculated from the corrupted argument, becomes an incorrect value. As a result,

the first access to neigh->dev causes a segmentation failure. Since this code

is executed in an interrupt handler, the kernel invokes panic instead of causing

a segmentation failure. Interrupt contexts temporarily use a kernel stack of the

current process’s kernel context in the Linux kernel. There were no structural dif-

ferences between interrupt and processes’ contexts. Therefore, this study regards

the context as a process’s context and the error confined in it is process-local.

(d) Fail silence violation: 15% of the process-local errors lead to fail silence

violation as shown in Figure 5.9. In the experiments, Fail silence violations often

derive from kernel error detections. Despite their correctness, the kernel starts

to handle the detected errors by the usual error processing manner. Furthermore,

such error processing tends to simply abandon the current processing and return a

corresponding erroneous value (e.g., EINVAL). Therefore, global data structures

are merely updated before fail silence violations occur. In the experiments, there

were no kernel-global errors that lead to fail silence violations.

The following is a typical example of fail silence violation. In this example,

the injected fault (Table 5.5) generates a situation in which there is no unused

network sockets. Thus, the Linux kernel considers no network sockets can be

created. The following is simplified code for explanation. The original code

int sock_alloc_fd(...) {

int fd;

fd = get_unused_fd(); // Fault injected here

...

return fd;

}

is modified to

int sock_alloc_fd(...) {

int fd;

get_unused_fd(); // "fd =" is removed

83

...

return fd;

}

In the modified code, fd is not initialized. In this experiment, uninitialized fd

happens to be negative. As a result, sock alloc fd returns a negative value to

its caller. The caller is:

// sock_alloc_fd is called here

// retval becomes negative

retval = sock_alloc_fd(sock);

// Linux considers no socket

// can be allocated

if (retval < 0)

goto out_release;

...

out_release:

// socket is released and

// a negative value is returned

sock_release(sock);

return retval;

In the above code, the Linux kernel considers there is no room to create a

new socket because sock alloc fd returns a negative value. As a result, a

process cannot create a new socket even though there is enough room to create

new sockets.

(e) Hang: As shown in Figure 5.9, 5% of the cases were when the Linux

kernel hangs up. A typical example is shown in Table 5.6. In this example, IRQ

FAULT is injected into do softirq which schedules pending software inter-

rupts. When do softirq returns, the kernel hangs immediately without dump-

ing the stack trace. Thus, the kernel behavior cannot be traced using KDB. Since

it was unclear which function was executed after do softirq returns, further

information could not be obtained in this case.

Kernel-global errors

16% of the errors are kernel-global as shown in Figure 5.8, while all the other

errors are process-local. Some of the process-local errors propagate across mul-

tiple function calls but the propagations are limited to function arguments, re-

84

Table 5.7: A Kernel-global error

Fault INTERFACE FAULT

Memory Address rb_erase+0x1e9

Function lib/rbtree.c, line:178

Original Instruction mov 0x0(%ebp),%ebx

Modified Instruction nop nop nop

Original Code node = root->rb_node;

Modified Code node = parent->rb_right;

turn values, and local variables. This is probably because global data structures,

shared among multiple processes, are used to store stable, consistent states rather

than transient, temporary states. Experienced programmers like Linux developers

write defensive code that checks data integrity and/or confirms the assumptions

on function arguments. A data is checked again and again before it is written to

global data structures.

Table 5.7 shows the detail of a representative kernel-global error. In

this case, a fault is injected into a function that manages red-black trees, a

type of self-balancing binary search tree, used for storing sortable key-value

pairs. More specifically, INTERFACE FAULT is injected into the call to

rb erase color. Function rb erase color takes three arguments:

node, parent, and root whose types are all struct rb node*. By

the INTERFACE FAULT, argument node that should be root->rb node is

modified to parent->rb right. As you can imagine from the arguments,

rb erase color manipulates tree structures in the heap. The incorrect argu-

ment leads to the corruption of the global tree structures. When the kernel tra-

verses a broken red-black tree, it crashes due to segmentation fault. Since global

data structures are corrupted by injected faults, the scope of this error is kernel-

global.

There is one important thing to be noted. The fault shown in Table 5.7 cor-

rupts global data structures. However, the erroneous values are never propagated

to other processes than the faulty one. Other processes can continue to run reliably

85

because the error can be isolated. This is because the faulty process can hold a

lock (more precisely, semaphore) for exclusive access to global data structures. If

a faulty context does not release the lock, other processes cannot access the broken

data structures; the corrupted data is never propagated to other processes. This ex-

ample shows a deadlock leads to fail-stopping behavior although deadlock should

be avoided. Deadlock prevents contexts from reading erroneous values, which

may cause some incorrect kernel behavior like file system corruption. However,

further research effort is required to apply this property of synchronization primi-

tives to error recovery in practice.

5.4.3 Not-Manifested Errors

To understand Linux behaviors under errors, it is critically important to analyze

the reason why activated faults do not manifest themselves. As pointed out in

many literatures, activated faults do not always manifest themselves. In this ex-

periment, These “not-manifested” errors are observed in 64% of the fault activa-

tions. If an error is corrected during the execution, the analysis aids in proposing

defensive coding styles effective for kernels.

Table 5.8 shows the summary of the errors not manifested in this experiments.

In this table, these errors are classified into 8 cases, based on the reason why they

do not manifest themselves.

Corrected: “Corrected” indicates a situation in which an erroneous state is

corrected by the Linux kernel. A typical example of this error is as follows. As

shown in Table 5.9, a fault is injected to remove the initialization of oldpolicy.

In the original code, oldpolicy is initialized to -1. This error is corrected as

follows.

int oldpolicy; // should be initialized to -1

...

if (unlikely(oldpolicy != -1)) {

policy = oldpolicy = -1; // error corrected

Not affecting: “Not affecting” indicates a situation where an erroneous state

is not used by the kernel. For example, a local variable is corrupted but not used

at all until the end of the function after the injection, as described in Table 5.10.

86

Table 5.8: Summary of Not-Manifested Errors.
The table shows the number of errors for each reason that activated errors do not

manifest themselves. An error is regarded as not-manifested when one of these

situations is observed during the tracing of error propagation. The untraceable

cases are discussed in detail.

Reason # of errors

Corrected 8

Not affecting 10

Error processing omitted 18

Incorrect warning 4

Almost correct operation 15

Aging 6

Lucky 40

Untraceable 11

Total 112

Table 5.9: Corrected
Fault INIT FAULT

Memory Address sched_setscheduler+0x44

Code Location kernel/shed.c, line:4087

Original Instruction
movl $0xffffffff,

0xffffffec(%ebp)

Modified Instruction nop nop ... nop

Original Code int oldpolicy = -1;

Modified Code int oldpolicy;

In this example, local variable all pinned, which is not initialized, is not used

in this experiments until the function returns.

Error processing omitted: “Error processing omitted” indicates a situation

where the code for error processing is omitted. This error does not manifest itself

87

Table 5.10: Not affecting

Fault INIT FAULT

Memory Address rebalance_tick+0xda

Code Location kernel/sched.c line: 2530

Original Instruction movl $0x0, 0xfffffff0(%ebp)

Modified Instruction nop nop ... nop

Original Code int all_pinned = 0;

Modified Code int all_pinned;

Table 5.11: Error processing omitted

Fault BRANCH FAULT

Memory Address follow_page+0xd8

Code Location mm/memory.c, line:935

Original Instruction je follow_page+0x1aa

Modified Instruction nop nop ... nop

Original Code if (!ptep) goto out;

Modified Code deleted

during the experiments unless the omitted error processing becomes necessary.

The detail of a typical example of this case is shown in Table 5.11.

Incorrect warning: “Incorrect warning” indicates a situation where warning

messages are displayed even though those messages should not be displayed. This

is caused by the omission of conditional jumps that judge if warning messages

should be displayed. The detail is shown in Table 5.12.

Almost correct operation: “Almost correction operation” indicates a situa-

tion where the kernel behavior is slightly changed from the expected one but the

kernel continues to run as normal. Most of these errors are related to schedul-

ing parameters that affect the scheduling behavior of the kernel. In the example

shown in Table 5.13, the code for initializing local variable run time is removed

by fault injection. Since run time is used to calculate the sleeping time of pro-

88

Table 5.12: Incorrect warning

Fault BRANCH FAULT

Memory Address net_tx_action+0x37

Code Location kernel/sched.c, line:2845

Original Instruction je net_tx_action+0x55

Modified Instruction nop nop

Original Code if (unlikely(!(x))) {

Modified Code deleted

Table 5.13: Almost correction operation

Fault INIT FAULT

Memory Address schedule+0xd2

Code Location kernel/sched.c, line:3341

Original Instruction
movl 0x3b9aca99,

0xffffffc4(%ebp)

Modified Instruction nop nop ... nop

Original Code
run_time =

NS_MAX_SLEEP_AVG;

Modified Code deleted

cesses, it changes the scheduling behavior if set improperly. As shown below,

even if run time becomes erroneously large, the kernel code corrects the value.

As a result, the kernel continues to run almost normally.

...

// Following statement removed

run_time = NS_MAX_SLEEP_AVE;

...

// prev->sleep_avg becomes incorrect here

prev->sleep_avg -= run_time;

// prev->sleep_avg corrected if necessary

if ((long)prev->sleep_avg <= 0)

prev->sleep_avg = 0;

89

Table 5.14: Aging

Fault INVERSE FAULT

Memory Address mousedev_release+0x37

Code Location
drivers/input/mousedev.c

line:391

Original Instruction jne mousedev_release+0x9a

Modified Instruction je mousedev_release+0x9a

Original Code if(!--list->mousedev->open){

Modified Code if(--list->mousedev->open){

Table 5.15: Lucky

Fault PTR FAULT

Memory Address tty_register_driver+0x6

Code Location
drivers/char/tty_io.c

line:3733

Original Instruction mov 0x6c(%esi),%eax

Modified Instruction mov 0x6d(%esi),%eax

Original Code if(!driver->major){

Modified Code if(!*(&driver->major+0x1)){

Aging: “Aging” indicates a situation where resource leakage occurs. Soft-

ware aging is a serious problem but the aging errors seem not to manifest them-

selves during the short duration of fault injection experiments. An example of

aging is shown in Table 5.14. Before the fault injection, a reference counter is

checked and the resource for a mouse device is released in this clause. Although

this environment does not use mouse devices, the unreleased memory might pres-

sure the kernel memory.

Lucky: “Lucky” indicates a situation where an error is activated but happens

to cause nothing wrong. For example, INIT FAULT removes code for initializing

a local variable to zero, whose value happens to be zero. Another example (shown

90

Table 5.16: Untraceable
Fault INTERFACE FAULT

Memory Address rtnetlink_fill_ifinfo+0x2ec

Code Location
net/core/rtnetlink.c

line:273

Original Instruction mov 0x68(%ebp), %eax

Modified Instruction nop nop nop

Original Code u32 mtu = dev->mtu;

Modified Code u32 mtu = dev->broadcast;

in Table 5.15) is from tty register driver, which is used to register a new

major device. A PTR FAULT is injected into this function. In this case, the

major device number of the new device becomes an unexpected number but the

operation itself continues normally.

Untraceable: There are 11 cases in which error propagation cannot be traced

completely. The faults are injected into the code for the socket management, and

corrupt packet headers to be sent out to network. This example is shown in Ta-

ble 5.16. The actual operations of sending out the packets are performed asyn-

chronously. Thus, the sending-out operations cannot be traced with the kernel

debugger. However, there are no noticed anything in particular on the network be-

havior. This is probably because the packets with incorrect headers are destroyed

somewhere deeper in network drivers. As a result, this type of errors does not

manifest themselves.

5.5 Summary and Discussion

This chapter investigates the Linux behavior under errors by using fault injections.

In particular, this chapter focuses on the analysis on the scope of error propagation.

The experiments in Section 5.3.3 shows that there are chances to avoid kernel

crashes in Linux by killing an offending process. As shown in Chapter 2, existing

failure recoveries often track or monitor every data update despite their unaccept-

91

able overheads [57]. However, the concept of error propagation scope suggests

that failure recoveries must track data locations, but they do not have to track data

contents. Two types of error propagation scope can be distinguished by where the

data is in the kernel. For example, errors in kernel stacks are process-local and

ones in the heap are kernel-global. Thus, their mechanisms can be optimized by

extending the crash procedure in Linux, which kills an offending process without

curing the corrupted data.

The observations in Section 5.4 describes that the Linux kernel frequently

checks the integrity of function arguments, return values, and other important vari-

ables. This defensive programming style probably results in low rates of global

error propagation in the experiments (16% of the failures in Linux 2.6.18 and

27% of ones in Linux 2.6.38). A typical example of the defensive coding in Linux

is the use of BUG ON macro, which checks the integrity of the kernel internal

states. The use of BUG ON aids in early error detections to prevent error propaga-

tion over the entire kernel. Although it is challenging to determine if an error is

kernel-global or process-local, the challenge can be mitigated by defensive cod-

ing style. One interesting direction towards more resilient Linux is to develop a

systematic method that determines where BUG ON macros should be inserted and

the conditions given to those macros. Current static analysis tools are expected to

give invaluable hints on the locations and conditions of BUG ON macros.

The definition of “process-local” and “kernel-global” is somewhat ambiguous

and there is room for further discussion. This is because this study does not in-

vestigate acquired resources before an injected fault is activated. For example,

some errors that cause software aging can be viewed as kernel-global because a

resource leakage of a process affects all the other processes in the system. On the

other hand, those errors can be viewed as process-local because no global data

structures are corrupted; all processes are viewing consistent image of global data

structures. Other resources such as locks and interrupt states potentially cause

deadlocks in kernel contexts as shown in Section 5.3.3 although they do not cor-

rupt kernel states and can cause phenomena similar to fail-stops. In other words,

the results indicate that failure recoveries with killing an offending process needs

92

to track acquired resources and release them during the recoveries.

93

Chapter 6

Conclusion

6.1 Contribution Summary

This dissertation has conducted studies of faults and errors in the Linux operating

system. Natural language processing helps obtain an overview of the Linux faults

by grouping 370,403 patches into 66 clusters. The study on error propagation

scope indicates clear views of operating system behaviors under errors.

The clustering showed insights into fault detection in operating systems. For

example, most of the faults were not surprising ones; existing tools for detecting

and avoiding faults are expected to work effectively with real operating systems.

On the other hand, frequent observations of low-level semantics show that test-

ing and/or formal proof techniques with physical devices are desirable in some

cases. The clusters represented the characteristics of faults in operating systems:

operating system features, devices, and general software. The cluster for inter-

rupt handling extracted 160 patches for mishandling IRQs in device drivers. This

dissertation demonstrated developing static analysis with the extracted knowledge

and found five faults that developers overlooked.

According to the study of error propagation scope, there are chances to avoid

kernel crashes in Linux. In particular, existing failure recovery can be optimized

by improving the crash procedure in Linux, which kills an offending process with-

out curing the corrupted data. Although it is challenging to determine if or not the

94

failure recovery can proceed, the challenge can be mitigated by defensive coding

style as observed in the in-depth analysis. The study also shows that it is necessary

for the lightweight failure recovery to track acquired resources and release them

during the failure recovery.

6.2 Future Directions

Although this dissertation has uncovered various characteristics of faults and er-

rors in the Linux operating system, it only shows limited portions of their entire

characteristics. For example, the clustering in the fault study did not extract rare

but serious faults such as security issues. The study of error propagation did not

show failures of long-running workloads.

Thus, one of the future work is to refine the methodologies to study faults

and errors. In the study of faults, there can be better parameters and algorithms

of natural language processing. For example, clusters that have less than 5,000

patches and more than 10,000 can be investigated. Extending the fault injector in

the study of error propagation may lead to other insights that this dissertation does

not show.

However, the study results suggest many directions of further researches to

prevent failures in operating systems. The demonstration of static analysis devel-

opments suggests that the possibilities of automatic synthesis of static checkers

from existing fault reports. The study of error propagation indicates that a tool

for effectively inserting BUG ON macros increases the probability of process-local

errors. The kernel can be recovered from kernel-global errors if a sophisticated

mechanism is developed for detecting global error propagation and releasing ac-

quired resources.

95

Appendix A

Extracted Patch Documents

A.1 Example Patch Document in memori Cluster

commit 003615302a16579531932576bcd9582ddeba9018

Author: Johan Hovold <jhovold@gmail.com>

Date: Wed Oct 17 13:34:58 2012 +0200

USB: io ti: fix port-data memory leak

Fix port-data memory leak by moving port data allocation and deallocation

to port probe and port remove.

Since commit 0998d0631001288 (device-core: Ensure drvdata = NULL

when no driver is bound) the port private data is no longer freed at release as it is

no longer accessible.

Compile-only tested.

96

A.2 Example Patch Document in irq Cluster

commit ea6dedd7fbd0f760ebf37eb0bcc8c64856475a13

Author: Imre Deak <imre.deak@nokia.com>

Date: Mon Jun 26 16:16:00 2006 -0700

ARM: OMAP: GPIO IRQ lazy IRQ disable fix

- The current OMAP GPIO IRQ framework doesn’t use the do edge IRQ,

do level IRQ handlers, but instead calls do simple IRQ. This doesn’t handle

disabled interrupts properly, so drivers will still get interrupts after calling

disable irq. The patch solves this by respecting the irq desc.disable depth and

irq desc.running counters. When one of these is non-zero the handler is not

called, the interrupt is masked and marked as pending. The pending interrupt

will be serviced when the running handler returns. This is according to the same

semantics as the standard do edge IRQ and do level IRQ handlers have, so one

day we should use them instead of do simple IRQ.

- Process only interrupts that are not masked. The ISR may contain pend-

ing interrupts that are masked these shouldn’t be processed.

- Move the bank IRQ unmasking out of the IRQ dispatch loop. If there are

further iterations we shouldn’t unmask it if there are level triggered interrupts

pending.

97

Bibliography

[1] Amazon. Amazon Linux AMI Security Center. https://

alas.aws.amazon.com/. Nov. 2015.

[2] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran

Shlomo. “Virtual CPU Validation”. In Proceedings of the 25th ACM Sym-

posium on Operating Systems Principles (SOSP ’15). 2015, pp. 311–327.

[3] Arthur Asuncion, Max Welling, Padhraic Smyth, and Yee Whye Teh.

“On Smoothing and Inference for Topic Models”. In Proceedings of the

25th Conference on Uncertainty in Artificial Intelligence (UAI ’09). 2009,

pp. 27–34.

[4] M. A. Auslander, D. C. Larkin, and A. L. Scherr. “The Evolution of the

MVS Operating System”. In IBM Journal of Research and Development

25.5 (1981), pp. 471–482.

[5] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Licht-

enberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Ab-

dullah Ustuner. “Thorough Static Analysis of Device Drivers”. In Pro-

ceedings of the 1st ACM European Conference on Computer Systems 2006

(EuroSys ’06). 2006, pp. 73–85.

[6] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin.

“SLAM2: Static Driver Verification with Under 4% False Alarms”. In

Proceedings of the 2010 Conference on Formal Methods in Computer-

Aided Design (FMCAD ’10). 2010, pp. 35–42.

98

[7] Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and Jakob

Lichtenberg. “The Static Driver Verifier Research Platform”. In Proceed-

ings of the 22nd International Conference on Computer Aided Verification

(CAV ’10). 2010, pp. 119–122.

[8] Andrew Baumann, Dongyoon Lee, Pedro Fonseca, Lisa Glendenning, Ja-

cob R. Lorch, Barry Bond, Reuben Olinsky, and Galen C. Hunt. “Compos-

ing OS Extensions Safely and Efficiently with Bascule”. In Proceedings of

the 8th ACM European Conference on Computer Systems (EuroSys ’13).

2013, pp. 239–252.

[9] Bernard Blackham, Yao Shi, and Gernot Heiser. “Improving Interrupt Re-

sponse Time in a Verifiable Protected Microkernel”. In Proceedings of

the 7th ACM European Conference on Computer Systems (EuroSys ’12).

2012, pp. 323–336.

[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet

Allocation”. In Journal of Machine Learning Research 3 (2003), pp. 993–

1022.

[11] Silas Boyd-Wickizer and Nickolai Zeldovich. “Tolerating Malicious De-

vice Drivers in Linux”. In Proceedings of the 2010 USENIX Conference

on Annual Technical Conference (USENIXATC ’10). 2010.

[12] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. “Paral-

lel Symbolic Execution for Automated Real-world Software Testing”. In

Proceedings of the 6th ACM European Conference on Computer Systems

(EuroSys ’11). 2011, pp. 183–198.

[13] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted

and Automatic Generation of High-coverage Tests for Complex Systems

Programs”. In Proceedings of the 8th USENIX Conference on Operating

Systems Design and Implementation (OSDI ’08). 2008, pp. 209–224.

[14] George Candea and Armando Fox. “Crash-only Software”. In Proceed-

ings of the 9th Conference on Hot Topics in Operating Systems (HotOS

’03). 2003, pp. 67–72.

99

[15] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and

Armando Fox. “Microreboot — A Technique for Cheap Recovery”. In

Proceedings of the 6th USENIX Conference on Symposium on Opearting

Systems Design & Implementation (OSDI ’04). 2004, pp. 31–44.

[16] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,

Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.

“Fast Byte-granularity Software Fault Isolation”. In Proceedings of the

22nd ACM Symposium on Operating Systems Principles (SOSP ’09).

2009, pp. 45–58.

[17] Daniel Chen, Gabriela Jacques-Silva, and Bruce Mealey. “Error Behav-

ior Comparison of Multiple Compuing System: A Case Study Ui Linux

on Pentium, Solaris on SPARC, and AIX and POWER”. In Proceedings

of the 14th IEEE Pacific Rim International Symposium On Dependable

Computing (PRDC ’08). 2008, pp. 339–346.

[18] Haogang Chen, Cody Cutler, Taesoo Kim, Yandong Mao, Xi Wang, Nick-

olai Zeldovich, and M. Frans Kaashoek. “Security Bugs in Embedded

Interpreters”. In Proceedings of the 4th ACM Asia-Pacific Workshop on

Systems (APSys ’13). 2013, 17:1–17:7.

[19] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich,

and M. Frans Kaashoek. “Linux Kernel Vulnerabilities: State-of-the-art

Defenses and Open Problems”. In Proceedings of the 2nd ACM Asia-

Pacific Workshop on Systems (APSys ’11). 2011, 5:1–5:5.

[20] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans

Kaashoek, and Nickolai Zeldovich. “Using Crash Hoare Logic for Cer-

tifying the FSCQ File System”. In Proceedings of the 25th ACM Sympo-

sium on Operating Systems Principles (SOSP ’15). 2015, pp. 18–37.

[21] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E: A

Platform for In-vivo Multi-path Analysis of Software Systems”. In Pro-

ceedings of the 16th ACM International Conference on Architectural Sup-

100

port for Programming Languages and Operating Systems (ASPLOS XVI).

2011, pp. 265–278.

[22] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson

Engler. “An Empirical Study of Operating Systems Errors”. In Proceed-

ings of the 18th ACM Symposium on Operating Systems Principles (SOSP

’01). 2001, pp. 73–88.

[23] Domenico Cotroneo, Michael Grottke, Roberto Natella, Roberto Pietran-

tuono, and Kishor S. Trivedi. “Fault triggers in open-source software: An

experience report”. In Proceedings of the 24th IEEE International Sym-

posium on Software Reliability Engineering (ISSRE ’13). 2013, pp. 178–

187.

[24] Domenico Cotroneo, Anna Lanzaro, Roberto Natella, and Ricardo Bar-

bosa. “Experimental Analysis of Binary-Level Software Fault Injection in

Complex Software”. In Proceedings of the 9th IEEE European Depend-

able Computing Conference (EDCC ’12). 2012, pp. 162–172.

[25] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano

Russo. “Software Aging Analysis of the Linux Operating System”. In Pro-

ceedings of the 2010 IEEE 21st International Symposium on Software Re-

liability Engineering (ISSRE ’10). 2010, pp. 71–80.

[26] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm

Hutchinson, and Andrew Warfield. “Remus: High Availability via Asyn-

chronous Virtual Machine Replication”. In Proceedings of the 5th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI ’08). 2008, pp. 161–174.

[27] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Pe-

ter Nobel. “ReBucket: A Method for Clustering Duplicate Crash Reports

Based on Call Stack Similarity”. In Proceedings of the 34th ACM Interna-

tional Conference on Software Engineering (ICSE ’12). 2012, pp. 1084–

1093.

101

[28] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Camp-

bell. “CuriOS: Improving Reliability Through Operating System Struc-

ture”. In Proceedings of the 8th USENIX Conference on Operating Sys-

tems Design and Implementation (OSDI ’08). 2008, pp. 59–72.

[29] DDVerify. http://www.cprover.org/ddverify/.

[30] Alex Depoutovitch and Michael Stumm. “Otherworld: Giving Applica-

tions a Chance to Survive OS Kernel Crashes”. In Proceedings of the 5th

ACM European Conference on Computer Systems (EuroSys ’10). 2010,

pp. 181–194.

[31] Joao A. Duraes and Henrique S. Madeira. “Emulation of Software Faults:

A Field Data Study and a Practical Approach”. In IEEE Transactions on

Software Engineering (TSE ’06) 32.11 (Nov. 2006), pp. 849–867.

[32] Kevin Elphinstone and Gernot Heiser. “From L3 to seL4 What Have We

Learnt in 20 Years of L4 Microkernels?” In Proceedings of the 24th ACM

Symposium on Operating Systems Principles (SOSP ’13). 2013, pp. 133–

150.

[33] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. “Check-

ing System Rules Using System-specific, Programmer-written Compiler

Extensions”. In Proceedings of the 4th USENIX Conference on Sympo-

sium on Operating System Design & Implementation (OSDI ’00). 2000.

[34] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin

Chelf. “Bugs As Deviant Behavior: A General Approach to Inferring Er-

rors in Systems Code”. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP ’01). 2001, pp. 57–72.

[35] Micro Focus. DFS Deutsche Flugsicherung GmbH (German Air Traffic

Control). https://www.novell.com/success/dfs.html.

[36] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. “SKI: Ex-

posing Kernel Concurrency Bugs Through Systematic Schedule Explo-

102

ration”. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation (OSDI’14). 2014, pp. 415–431.

[37] Archana Ganapathi, Viji Ganapathi, and David Patterson. “Windows XP

Kernel Crash Analysis”. In Proceedings of the 20th USENIX Conference

on Large Installation System Administration (LISA ’06). 2006.

[38] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul,

Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen

Hunt. “Debugging in the (Very) Large: Ten Years of Implementation and

Experience”. In Proceedings of the 22nd ACM Symposium on Operating

Systems Principles (SOSP ’09). 2009, pp. 103–116.

[39] Jim Gray. “Why Do Computers Stop and What Can Be Done About It?”

In Proceedings of Symposium on Reliability in Distributed Software and

Database Systems. 1986, pp. 3–12.

[40] Weining Gu, Zbingniew Kalbarczyk, and Ravishankar K. Iyer. “Error

Sensitivity of the Linux kernel Executing on PowerPC G4 and Pentium

4 Processors”. In Proceedings of the 4th IEEE/IFIP International Con-

ference on Dependable Systems and networks (DSN ’04). 2004, pp. 887–

896.

[41] Weining Gu, Zbingniew Kalbarczyk, Ravishankar K. Iyer, and Zhenyu

Yang. “Characterization of Linux Kernel Behavior under Errors”. In Pro-

ceedings of the 2003 IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN ’03). 2003, pp. 459–468.

[42] Lisong Guo, Julia Lawall, and Gilles Muller. “Oops! Where Did That

Code Snippet Come from?” In Proceedings of the 11th Working Confer-

ence on Mining Software Repositories (MSR ’14). 2014, pp. 52–61.

[43] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. “A File is Not a File: Understanding the

I/O Behavior of Apple Desktop Applications”. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles (SOSP ’11). 2011,

pp. 71–83.

103

[44] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew

S. Tanenbaum. “Fault Isolation for Device Drivers”. In Proceedings of

the 39th IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN ’09). 2009, pp. 33–42.

[45] Yennun Huang, Chandra Kintala, Nick Kolettis, and N. Dudley Fulton.

“Software rejuvenation: analysis, module and applications”. In Proceed-

ings of the 25th International Symposium on Fault-Tolerant Computing

(FTCS-25). 1995, pp. 381–390.

[46] Nicholas Jalbert and Westley Weimer. “Automated duplicate detection for

bug tracking systems”. In Proceedings of the 38th IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN ’08). 2008,

pp. 52–61.

[47] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. “Fine-

grained Fault Tolerance Using Device Checkpoints”. In Proceedings of

the 18th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’13). 2013,

pp. 473–484.

[48] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. “Tolerating

Hardware Device Failures in Software”. In Proceedings of the 22nd ACM

Symposium on Operating Systems Principles (SOSP ’09). 2009, pp. 59–

72.

[49] Asim Kadav and Michael M. Swift. “Understanding Modern Device

Drivers”. In Proceedings of the 17th ACM International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS XVII). 2012, pp. 87–98.

[50] Wei-lun Kao, Ravishankar K. Iyer, and Dong Tang. “FINE: A fault injec-

tion and monitoring environment for tracing the UNIX system behavior

under faults”. In IEEE Transactions on Software Engineering (TSE ’93)

19.11 (Nov. 1993), pp. 1105–1118.

104

[51] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-

ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Win-

wood. “seL4: Formal Verification of an OS Kernel”. In Proceedings of

the 22nd ACM Symposium on Operating Systems Principles (SOSP ’09).

2009, pp. 207–220.

[52] E. van der Kouwe, C. Giuffrida, and A.S. Tanenbaum. “On the Sound-

ness of Silence: Investigating Silent Failures Using Fault Injection Ex-

periments”. In Proceedings of the 10th European Dependable Computing

Conference (EDCC ’14). 2014, pp. 118–129.

[53] Greg Kroah-Hartman. The Linux Kernel Driver Interface. Documenta-

tion/stable api nonsense.txt (in linux source tree).

[54] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,

R. Sekar, and Dawn Song. “Code-pointer Integrity”. In Proceedings of the

11th USENIX Conference on Operating Systems Design and Implementa-

tion (OSDI ’14). 2014, pp. 147–163.

[55] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation”. In Proceedings of the 2nd

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion (CGO ’04). 2004, pp. 75–86.

[56] J.L. Lawall, J. Brunel, N. Palix, R.R. Hansen, H. Stuart, and G. Muller.

“WYSIWIB: A declarative approach to finding API protocols and bugs in

Linux code”. In Proceedings of the 39th IEEE/IFIP International Confer-

ence on Dependable Systems Networks (DSN ’09). 2009, pp. 43–52.

[57] Andrew Lenharth, Vikram S. Adve, and Samuel T. King. “Recovery Do-

mains: An Organizing Principle for Recoverable Operating Systems”. In

Proceedings of the 14th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

XIV). 2009, pp. 49–60.

105

[58] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr

Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing

Su. “Scaling Distributed Machine Learning with the Parameter Server”.

In Proceedings of the 11th USENIX Conference on Operating Systems

Design and Implementation (OSDI ’14). 2014, pp. 583–598.

[59] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. “A Realistic

Evaluation of Memory Hardware Errors and Software System Suscepti-

bility”. In Proceedings of the 2010 USENIX Conference on Annual Tech-

nical Conference (USENIXATC ’10). 2010, pp. 1–14.

[60] Zhenmin Li and Yuanyuan Zhou. “PR-Miner: Automatically Extracting

Implicit Programming Rules and Detecting Violations in Large Software

Code”. In Proceedings of the 10th European Software Engineering Con-

ference Held Jointly with 13th ACM International Symposium on Founda-

tions of Software Engineering (ESEC/FSE-13). 2005, pp. 306–315.

[61] Jacob R. Lorch, Andrew Baumann, Lisa Glendenning, Dutch T. Meyer,

and Andrew Warfield. “Tardigrade: Leveraging Lightweight Virtual Ma-

chines to Easily and Efficiently Construct Fault-tolerant Services”. In Pro-

ceedings of the 12th USENIX Conference on Networked Systems Design

and Implementation (NSDI ’15). 2015, pp. 575–588.

[62] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and

Shan Lu. “A Study of Linux File System Evolution”. In Proceedings of the

11th USENIX Conference on File and Storage Technologies (FAST’13).

2013, pp. 31–44.

[63] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. “Learning from

Mistakes: A Comprehensive Study on Real World Concurrency Bug Char-

acteristics”. In Proceedings of the 13th ACM International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS XIII). 2008, pp. 329–339.

106

[64] Matthew Lynley. The High Cost Of An Amazon Outage. http://

www.buzzfeed.com/mattlynley/the-high-cost-of-an-amazon-outage.

Aug. 20, 2013.

[65] Apache Mahout: Scalable machine learning and data mining. http://

mahout.apache.org/.

[66] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schuetze. In-

troduction to Information Retrieval. Cambridge University Press, 2008.

[67] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich,

and M. Frans Kaashoek. “Software Fault Isolation with API Integrity and

Multi-principal Modules”. In Proceedings of the 23rd ACM Symposium

on Operating Systems Principles (SOSP ’11). 2011, pp. 115–128.

[68] Paul D. Marinescu and George Candea. “Efficient Testing of Recovery

Code Using Fault Injection”. In ACM Transactions on Computer Systems

(TOCS ’11) 29.4 (Dec. 2011), 11:1–11:38.

[69] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. “A Large-Scale

Study of Flash Memory Failures in the Field”. In Proceedings of the 2015

ACM International Conference on Measurement and Modeling of Com-

puter Systems (SIGMETRICS ’15). 2015, pp. 177–190.

[70] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve

Zdancewic. “SoftBound: Highly Compatible and Complete Spatial Mem-

ory Safety for C”. In Proceedings of the 30th ACM Conference on

Programming Language Design and Implementation (PLDI ’09). 2009,

pp. 245–258.

[71] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira. “Representativeness

analysis of injected software faults in complex software”. In Proceedings

of the 40th IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN ’10). 2010, pp. 437–446.

107

[72] Wee Teck Ng and Peter M. Chen. “The Systematic Improvement of Fault

Tolerance in the Rio File Cache”. In Proceedings of the 29th Symposium

on Fault-Tolerant Computing (FTCS ’99). 1999, pp. 76–83.

[73] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. “Cycles,

Cells and Platters: An Empirical Analysisof Hardware Failures on a Mil-

lion Consumer PCs”. In Proceedings of the 6th ACM European Confer-

ence on Computer Systems (EuroSys ’11). 2011, pp. 343–356.

[74] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. “Understanding Col-

lateral Evolution in Linux Device Drivers”. In Proceedings of the 1st ACM

European Conference on Computer Systems 2006 (EuroSys ’06). 2006,

pp. 59–71.

[75] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.

“Documenting and Automating Collateral Evolutions in Linux Device

Drivers”. In Proceedings of the 3rd ACM European Conference on Com-

puter Systems 2008 (EuroSys ’08). 2008, pp. 247–260.

[76] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia

Lawall, and Gilles Muller. “Faults in Linux: Ten Years Later”. In Pro-

ceedings of the 16th ACM International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS XVI).

2011, pp. 305–318.

[77] David A. Patterson. “An Introduction to Dependability”. In ;login; 27.4

(Aug. 2002).

[78] Cuong Pham, Daniel Chen, Zbigniew Kalbarczyk, and Ravishankar K.

Iyer. “CloudVal: A framework for validation of virtualization environ-

ment in cloud infrastructure”. In Proceedings of the 41st IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN ’11).

2011, pp. 189–196.

108

[79] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and

Galen C. Hunt. “Rethinking the Library OS from the Top Down”. In Pro-

ceedings of the Sixteenth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS XVI).

2011, pp. 291–304.

[80] Linux Test Project. LTP - Linux Test Project. http://linux-test-

project.github.io/. Dec. 26, 2015.

[81] LLVM Project. LLVM Developer Policy. http://llvm.org/docs/

DeveloperPolicy.html. Dec. 26, 2015.

[82] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. “SymDrive:

Testing Drivers Without Devices”. In Proceedings of the 10th USENIX

Conference on Operating Systems Design and Implementation (OSDI’12).

2012, pp. 279–292.

[83] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. “Detection of

Duplicate Defect Reports Using Natural Language Processing”. In Pro-

ceedings of the 29th ACM International Conference on Software Engi-

neering (ICSE ’07). 2007, pp. 499–510.

[84] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot

Heiser. “Automatic Device Driver Synthesis with Termite”. In Proceed-

ings of the 22nd ACM Symposium on Operating Systems Principles (SOSP

’09). 2009, pp. 73–86.

[85] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun Raghu-

nath, Michael Stumm, and Mona Vij. “User-guided Device Driver Syn-

thesis”. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation (OSDI ’14). 2014, pp. 661–676.

[86] Suman Saha, Jean-Pierre Lozi, Gael Thomas, Julia L. Lawall, and Gilles

Muller. “Hector: Detecting Resource-Release Omission Faults in Error-

handling Code for Systems Software”. In Proceedings of the 43rd IEEE/I-

FIP International Conference on Dependable Systems and Networks

(DSN ’13). 2013, pp. 1–12.

109

[87] SLAM. http://research.microsoft.com/en-us/projects/slam/.

[88] Mark Sullivan and Ram Chillarege. “Software defects and their impact

on system availability-a study of field failures in operating systems”. In

Proceedings of the 21st IEEE International Symposium on Fault-Tolerant

Computing (FTCS-21). 1991, pp. 2–9.

[89] Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Michael M.

Swift. “Membrane: Operating System Support for Restartable File Sys-

tems”. In Proceedings of the 8th USENIX Conference on File and Storage

Technologies (FAST ’10). 2010, pp. 21–21.

[90] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and

Henry M. Levy. “Recovering Device Drivers”. In Proceedings of the 6th

USENIX Conference on Symposium on Opearting Systems Design and

Implementation (OSDI ’04). 2004.

[91] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. “Improving

the Reliability of Commodity Operating Systems”. In Proceedings of the

19th ACM Symposium on Operating Systems Principles (SOSP ’03). 2003,

pp. 207–222.

[92] Yuan Tian, Julia Lawall, and David Lo. “Identifying Linux Bug Fixing

Patches”. In Proceedings of the 34th ACM International Conference on

Software Engineering (ICSE ’12). 2012, pp. 386–396.

[93] Liam Tung. Android now has 1.4bn active users, 300m on Lol-

lipop. http://www.zdnet.com/article/android-has-1-4bn-active-users-with-

300m-on-lollipop/. Sept. 30, 2015.

[94] Steven J. Vaughan-Nichols. Ubuntu Linux continues to rule the

cloud. http://www.zdnet.com/article/ubuntu-linux-continues-to-rule-the-

cloud/. Aug. 27, 2015.

110

[95] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agar-

wal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh

Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-

jay Radia, Benjamin Reed, and Eric Baldeschwieler. “Apache Hadoop

YARN: Yet Another Resource Negotiator”. In Proceedings of the 4th ACM

Annual Symposium on Cloud Computing (SOCC ’13). 2013, 5:1–5:16.

[96] W3Cook. W3Cook - Usage Trends, Market Share, Statistics. http://

www.w3cook.com/. Dec. 21, 2015.

[97] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans

Kaashoek. “Improving Integer Security for Systems with KINT”. In Pro-

ceedings of the 10th USENIX Conference on Operating Systems Design

and Implementation (OSDI’12). 2012, pp. 163–177.

[98] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary

Tatlock. “Jitk: A Trustworthy In-kernel Interpreter Infrastructure”. In Pro-

ceedings of the 11th USENIX Conference on Operating Systems Design

and Implementation (OSDI ’14). 2014, pp. 33–47.

[99] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-

Lezama. “Towards Optimization-safe Systems: Analyzing the Impact of

Undefined Behavior”. In Proceedings of the 24th ACM Symposium on Op-

erating Systems Principles (SOSP ’13). 2013, pp. 260–275.

[100] Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian Jiang. “Isolating

Commodity Hosted Hypervisors with HyperLock”. In Proceedings of

the 7th ACM European Conference on Computer Systems (EuroSys ’12).

2012, pp. 127–140.

[101] Thomas Witkowski. “Formal Verification of Linux Device Drivers”. MA

thesis. TU Dresden and ETH Zurich, 2007.

[102] Thomas Witkowski, Nicolas Blanc, Daniel Kroening, and Georg Weis-

senbacher. “Model Checking Concurrent Linux Device Drivers”. In Pro-

ceedings of the 22nd IEEE/ACM International Conference on Automated

Software Engineering (ASE ’07). 2007, pp. 501–504.

111

[103] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jor-

dan. “Detecting Large-scale System Problems by Mining Console Logs”.

In Proceedings of the 22nd ACM Symposium on Operating Systems Prin-

ciples (SOSP ’09). 2009, pp. 117–132.

[104] Kazuya Yamakita, Hiroshi Yamada, and Kenji Kono. “Phase-based Re-

boot: Reusing Operating System Execution Phases for Cheap Reboot-

based Recovery”. In Proceedings of the 41st IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN ’11). 2011,

pp. 169–180.

[105] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.

“Using Model Checking to Find Serious File System Errors”. In Proceed-

ings of the 6th USENIX Conference on Symposium on Opearting Systems

Design & Implementation (OSDI ’04). 2004.

[106] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,

Yongle Zhang, Pranay U. Jain, and Michael Stumm. “Simple Testing Can

Prevent Most Critical Failures: An Analysis of Production Failures in Dis-

tributed Data-intensive Systems”. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation (OSDI

’14). 2014, pp. 249–265.

[107] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and

Shankar Pasupathy. “SherLog: Error Diagnosis by Connecting Clues from

Run-time Logs”. In Proceedings of the 14th ACM International Confer-

ence on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS XV). 2010, pp. 143–154.

[108] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xi-

aoming Tang, Yuanyuan Zhou, and Stefan Savage. “Be Conservative: En-

hancing Failure Diagnosis with Proactive Logging”. In Proceedings of the

10th USENIX Conference on Operating Systems Design and Implementa-

tion (OSDI ’12). 2012, pp. 293–306.

112

[109] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Sav-

age. “Improving Software Diagnosability via Log Enhancement”. In Pro-

ceedings of the 16th ACM International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS XVI).

2011, pp. 3–14.

[110] I.S. Zakharov, M.U. Mandrykin, V.S. Mutilin, E.M. Novikov, A.K. Pe-

trenko, and A.V. Khoroshilov. “Configurable toolset for static verification

of operating systems kernel modules”. In Programming and Computer

Software 41.1 (2015), pp. 49–64.

[111] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals,

Matthew Harren, George Necula, and Eric Brewer. “SafeDrive: Safe and

Recoverable Extensions Using Language-based Techniques”. In Proceed-

ings of the 7th USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’06). 2006, pp. 45–60.

[112] James F. Ziegler, Martin E. Nelson, James Dean Shell, R. Jerry Peterson,

Carl J. Gelderloos, Hans P. Muhlfeld, and Charles J Montrose. “Cosmic

ray soft error rates of 16-Mb DRAM memory chips”. In IEEE Journal of

Solid-State Circuits 33.2 (Feb. 1998), pp. 246–252.

113

List of Papers

Articles on Periodicals

• Takeshi Yoshimura and Kenji Kono. “A Case for Static Analysis of Linux to

Find Faults in Interrupt Request Handlers”. IPSJ Transactions on Advanced

Computing Systems (ACS53), To appear.

• Takeshi Yoshimura, Hiroshi Yamada, and Kenji Kono. “Using Fault Injec-

tion to Analyze the Scope of Error Propagation in Linux”. IPSJ Transac-

tions on Advanced Computing Systems (ACS42), Vol. 6, No. 2 pp. 1-10,

April 2013.

Articles on International Conference Proceedings

• Takeshi Yoshimura and Kenji Kono. “Who writes what checkers? — Learn-

ing from bug repositories”. In Proceedings of the 10th USENIX Workshop

on Hot Topics in System Dependability (HotDep ’14), pp. 1-6, October

2014.

• Takeshi Yoshimura, Hiroshi Yamada, and Kenji Kono. “Is Linux Kernel

Oops Useful or Not?” In Proceedings of the 8th USENIX Workshop on Hot

Topics in System Dependability (HotDep ’12), pp. 1-6, October 2012.

• Takeshi Yoshimura, Hiroshi Yamada, and Kenji Kono. “Can Linux be Re-

juvenated without Reboots?” In Proceedings of the 3rd IEEE International

Workshop on Software Aging and Rejuvenation (WoSAR ’11), pp.50-55,

November 2011.

114

