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Abstract

Aerial imagery has been utilized as an important information resource for many ap-

plications such as map making, urban planning, land use analysis, environmental

monitoring, real estate management, and disaster relief, etc. In those applications,

extracting ground objects such as buildings and roads from aerial imagery is neces-

sary as a pre-processing. This task is to give an object class label for each pixel in

an aerial image, so that it is a highly attentional task for human and a very costly

and time-consuming process. Therefore, there have been many attempts at automat-

ing this task, but fully automated systems which currently exist still have room for

improvement in terms of accuracy and simultaneous extraction of multiple objects.

In this thesis, a new method to train a convolutional neural network (CNN) effi-

ciently for simultaneous extraction of multiple objects is proposed. To formulate the

object extraction task as a semantic segmentation problem, a background class is often

introduced as one of the classes of interest. In such situation, the background class has

a different characteristic than the other classes such as buildings and roads because

the background class represents many kinds of objects as a single class. Therefore, a

new activation function for the final layer of a CNN to focus on the specialty of the

background class is proposed. Then, it is shown that the CNN which uses the acti-

vation function achieves the state-of-the-art accuracy on a publicly available dataset

for aerial imagery labeling. The effectiveness of the proposed method is discussed by

empirical evaluation.

Finally, the usefulness of the automatic semantic segmentation for aerial imagery

is shown by performing a seamline determination task using the results of semantic

segmentation and achieving the optimal result with a simple optimization process.
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Chapter 1

Introduction

Aerial imagery is the term that we use to describe photographs that are taken from the

sky. Aerial imagery is a important information resource for various applications, for

example, map making, urban planning, land use analysis, environmental monitoring,

real estate management, and disaster relief, etc. However, to use aerial imagery

for those applications, we preliminarily need to extract necessary information from

given aerial imagery. Therefore, aerial imagery interpretation as a pre-processing is

inevitable. In concrete terms, aerial imagery interpretation is a task to extract ground

objects (e.g., buildings and roads) from an aerial image such as shown in Figure 1-1.

This task has been usually performed by human experts manually, so that the process

has been very costly and time-consuming. Therefore, if aerial imagery interpretation

is completely automated, it will produce a great economic effect and enable more

Figure 1-1: An example of high resolution aerial image
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varied applications to be achieved. For example, the self-driving car is finishing

testing stages in laboratories, so that much frequent updates of road maps based on

aerial imagery interpretation began to be necessary.

1.1 Automation of Aerial Imagery Interpretation

There have been many applications that use aerial imagery as mentioned above, so

that there have also been many attempts at automating aerial imagery interpretation.

The early work that used a pattern recognition system to recognize ground objects

with computer was proposed by Idelsohn [Idelsohn, 1970]. This system performs

adaptive filters on input signals to extract seven binary features, and then classifies

them into one of the terrain type classes. After that study, Bajcsy et al. investigated

a model of roads to recognize road-like objects that appear in satellite images [Bajcsy

and Tavakoli, 1976]. Then, some other knowledge-based and rule-based approaches

were also proposed [Kettig and Landgrebe, 1976, McKeown et al., 1985]. These early

works were strongly motivated to automate the object extraction task, but there

were strict constraints and assumptions to use those systems in practical situations.

Therefore, after the dawning age, significant progress has been made for about thirty

years. Emmanuel proposed a knowledge-based object extraction method for aerial im-

agery, and achieved a semi-automated system [Emmanuel, 2004]. Then Mayer further

discussed the knowledge-based approach by focusing on statistical modeling [Mayer,

2008]. These approaches seemed to be promising but essentially needed specialized

knowledge about target objects which is to be extracted from aerial imagery prelim-

inary to build the system. Therefore, human experts still should work to construct

the knowledge structure for those ground objects which appear in the target aerial

imagery.

1.1.1 Feature Extraction for Image Recognition Tasks

In general, to know what the important cues are to extract objects from images, many

kinds of general purpose feature extractors have been studied and used in computer
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vision literature [Lowe, 1999, Bay et al., 2006, Dalal and Triggs, 2005, Weldon et al.,

1996]. Once good features are acquired by good extractors, we can comparatively

easily classify the features instead of data themselves. Namely, the features are better

cues to know that a focused region in an input image is one of the objects of interest

or not. Therefore, feature extractors generally aim at representing local regions in an

image with discriminative representation by applying predefined filters, performing

specific procedures that extract specific patterns and edges around a target pixel, or

converting raw data into another feature space such as frequency space, etc. Thus,

finding important cues for recognition tasks finally has been usually addressed as

problems of how to choose and combine some local feature extractors to represent data

with discriminative representation. However, those local feature extractors and how

to combine them for better classification performance should be essentially designed

based on the problem settings and data characteristics. Therefore, another kind of

manual procedure by human experts is required, after all. On the other hand, data-

driven construction of feature extractors using a convolutional neural network (CNN)

is attracting attention in computer vision and machine learning field because of its

high performance especially since [Krizhevsky et al., 2012]. Although it sill needs to

design the network architecture usually by trial-and-error, if we have enough amount

of data, a CNN performs very well on image recognition tasks by constructing good

feature extractors automatically and classifying those features effectively within a

single network.

1.1.2 Large-scale Machine Learning for Aerial Imagery

Focusing on some aspects of recent aerial imagery data, first, the resolution of aerial

imagery is increasing because of improvement of camera sensors. Second, the total

amount of available data is exploding. The first point seriously demands automa-

tion of aerial imagery interpretation because images that have higher resolution make

manual procedures of object extraction more complicated and highly attentional for

humans. Therefore, the cost to interpret them is also increased, while the high resolu-

tion aerial imagery enable more varied applications to be realized. On the other hand,
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Figure 1-2: An example of semantic segmentation

the second point sheds light on machine learning approaches that utilize large-scale

datasets to address those problems. Indeed, recent studies on large-scale machine

learning for high resolution aerial imagery have proposed ground object detectors

with impressive levels of accuracy [Kluckner and Bischof, 2009, Kluckner et al., 2009,

Mnih and Hinton, 2010, 2012].

The object extraction from aerial imagery is usually formulated as a pixel labeling

task in those approaches based on machine learning. Given an aerial image such as

shown in Figure 1-1, the goal is to assign one of semantic labels of interest (e.g.

buildings, roads, trees, grass, and water [Kluckner and Bischof, 2009, Kluckner et al.,

2009]) to every pixel in an aerial image, namely, to perform semantic segmentation.

For example, Figure 1-2 shows an input aerial image and an example result. Blue,

Red, and Green pixels in the right picture denote background, building, and road

classes, respectively. This is an example of multiple object extraction, but some

studies focused only on a single object that appears in aerial imagery [Dollar et al.,

2006, Mnih and Hinton, 2010, 2012].

In general, the pixel labeling is one of the most challenging tasks in the field of

computer vision, so that it has been extensively studied [He et al., 2004, Shotton et al.,

2008, Farabet et al., 2012]. Recent approaches utilizing deep CNNs achieve significant

progress on semantic segmentation for general scenes [Long et al., 2015, Zheng et al.,
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2015] (e.g., images taken from vehicle video system, surveillance cameras, and daily

snapshots, etc.) However, there is still remaining distance to human-level results. On

the other hand, in the case of aerial imagery, there is relatively higher feasibility than

the case of such general scenes. Because aerial imagery are usually transformed to

orthoimages after being taken, so that the view direction of aerial imagery is always

orthogonal to the ground plane, and the scale of objects that appear in aerial imagery

can be assumed to be fixed within the images that have the same resolution. Those

prior conditions reduce the possible variations which should be considered, so that

semantic segmentation for aerial imagery is a more tractable task compared to the

general image labeling task.

Thus, there have been some methods that address semantic segmentation for aerial

imagery by utilizing machine learning approaches combined with large-scale datasets.

The state-of-the-art in the aerial imagery labeling is the work by Mnih [Mnih, 2013].

In that paper, a large-scale dataset for the aerial imagery labeling is proposed, and

CNNs are trained separately on the dataset for road extraction and building extrac-

tion. They further focused on label noise and structured prediction using conditional

random fields (CRFs) or post-processing neural networks, but multiple object extrac-

tion at the same time is not considered. However, both roads and buildings are very

important ground objects for various practical applications. The methods proposed

by Mnih [Mnih, 2013] can be applied for any types of objects when labels of all types

that we want to extract are available, but a different model is needed to be trained

for each target object. It means that the resulting models for different objects are

independent from each other. Therefore, if there would be correlation between dif-

ferent objects, each model cannot be utilized it for label prediction. However, there

obviously is a mutual exclusiveness between different objects. For example, a pixel

that belongs to the road class can never belong to the building class, vice versa. If the

exclusiveness can be utilized to improve performance within a single network, there

will be advantages not only on the number of models needed to be trained to extract

multiple objects but also on performance based on utilization of the correlation.
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1.1.3 Multiple Object Extraction

In this thesis, we aim at training a single model for simultaneous extraction of multiple

objects, roads and buildings, by utilizing the correlation between them. This problem

setting is more difficult than the single object extraction problem, so that a naive

extension of the conventional model for single object extraction cannot perform well.

The conventional method [Mnih, 2013] has a single-channel predicted label image as

its output, so the simplest way to extend it for multiple objects is to make the output

a multi-channel image. However, it cannot achieve better performance compared to

the conventional model that has a single-channel output. To output a multi-channel

image with considering the mutual exclusiveness between different objects of interest,

a straightforward way is to make a pixel on the output image a vector whose elements

add up to one. Then, to design a pixel on the output image as such a vector, we should

take a background class into account as one of the classes of interest. Therefore, when

we predict two types of objects, roads and buildings, we should consider three types of

classes, roads, buildings, and the background that is defined as the none-of-the-above

class. Here, the background is treated completely same as the other classes, but it

is obviously special. Because the background class fundamentally includes multiple

classes in different levels of abstraction, so that the features to represent the concept

of the background must be more complicated compared to the other simple objects

such as roads and buildings. Therefore, we focus on this specialty. We propose a

novel activation function for the final layer of a CNN to consider the specialty of the

background class and train the CNN efficiently for multiple object extraction.

1.2 An Application of Aerial Imagery Labeling

Once the automatic object extraction from aerial imagery is achieved with high ac-

curacy, there are many possible applications which benefit significantly from the au-

tomation. One of the simplest applications of aerial imagery interpretation is seamline

determination for aerial imagery mosaicking. Image mosaicking is a task to combine

two or more images that have overlapping regions into a single large image. To per-
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form aerial imagery mosaicking, a boundary line between a set of smaller images to be

combined should avoid to cross any buildings to make the resulting mosaic natural.

The boundary line is called seamline. The optimal seamline yields a larger image

with seamless boundaries of which nobody can aware. Therefore, this task is usually

done by human experts manually by choosing all pixels that construct a seamline,

so that the automation of this task is also demanded. In this thesis, we show that

the optimal seamline that crosses no buildings can be easily found automatically by

utilizing semantic segmentation results.

1.3 Contribution

Our goal is to develop an accurate system for automatic semantic segmentation of

aerial imagery based on large-scale machine learning approaches and to show the

effectiveness of the system on an application of aerial imagery processing. In this the-

sis, we focus on what we see as the room for improvement in applying image labeling

techniques to aerial imagery, and on possible applications of semantic segmentation:

∙ Simultaneous extraction of multiple objects : There are not as many methods for

extracting multiple objects simultaneously as for extracting each object sepa-

rately, although there are many different ground objects in aerial imagery, and

applications (e.g., automated map making) cannot be achieved by extracting

only a single object. Furthermore, the occurrence of a ground object could be

correlated with another object, especially in the case of buildings and roads in

urban scenes. Therefore, we assume that the consideration of multiple objects

simultaneously to exploit the latent correlation will improve the performance of

pixel labeling. Thus, a new technique to train a CNN efficiently for simultane-

ous multiple object extraction is proposed. The main contribution of this thesis

is the technique, a novel activation function for the last layer of a CNN that

can suppress the effect of the background class that we cannot avoid to consider

in multiple object extraction.
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∙ Seamless results in patch-based approach: Typical semantic segmentation ap-

proaches that utilize CNNs can achieve the state-of-the-art accuracy for aerial

imagery, but the fundamental limitation of those approaches is that the size of

the receptive field in the input image layer is too small compared to the whole

size of an aerial image. Thus, it is inevitable to apply the patch-based approach

when we use the conventional network architecture for this task. However, the

naive patch-based approach causes that a resulting predicted label image should

be synthesized by tiling many predicted label patches, so that the boundaries

of patches may not be smooth and degrade the resulting performance. There-

fore, we propose a new model averaging method that can avoid producing such

patchy results without complicated structured prediction methods such as a

conditional random field but with ability to achieve high accuracy.

∙ Automatic seamline determination by utilizing semantic segmentation results :

If semantic segmentation for aerial imagery could be performed very accurately,

there are many possible applications that benefit from the results. One of such

applications is seamline determination [Pan et al., 2014]. A seamline is the

boundary between two aerial images that will be combined into a single image

to synthesize a larger aerial image. The optimal seamline is defined as a path

that never passes through any buildings in those two aerial images. We show

the conventional seamline determination method based on Dijkstra’s algorithm

[Dijkstra, 1959] to calculate the minimum cost path on a preliminary generated

cost map can achieve the optimal result when the semantic segmentation re-

sult is used as a cost map, while the conventional cost map that is generated

based on a mean-shift segmentation method leads the resulting seamline to cross

buildings.

The rest of this thesis includes the work previously published in [Saito et al., 2015,

2016], and is organized as follows:

∙ Chapter 2 presents the details of related work that utilize machine learning,

and summarizes the relationship to our approach by describing the difference
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between them. Then, an overview of components of a CNN that is the core of

our approach is presented. Finally, the related work of a typical application,

aerial imagery mosaicking, are presented.

∙ Chapter 3 presents the details of the proposed methods. We propose a method

to extract buildings and roads simultaneously and accurately from aerial im-

agery by training a single CNN with a novel activation function for the final

layer of the network. The training is performed on a large scale dataset that has

many aerial images and corresponding building and road mask images. The new

activation function is designed by focusing on the specialty of the background

class.

∙ Chapter 4 presents empirical evaluation of our method on a large-scale aerial

imagery dataset. The comparison results of the effectiveness to the conven-

tional methods are presented. Then we show that the proposed techniques for

multiple object extraction have advantages on a simple extended model of the

conventional CNN.

∙ Chapter 5 presents discussions about the results of the empirical evaluation

shown in Chapter 4 to clarify the effectiveness of the trained CNN with the

proposed techniques presented in Chapter 3 by visualizing the middle layer

outputs and investigating the trained parameters. Then we further discuss

about the size of dataset that is required to train a CNN successfully for this

task.

∙ Chapter 6 shows that the aerial imagery mosaicking can be easily automated by

using building extraction results that are obtained by utilizing a trained CNN.

We evaluate the resulting seamlines by comparing to results that are obtained

by a conventional method based on mean-shift segmentation. Then we show

that our approach can achieve the optimal results.

∙ Chapter 7 summarizes all techniques and methods proposed in this thesis. Then

the remarks on the most important findings are presented. Finally, conclusion
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and future work of this research are shown.
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Chapter 2

An Overview of Aerial Imagery

Interpretation and Its Applications

Aerial imagery interpretation has many applications as described in Chapter 1. In

many cases, the goal of aerial imagery interpretation is to extract ground objects from

aerial imagery. Then, ground object extraction is basically performed by labeling

each pixel or segment in an aerial image with one of the classes of interest (e.g.,

buildings or roads), so that this is a complex attentional task for humans. Because,

ground objects have a great deal of variation in their shapes and appearances, and an

object may be occluded by other objects such as trees and also by buildings’ shadows.

Therefore, automatic extraction of roads and buildings is highly demanded and many

attempts have been proposed in the remote sensing literature. This chapter aims to

present an overview of the approaches that utilize machine learning for this task and a

brief introduction of the important component of the proposed method, convolutional

neural networks (CNNs). Then we focus on the task of seamline determination as an

example application of automatic aerial imagery labeling, so the related work of the

task is overviewed.
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2.1 General Segmentation Approaches

The objective of semantic segmentation is to assign a semantic label such as a road

and a building to every pixel in an image. In general, segmentation is performed

by many ways in terms of how to divide an image into smaller regions or segments.

For example, some color segmentation methods such as mean-shift segmentation or

simple linear iterative clustering (SLIC) [Achanta et al., 2012] are performed by using

color similarity to merge neighboring pixels into a small segment or a super pixel, so

that the labels actually assigned to pixels are approximated color information.

On the other hand, semantic segmentation aims at assigning semantic informa-

tion to each pixel. For example, Rother et al. proposed an interactive foreground

extraction method using graph cuts that is called GrabCut [Rother et al., 2004]. In

this method, the user needs to give some initial clues for foreground and background

pixels, while it can achieve an accurate semantic segmentation result after optimiz-

ing process by graph cuts. However, it is based on the spatial consecutiveness of a

same object in general pictures, so that it is difficult to apply this method to the

aerial imagery labeling task. Because a ground object could be enclosed by another

object, different objects that belongs to a same object class could be appeared in

distant location. Therefore, the aerial imagery labeling task basically cannot be a

simple foreground or background segmentation problem. We should consider a non-

interactive segmentation approach that can be applied to different pixels separately.

2.2 Early Work on Terrain Classification

Some of the first machine learning-based land use classification methods for multi-

spectral and radar images were proposed in late 1980s and in 1990s [Decatur, 1989,

Benediktsson et al., 1990, Bischof et al., 1992, Paola and Schowengerdt, 1995], which

classify a feature vector x𝑖 at a pixel 𝑖 to a discrete class label c𝑖. In much of those

pixel-by-pixel classification work, neural network-based approaches were usually intro-

duced with the comparison to the Bayes classifier. In those work, the Bayes classifier
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takes a raw pixel value on a multispectral or radar image as an input feature x𝑖, then

the posterior class probabilities 𝑃 (c𝑖 = 𝑘|x𝑖) are predicted using Bayes’ rule. Bayes’

rule needs assumptions about the class-conditional distributions 𝑝(x𝑖|c𝑖 = 𝑘) and the

prior class probabilities 𝑃 (c𝑖 = 𝑘). Therefore, the conventional methods assumes that

𝑝(x𝑖|c𝑖 = 𝑘) have a multivariate normal distribution with mean 𝜇𝑘 and covariance

Σ𝑘. Under this assumption, the classifier can learn only linear or quadratic decision

boundaries. Especially, when Σ𝑘 is diagonal, the classifier turns out to be the naive

Bayes classifier with assuming 𝑃 (c𝑖 = 𝑘) = 1/𝐾, and it was used in [Paola and

Schowengerdt, 1995].

On the other hand, neural networks can directly model the posterior class probabil-

ities 𝑃 (c𝑖 = 𝑘|x𝑖) without any assumptions by approximating the mapping between

input and output with a differentiable objective function that is constructed with

trainable parameters [Decatur, 1989, Lee et al., 1990, Bischof et al., 1992]. Therefore,

it can sidestep the need to specify the class-conditional distributions 𝑝(x𝑖|c𝑖 = 𝑘).

The neural networks for this task should have at least one hidden layer with non-

linear activation functions to learn non-linear decision boundaries [Decatur, 1989,

Benediktsson et al., 1990], but all the investigations presented in the previous papers

pointed out aspects of the usefulness of neural networks in the classification of pixels

on aerial imagery.

One of the drawbacks of those pixel-by-pixel prediction approaches is the lack of

consideration of contextual information. Then, some work used spectral values from a

small patch (e.g., 7×7-sized local region) as the input features to their neural network

models [Bischof et al., 1992, Boggess, 1993]. The others tried to design hand-crafted

features and used them to encode the contextual information [Haralick et al., 1973,

Haralick, 1976, Lee et al., 1990]. The feature proposed by Haralick [Haralick, 1976]

represents local textural information by encoding the spatial relationship between

distant pixels which have the same gray level values.

Those methods could achieve high accuracy when the input aerial images are low

resolution images. For example, Bischof et al. [Bischof et al., 1992] reported a clas-

sification accuracy of 85.9 % on a classification task of four classes, built-up land,
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agricultural land, forest, and water, but the resolution of input multispectral images

was 30 × 30 m2/pixel. If the objective classes are defined from such macroscopic

viewpoint for land use analysis, those approaches were sufficient because the input

multispectral images essentially are effective features to represent such classes. How-

ever, the resolution of recent aerial imagery is getting more than 900 times higher.

In this situation, the objective classes are changed to finer object classes such as

roads, buildings, cars, and trees, etc. Then, such ground objects in high resolution

aerial imagery are difficult to be extracted only by using local cues obtained through

deterministic procedures used in the above previous methods.

2.3 Object Extraction from High Resolution Aerial

Imagery

The Ikonos and Quickbird satellites are launched in 1999 and 2001, respectively.

These satellites for remote sensing can take high resolution images of the surface of

the Earth. Once those high resolution aerial imagery are available, the classes of

interest are shifted from macroscopic land types to smaller ground objects. To ex-

tract those objects (e.g., buildings and roads) that appear in high resolution aerial

imagery, the methods that use local spectral images and textural features with sim-

ple classifiers are insufficient in terms of accuracy. Because roads and buildings may

have similar textures, classifying them is a more difficult task than discriminating

land use types, for example, distinguishing a forest area from a built-up area using

low-resolution aerial imagery. Therefore, to classify the more finer ground objects

successfully, varied types of feature extractors are used with more sophisticated clas-

sifiers such as SVMs [Vapnik, 1963], random forests [Breiman, 2001], or various types

of boosting methods such as AdaBoost [Freund and Schapire, 1997], which can find

complex decision boundaries. Other than these, many fusion methods to improve

the representational power of local image features and to sophisticate classifiers have

been developed.
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2.3.1 Feature Engineering and Decision Fusion

Sirmacek et al. [Sirmacek and Ünsalan, 2011] proposed a probabilistic framework

to detect buildings, utilizing four different local feature extractors. They separately

used a Harris corner detector [Harris and Stephens, 1988], gradient-magnitude-based

support regions (GMSRs) [Ünsalan, 2006], Gabor filtering in different orientations

[Vetterli and Kovačević, 1995], and features from accelerated segment test (FAST)

[Rosten et al., 2010] to extract feature vectors from aerial imagery and obtain four

different estimation results of building locations. Some parameters of those feature

extractors were adjusted independently for the dataset used in the article. Then they

combined the separate estimation results from different features into a single building

detection output by using data and decision fusion methods.

Senaras et al. [Senaras et al., 2013] also proposed a decision fusion method for

building detection. They first performed mean-shift segmentation to an aerial image

with a preliminary learned band width parameter, and then calculated the normalized

difference vegetation index (NDVI) [Tucker, 1979] from the red color channel of the

aerial image and the corresponding infrared image. The NDVI image was binarized

with Otsu’s method [Otsu, 1975] to extract vegetation segments. They also performed

this binarization on a hue-saturation-intensity (HSI) image converted from a three-

channel image consisting of infrared-red-green to extract shadow regions. Using the

results of these pre-processings, both vegetation and shadow segments were excluded

from the group of all candidate segments. To classify the remaining segments into

building class or background, they extracted 15 different image features from each

segment. Then, they trained 15 different classifiers with those features and classified

each segment by the 15 classifiers independently and obtained 15 decisions for a single

segment. Finally, all decisions for a segment were combined by utilizing fuzzy stacked

generalization [Ozay and Vural, 2012].

These methods based on decision fusion have achieved accurate extraction of

ground objects from aerial imagery by constructing complicated features and multiple-

stage classifiers. However, those local image features are specially designed for ex-

15



tracting a specific object, and the fusion techniques of multiple classification results

are also intended to extract a specific object.

There are not as many methods for extracting multiple objects simultaneously

as for extracting each object separately, although there are many different ground

objects in aerial imagery, and applications (e.g., automated map making) cannot be

achieved by extracting only one object. Furthermore, the occurrence of a ground

object may be correlated with other objects, especially in the case of buildings and

roads in urban scenes. Therefore, if the simultaneous extraction of multiple objects

can be achieved by utilizing the correlation to improve the performance, it will be a

important progress on aerial imagery interpretation.

2.3.2 Neural Networks with Large-scale Datasets

Extracting features hierarchically and combining many decisions into one output by

weighting them are suited to be represented by a single feed-forward neural network

architecture. Furthermore, a neural network has a powerful online training scheme

such as stochastic gradient descent [Bottou, 1991], so that it can be easily trained on

a large-scale dataset.

Approaches utilizing artificial neural networks trained on a large and high resolu-

tion aerial image dataset to solve the semantic segmentation problem have achieved

good performance. Mnih et al. [Mnih and Hinton, 2010] proposed a road extraction

system utilizing a restricted Boltzmann machine (RBM) [Smolensky, 1986]. They for-

mulated the problem of extraction of road pixels from aerial imagery as a patch-based

semantic segmentation task. An input aerial image is divided into 64 × 64 patches,

and principal component analysis (PCA) [Pearson, 1901] is applied to them to reduce

the dimensionality. Then those PCA vectors are used to fine-tune an RBM that has

been pre-trained in an unsupervised way [Hinton and Salakhutdinov, 2006]. This

RBM predicts a road probability map from a PCA vector of an aerial imagery patch.

They finally trained a post-processing network that refines the predicted probabil-

ity maps to incorporate structures such as road connectivity into the final outputs.

They evaluated the performance of their method with a large dataset that consisted
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of aerial imagery and corresponding binary road label images. The dataset covered

roughly 500 km2.

This RBM-based road extraction method was updated by replacing the RBM

with a locally-connected neural network and incorporating two different noise models

[Mnih and Hinton, 2012]. They considered two types of noise occurring in label

images, omission noise and registration noise. The former occurs when an object that

appears in aerial imagery does not appear in the corresponding label image. The

latter occurs when the location of an object in a label image is inaccurate. They

proposed asymmetric Bernoulli distribution and translational noise distribution to

handle these two types of noise. Finally, they showed the effectiveness of the noise

models and achieved the good accuracy in road extraction. However, in the thesis by

Mnih [Mnih, 2013], he concluded that label noise has a negative but relatively small

effect on prediction results in the methods that utilize neural networks because of its

powerful representational ability.

2.3.3 Patch-based Approaches with Convolutional Neural Net-

works

Mnih [Mnih, 2013] proposed a patch-based pixel labeling method that uses a convolu-

tional neural network (CNN) to learn the mapping from raw pixel values to predicted

label images directly. In the patch-based approach, the input image is a three channel

small patch which is 64×64-sized Red-Green-Blue (RGB) image, and the output is a

single channel small patch which is 16 × 16-sized grayscale image whose pixel values

represent road or building probabilities. In that thesis, not only the base CNN model

is proposed and tested, but also how to incorporate structural dependencies with the

final prediction results is discussed. Their approach for structured prediction is two-

fold, one is to use a conditional random field (CRF) to learn the pixel dependencies

in the output label image. Another is to train post-processing networks to refine

the output of the base CNN, so that the system has a cascading structure. These

attempts at structured prediction make the performance better. Therefore, in the
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patch-based formulation of semantic segmentation for large aerial imagery, how to

incorporate the consecutiveness of object appearance and the context with the final

prediction results is very important.

Furthermore, a CNN can successfully predict the label images from raw pixel val-

ues when it has been trained on large-scale datasets, but there is a limitation of the

size of input images because of a practical problem of memory limitation of a graph-

ics processing unit (GPU) that is usually used to train a neural network. Thus, an

input aerial image should be divided into small patches, so that the network predicts

the labels for each patch. Hence, the resulting outputs may be very patchy because

the large jumps of predicted values can appear around the boundaries of neighboring

predicted patches. To address this problem of discontinuity around the boundaries,

the structured prediction approaches are required, and in deed, it improves the per-

formance.

2.3.4 Our Approach for Multiple Object Extraction

In this thesis, we aim at automatic acquisition of good feature extractors for both

buildings and roads, which are applied to raw pixel values directly with no pre-

processing. We achieve this by utilizing a CNN that is trained on a publicly available

large-scale aerial imagery dataset [Mnih, 2013]. We show that our CNN can also

classify all pixels in aerial imagery into buildings, roads, or the background more ac-

curately than previous work [Mnih and Hinton, 2010, 2012, Mnih, 2013]. Our method

does not need to design image features manually. The training of multiple classifiers

independently for each ground object that is to be extracted is also not needed.

Therefore, our method does not need to consider how to fuse multiple decisions, and

the output of our CNN inherently constructs three-channel label images (buildings-

roads-background). At the present stage, using a CNN seems to be the best way

when a large-scale dataset is available. On the other hand, the multiple object ex-

traction task is more difficult than the task to extract a single ground object. Thus,

the result of the naive extended version of the conventional CNN model, which has

multiple-channel output, cannot surpass the accuracy that achieved in [Mnih, 2013].
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Then, we propose a new activation function for the final layer of a CNN that can

train the CNN for multiple object extraction task more effectively by focusing on the

specialty of the background class. By training a CNN with our proposed techniques,

multiple object extraction by a single model with high accuracy is achieved. There

are some advantages of our proposals. Achieving high accuracy is essentially impor-

tant for the practical objectives in various applications as mentioned in Chapter 1.

Furthermore, extracting multiple objects simultaneously is also effective on many

practical situations, because we should keep only one model for multiple objects, and

we can obtain the multiple object predictions using the model only once, namely,

it needs a single feed-forward computation. Then, we further propose a new model

averaging technique to avoid the patchy results. We show the effectiveness of those

techniques in empirical evaluation experiments.

2.4 Convolutional Neural Networks

In this section, a brief introduction of convolutional neural networks is presented. In

this thesis, it is the most important model to learn the mapping from input images

to output labels that we want to predict to perform semantic segmentation for aerial

imagery.

In recent years, convolutional neural networks have attracted much attention in

the computer vision area. A convolutional neural network (CNN) can be trained as

robust feature extractors from raw pixel values and, at the same time, learn clas-

sifiers for object recognition tasks [Krizhevsky et al., 2012], regressors for human

pose estimation tasks [Toshev and Szegedy, 2014], or mappings for semantic seg-

mentation tasks [Farabet et al., 2013, Long et al., 2015, Zheng et al., 2015]. The

CNN is a biologically inspired variant of a multi-layer perceptron. The base idea was

introduced by Fukushima [Fukushima, 1980] as a neural network model for visual

recognition tasks. The model, Neocognitron, stacks convolutional layers and pooling

layers alternately and is trained in unsupervised manner. These layer architectures

are inspired by the receptive fields and the hierarchical structure in the cat’s visual
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cortex found by Hubel and Wiesel [Hubel and Wiesel, 1962]. After that, LeCun et

al. [LeCun et al., 1989, 1998] succeeded to train a hierarchical neural network model

that is inspired by Neocognitron with a classical gradient descent-based parameter

optimization method called backpropagation for hand-written digits classification.

Backpropagation has been used to optimize parameters of multi-layer perceptrons

since the work of Rumelhart et al. [Rumelhart et al., 1988], but stochastic gradi-

ent descent with backpropagation is also effective for optimizing a CNN with weight

sharing. The model used for this task was the first appearance of the modern CNN.

After over ten years, a CNN was focused again in 2012. ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) [Russakovsky et al., 2015] was held in the

year, which is a competition whose goal is to estimate the content of photographs for

the purpose of retrieval and automatic annotation using a very large hand-labeled

ImageNet training dataset that consists of over 1,280,000 labeled images depicting

1,000 object categories. The winner in the competition in 2012 used a deep convolu-

tional neural network that has eight layers [Krizhevsky et al., 2012]. The competition

has been continued and the winner’s model is getting deeper and deeper every year.

In this 1000 class classification task, the error rate of human raters is known as about

5.1 % [Russakovsky et al., 2015], but in 2015, some deep convolutional neural network

models have surpassed the human-level accuracy [He et al., 2015a, Ioffe and Szegedy,

2015, He et al., 2015b]. Then, the state-of-the-art in this 1000 class image classifica-

tion task achieved the error rate of 3.57 %, and the model used in the work had 152

layers [He et al., 2015a]. To achieve those results, many techniques have been proposed

to train a CNN successfully on such large dataset. For example, ReLU [Fukushima,

1980, Nair and Hinton, 2010] and PReLU [He et al., 2015a] have been proposed as

alternative activation functions to the logistic sigmoid or the tanh function. The in-

ception module [Szegedy et al., 2015], batch normalization [Ioffe and Szegedy, 2015],

and deep residual learning [He et al., 2015b] have been proposed as a new network

component, a normalization layer, and a new architecture for more deeper networks,

respectively. However, the fundamental component of those modern CNNs is still a

convolutional layer that has the same characteristics as the one proposed in [LeCun
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et al., 1989] and the optimization procedure is basically the conventional stochastic

gradient descent, though many sophisticated optimizers have been proposed (e.g.,

AdaGrad [Duchi et al., 2011], AdaDelta [Zeiler, 2012], and Adam [Kingma and Ba,

2014], etc.)

2.4.1 The Overview of Components of a Convolutional Neural

Network

A convolutional layer has fixed sized filters. Let 𝑀 , and 𝐻 × 𝐻 be the number

of the convolution filters, and the size of the filters, respectively, a convolutional

layer takes a 𝐾-channel 𝑊 × 𝑊 -sized image as its input and outputs a 𝑀 -channel

(𝑊 − 𝐻 + 1)/𝑠 × (𝑊 − 𝐻 + 1)/𝑠-sized image, where 𝑠 is a stride parameter. The

stride means a step of convolution over the input 𝑊 × 𝑊 -sized image. Then, each

channel in the output image is called a feature map.

Let 𝑧𝑖𝑗𝑘, ℎ𝑝𝑞𝑘𝑚, and 𝑢𝑖𝑗𝑚 be a pixel value at (𝑖, 𝑗) in 𝑘-th channel in the input image,

a weight value at (𝑝, 𝑞) in 𝑚-th convolution filter, which is connected to 𝑘-th channel

in the input image, and a pixel value at (𝑖, 𝑗) in 𝑚-th feature map, respectively, 𝑢𝑖𝑗𝑚

is calculated as:

𝑢𝑖𝑗𝑚 =
𝐾−1∑︁
𝑘=0

𝐻−1∑︁
𝑝=0

𝐻−1∑︁
𝑞=0

𝑧𝑠·𝑖+𝑝,𝑠·𝑗+𝑞,𝑘ℎ𝑝𝑞𝑘𝑚 + 𝑏𝑖𝑗𝑚, (2.1)

where 𝑏𝑖𝑗𝑚 is a bias parameter to be added to a weight value at (𝑖, 𝑗) in 𝑚-th con-

volution filter. It should be noted that all 𝑏𝑖𝑗𝑚 with different (𝑖, 𝑗) have the same

value in many cases. The convolutional layers also have tied weights, so that ℎ𝑝𝑞𝑘𝑚

is shared among all (𝑝, 𝑞) for reducing the number of parameters. If the stride

𝑠 > 1, filters are convolved at intervals of 𝑠, so that the sizes of all feature maps

are (𝑊 −𝐻 + 1)/𝑠 × (𝑊 −𝐻 + 1)/𝑠. Then, activation function 𝑓 is applied to the

resulting feature maps 𝑢𝑖𝑗𝑚. Therefore, the output of a convolutional layer is

𝑧𝑖𝑗𝑚 = 𝑓(𝑢𝑖𝑗𝑚). (2.2)

While the logistic sigmoid function 𝑓(𝑢𝑖𝑗𝑚) = 1/(1 + exp(−𝑢𝑖𝑗𝑚)) is well known as
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a typical activation function for neural networks, we use 𝑓(𝑢𝑖𝑗𝑚) = max(𝑢𝑖𝑗𝑚, 0) in-

stead in this thesis. The units that have the latter activation function with the max

operation are called rectified linear units (ReLU) and the effectiveness for conver-

gence performance and learning speed is reported in [Nair and Hinton, 2010]. In a

convolutional layer, ℎ𝑝𝑞𝑘𝑚 and 𝑏𝑖𝑗𝑚 are learnable parameters, so we optimize them

in the training stage of the CNN. In the following part of this thesis, we describe

a convolutional layer that has 𝑀 filters with the size of 𝐻 × 𝐻 and stride 𝑠 by

𝐶(𝑀,𝐻 ×𝐻/𝑠).

A pooling layer takes feature maps from the convolutional layer in the next lower

layer and performs subsampling to them. We use max pooling for the pooling layer

of our CNN. The pooling layer performs this calculation:

𝑢𝑖𝑗𝑘 = max
(𝑝,𝑞)∈𝑃𝑖𝑗

𝑧𝑝𝑞𝑘, (2.3)

where 𝑃𝑖𝑗 denotes a set of pixels in the 𝐻 × 𝐻-sized region centered at (𝑖, 𝑗) in the

input feature map. A max pooling operation outputs the max value in the receptive

field 𝑃𝑖𝑗, and this operation is applied at intervals of 𝑡. Accordingly, the input 𝐾-

channel (𝑊 −𝐻 + 1)/𝑠× (𝑊 −𝐻 + 1)/𝑠-sized feature map is downscaled to the size

of (𝑊 − 𝐻 + 1)/(𝑠 · 𝑡) × (𝑊 − 𝐻 + 1)/(𝑠 · 𝑡). Here, it should be noted that when

𝑡 = 1, the pooling layer does not change the size of input. Additionally, in the max

pooling layer, there is no learnable parameter. In the following part of this thesis, we

describe a pooling layer with 𝐻 ×𝐻-sized receptive field and stride 𝑡 by 𝑃 (𝐻/𝑡).

The characteristics of a CNN are alternatively stacked convolutional layers and

spatial polling layers, often followed by one or more fully-connected layers as in a

multi-layer perceptron. All units in a fully-connected layer connect to all units in the

next lower layer. We describe a fully-connected layer with 𝑁 units by 𝐹𝐶(𝑁).

As explained above in detail, a convolutional layer has a number of filters and

convolves them on an input image for extracting features. A pooling layer applies

subsampling to the output of the next lower layer for acquiring translational invari-

ance. Figure. 3-3 shows the architecture which is used for semantic segmentation
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Figure 2-1: The architecture of a CNN used in the paper [Mnih, 2013]

for a single channel prediction in [Mnih, 2013]. This architecture is described as

𝐶(64, 16 × 16/4) - 𝑃 (2/1) - 𝐶(112, 4 × 4/1) - 𝐶(80, 3 × 3/1) - 𝐹𝐶(4096) - 𝐹𝐶(256).

2.5 An Application of Semantic Segmentation: Aerial

Imagery Mosaicking

In this section, to show the demand of automatic semantic segmentation for aerial

imagery on practical applications, we focus on an example application, seamline deter-

mination for aerial imagery mosaicking. Then the related work of automatic seamline

determination are presented.

Essentially, there are many possible applications that use large aerial images.

However, the size of aerial images that can be captured by a camera at one time

is limited by the sensor size. Therefore, aerial images are usually captured with

overlapping regions with each other and tiled using the overlaps to construct a large

aerial image. The important thing when tiling the images is that the boundaries seem

to be natural, which means the boundary lines never cross any buildings. Buildings

are generally higher than digital elevation model (DEM) that represents the ground

elevation, and so have different appearances in aerial images captured from different

viewpoints. If the boundary between two aerial images passes through a building,

then the resulting mosaic image can have an unnatural appearance where they join

as shown in Fig. 2-2. The red line in Figure 2-2b is the boundary line, and it is called
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(a) (b) (c)

Figure 2-2: A result example of mosaic image with a wrong seamline that passes
through a building: (a) The bottom side of an aerial image before mosaicking. (b)
The resulting mosaic image based on the red line that shows a failed seamline which
passes through a building. (c) The upper side of an aerial image before mosaicking.

a seamline in the remote sensing field.

2.5.1 Conventional Approaches to Aerial Imagery Mosaicking

There have been many attempts at automatic seamline determination. One major

approach is creating cost maps from input aerial images, and then choosing pixels that

pass through the minimum cost path. In the conventional work, creating cost maps

depends on hand-crafted feature engineering. The simplest way to define the cost

map is using the difference of two images. Milgram [Milgram, 1975] and Fernandez et

al. [Fernandez et al., 1998] chose seam points by minimizing the differences between

pixel intensities on the seamline.

This type of approach implicitly assumes that objects with significant height (e.g.,

tall buildings) will appear differently in an overlapping region because of the difference

in viewpoint, so that small differences of pixel intensity at the same location might

mean that the location is ground or a preferred region that can be passed through

by a seamline. However, if there is a large building that spans a large area in an

aerial image, the region around the center of the building may not produce such large

differences when the appearance of the roof is flat even though it should not be crossed
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by the seamline.

Wang et al. [Wang et al., 2012] and Wan et al. [Wan et al., 2012] overlaid

vector data of roads on an overlapping region of a set of aerial images to build a

weighted graph, and calculated the lowest-cost path on the graph to obtain a seamline

candidate. Then they finally refined the candidate by considering its surrounding

pixels to fix the optimal seamline. Therefore, their method needs correct vector roads

as necessary inputs, so that the input aerial images should have the additional data

of vector roads.

Afek and Brand [Afek and Brand, 1998] presented an algorithm that integrates

global feature matching algorithms into the process of selecting a seamline, so that

they considered not only determining seamlines but also geometric transformation

between two aerial images. This type of approach is efficient when the input aerial

images are not aligned and not orthogonalized. However, if it can be assumed that

input aerial images are always orthoimages and preliminary aligned, the geometric

transformation is not needed to be considered as in the previous work [Pan et al.,

2014].

Kerschner [Kerschner, 2001] defined an energy function focusing on color similarity

and texture similarity over an input aerial orthoimage, and searched for the optimal

seamline by using snakes [Kass et al., 1988], an active contour model. However, this

approach still cannot consider the meaning of pixels. If the cost map is not explicitly

designed to put higher values on building regions, the small values on the cost map

could be found on building regions. It causes that the resulting minimum cost path on

such cost map could potentially cross buildings, even if the seamline search method is

too sophisticated. Therefore, how to create the cost map is more important problem

in seamline determination.

As described above, there are many approaches that use various cost (energy)

maps and optimization methods to determine seamlines. When human experts draw

seamlines on overlapping regions of aerial image pairs, they focus on the object type

represented by the pixels in the images. Therefore, automatically extracting pixels

that belong to objects which should not be crossed by a seamline is desirable, if it

25



can be provided with high accuracy. To extract such pixels, pixel labelling, namely,

semantic segmentation of the aerial images is necessary.

The segmentation-based method for aerial image mosaicking has been presented

in [Pan et al., 2014]. They proposed a seamline determination method based on a

cost map calculated by mean-shift segmentation. However, mean-shift segmentation

requires some sensitive parameters for implementation on input aerial images, such

as a bandwidth parameter. Furthermore, this method requires preferred regions to

be determined from input images using the results of mean-shift segmentation. The

preferred regions are defined as segments larger than a specified size parameter 𝑠𝑇

that is chosen manually according to the actual size of the largest objects in the

target aerial images. The preferred regions are expected not to include objects such

as buildings because of the assumption that most objects are smaller than roads or

grassed areas and thus belong to smaller segments. However, buildings are not always

smaller than roads or fields, especially in urban areas.

Therefore, although segmentation is used in [Pan et al., 2014] to create cost maps,

they did not consider the meaning of pixels because object-based recognition is a

very difficult task, and instead applied mean-shift segmentation which only considers

the similarity between colors. Furthermore, as mentioned in [Pan et al., 2014], the

method depends strongly on the parameters selected for mean-shift segmentation.

Then, another problem is that the size threshold for selecting preferred regions needs

to be chosen manually for each input image.

2.5.2 Aerial Imagery Mosaicking Based on Semantic Segmen-

tation

In this thesis, we aim at automatic determination of optimal seamlines that do not

cross any buildings by utilizing the accurate semantic segmentation method proposed

in Chaper 3. Our method needs only the input aerial images, so that we do not use

any other resources such as road vector maps, because we extract buildings automat-

ically by using a CNN that has been trained for semantic segmentation and solve the
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minimum cost path problem by Dijkstra’s algorithm [Dijkstra, 1959] on the result of

semantic segmentation as an input cost map. It should be noted that we achieve the

difficult task, as mentioned in [Pan et al., 2014], of accurate object extraction from

aerial imagery by training a CNN using a large-scale aerial image dataset. We show

the optimal seamline is easily found by utilizing the semantic segmentation result as

the cost map.

27



28



Chapter 3

Semantic Segmentation for Aerial

Imagery

This chapter presents our main contribution on semantic segmentation for aerial im-

agery with a convolutional neural network (CNN) that has multi-channel outputs.

Our contributions to this problem are threefold. First, we propose a multi-channel

prediction method with a single CNN based on the patch-based formulation of seman-

tic segmentation of aerial imagery [Mnih and Hinton, 2010]. We train the CNN that

has a three-channel output layer and predict buildings, roads, and the background

simultaneously. Second, we propose a new activation function for the final layer of

a CNN to consider the specialty of the background class. Third, we propose a new

model averaging method that can avoid producing patchy results such as the example

shown in Figure 3-1. As shown in this figure, if we predict the labels in the patch-

by-patch manner and tile them to construct the final results such as this figure, the

boundaries between neighboring patches may have large jumps of predicted values

and produce the non-contiguous and non-smooth results. It leads to a bad evaluation

result and further manual processing, but it cannot be solved by simply smoothing

the output values. Therefore, we propose another approach to address this problem

other than the approaches using post-processing networks proposed in [Mnih, 2013],

which need further training stages.

The first and second proposals are deeply related with each other. The labels
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Figure 3-1: Example of a patchy result

that we consider, namely, buildings and roads, are correlated with each other, so we

assume that if we exploit the correlation effectively with a CNN, the simultaneous

multi-channel prediction will be more accurate compared to the case of predicting

each channel independently with different CNNs that have a single-channel output.

Thus, we predict the probabilities of both buildings and roads at each pixel. To

predict multiple labels, we have to consider the background class at the same time.

However, there are potentially a large number of classes in the background (e.g.,

tree, river, sea, dog, human, car, etc.), so the feature to represent the background

class would be difficult to obtain compared with the feature to represent a single

class, namely, buildings or roads. Therefore, we assume that if we suppress the effect

of the background class in the loss function for the training of a CNN, the CNN

can learn about building and road representation more efficiently. To use such loss

function in the training stage, we propose a new activation function for the final

layer of a CNN. Utilizing this function during training improves the performance of

the CNN that predicts multi-channel label images. Our CNN surpasses the state-of-

the-art performance without using any further machinery such as noise models and
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structured prediction which are utilized in conventional methods [Mnih, 2013, Mnih

and Hinton, 2010, 2012].

As discussed in Chapter 2, our goal is to predict a multi-channel label image M̃

from an input aerial imagery S. Figure 3-2 shows an example of S and M̃. The

resolution of these pictures is 1.0 m2/pixel and the image size of these pictures is

1415 × 610. We directly learn a mapping from raw pixel values in S to a true label

image M̃ by training a CNN. Figure 3-2b shows an example true label image. This

figure represents a binary road label map as the red channel of the picture, a binary

building label map as the green channel, and the XOR of these label maps that

denotes a binary background label map as the blue channel. Figure 3-2c shows an

example prediction result from Figure 3-2a, and the colors in this figure have the

same meanings as Figure 3-2b, but the pixel values are continuous differently from

Figure 3-2b.

Let 𝐾 ′ be the number of object classes of interest; label image M̃ has 𝐾 ′ + 1

channels. Because it is difficult to consider all objects that can appear in aerial

imagery as the classes of interest, we consider the background class to represent a pixel

that belongs not to any of 𝐾 ′ classes of interest. In this thesis, we extract two objects,

buildings and roads, so that a label image consists of three channels, buildings, roads,

and the background. Let 𝐾 denote the number of all classes including the background,

𝐾 = 𝐾 ′ + 1 = 3. Here, a label image is a 𝐾-channel image, so that each single pixel

on the label image is a 𝐾-dimensional vector. In a label image, the sum over all

elements of a pixel vector is always one because each pixel should always be either

buildings, roads, or the background.

3.1 The Network Architecture

We modify the CNN architecture that was used in [Mnih, 2013] as shown in Figure 2-

1. We aim to predict multiple object labels at the same time, so that the final

layer of the CNN should be a multi-channel image form. Therefore, we propose the

modified version of the CNN as shown in Figure 3-3. This architecture is described
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(a) Aerial imagery S

(b) Ground truth M̃

(c) Predicted label image M̂

Figure 3-2: An example of resulting predicted label image
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Input aerial
image patch ss

Predicted
label patch m̂̂m

FC(4096)C(64, 16x16/4) P(2/1) C(112, 4x4/1) C(80, 3x3/1) FC(768)

Figure 3-3: The architecture of our CNN used in this thesis

as 𝐶(64, 16×16/4) - 𝑃 (2/1) - 𝐶(112, 4×4/1) - 𝐶(80, 3×3/1) - 𝐹𝐶(4096) - 𝐹𝐶(768).

Figure 3-3 shows the feature maps after each convolutional layer and pooling layer

with white rectangles.

We tried another architecture that has 16 layers, VGG-16 [Simonyan and Zisser-

man, 2014] which has deeper architecture, and ensured that the model could perform

better on the semantic segmentation task for aerial imagery with the same dataset.

However, finding the optimal architecture beyonds the scope of this thesis. In this

thesis, we focus on the exclusiveness of different classes and how to use it for im-

proving the performance. Then, we propose a new activation function and show its

effectiveness by comparing with the results reported in [Mnih and Hinton, 2012, Mnih,

2013] that use basically the same network architecture. Using the same architecture

is important to compare the exact effect of the difference of the activation function.

3.2 Patch-based Formulation

In this thesis, we formulate the pixel labeling task in a similar way to what has been

proposed by Mnih et al. [Mnih and Hinton, 2012, Mnih, 2013] We train the CNN

to predict a 𝑤𝑚 × 𝑤𝑚-sized true label patch m̃ from a 𝑤𝑠 × 𝑤𝑠-sized aerial imagery

patch s. Each pixel at location 𝑖 in a true label patch m̃ is a 𝐾-dimensional one-hot

vector, m̃𝑖 = [𝑚̃𝑖1, 𝑚̃𝑖2, . . . , 𝑚̃𝑖𝐾 ]. We describe the output of the CNN by m̂ that is

a 𝑤𝑚 × 𝑤𝑚-sized predicted label patch. Each pixel at 𝑖 in a predicted label patch m̂
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s

m̃

Figure 3-4: The size difference between label image patch m̃ and aerial imagery patch
s

is also a 𝐾-dimensional vector. Here, we assume that all pixels in a true label patch

m̃𝑖(𝑖 = 1, . . . , 𝑤2
𝑚) are conditionally independent of each other given a corresponding

aerial imagery patch s. Therefore, the posterior of a true label patch given an aerial

imagery patch is represented as

𝑝(m̃|s) =

𝑤2
𝑚∏︁

𝑖=1

𝑝(m̃𝑖|s). (3.1)

We train the CNN to maximize this posterior by minimizing the negative log likelihood

defined as

ℒ = −
𝑤2

𝑚∑︁
𝑖=1

ln 𝑝(m̃𝑖|s). (3.2)

Figure 3-4 shows the size difference between the input and output patches. For

example, focussing on a small region as depicted in the leftmost patch in Figure 3-4,

it is difficult to recognize what it is. However, if an input aerial imagery patch has

wider region as depicted in the center image in Figure 3-4, some context information

can be utilized to predict labels, and it can be recognized as a part of a building.

Therefore, we set the size of an input patch 𝑤𝑠 larger than the size of a predicted

label patch 𝑤𝑚, as depicted in the rightmost figure in Figure 3-4. This technique for

context consideration is also utilized by Mnih et al. [Mnih and Hinton, 2010] and

improves the performance.
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3.3 Channel-wise Inhibited Softmax

In this thesis, 𝑤𝑠 = 64, 𝑤𝑚 = 16, and 𝐾 = 3, so we reshape the last layer of

the CNN (a 768-dimensional vector) to a 16 × 16 × 3-sized image patch form. Let

x𝑖 = [𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3]
T denote the 𝑖th pixel in this output patch. Here, the softmax

operation

𝑚̂𝑖𝑘 =
exp(𝑥𝑖𝑘)∑︀
𝑗 exp(𝑥𝑖𝑗)

(3.3)

is applied to each element of x𝑖 to convert it into a label probability vector m̂𝑖 =

[𝑚̂𝑖1, 𝑚̂𝑖2, 𝑚̂𝑖3]
T. Then, each posterior at a pixel 𝑖 is represented as

𝑝(m̃𝑖|s) =
𝐾∏︁
𝑘=1

𝑚̂𝑚̃𝑖𝑘
𝑖𝑘 , (3.4)

where m̃𝑖 = [𝑚̃𝑖1, 𝑚̃𝑖2, 𝑚̃𝑖3]
T is a one-hot vector to represent a true label vector at

pixel 𝑖. A one-hot vector has only one element that has 1 as its value and all the

other elements have 0 as their values. Then, the negative log likelihood is calculated

as below, and we minimize this loss by stochastic gradient descent [Bottou, 1991] with

backpropagation [Rumelhart et al., 1988]:

ℒ = −
𝑤2

𝑚∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑚̃𝑖𝑘 ln 𝑚̂𝑖𝑘. (3.5)

The above formulation treats all classes equally in the loss function. Then, to

minimize the loss value, the network will obtain the representation of the target

concepts, namely, buildings, roads, and the background. However, the background

class might originally have many kinds of classes (e.g., river, cars, pedestrians, trees,

sea, etc.) Therefore, the feature representation for the background class should be

more complex than the case of buildings and roads. Then, we consider how to suppress

obtaining the complex feature representation for the background to get the network

to focus more on obtaining the feature representation for buildings and roads.

Here, we propose a new activation function for the final layer of a CNN called

channel-wise inhibited softmax (CIS). It is used instead of the normal softmax de-
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scribed in Eq. 3.3. Using CIS, we inhibit all units in a specific channel in the output

layer of the CNN before calculating softmax. In concrete terms, we put zero in all

the output units of the CNN in the background channel, namely, ∀𝑖, 𝑥𝑖1, and then

calculate softmax by Eq. (3.3).

Let 𝜋(·) denote an element-wise operation of the normal softmax to a vector and

⊙ denote an element-wise product. The predicted three-channel probability vector

at a pixel 𝑖 that is calculated with CIS is

m̂CIS
𝑖 ≡ 𝜋(c⊙ x𝑖) (3.6)

where c = [𝑐1, 𝑐2, . . . , 𝑐𝐾 ]T,

𝑚̂CIS
𝑖𝑘 =

exp(𝑐𝑘𝑥𝑖𝑘)∑︀
𝑗 exp(𝑐𝑗𝑥𝑖𝑗),

𝑐𝑘 =

⎧⎨⎩ 0 if 𝑘 = 1

1 otherwise.

Then the loss function with CIS is defined as

ℒCIS = −
𝑤2

𝑚∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑚̃𝑖𝑘 ln 𝑚̂CIS
𝑖𝑘 . (3.7)

The derivative of this loss function at 𝑥𝑖𝑗 is

∂ℒCIS

∂𝑥𝑖𝑗

= −
𝐾∑︁
𝑘=1

𝑚̃𝑖𝑘
1

𝑚̂CIS
𝑖𝑘

∂𝑚̂CIS
𝑖𝑘

∂𝑥𝑖𝑗

= −
𝐾∑︁
𝑘=1

𝑐𝑗𝑚̃𝑖𝑘(𝛿𝑗𝑘 − 𝑚̂CIS
𝑖𝑗 )

= 𝑐𝑗

{︃
𝑚̂CIS

𝑖𝑗

𝐾∑︁
𝑘=1

𝑚̃𝑖𝑘 −
𝐾∑︁
𝑘=1

𝑚̃𝑖𝑘𝛿𝑗𝑘

}︃

= 𝑐𝑗(𝑚̂
CIS
𝑖𝑗 − 𝑚̃𝑖𝑗), (3.8)
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where

∂𝑚̂CIS
𝑖𝑘

∂𝑥𝑖𝑗

=
∂

∂𝑥𝑖𝑗

exp(𝑐𝑘𝑥𝑖𝑘)∑︀𝐾
𝑙=1 exp(𝑐𝑙𝑥𝑖𝑙)

=

⎧⎪⎪⎨⎪⎪⎩
𝑐𝑗𝑚̂

CIS
𝑖𝑘 (1 − 𝑚̂CIS

𝑖𝑗 ) if 𝑗 = 𝑘

𝑐𝑗𝑚̂
CIS
𝑖𝑘 (0 − 𝑚̂CIS

𝑖𝑗 ) otherwise,

𝛿𝑗𝑘 =

⎧⎪⎨⎪⎩
1 if 𝑗 = 𝑘

0 otherwise.

It should be noted that
𝐾∑︁
𝑘=1

𝑚̃𝑖𝑘 = 1 (3.9)

is applied to the last but one line in Eq. 3.8. We use the new loss function defined

with the new activation function, CIS, described in Eq. 3.7 to train a CNN with the

consideration of the specialty of the background class.

3.4 Model Averaging with Spatial Displacement

To improve the resulting predicted label image, we further perform model averaging

techniques in a new manner. In general, model averaging is an ensemble learning

method to avoid overfitting. In the training stage, multiple models are trained on

the same dataset, and in the inference stage, the outputs from those trained models

are averaged to obtain the final results. Recently in the context of neural networks,

Dropout [Hinton et al., 2012] is known as a way to obtain the similar effect of model

averaging within a single network. It is a technique that randomly drop units from

the network during training. On the other hand, in our model, we explicitly perform

model averaging by training multiple CNNs that have the same architecture but are

initialized with different weights, while we perform dropout with dropout ratio = 0.5

to the 𝐹𝐶(4096) layer for regularizing the network. Therefore, we train a CNN which

has the same architecture eight times. Each training stage is started from different

initial weights that are sampled from the same Gaussian distribution with different

random seeds.
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input aerial imagery patch A

input aerial imagery patch B

averaged predicted
label patch

output predicted label patch A
output predicted label patch B

Figure 3-5: Model averaging with spatial displacement

In the inference stage, we give eight displaced input aerial images with different

offsets to those eight versions of a single model. We call this operation model averaging

with spatial displacement (MA). Figure 3-5 shows that eight inputs for eight different

versions of a single model are displaced by 𝑑(0 ≤ 𝑑 ≤ 7) pixels from the original

image location. The predicted label patches of those versions are tiled with the same

displacement 𝑑 to synthesize a final predicted label image. After tiling those patches,

we divide all pixel values by eight for averaging.

3.5 Learning

We learn all parameters in the CNN by minimizing the loss function with mini-

batch stochastic gradient descent with momentum. During learning, we reduce the

learning rate by multiplying by a fixed reducing rate every 𝜏 epochs. Furthermore,
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we regularize the network with L2 weight decay. Therefore, hyper-parameters in the

learning stage are the mini-batch size, the learning rate (LR) 𝜂, the LR reducing rate

𝛾, the LR reducing frequency 𝜏 , a weight of the momentum term 𝛼, and a weight

of the L2 weight decay 𝛽. The learning rate 𝜂 is started from 𝜂0, and we use the

following values for all experiments in this chapter: 𝜂0 = 0.0005, 𝜏 = 100, 𝛾 = 0.1,

𝛼 = 0.9, 𝛽 = 0.0005, with the mini-batch size = 128. The training is continued until

the epoch reaches 400. These values are empirically chosen based on the settings in

the paper proposed by Mnih [Mnih, 2013].

24 px

24 px

Rotation with the angle ✓✓

Input pair of aerial imagery
and label patches

where

r ⇠ Bernoulli(p = 0.5)

If r = 1

Crop the center regions Crop the center regions

, flip LR
where

✓ ⇠ Uniform(0, 2⇡)

92 px
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 p

x
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Figure 3-6: The process flow for the data augmentation.
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3.5.1 Data Augmentation

During training of the CNN, we perform real-time data augmentation to extend the

number of patches in the dataset by performing two kinds of transformations to both

the input aerial imagery patch and the corresponding true label patch. We apply

rotation with a random angle 𝜃 and random L-R flip to them. The random angle 𝜃

is sampled from the uniform distribution, 𝜃 ∼ Uniform(0, 2𝜋), for every patch. Both

the input aerial imagery patch and the true label patch are rotated around the center

point with the same angle. L-R flipping is also performed randomly and equally to

both inputs and true label patches.

To apply random rotation to a pair of aerial imagery and label patches, we firstly

take a pair of a 92 × 92-sized aerial imagery patch and a 24 × 24-sized true label

patch. Then we apply the random rotation to both patches with the same angle

𝜃 ∼ Uniform(0, 2). The left and right flipping operation is performed only when

𝑟 ∼ Bernoulli(𝑝 = 0.5) is 1. Finally, the center 64×64-sized and 16×16-sized regions

of both patches are cropped. This process flow is summarized in Figure 3-6. We

apply this process to all pairs in a mini-batch during training.

3.5.2 Normalization

After performing transformations to input and true label patches, the input aerial

imagery patch is normalized by subtracting mean value and dividing by the standard

deviation. This procedure is called global contrast normalization [Goodfellow et al.,

2013]. It reduces the variation caused by the difference of light conditions while

capturing aerial imagery. Let 𝑠𝑖𝑘 denote the 𝑖th pixel value of the 𝑘th channel in the
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input aerial imagery patch s, the normalized value 𝑠′𝑖𝑘 is calculated as below:

𝑠′𝑖𝑘 = (𝑠𝑖𝑘 − 𝜇𝑘)/(𝜎𝑘 + 10−5), (3.10)

where 𝜇𝑘 =
1

𝑤2
𝑚

𝑤2
𝑚∑︁

𝑖=0

𝑠𝑖𝑘, (3.11)

𝜎𝑘 =

⎛⎝ 1

𝑤2
𝑚

𝑤2
𝑚∑︁

𝑖=0

(𝑠𝑖𝑘 − 𝜇)2

⎞⎠ 1
2

. (3.12)

In Eq. 3.10, we added 10−5 to the standard deviation 𝜎𝑘 to avoid the numerical error

caused by division by zero. It should be noted that the mean and standard deviation

are calculated for each channel of the aerial imagery separately.

3.6 Dataset

To predict multiple labels simultaneously, we built a new dataset by selecting data

from two datasets, Massachusetts Buildings Dataset (Mass. Buildings) and Mas-

sachusetts Roads Dataset (Mass. Roads), which are released by Mnih [Mnih, 2013]

and publicly available on the website 1. These two datasets have many aerial images

and corresponding binary label images that are aligned to those aerial images. The

size of all images in these datasets is 1500 × 1500 and the resolution is 1m2/pixel.

Mass. Buildings consists of 151 pairs of aerial images and corresponding building la-

bel binary images, and covers a large area of roughly 340 km2. This dataset is divided

into three groups. The training, validation, and test subsets of this dataset comprise

137, 4, and 10 images, respectively. On the other hand, Mass. Roads consists of

1171 pairs of aerial images and corresponding road label binary images, and these

are separated into 1108 training images, 14 validation images, and 49 test images.

In general, a training dataset is used for learning of parameters of a model, and a

validation dataset is used to determine some hyper parameters such as the number

of layers or units and when to stop the training, and a test dataset is used to evalu-

1http://www.cs.toronto.edu/˜vmnih/data/
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Table 3.1: The overview of datasets

Dataset name Training Validation Test

Mass. Roads [Mnih, 2013] 1108 14 49

Mass. Roads-Mini 137 4 10

Mass. Buildings [Mnih, 2013] 137 4 10

Mass. BR 137 4 10

ate the performance of the trained model and compare it with other models. Then,

we merged Mass. Buildings and Mass. Roads to create Massachusetts Buildings and

Roads dataset (Mass. BR) which has multi-channel label images. Table 3.1 shows the

composition of all datasets we use in the experiment described in the next chapter.

To create Mass. BR dataset, we selected aerial images that had both building

labels and road labels from Mass. Buildings and Mass. Roads. Then we found that

the all aerial images in Mass. Buildings are included in Mass. Roads. Therefore,

we added road labels to the Mass. Buildings dataset. We synthesized three-channel

label images by stacking building, road, and background label images as the three

Road label
image (as Red channel)

Building label
image (as Green channel)

Background label
image (as Blue channel)

Three-channel label image

Figure 3-7: How to construct a three-channel label image
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channels as shown in Figure 3-7. Background label images were created by calculating

the XOR of building and road label images. Then we found some obviously incorrect

labels in road channels of some test images that are chosen from training images in

Mass. Roads, so that we correct the labels manually for more precise evaluation.

Examples of an aerial image and the corresponding three-channel label image in this

new dataset are shown in Figure 3-8.

Finally, we found that we cannot compare the result of a model trained on Mass.

BR with another model trained on Mass. Roads directly, because some images in the

training set of Mass. BR are included in the test set of Mass. Roads. Therefore, we

took subsets of the Mass. Roads dataset and created the Mass. Roads-Mini dataset.

The training, validation, and test images in Mass. Roads-Mini are completely same

as in Mass. BR, but Mass. Roads-Mini has only road labels. Hence, using Mass.

Roads-Mini dataset to train a single-channel CNN, we can directly compare the road

prediction result with the road channel result of a multi-channel CNN.

Figure 3-8 shows six aerial images in the left top block. These images are chosen

from 1171 aerial images in the Mass. Roads dataset, so that there are six correspond-

ing road label images as shown in the center top block. However, the aerial images

shown in the left column in the left top block are only in Mass. Roads, so that there

are no corresponding label images in Mass. Roads-Mini, Mass. Buildings, and Mass.

BR. It shows that the aerial images which are included in Mass. Roads-Mini, Mass.

Buildings, and Mass. BR are the same and a subset of the images in Mass. Roads.

Then, as shown in this figure, all aerial images and label images are 1500×1500-sized

images. Label images in Mass. Roads, Mass. Roads-Mini, and Mass. Buildings

are binary images, so that those images have only a single-channel. On the other

hand, the label images in Mass. BR are three-channel color images, and each channel

corresponds to road, building, or background label images as shown in Figure 3-7.
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Raw aerial images Road label images from Mass. Roads Road label images from Mass. Roads-Mini

Building label images from Mass. Buildings Building and road label images from Mass. BR

Figure 3-8: Examples of aerial and label images from each dataset
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Chapter 4

Empirical Evaluation

In this chapter, we aim to show the effectiveness of our proposed methods, channel-

wise inhibited softmax (CIS) and model averaging with spatial displacement (MA),

by comparing the models with these methods with the previous models that were

proposed by Mnih [Mnih, 2013]. First, we evaluate a single-channel CNN that has

𝐹𝐶(256) instead of 𝐹𝐶(768) in the final layer, which is trained on Mass. Buildings

and Mass. Roads datasets separately with data augmentation and model averaging

with spatial displacement (MA). We describe this single-channel model Single-channel

with MA. On the other hand, our proposed multi-channel models are described as

Multi-channel with/without CIS and with/without MA in all tables and figures. In

this chapter, we perform two different experiments to evaluate those conventional

models and our proposed models.

4.1 Evaluation Metric

First, the evaluation metric is important to show the practical effectiveness of our

methods. The most common metrics for evaluating building and road extraction

results are precision and recall. In the remote sensing literature, these are also called

correctness and completeness [Wiedemann et al., 1998]. The precision is the ratio of

the number of true building or road pixels in label images to the number of pixels

detected as belonging to building or road in the predicted label images, while the
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recall is the ratio of the detected pixels to the true pixels. In a binary classification

problem, the precision and recall are defined as

precision =
TP

FP + TP
(4.1)

recall =
TP

FN + TP
, (4.2)

where TP denotes the number of true positive pixels that means the number of

correctly positive predictions 1 , FP denotes the number of false positive pixels that

means the number of wrongly positive predictions, and FN denotes the number of

correctly negative predictions. In this thesis, this metric is called the exact precision

and recall. Precision and recall are calculated for each channel of predicted label

patch. Let 𝑚̂𝑖𝑘 and 𝑚̃𝑖𝑘 denote the predicted label value and true label value at the

𝑖th pixel in the 𝑘-th channel, and 𝛿(𝐶) denote the Dirac’s delta function that takes 1

only when the given condition 𝐶 is true. TP, FP, and FN are calculated as below:

TP =

𝑤2
𝑚∑︁

𝑖=0

𝛿(𝑚̂𝑖𝑘 ≥ 𝑡 ∧ 𝑚̃𝑖𝑘 = 1) (4.3)

FP =

𝑤2
𝑚∑︁

𝑖=0

𝛿(𝑚̂𝑖𝑘 ≥ 𝑡 ∧ 𝑚̃𝑖𝑘 = 0) (4.4)

FN =

𝑤2
𝑚∑︁

𝑖=0

𝛿(𝑚̂𝑖𝑘 < 𝑡 ∧ 𝑚̃𝑖𝑘 = 1), (4.5)

where 𝑡 ∈ [0, 1] is the threshold to binarize the continuous predicted label value 𝑚̂𝑖𝑘.

However, to compare our results with the conventional methods’ results reported

by Mnih [Mnih, 2013], we should use the same metric to evaluate our results. They

used relaxed precision and recall scores instead of exact precision and recall scores

for all experiments. The relaxed precision is defined as the fraction of detected pixels

that are within 𝜌 pixels of a true pixel, while the relaxed recall is defined as the

1In a binary classification task that aims at giving 0 (negative) or 1 (positive) to an input instance,
positive prediction means that a prediction that has 1 as its value, which denotes the input instance
belongs to the target class.
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⇢

Figure 4-1: The region that 𝑟(𝑖, 𝜌 = 3) indicates.

fraction of true pixels that are within 𝜌 pixels of a detected pixel. In other words, the

definitions of TP, FP, and FN are modified as below:

TPrelaxed =

𝑤2
𝑚∑︁

𝑖=0

𝛿

⎛⎝𝑚̂𝑖𝑘 ≥ 𝑡 ∧
∑︁

𝑖∈𝑟(𝑖,𝜌)

𝑚̃𝑖𝑘 > 0

⎞⎠ (4.6)

FPrelaxed =

𝑤2
𝑚∑︁

𝑖=0

𝛿

⎛⎝𝑚̂𝑖𝑘 ≥ 𝑡 ∧
∑︁

𝑖∈𝑟(𝑖,𝜌)

𝑚̃𝑖𝑘 = 0

⎞⎠ (4.7)

FNrelaxed =

𝑤2
𝑚∑︁

𝑖=0

𝛿

⎛⎝𝑚̂𝑖𝑘 < 𝑡 ∧
∑︁

𝑖∈𝑟(𝑖,𝜌)

𝑚̃𝑖𝑘 > 0

⎞⎠ , (4.8)

where 𝑟(𝑖, 𝜌) denotes the set of all pixel locations of the (𝜌+ 1)× (𝜌+ 1)-sized region

centered at 𝑖. An example region that 𝑟(𝑖, 𝜌 = 3) indicates is shown in Figure 4-1.

Relaxation the precision and recall in this manner is also used in Wiedemann et al.

[Wiedemann et al., 1998] Then, in all experiments in this chapter, the slack parameter

𝜌 is set to 3, which is the same value as used in Wiedemann et al. [Wiedemann et al.,

1998] and Mnih [Mnih, 2013].

By changing the threshold 𝑡 in Eq. 4.6, 4.7, and 4.8, a precision and recall curve

which consists of many sets of precision and recall values at different thresholds 𝑡 can

be drawn as shown in Figure 4-4. Then, we summarize this curve with a recall at
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breakeven point. At the breakeven point, the precision and recall values are equal. In

other words, the breakeven point is the cross point of the line 𝑦 = 𝑥 in the precision-

recall curve figure and the precision-recall curve itself. All values in Table 4.1, 4.2,

and 4.3 are recalls at breakeven points.

The reason why the breakeven point is used for summarizing the evaluation results

is based on the objective of object extraction from aerial imagery. The precision is

related with over detection, while the recall is related with miss detection. We want to

extract all objects correctly, but we also want to suppress the wrongly detected pixels

as target objects. Because, wrong results should be corrected manually regardless of

whether that is false negative or false positive. Therefore, the balanced point between

precision and recall should be considered as the best point that yields the optimal

threshold for the results.

Table 4.1: Recall at breakeven on test dataset of single-channel prediction models

Model
Mass.

Buildings
Mass.
Roads

Mass.
Roads-Mini

Mnih-CNN [Mnih, 2013] 0.9150 0.8873 N/A

Mnih-CNN + CRF [Mnih, 2013] 0.9211 0.8904 N/A

Mnih-CNN + Post-processing net [Mnih, 2013] 0.9203 0.9006 N/A

Sinngle-channel with MA 0.9426 0.9047 0.9005

Table 4.2: Recall at breakeven on test dataset of multi-channel prediction models.

Model Building channel Road channel

Multi-channel with MA 0.9523 0.9098

Multi-channel with CIS 0.9442 0.9039

Multi-channel with CIS + MA 0.9528 0.9111
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4.2 Performance Evaluation

The first experiment is performed on all datasets. We train a conventional model

(Single-channel) with the training set of Mass. Buildings, Mass. Roads, and Mass.Roads-

Mini with data augmentation, and then create the predictions with the test set by

performing MA. After that, we calculate the precision and recall curves with the test

set of all the above datasets.

Table 4.1 shows the performances of the single-channel predictions of the conven-

tional method [Mnih and Hinton, 2012] in the top three rows, and the performance

of the same single-channel prediction with MA in the last row. Each model is trained

and tested on the dataset indicated in the first row. Table 4.2 shows each channel’s

result of our proposed multi-channel models. It should be noted that all of our mod-

els are trained with data augmentation, though we do not describe this explicitly in

all tables. Multi-channel with CIS means that the model is trained on Mass. BR

and the loss function is calculated by our CIS version of cross entropy loss (Eq. 3.7).

The results of the road channel column described in Table 4.2 can be compared to

the result of models trained and tested on Mass. Roads-Mini directly, because Mass.

Roads-Mini is created to have the same training/test images as Mass. BR dataset.

All values in these tables are recalls at breakeven points of the relaxed precision-recall

curves depicted in Figure 4-4.

For single-channel prediction, Table 4.1 shows that Single-channel with MA is the

best result on all datasets. All the models in this table are to predict a single-channel

label image that represents either building or road probability. It should be noted

that the conventional methods shown in the top three rows perform noise modeling.

Furthermore, Mnih-CNN + CRF and Mnih-CNN + Post-processing net use a condi-

tional random field and an additional multi-layer perceptron for structured prediction,

respectively. On the other hand, our model does not model label noise explicitly and

has no post-processing. However, Single-channel with MA is more accurate than all

the conventional models on all datasets. The differences between Mnih-CNN and

Single-channel with MA are the use or not of data augmentation during training and
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(a) (b)

Figure 4-2: A prediction result of Multi-channel : (a) without model averaging with
spatial displacement. (b) with model averaging with spatial displacement.

MA in the inference stage. Although MA does not perform refinement of results by

recognizing any meanings of pixels, MA smoothes the outputs over the boundaries of

predicted label patches effectively and improves the performance significantly. This

effectiveness is also shown in the case of multi-channel prediction. Figure 4-2 shows

the effectiveness of MA in a concrete example.

Our multi-channel CNNs output three-channel predicted label patches. Therefore,

we extracted each channel to evaluate the accuracy of each class. In Table 4.2, we

compared the performance of our proposed techniques on the same base architecture

depicted in Figure 3-3. In this table, Multi-channel with CIS + MA achieves the

best results both in building and road channels even compared with the results of

single-channel predictions. The number of training images in Mass. BR is one-eighth

compared with Mass. Roads, but the performance of this model trained on Mass.

BR is better than all of the results of single-channel models trained on Mass. Roads,

though the test images in these two datasets are different from each other. Adding CIS

always improves the performance. Therefore, we found that CIS which assigns zero

to all units in the background channel and performs softmax is a better way to train

a CNN for multi-channel semantic segmentation of aerial imagery, and performing
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Figure 4-3: Comparison of cross entropy loss between two models during training.

MA in inference stage is also effective.

Figure 4-3 shows a comparison of cross entropy loss between our models with or

without CIS during training. The red curves show the loss values of Multi-channel

(without CIS), and the blue curves show the loss values of Multi-channel with CIS.

We trained each model eight times, so all curves of the eight versions of each model

are drawn in this figure. We reduced the learning rate every 100 epochs, so there

are some cliffs on the curves. When the learning rate is reduced by multiplying by

0.1, the loss get decreased with larger margin especially after 100 epoch. It should be

noted that the loss curves of the models with CIS are always under the curves of the

models without CIS. This observation simply shows that CIS can effectively work for

training the CNNs.
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Table 4.3: Recall at breakeven on the selected region of test images.

Model
Mass. Buildings or
Buildings channel

Mass. Roads-Mini or
Road channel

Single-channel with MA 0.9601 0.9197

Multi-channel with MA 0.9617 0.9236

Multi-channel with CIS + MA 0.9642 0.9276

4.3 Evaluation on Urban Area

To show the benefit of using the correlation between buildings and roads in aerial

images, we perform further evaluation. We assume that if our model utilizes the

correlation effectively, the performance should be better than the conventional model,

with a larger margin in urban regions in which both buildings and roads appear.

Because if a patch has only road or building pixels, the correlation cannot be utilized.

Therefore, we extract 16× 16-sized patches that have both 𝑁𝑏 building pixels and 𝑁𝑟

road pixels, where

𝑁𝑏 >
𝑤2

𝑠

𝐾
, (4.9)

𝑁𝑟 >
𝑤2

𝑠

𝐾
, (4.10)

from the test label images. Here, 𝑤2
𝑚 and 𝐾 are the number of pixels in an aerial

image patch (16 × 16 = 256) and the number of target classes (𝐾 = 3), respectively.

Thus, the extracted patches always include both buildings and roads with a larger

area than a third of the whole area of the patch. We evaluate three models on the

extracted test patches.

Table 4.3 shows the resulting recalls at breakeven points that are evaluated on

urban areas of test images. The row of Single-channel with MA shows the results

of the single-channel models trained on Mass. Buildings or Mass. Roads-Mini in-

dependently, and MA is used to create final outputs. In Table 4.3, all the recall

values of Multi-channel with CIS + MA are better than for the single-channel model
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in the same table and better than for all recall values shown in Table 4.2. These

improvements show that our models have more advantage in urban regions that have

both buildings and roads appearing at the same time within a small region because of

utilization of the correlation. This advantage is important in some applications that

require high accuracy in crowded urban areas, for example, real estate management

and updating maps in areas that have many small houses and roads.

Focusing on the results in road channel shown in Table 4.3, all scores are increased

from the results shown in Table 4.2. The percentages of the increases of Multi-channel

with MA and Multi-channel with CIS + MA are 1.52 %, and 1.81 %, respectively.

The latter model shows the bigger performance increase compared with the former

model. In the evaluation results on whole test images shown in Table 4.2, the relative

performance increase from Multi-channel with MA to Multi-channel with CIS + MA

is 0.9111−0.9098 = 0.0013 %, while in those results on extracted regions, the relative

increase is 0.9276 − 0.9236 = 0.004 %, so that there is a over three times larger

improvement. This result also supports the effectivity of CIS.

4.4 Discussion

4.4.1 The Related Techniques to CIS

The reason why CIS improves the performance might be related to the inherent

redundancy of the softmax function. In general, subtracting a constant vector from

an input vector given to softmax does not affect the output of softmax. For example,

let x be a 𝐾 dimensional vector and 𝜋 denote the softmax function. The 𝑖th element

of the softmax result of x − c, where c = (𝑐, 𝑐, . . . , 𝑐)T (a 𝐾 dimensional constant
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vector), is

𝜋(𝑥𝑖 − 𝑐) =
exp(𝑥𝑖 − 𝑐)∑︀𝐾
𝑘=1 exp(𝑥𝑘 − 𝑐)

(4.11)

=
exp(−𝑐) exp(𝑥𝑖)

exp(−𝑐)
∑︀𝐾

𝑘=1 exp(𝑥𝑘)
(4.12)

= 𝜋(𝑥𝑖). (4.13)

One of the typical strategies is to take a certain class 𝑘 to set 𝑐 = 𝑥𝑘, so that 𝑘th

element of the input vector x will be zero. On the other hand, it should be noted

that we set zeros to the units in the background channel of the output layer, so that

it is different from subtracting a constant value from all units. The CIS does not

change all the units in the channels of the other classes other than the background

channel. Then, there have also been some methods to eliminate this redundancy.

One of them is to take 𝑥𝑘 ≡ 0 for some preferred class 𝑘, which was introduced by

Ripley [Ripley, 1996], and used in Andersen [Andersen et al., 1997] as a normalized

exponential transformation. Hence, our CIS is same as performing this transformation

to each pixel vector in the output layer of the CNN. The CIS might have the similar

effect of this transformation for eliminating the inherent redundancy. Then, in a

semantic segmentation task using a convolutional neural network, we finally showed

that choosing the background channel and giving zeros to all units in the channel

improve the performance in the task. It could be useful also in another task that

cannot avoid considering a background class as one of the objective classes.

In the image classification task, Zhang and LeCun [Zhang and LeCun, 2015] pro-

posed some regularization techniques to use unlabeled data called universum prescrip-

tion. The fundamental idea of the proposed techniques is to use the unlabeled data

for regularizing the network during training. They proposed some types of modified

loss functions to be optimized during training. One of them called background class

adds an additional term to the softmax function to consider the correct class of all

unlabeled data as background and utilize them during training. The formulation of
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the loss function considering background class is completely same as our CIS. There-

fore, in that paper, our CIS is introduced as background class model with background

constant 𝜏 = 0. Then, they showed the effectiveness of the new loss function on

the image classification task with some widely used datasets, CIFAR-10 and CIFAR-

100 [Krizhevsky and Hinton, 2009] and STL-10 [Coates et al., 2011]. Furthermore,

they gave a qualitative justification of the regularizing effect of this technique us-

ing Rademacher complexity. Therefore, the regularizing ability of CIS for training a

convolutional neural network might be also qualitatively justified.

4.4.2 Precision-Recall Curves

Figure 4-4 shows the relaxed precision-recall curves of all results. The red, green,

and blue cross marks mean the recalls at breakeven points of the conventional models

proposed in Mnih [Mnih, 2013]. All curves of Multi-channel with CIS + MA are

located above those cross marks in both building and road prediction. As shown in

both graphs, the results with CIS are always better than the results without CIS,

and the results with CIS + MA are further better than the results with only CIS.

This shows that CIS is effective for multi-channel model and MA can further improve

the performance when it is used in the inference stage.

4.4.3 Computational Cost

The additional computational cost of CIS has little influence on the training time

and the processing time to output predicted label patches. In the training stage, the

average time to train one epoch was 9.248 minutes for CIS model and 9.441 minutes

for the model without CIS. The whole training time for 400 epochs was 61.66 hours

for the model with CIS and 63.00 hours for the model without CIS. The training

stage is implemented with Chainer [Tokui et al., 2015], a neural network framework

based on Python. In the inference stage, all of the processing times to predict a

label image from a 1500 × 1500-sized aerial image were almost the same between

all models when calculated on a NVIDIA Tesla K80 with Caffe [Jia et al., 2014],
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Figure 4-4: Precision-recall curves
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Table 4.4: The number of parameters in each layer of our CNN.

conv1 conv2 conv3 fc4 fc5 total

Weight 49512 114688 80640 16056320 3145728 19446528

Bias 64 112 80 4096 768 5120

Total 49216 114800 80720 16060416 3146496 19451648

Percentage [%] 0.2530 0.5902 0.4150 82.57 16.18 100

a fast neural network framework mainly implemented using C++ . The average

processing times of Multi-channel with CIS and Mnih-CNN were 2.76 seconds and

2.80 seconds, respectively, for each aerial image. However, although the conventional

method [Mnih, 2013] needs two different models to create a multi-channel result, our

models can predict building and road labels simultaneously with a single feed-forward.

This means that the conventional method needs about twice the processing time to

obtain building and road predictions compared with ours. However, if we perform

MA by using eight different versions of the model to obtain more accurate results,

it requires about eight times longer processing time compared with the case of the

conventional method. However, if multiple GPUs are available, all the calculations

of eight versions can be parallelized, so the drawback turns out to be marginal.

4.4.4 The Number of Parameters

The total number of parameters in our model is about 20 millions. The detailed

composition of the number of parameters in each layer of our model is shown in

Table 4.4. In this table, all layers appear in the base architecture which is depicted

in Figure 3-3 are represented as follows: 𝐶(64, 16 × 16/4) is described as conv1, and

𝐶(112, 4 × 4/1) is described as conv2, and 𝐶(80, 3 × 3/1) is described as conv3, and

𝐹𝐶(4096) is described as fc4, and 𝐹𝐶(768) is described as fc5. On the other hand,

one can think this model has too many parameters, so the model can remember all

combinations of input and output in the weight of the network. However, Mass. BR

dataset has 137 aerial images, and each image has 3 channels, and all of the image
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sizes are equally 1500 × 1500, so the total number of values in the training dataset

is 925 millions. The label images also have the same size and the same number

of channels, so the total number of label values is the same. Therefore, the total

number of parameters of our model is 1.05 % of the number of values in the dataset.

This large gap means that the model performs some good feature extraction to the

input images, and obtains good mappings to the output labels. Focusing on the

percentage of parameters in the fully-connected layers, fc4 layer has over 80% of the

whole parameters in the single layer.

There is a recent progress on how the fully-connected layers can be removed

without performance decrease. Long et al. [Long et al., 2015] proposed a fully-

convolutional networks for semantic segmentation. This model replaces the conven-

tional fully-connected layers with 1×1-sized convolutional layers. This can reduce the

total number of trainable parameters significantly. For example, if a fully-connected

layer 𝐹𝐶(4096) in our model, which has 4096 units, is replaced with a 1× 1 convolu-

tional layer which has 4096 filters, the number of parameters in this layer is reduced

to about 2% (16056320 to 327680). Because, there are 80 output feature maps in the

next lower layer (see the base architecture depicted in Figure 3-3), and the shape of

each map is 7 × 7, so that there are 80 × 7 × 7 = 3920 units in the layer. Then, the

number of connections between the layer and the next upper fully-connected layer

𝐹𝐶(4096) except the bias is 3920 × 4096 = 16056320 as shown in Table 4.4. On the

other hand, a convolutional layer has tight weights that share the trainable parame-

ters which connect to a channel in the lower feature map, so the number of parameters

in the convolutional layer is 80× 4096 = 327680. As shown in the paper [Long et al.,

2015], although the fully-convolutional networks only has convolutional layers as its

components, this can perform well on the semantic segmentation task. This type

of architecture uses the strong spatial contiguity of inputs in semantic segmentation

task, and this doesn’t need to perform spatial smoothing such as model averaging with

spatial displacement. Therefore, this can improve not only the accuracy but also the

space and time complexity of computational cost. In this thesis, we aims at showing

the effectiveness of our new activation function that can treat the background class
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effectively, but another modification on the architecture of the networks should be

considered for future work.

We also tested some other resolutions of aerial imagery. For example, the aerial

imagery taken in Japan, which have the resolution of 0.5 m2/pixel, was also used for

training and evaluation. Then, we found that the completely same architecture even

in terms of all the sizes of filters can be successfully trained on a different dataset

which has different resolution, although the input and output patch sizes should be

changed. Because, the model in the original setting sees a 64 × 64 m2 area as input,

and this is the important perspective for successful training of a CNN for this task.

Therefore, in the case of 0.5 m2/pixel, 128 × 128-sized aerial image patch should be

input, and 32 × 32-sized label images that indicate the center region of the input

patch should be given as the label patches.
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Chapter 5

Model Analysis

As described in the previous chapters, the convolutional neural network (CNN) can

perform accurate semantic segmentation for aerial imagery by optimizing the param-

eters in the network. However, the reason why the trained convolution filters can act

as a efficient feature extractor is unclear. Then, some methods to analyze the trained

convolution filters and what the network actually represents have recently been devel-

oped in computer vision literature [Zeiler and Fergus, 2014, Mahendran and Vedaldi,

2015].

A simple way to analyze the first convolutional layer which directly connects to

the input image layer is to show each channel of filters as an image. It is usually used

for interpreting the low-level feature extraction part by a CNN. The filters in the first

convolutional layer is visualized by tiling to construct an image such as Figure 5-1.

Each figure in Figure 5-1 shows 64 16×16-sized filters in 𝐶(64, 16×16/4) layer in our

architecture (Figure 3-3). In this case, each filter has three channels, so that it can

be shown as a three-channel RGB image. Then we tile each image which shows one

of the filters in 𝐶(64, 16 × 64/4) layer to construct the figure as shown in Figure 5-1.

Figure 5-1a shows the first layer convolutional weights of Multi-channel (without

CIS), and Figure 5-1b shows the weights of Multi-channel with CIS. The first convo-

lutional layer for low-level feature extraction usually has similar filters even in other

models trained for different tasks. Also in this case, similar filters appear in the first

layers of both models, while a filter to extract a specific pattern appears at difference
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(a) (b)

Figure 5-1: Example of the first convolution layer: (a) Multi-channel (b) Multi-
channel with CIS

location in the tiled images. Features to be extracted in the lowest convolutional layer

for semantic segmentation task are not so different from the case of object recognition.

In many cases, the first layer commonly obtains filters that response colors or edges.

This type of visualization can gain intuition about the function of the lowest layer

of a CNN, but it cannot be performed to the upper layers. Then, in this chapter,

we visualize the outputs of the middle layers of trained CNNs to investigate what

the middle layers’ filters obtained through the training stage. Then we discuss about

the difference between Multi-channel and Mmulti-channel with CIS. As described in

Chapter 3, the architectures used in both models are the same, but the activation

function in the final layer of the CNN is different. Thus, we investigate the effect of

the activation function in terms of the obtained feature extractors. We also apply

the visualization method to investigate the representations that are obtained in the

middle layers of a CNN, which is proposed by Mahendran et al. [Mahendran and

Vedaldi, 2015] to those models.
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5.1 Outputs of The Middle Layers

We extract the intermediate outputs of middle layers from trained CNNs. Figure 5-

2 shows the tiled outputs of middle layers. As described in Chapter 3, our CNN

architecture is 𝐶(64, 16×16/4) - 𝑃 (2/1) - 𝐶(112, 4×4/1) - 𝐶(80, 3×3/1) - 𝐹𝐶(4096)

- 𝐹𝐶(768). In this figure, we describe the outputs of these layers as conv1, mpool1,

conv2, conv3, fc4, and fc5, respectively. Then, these layers except mpool1 have ReLU

activation functions, so that the activated values of conv1, conv2, conv3, and fc4 are

shown as relu1, relu2, relu3, and relu4, respectively, in this figure. The output of

the fc5 layer is reshaped into 16 × 16-sized three-channel image patch, so that the

reshaped output is described as reshape in this figure. Then, the CIS operation that

gives zero to the background channel is applied to the reshaped output, then the

result of CIS operation is described as cis in this figure.

As described in Subsec. 2.4.1, when 𝐾-channel 𝑊 × 𝑊 -sized feature maps are

given to a convolutional layer that has 𝑀 𝐻 × 𝐻-sized filters, the output is 𝑀

(𝑊 −𝐻 + 1)/𝑠 × (𝑊 −𝐻 + 1)/𝑠-sized feature maps, where 𝑠 is a stride parameter

of the convolution. Thus, a single convolution layer that has 𝑀 filters has 𝑀 feature

maps as its output. In our model, the input image is 3-channel 64 × 64-sized image

and the first convolutional layer has 64 16 × 16-sized filters and the stride parameter

is 4, so that the output is 64 (64 − 16 + 1)/4 × (64 − 16 + 1)/4-sized feature maps.

Then, we tile those 64 feature maps to construct a grayscale image. Figure 5-2 shows

the tiled feature maps.

Figure 5-2 includes the outputs from two different models for two example inputs.

In each example, the square blocks which tile feature maps are, from the left top block

to the right bottom block, an input image (in the with CIS row) or the true label

image (in the without CIS row), conv1, relu1, mpool1, conv2, relu2, conv3, relu3, fc4,

relu4, fc5, reshape, cis, and predicted label image, respectively, in horizontal writing

order.

Focusing on the output of reshape layer in Figure 5-2a (the third block from the

last), the left-top patch in this block is very noisy in the case of with CIS, because
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Figure 5-2: The outputs of middle layers. For each example, the upper two rows show
the results of ours (multi-channel with CIS) and the lower two rows show the results
of ours (multi-channel).
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no gradients are given to all of the weights connected to this channel because of

CIS operation. This channel corresponds to the background channel, and no weight

updates are performed to weights which connect to this background channel. On the

other hand, in the case of without CIS, the gradients are also given to the weights

which connect to the background channel, so that the left-top patch in the reshape

block of this model shows the prediction of the background class. This is the obvious

difference between with CIS and without CIS), which can be seen from these example

aerial image patches. From these differences, we found that the model with CIS never

try to predict the background. Because, if there are any errors in the prediction of the

background channel, the loss values calculated by using CIS will never be changed. It

causes that the model with CIS never learn anything about the background class, so

that the representation which should be complicated compared to the other simpler

classes such as road and building, will also never be obtained through the training of

the CNN with CIS.

5.1.1 Difference in The Final Prediction Results

We further explore the difference between the final prediction outputs of these dif-

ferent models. Figure 5-3 shows seven examples that consist of pairs of input aerial

imagery patch and the corresponding label patch with the outputs of the reshape

layer and the final prediction results. The left-top matrix in this figure shows which

block means what. The prediction results have continuous values ranging from 0 to 1

in each channel, and the each channel shows each object class, namely, roads, build-

ings, or the background. Those color patches shows the result of stacking the object

label prediction results as different channels.

In all the examples shown in Figure 5-3, the predictions of Multi-channel with CIS

seem to be better than the results of Multi-channel (no-CIS). In the case of Multi-

channel (no-CIS), the reshape layer output shows that it predicts the background class

as well as the other two classes, buildings and roads. To predict the background class,

the model should be able to extract the good features to represent the background,

so that the lower layers should perform the feature extraction not only for the target
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Figure 5-3: Comparison of the reshape layer outputs and the final prediction between
ours (multi-channel) and ours (multi-channel with CIS)

classes, buildings and roads, but also for the background class. It might cause the

increase of the problem complexity during training of a CNN model. Indeed, in all

the results shown in Figure 5-3, focusing on the right columns in all blocks, the final

predictions of CIS always seem to be better than the results of no-CIS. The model

without CIS often lacks either buildings or roads in these example patches.

5.1.2 Inverting Feature Maps to Image

Finally, we perform the method for image reconstruction from the feature maps pro-

posed by Mahendran et al. [Mahendran and Vedaldi, 2015] to a trained Multi-channel

with CIS model. This method optimizes a image which is initialized with random

values sampled from a carefully designed distribution with some parameters which

are calculated based on the training dataset. The objective of the optimization is
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Figure 5-4: Comparison of the reshape layer outputs and the final prediction between
ours (multi-channel) and ours (multi-channel with CIS)

to minimize the difference between the middle layer outputs which is obtained by

feed-forward of the image to be optimized and the middle layer outputs which is pre-

liminary calculated by feed-forward of an original aerial image patch. Is is actually

to reconstruct an aerial image patch from a set of feature maps or a feature vector

which is obtained from a middle layer of a trained CNN. The resulting reconstructed

image and the original aerial image patch have similar meanings for the network,

because both of the resulting image and the original image have the similar middle

layer values after feed-forwarding. This method can be used to investigate how the

network see the input image.

Figure 5-4 shows a reconstruction result with an example aerial image patch cho-

sen from the test set of Mass. BR. From this figure, we found that the receptive

field is getting narrower and narrower as the target layer gets higher. Because, the

convolution operation without padding makes the size of input feature maps smaller,

so that the information around the border is lost as an input image goes through

convolutional layers. Additionally, our models output the smaller sized prediction

(16 × 16) than the input aerial image patch (64 × 64), so that the network focuses

more on the center region of the input image field. This might also causes that the

areas around the border is blurred in the higher layers. From the lower layer results
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under relu3, we see that there are still much information of the input aerial image

patch. It might mean that the filters in conv1, conv2, and conv3 keep as much in-

formation as possible during performing feature extractions to transform the aerial

image patch to a predicted label image patch as shown in the center region of the

right bottom block in Figure 5-4. Taking into account the activation functions, ReLU,

the network perform non-linear transformations repeatedly and gradually transform

data through many layers in the network.

5.2 The Effect of The Amount of Data

Convolutional neural network such as our proposed architecture essentially needs large

amount of data to be used for training. However, in general, collecting many labels

that are obtained by complex attentional task for human experts is very difficult, so

that if the CNN can be trained well with less amount of data, it is more effective

in practical situations. Therefore, we investigate the relationship between the final

accuracy of a model and the size of training dataset.

We perform the same experiments that are described in Chapter 4 with different

size of the training dataset. First, we randomly extracted aerial image patches from

the training set of Mass. BR util the total number of extracted patches reaches 10

% of the number of whole patches in the training set. Then, we trained two models,

Multi-channel and Multi-channel with CIS, with the extracted patches and tested on

the same test data which is used in Chapter 4. We also perform this experiment with

20 % 80 % of the whole patches.

Figure 5-5 shows the results. In this figure, the results of Multi-channel with CIS

are almost always better than the case of Multi-channel without CIS. The largest

difference between the two models occurs at 0.3 of the relative amount of data in the

building prediction result, and its difference is 0.21 %. This is quite large difference

compared to the difference of the results shown in Table 4.2 (0.05 %). Therefore, we

found that the effectivity of the CIS is significant when the available data is scarce,

because the amount of improvements in the performance is larger when the size of
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dataset is smaller than the case of the result using whole data in the dataset. It is

very strong advantage on many practical situations.
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Figure 5-5: Comparison of the accuracy of models when the dataset size is changed.
(a) The results of building extraction. (b) The results of road extraction.
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Chapter 6

Aerial Imagery Mosaicking

In this chapter, we propose a new cost map calculation method based on the results

of semantic segmentation that considers the meaning of pixels. Our method uses

a CNN to generate a building probability map that is used as a cost map. The

CNN is trained on a large-scale dataset consists of many aerial orthoimages and

corresponding building mask images. Once the CNN is trained, we never need to

select any parameters to perform semantic segmentation on an aerial image when

using the trained CNN. We then find the minimum cost path on the cost map as in

the conventional method [Pan et al., 2014] by applying Dijkstra’s algorithm [Dijkstra,

1959]. Finally, we perform our proposed method and the conventional method on 15

sets of aerial images that have overlapping regions and cover larger areas compared

to the images used for the evaluation of the conventional method in Pan et al. [Pan

et al., 2014]. Then we show that our seamlines never cross any buildings, while

the seamlines produced by the conventional method pass through many buildings,

because the optimality of seamlines can be defined by how many buildings are passed

through by the resulting seamlines.

6.1 Semantic Segmentation for Image Mosaicking

The process flow for our method is shown in Figure 6-1. Our goal is to determine the

optimal seamline in an overlapping region between two aerial images. As shown in
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Figure 6-1: The process flow for our proposed method.

Figure 6-2, once two aerial images are given, an overlapping region is uniquely found

and the start and end points of a seamline are also determined as the crossing points

of these images. Therefore, the objective is to find the minimum cost path between

the start point and the end point inside the overlapping region. Thus, the cost map

matters. We assume that the optimal seamline never crosses any buildings, so we

design the cost map as a building probability map.

We propose a new cost map that uses the results of semantic segmentation. To

perform semantic segmentation, we train a CNN to obtain a mapping from raw pixel

values in an aerial image to a building probability map. We first prepare a dataset that

includes 127 aerial images and corresponding building label images. The resolution

of all these images is 0.5 m2/pixel in common. This dataset covers roughly 625 km2.

All of the building labels are binary and have a 1 for a pixel that belongs to building

and a 0 for a background pixel. The dataset is divided into two groups, 121 training

images and six test images. An example pair of an aerial image and the corresponding

label image chosen from the test dataset is shown in Figure 6-3a and Figure 6-3c. We

72



Image A

Image B

Overlapping
region

Start point

End point

Figure 6-2: An overlapping region between two aerial images and start and end points
for finding an optimal seamline

train a CNN called VGG-16 that has the architecture proposed by Simonyan et al.

[Simonyan and Zisserman, 2014] Table 6.1 shows the network configuration. This

table follows the method of summarizing the network configuration as in Parkhi et

al. [Parkhi et al., 2015]. In this table, the only layers that have trainable parameters

are underlined.

We formulate the segmentation task for a large aerial image by using a patch-based

approach as described in Chapter 3, so that the input image is a 𝑤𝑠 ×𝑤𝑠-sized three

channel color patch, and the output from the CNN is a 𝑤𝑚×𝑤𝑚-sized single-channel

patch. Each pixel 𝑥𝑖 at location 𝑖 in the output patch is converted into a probability

using a sigmoid function 𝑚̂𝑖 = 1/(1 + exp(−𝑥𝑖)), where 𝑚̂𝑖 denotes a predicted label

probability at pixel location 𝑖. Once a 𝑤𝑠 × 𝑤𝑠-sized aerial image patch s is given,

the CNN estimates the building probability 𝑝(m̃ = 1|s), where m̃ denotes a correct

label patch. Here, we assume that all pixels in the estimated patch are independent
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Table 6.1: Network configuration

Layer Type Number of filters Filter size Stride Pad Activation

0 input - - - - -
1 conv 64 3 1 1 ReLU
2 conv 64 3 1 1 ReLU
3 max pooling - - 2 0 -
4 conv 128 3 1 1 ReLU
5 conv 128 3 1 1 ReLU
6 max pooling - - 2 0 -
7 conv 256 3 1 1 ReLU
8 conv 256 3 1 1 ReLU
9 conv 256 3 1 1 ReLU
10 max pooling - - 2 0 -
11 conv 512 3 1 1 ReLU
12 conv 512 3 1 1 ReLU
13 conv 512 3 1 1 ReLU
14 max pooling - - 2 0 -
15 conv 512 3 1 1 ReLU
16 conv 512 3 1 1 ReLU
17 conv 512 3 1 1 ReLU
18 max pooling - - 2 0 -
19 fc 4096 1 - 0 ReLU
20 fc 4096 1 - 0 ReLU

of each other, so the objective probability is defined as below:

𝑝(m̃|s) =

𝑤2
𝑚∏︁

𝑖=1

𝑝(𝑚̃𝑖|s), (6.1)

where 𝑝(𝑚̃𝑖|s) denotes a building probability at pixel 𝑖, and is defined using a Bernoulli

distribution:

𝑝(𝑚̃𝑖|s) = 𝑚̂𝑚̃𝑖
𝑖 (1 − 𝑚̂𝑖)

1−𝑚̃𝑖 . (6.2)

Therefore, to maximize the probability described in Eq. 6.1, we minimize the negative
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log-likelihood defined below:

ℒ = −
𝑤2

𝑚∑︁
𝑖=1

(𝑚̃𝑖 ln 𝑚̂𝑖 + (1 − 𝑚̃𝑖) ln(1 − 𝑚̂𝑖)) , (6.3)

where 𝑚̃𝑖 is the correct label at pixel 𝑖. In this chapter, all aerial images in the

training set are divided into 128×128-sized patches, so that 𝑤𝑠 = 128, and we set the

output patch size to be 𝑤𝑚 = 32. Setting the size of an output patch to be smaller

than that of an input patch improves the performance because of context utilization

[Mnih, 2013]. The original form of the output layer of VGG-16 is a 1000-dimensional

vector for image classification, so we modify the output layer with a fully-connected

layer that has 1024 units. The output layer is always reshaped to a 32 × 32-sized

single channel patch immediately after feed-forwarding.

We train all parameters in the CNN end-to-end by minimizing the negative log-

likelihood (Eq. 6.3) using mini-batch stochastic gradient descent with momentum.

During training, we reduce the learning rate by multiplying by a fixed reduction rate

every 𝜏 iterations. Furthermore, we regularize the network using L2 weight decay.

Therefore, the hyper-parameters in the learning stage are the mini-batch size, the

learning rate (LR) 𝜂, the LR reduction rate 𝛾, the LR reduction frequency 𝜏 , the

weight of the momentum term 𝛼, and the weight of the L2 weight decay 𝛽. The

learning rate 𝜂 starts from 𝜂0, and we use these values for all experiments in this

chapter: 𝜂0 = 0.0005, 𝜏 = 104, 𝛾 = 0.1, 𝛼 = 0.9, 𝛽 = 0.0005, and the mini-batch size

is 64. All of these values except the mini-batch size are completely the same as those

used in Saito et al. [Saito and Aoki, 2015, Saito et al., 2015] and Mnih [Mnih, 2013].

The mini-batch size is modified because of the limitation of GPU memory to train

the deep model, VGG-16.

Following this patch-based formulation, this CNN can produce a predicted build-

ing probability map from a raw aerial image input. Therefore, there is no need to

perform pre-processing on input images. Figure 6-3a shows an example input image.

Figure 6-3b shows the predicted building probability map. Figure 6-3c shows the

correct binary label map. The output building probability map is created by tiling
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(a) An aerial image

(b) An example result of semantic segmentation (grayscale)

(c) The corresponding label image (binary)

Figure 6-3: Images used for training of the CNN and the result example
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Figure 6-4: A node and connected neighbor nodes

the output patches of the CNN.

We create two building probability maps from both overlapping regions from Im-

age A and Image B, as shown in Figure 6-2, using the trained CNN. We then combine

the two resulting maps by adding them and create a single cost map as shown in Fig-

ure 6-5b. A pixel in this integrated cost map would have a large value (the maximum

value is 2) when its location is considered as belonging to a building from the view-

points of both input images A and B. We then convert this integrated cost map into

a graph that treats each pixel as a node. All eight neighbor nodes are connected as

shown in Figure 6-4. A weight between two nodes 𝐶𝑖,𝑗(𝑖 ̸= 𝑗) is defined as below:

𝐶𝑖,𝑗 = |𝐶𝑖 − 𝐶𝑗|. (6.4)

In the integrated cost map, it should be noted that all pixel values are positive. Hence,

we can finally calculate the shortest path on this graph using Dijkstra’s algorithm

[Dijkstra, 1959]. The start point and end point are fixed beforehand according to the

crossing points as shown in Figure 6-2.
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(a) The green line and the red line show the seamline found by the conventional method
[Pan et al., 2014] and the seamline found by our method, respectively. Both seamlines are
drawn on an input aerial image.

(b) The grey line shows the seamline calculated on a predicted building probability map
(grayscale).

(c) The red line shows the seamline determined using the conventional method [Pan et al.,
2014]. The seamline is drawn on this cost map (grayscale) calculated by the method.

(d) The final mosaic image that used the seamline found by the conventional method [Pan
et al., 2014]

(e) The final mosaic image that used the seamline found by our method

Figure 6-5: Experimental results. All images are 1570-sized and the resolution is 0.5
m2/pixel.
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Figure 6-6: Red lines show the seamlines found by our method. Green lines show the
seamlines found by the conventional method[Pan et al., 2014]. The light blue lines
denote buildings that are passed through by seamlines.

6.2 Experimental Results

We first evaluate our semantic segmentation method for building extraction on the

aerial images and building label dataset. The evaluation metric is relaxed precision

and recall as described in Section. 4.1 in Chapter 4. In all experiments in the previous

chapter, the slack parameter 𝜌 is set to 3, but we use 𝜌 = 6 because the resolution

of our input aerial images is twice the resolution of the images used in the previous

experiments. This makes it comparable in terms of the ground measurement because

in both errors within 3 m are allowed. We then summarize the relaxed precision and

recall values over 256 different thresholds with a single recall at the breakeven point.

The recall at the breakeven point on the test dataset was 0.9984 with 𝜌 = 6.

Additionally, the values were 0.9969 for 𝜌 = 3 and 0.8680 for 𝜌 = 0. 𝜌 = 0 indicates

the exact precision and recall. These results show that our CNN can predict building

pixels very accurately. An example result is shown in Figure 6-3b. A pixel in a

79



Table 6.2: The number of buildings passed through by seamlines.

Method Number of buildings passed through Elapsed time

Pan et al.[Pan et al., 2014] 54 1589.11 sec
Ours 0 1762.66 sec

predicted label image that is the result of semantic segmentation performed by our

trained CNN shows the probability of building existence at the pixel. Therefore, all

pixels have values ranging from 0 to 1, which are always positive.

To evaluate our seamline determination method and compare it with the conven-

tional method in Pan et al. [Pan et al., 2014], we prepared 15 aerial image pairs

that have overlapping regions. All of these images have a resolution of 0.5 m2/pix,

and the overlapping regions in the aerial image pairs cover roughly 6.6 km2. This is

larger area than the test image used in the paper where the conventional method was

proposed [Pan et al., 2014].

We perform semantic segmentation for all overlapping region pairs. We obtain

cost maps of both overlapping regions for an aerial image pair and combine them

to generate an integrated cost map as shown in Figure 6-5b. We then calculate the

shortest path on the integrated cost map. The start and end nodes are selected as

the intersection points of image boundaries for two input aerial images as shown in

Figure 6-2. All pixels in the cost map are converted into connected nodes, that is,

a graph (see Figure 6-4). We perform Dijkstra’s algorithm [Dijkstra, 1959] to find

the shortest path between the start node and the end node. The resulting path is

considered to be a seamline. An example result is shown as the red line in Figure 6-5a.

We performed this seamline determination method for all 15 integrated cost maps.

To evaluate the quality of seamlines, we projected the resulting seamlines onto the

original aerial images such as Figure 6-5a and counted the number of buildings that

are passed through by the resulting seamline manually. Then, as shown in Table 6.2,

we found that none of the seamlines determined by our method pass through any

buildings in this case.

Finally, we apply the conventional method proposed by Pan et al. [Pan et al., 2014]

80



to compare the results with ours. They used images that have the same resolution

(0.5 𝑚2/pix) as our experiments, so we used the same mean-shift parameters in their

paper. We first used the Edge Detection and Image SegmentatiON (EDISON) library

[Christoudias et al., 2002] to perform mean-shift segmentation over all aerial images.

The parameters for EDISON were chosen to be the same as in the paper, namely,

(ℎ𝑠, ℎ𝑟,𝑀) = (6, 5.5, 15), where (ℎ𝑠, ℎ𝑟) are bandwidth parameters and 𝑀 is the least

significant feature size used in the library. We then extracted the preferred regions,

defined as segments that have the size larger than 𝑠𝑇 , appearing in the results for

EDISON. The parameter 𝑠𝑇 is defined as 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 for the bounding box of

the largest object segment. However, in the paper that proposed the conventional

method [Pan et al., 2014], the determination of 𝑠𝑇 was unclear. Pan et al. [Pan et al.,

2014] mentioned that 𝑠𝑇 can be estimated from the actual size of the largest object in

the ground coverage, but the actual size of the largest object varies depending on the

input aerial image. Therefore, we looked for the largest building in all 15 overlapping

region pairs. We found that the bounding box for the largest building was 167 × 248

pix2, so we used 𝑠𝑇 = 167 × 248 = 41416.

We converted all the pairs of aerial images into hue-saturation-value (HSV) color

space and extracted the value (V) channel representing the brightness of each pixel

in the images. Then a cost map was calculated as the absolute difference between

the two aerial images across the value (V) channels. According to [Pan et al., 2014],

all difference values in the preferred regions of a cost map are multiplied by 0.01, so

that segments larger than 𝑠𝑇 have smaller costs in the resulting cost map. We then

perform Dijkstra’s algorithm in the same way as [Pan et al., 2014] on the calculated

cost maps. An example result is shown as the green line in Figure 6-5a. We also

counted the number of buildings that are passed through by the seamlines found by

the conventional method. As shown in Table. 6.2, the seamlines passed through 54

buildings within the 15 overlapping regions.

Furthermore, to investigate the effect of the value of 𝑠𝑇 , we tested 10 different

values ranging from 1000 to 200000. The average number of buildings that are passed

through by the seamlines found by the conventional method with the different 𝑠𝑇
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values was 54.5 and the standard deviation was 2.33. The minimum and maximum

were 51 and 57, respectively. The small variance indicates that the actual value of 𝑠𝑇

does not have a big impact on the performance.

The third column of Table. 6.2 shows the elapsed time for solving the shortest

path problem over all 15 cost maps generated by each method. The computational

complexity for finding the shortest path does not differ much between the two methods

in terms of worst-time complexity, because both methods use Dijkstra’s algorithm to

solve the problem. The measurement environment for the elapsed time shown in

Table 6.2 was an Intel Core i7-5960X (3.00 GHz) CPU with 64 GB memory.

6.3 Discussion

Figure 6-6 shows some of the resulting seamlines. The green lines are found by the

conventional method, while the red lines are found by our method. As shown in these

figures, some buildings have similar colors as the surrounding ground or span larger

areas than neighboring ground that looks like parking areas. Also, all such buildings

are larger than the houses in the residential area. These observations may be the

reason why those regions are not considered to be preferred regions and are passed

through by the seamlines as a result. However, our semantic segmentation method

correctly extracted all the buildings enclosed by light blue lines, so that all red lines in

Figure 6-6 avoid passing through any buildings. The preferred regions based on mean-

shift segmentation might treat all of the large regions filled with similar colors to be

non-object even if they are actually large buildings, because mean-shift segmentation

does not consider the meaning of pixels.

An example of the final mosaicking results are shown in Figure 6-5d and Figure 6-

5e. The former is the result obtained by using a seamline found by the conventional

method, while the latter is generated using the seamline found by our method. In

Figure 6-5d, there are two unusual appearance around two large buildings. Both are

caused by the seamline that passes through those buildings, while the result of our

method shows natural appearance around them.
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Figure 6-7a and Figure 6-7b show some further examples. Buildings detected by

our method are filled with blue. The green lines and the red lines have the same

meaning as in Figure 6-6. The yellow rectangles show the areas that have buildings

that are passed through by the green seamline.

As shown in Figure 6-7a, the red line crosses many parking areas and roads ap-

peared in the upper area of this figure, while the lower area of this figure is covered

by many houses and buildings. In this aerial image, reaching the wide road located

on the right side is crucial when choosing the path for a seamline. The red line suc-

cessfully avoids the residential area and, with the help of accurate building extraction

results, passes through the sparse zones that can be seen in the upper half of this

figure.

In Figure 6-7b, the green line suddenly goes through a residential area after cross-

ing the bridge located in the centre of this figure. This is because there are many

shadows cast on the road in the centre of this figure to the right side of the bridge, so

that the cost values in this region of the difference image for the two original aerial

images used as the basis for the cost map for the conventional method are large.

The yellow rectangle in Figure 6-8 shows the region that has building shadows. The

leftmost figure shows the cost map used for the conventional method that is created

by calculating the difference between V (value) channels of two overlapping regions.

In the leftmost figure, the region that is enclosed by the yellow rectangle has large

white areas that have the same shape as the shadows shown in the rightmost picture

in Figure 6-8. White pixels have large cost values, so that the red seamline couldn’t

pass through the road. Because the two aerial images are captured at different time,

shadows could appear only in either of the aerial image pair. Therefore, calculating

difference of pixel intensities of those images could make shadow regions have high

cost. However, our semantic segmentation method succeeded in finding only buildings

without being affected by shadows (see Figure 6-8b). Therefore the cost values on the

road are small in our method. This is why our seamline succeeded to pass through

the wide road located on the right side of the bridge. Furthermore, in Figure 6-7b,

there is a large building that appears to be an elementary school beside a school

83



(a) Red lines denote the seamlines determined by our method. Green lines denote the
seamlines determined by the conventional method [Pan et al., 2014]. The red lines pass
through many parking areas and roads, while the green lines pass through residential areas.
Yellow rectangles indicate the existence of buildings passed through by the green seamlines
(the conventional method).

(b) This is another example result. Red and green lines and yellow rectangles have the same
meaning as in Figure 6-7a. In the right-most yellow rectangle, the green line drawn by the
conventional method passes through a large building even though the ground beside the
building is larger.

Figure 6-7: Resulting seamline examples
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(a) (b) (c)

Figure 6-8: The difference of resulting seamlines around the shadow region. The
yellow dotted rectangle shows the region that has building shadows. (a) The result
of the conventional method [Pan et al., 2014]. (b) The result of our method. (c) The
input aerial image.
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field on the right side of this figure (enclosed by the rightmost yellow rectangle), but

the green line crosses through the building. This is another example caused by the

fundamental flaw of the preferred region-based approach.

On the other hand, if an accurate stereo-matching method is available to synthesize

disparity maps from a couple of overlapping regions, the resulting disparity can be

used to construct a valid cost map to determine seamlines with avoiding buildings.

However, once either of a pair of overlapping regions is older than the other, a building

appears in one side could not exist in the other side. In such situation, the stereo-

matching should be failed, while our method can successfully find the building because

of the use of semantic segmentation.

86



Chapter 7

Conclusion

Automatic extraction of ground objects from large aerial imagery is highly demanded

in remote sensing field and has significant impact on various applications. Although

there have been many attempts at automating this task, simultaneous extraction of

multiple objects using only a single model considering computational efficiency but

with high accuracy has not been achieved so far. Therefore, in this thesis, we proposed

a novel technique to train a single convolutional neural network (CNN) successfully

for multiple object extraction from aerial imagery with high accuracy under the effect

of regularization derived from the proposed technique.

To learn the parameters of a CNN for semantic segmentation, we should formu-

late the problem as a pixel labeling task. Then, one of the conventional ways to

formulate the task is patch-based approach. It divides a large aerial image into many

small patches, and trains a CNN to learn a mapping from raw pixel values to a

semantic label image in patch-by-patch manner. This formulation can successfully

model the relationship between aerial imagery and the corresponding label map im-

ages. However, there have been some problems along with the convenience to define

a differentiable objective function to be minimized through optimization of a CNN.

To use the output values of a CNN as a probability vector for such formulation

and utilize the exclusiveness between different classes such as road and building for

accurate prediction, considering background class is inevitable. However, background

class is essentially not based on a single object class, because it should include many
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kinds of objects of no interest. Therefore, the representation for the background class

should be more complicated than the other simple object classes. For example, if we

consider roads and buildings as classes of interest, the background class could include

trees, cars, ocean, rivers, and grass, etc.

Then, in Chapter 3, we proposed a new way to suppress the effect of the back-

ground class during training of a CNN. This is the channel-wise inhibited softmax

(CIS), and we showed the effectivity for this semantic segmentation task for aerial

imagery through some empirical evaluation using large-scale datasets as shown in

Chapter 4, and analysis of the middle layer outputs of the trained CNN with CIS as

shown in Chapter 5. Furthermore, we proposed an another way to yield non-patchy

results without any post-processing networks which need further training processes.

That was the model averaging with spatial displacement (MA) which performs model

averaging explicitly and yield smooth prediction results at the same time. We showed

that these two techniques, CIS and MA, can perform more accurate semantic segmen-

tation compared to the state-of-the-art approaches [Mnih and Hinton, 2012, Mnih,

2013] for automatic multiple object extraction in Chapter 4. Those conventional

methods also can predict multiple objects, but with independent models for each

object of interest. Therefore, our framework has an advantage of compactness.

In Chapter 5, we investigated what actually the CIS performs on a CNN during

training by visualizing the resulting middle layer outputs and inverting the resulting

feature maps into an image. Then we found that the CIS can suppress learning

representations to predict the background class. Furthermore, through a experiment

on the difference of amount of data, we found that the improvements derived from

the CIS is larger as the size of the dataset is smaller. It might have a significant

effectivity on some practical applications. Then, the CIS could be applied to different

tasks such as object recognition and object detection, when a background class should

be considered as one of classes of interest.

The architecture that used in this thesis is basically fixed on the one shown in

Figure 3-3, but there is much room for exploring. For example, one of the simplest

way to improve the performance is make the architecture of a CNN deeper. Indeed,
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we tested the VGG-16 architecture [Simonyan and Zisserman, 2014] on the same

dataset, and obtained the best results compared to all the other experimental results

shown in this thesis. However, the effectiveness of the CIS is the main focus of this

thesis, so that we did not perform further experiments for finding better architecture.

As discussed in Chapter 4, the fully-convolutional network (FCN) [Long et al., 2015]

is promising also for the semantic segmentation for aerial imagery. It considers three

levels of different scales of receptive fields by combining information from feature

maps in different depths in the network. It seems to be advantageous in structured

prediction. The FCN also has a great advantage in the number of parameters by

removing fully-connected layers. It causes not only the compactness of the space

complexity but also contributes the speed in the inference stage. While the CIS has

more general advantage in any problems which should consider background class, the

architecture which is adjusted to a specific task could achieve significant improvement.

Some approaches in semi-supervised learning [Kingma and Ba, 2014, Rasmus

et al., 2015, Maaløe et al., 2015, Miyato et al., 2015] might be promising also for

the pixel labeling task we addressed. Although preparing the large-scale dataset with

accurate annotations of building and road masks is obviously costly, we need a large-

scale fully-annotated dataset for each domain of input aerial imagery (e.g. country)

in the current approaches. However, while the annotation process is highly costly and

time-consuming, incredible amount of raw aerial imagery data without annotations

are available. Therefore, if we can create a good predictor of semantic labels for each

different area or country by using a vast amount of unlabeled data with a very small

amount of label data, it will have a great advantage in many practical applications.

Thus, considering how to apply some semi-supervised approaches [Rasmus et al.,

2015, Miyato et al., 2015] and the work related with generative models [Kingma and

Ba, 2014, Maaløe et al., 2015] should be considered for future work.

We implemented our models and the evaluation system with Caffe [Jia et al.,

2014] and Chainer [Tokui et al., 2015], which are deep learning frameworks. All of

the codes of our proposed methods, the experiments, and the new dataset Mass. BR
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are publicly available 1 2.

In Chapter 6, we showed an application in aerial image processing to show the

practical impact of semantic segmentation for aerial imagery. We proposed a new

cost map for determining seamlines based on the semantic segmentation results. It

has been believed that extracting ground objects accurately is too difficult [Pan et al.,

2014], but we have showed that it can be achieved by using a CNN that has been

successfully trained on a large dataset consisting of many aerial images and corre-

sponding object label images. The trained CNN can extract buildings accurately

from raw pixel values with no pre-processing. Therefore, there is no need to design

hand-crafted features to create cost maps as opposed to the conventional methods.

We focused on avoiding the crossing of buildings in this application, and achieved the

determination of seamlines that never pass through buildings by applying Dijkstra’s

algorithm [Dijkstra, 1959] to determine paths on the predicted building probability

maps. We showed that if the cost map is designed in a sophisticated manner, then

the seamline determination algorithm could be simple. Therefore, the segmentation-

based approach for seamline determination is promising as mentioned in Pan et al.

[Pan et al., 2014], and the semantic segmentation-based approach is more effective as

shown in this thesis.

1https://github.com/mitmul/ssai
2https://github.com/mitmul/ssai-cnn
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