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1 Introduction 

1.1 Key Technology for Intelligent Machine Tools 

Development of numerical controlled (NC) machine tools has greatly 

contributed to progress in the production fields by providing a highly accurate 

and efficient machining process with precise motion control of the spindle and 

machine tool stage. Integrating a computer-based calculation technology, the NC 

machine tool was invented in 1952, and its functionality has progressed to 

become more adaptive to machining of various production shapes [1]. The 

repeatability of the NC machine tool is very high such that it can help 

manufacture large quantities of a product, all with the same quality, although for 

a long time, the machining accuracy depended on a worker’s skill. Owing to these 

characteristics, the NC technique is now being widely applied to various 

machining processes such as cutting, grinding, polishing, laser machining, 

injection molding, and stamping. Additionally, combined and multi-axis machine 

tools have started being used in recent times to reduce the total machining time, 

making the NC technique more indispensable to performing several kinds of 

complex operations simultaneously [2].  

In particular, the improvement of the machining resolution is one of the most 

important considerations because the accuracy of products abundantly depends 

on the machine tool’s performance. Known as the “mother principle” [3], this 

principle indicates that higher machining resolution contributes directly and 

greatly to the progress of all research fields by providing new devices with an 

unprecedented accuracy, efficiency, and functionality. Moreover, increased 

production efficiency provides large economical and environmental benefits by 

reducing the energy consumption for machining. A ubiquitous technology is also 

being considered to realize a novel machining system that can be easily and 

safely deployed depending on the needs of the user. To satisfy these demands, 

many researches have been focusing on higher functionality of NC machine tools 

to enhance production efficiency, to achieve hyper-precise machining, to ensure 

safety, to guarantee high usability, and to develop a novel machining technique 

for difficult-to-cut materials. 

 

Although the NC machine-tool technology has greatly progressed following the 
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research on manufacturing, unmanned machining causes unanticipated 

problems among industrial fields. Because several machining processes are 

automated by using the NC technique, accidents and aberrance during 

machining become difficult to detect manually. Although the NC machines 

possess the capability to execute the preprogrammed NC commands accurately, 

they continue to perform these commands even after unexpected situations, such 

as tool breakage and wrong tool-path planning, occur. In the worst case, a serious 

accident including injury or death occurs and the machine structures are 

damaged irreparably. Therefore, the development of a special function to 

recognize the machining state and enable the NC machine tools to maintain the 

stability and safety of processes is in strong demand. Also, highly accurate 

identification of mechanical characteristics is necessary for the optimum 

configuration of machining control. As a high-end technology to ensure 

hyper-usability and safety, the development of a self-diagnosis method needs to 

be acquired to identify the optimum machining condition easily without expert 

knowledge and skills, such that the NC machine tool has its own intelligence. 

These concepts are expected to lead to what is referred to as the “intelligent 

machine tool,” and that is why many studies are geared toward process 

monitoring and system identification [4-8].  

 

From a practical viewpoint, a process monitoring system needs to be adaptive 

to various problems in realtime without complex sensor systems and complicated 

operations. Moreover, a system identification method should be easy to perform 

and be applicable to most NC machine tools. Thus, this research provides a novel 

sensorless technique for aberrance detection during machining and efficient 

system identification by using servo information. In particular, the developed 

sensorless process monitoring system focuses on four types of problems with 

cutting: tool wear, tool collision, tool fracture, and chatter vibration. Furthermore, 

a self-diagnosis method for identifying a stable cutting condition is also proposed, 

which is feasible without any sensor devices and expert knowledge on the 

machining process. 

This chapter discusses four types of problems related to cutting that this 

research focus on. In addition, recent studies on these problems are explained to 

clarify new challenges to this research. 
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1.2 Problems in Machining 

Some accidents in machining are induced by human error and may be 

preventable by performing repeated reviews of how workers operate, to avoid 

wrong operations. However, some problems during cutting are unavoidable 

because they are caused by time-dependent deterioration. In either case, causes 

and mechanisms of each problem must be comprehended to develop an efficient 

detection or avoidance method. In this section, four types of problems with 

cutting—the focus of this research—are explained in detail. 

1.2.1 Tool Wear 

Tool wear, a problem that persists for a long time, is one of the unavoidable 

problems, until a material that never wears out can be invented. Tool wear occurs 

more particularly at the tool edges as shown in Fig. 1-1, which is an example of 

wear on a drill. According to Japanese Industrial Standards, every type of tool 

wear is defined for each tool as shown in Fig. 1-2 [9]. If an overworn tool 

continues to be used, it easily leads to a serious accident such as tool breakage. 

Therefore, the worn tool has to be changed at a proper time by monitoring the 

degree of wear progress in realtime. 

Tool wear is commonly categorized according to its mechanism and worn point. 

Based on the mechanism, tool wear is categorized into abrasion, adhesion, 

diffusion, and chemical wear. These causes of tool wear are generally explained as 

follows [10]. 

 

Abrasion Wear 

Abrasion occurs when a harder material (i.e., the tool) shears away small 

particles from the softer work material. However, the softer work material also 

removes small particles from the tool material, although at a smaller rate. The 

harder particles are caught between the hard tool and soft work material, causing 

Fig. 1-1  Chisel edge wear and flank wear. 
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additional abrasion wear. Tool and work materials contain carbides, oxides, and 

nitrides with hard microstructures; these cause abrasion wear during machining. 

Adhesion Wear 

Adhesion wear occurs when there is a relative motion between the two bodies 

that are under normal load and fragments of the softer work material adhere to 

the harder tool. The adhered material is unstable, separates from the cutting tool, 

and tears small fragments of the tool material. (omitted). 

Diffusion Wear 

Diffusion wear occurs when the temperature of the tool and of the work 

materials increases at contact zones. Because of this, the atoms in the two 

materials become restive and migrate to the opposite material where the 

concentration of the same atom is lower. (omitted). 

Oxidation Wear 

Oxidation wear occurs when the atoms in the cutting tool and/or work material 

form new molecules at the contact boundary where the area is exposed to the air 

(i.e., oxygen). Tungsten and cobalt in the cutting tool are oxidized close to the 

work surface-cutting tool flank, which leads to notch wear on the cutting tool. 

(omitted). [10] 

Fig. 1-2  Definition of tool wear by JIS (Japanese Industrial Standards) [9]. 
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Regarding the contribution rate to tool wear progress, it is described as a 

function of the cutting point temperature as shown in Fig. 1-3 [11]. The total 

amount of wear increases at higher temperatures of the cutting point. Although it 

is clear from this relation that tool life can be expanded by using a lower cutting 

speed to suppress the heat generation because the total amount of wear increases 

at higher temperatures of the cutting point, it is not a fundamental solution 

because tool wear itself is unavoidable completely and cutting efficiency gets 

definitely lower. 

Fig. 1-4  Orthogonal cutting model [10]. 

Fig. 1-3  Contribution rate in tool wear progress [11]. 
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In an orthogonal cutting model, tool wear can be categorized into crater wear 

and flank wear depending on which face is worn [10]. A wear promoted on a rake 

face is called crater wear, and that on a flank face is called flank wear as shown in 

Fig. 1-4, which depicts the orthogonal cutting model. Because of the flow direction 

of the chip and the cutting direction, the depth of crater wear and the width of 

flank wear gradually increase with machining time. In particular, the width of 

flank wear is comparably easier to measure and be used as a criterion to evaluate 

tool wear progress quantitatively [12-14]. Figure 1-5 shows primary flank wear 

progress according to machining time [11]. 

To predict the tool life limitation, Taylor experimentally derived a 

comprehensive tool life equation as follows [15]: 

 𝑣𝑇𝐿
𝑝

= 𝐶 (1-1) 

where 𝑣 [m/s] is the cutting speed, 𝑇𝐿 [s] is the length of tool life, and 𝑝 and 𝐶 

are constant values. By determining the values for the parameters 𝑝 and 𝐶, it is 

possible to estimate tool life approximately. However, the repeatability of 

machining is not so high that 𝑝 and 𝐶 cannot be identified accurately even 

under the same cutting conditions because of the small individual difference in 

the tool and the work material. Therefore, process monitoring is important to 

determining a proper time to change the tool. 

1.2.2 Tool Collision 

NC machine tools have the characteristic of faithfully executing a premade NC 

Fig. 1-5  Progress of flank wear [11]. 
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program, even if wrong commands are included in the program in error, e.g., a 

sign mistake, a wrong coordinate option, and an improper cutting condition. 

These mistakes can easily lead to a serious accident such as a collision between 

the mechanical structures. 

Tool collision monitoring is of great importance for preventing damage to 

mechanical structures such as spindles. Although tool collision would be an 

avoidable problem if the program and the process are carefully checked, 60 % of 

severe spindle failures are in fact traced back to operator-induced collision 

between moving parts of a machine tool (Fig. 1-6) [16, 17]. Considering that the 

usage of multi-axis combined machine tools is gaining wide acceptance now, this 

rate is likely to increase in the near future because of complicated tool-path 

planning. The spindle components undergoing maximum damage from a collision 

Fig. 1-6  Failure causes of and damage to motor spindles [16]. 

Fig. 1-7  Overview of protective measures [18]. 
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are rolling-element bearings. Because the contact areas between the rolling 

elements and the inner and outer races are small, the reaction forces during a 

collision per unit contact area may exceed the allowable interface pressure, which 

leads to initiation and propagation of cracks [18].  

Abele presented an overview of collision protection strategies as shown in Fig. 

1-7 [18]. The countermeasures against tool collision are categorized into two 

groups: prevention methods and damage-reduction methods. The prevention 

methods aim to avoid collision by using preliminary investigation of the process 

plan such as the tool path, cutting condition, and coordinates of the tool and 

workpiece. Some studies proposed a realtime collision prevention system by 

simulating the tool path by using a 3D model created from CAD/CAM [19, 20]. As 

a sensor-based method, Zhang proposed a stereo vision system with 

charge-coupled device cameras to create a 3D model [21]. Byrne proposed a 

collision avoidance method by measuring the relative distance between the tool 

and the workpiece by using an ultrasonic sensor [22]. Furthermore, some studies 

were carried out to simplify the complicated calculation for the 3D modeling [23]. 

Although these methods can certainly reduce collision in machine tools, they 

require much analysis time for accurate prediction and cannot avoid some 

collisions caused by unpredictable conditions such as tool breakage and 

inadequate settings of the workpiece and tool. Some collisions are avoidable by 

the scanning method using special measurement devices, but complex operations 

and measurement time are required to create the 3D model. If a wrong operation 

is performed during the measurement, the collision cannot be avoided completely. 

From this viewpoint, not only the prediction methods but also the damage 

reduction methods should be implemented simultaneously. 

Presently, the available technical solutions for collision monitoring are as 

follows: bearing sensor rings embedded into the spindle motor [22], spindles that 

are lifted or tilted mechanically in the case of collisions [18], and ultrasonic and 

capacitive sensors [24]. Except when mounting the special mechanical structures, 

to reduce damage and avoid a secondary accident, the machine tool has to be 

stopped after a tool collision as soon as possible, i.e., high responsivity and 

reliability are necessary for collision detection. However, additional sensors, 

which lead to frequent maintenance and an increase in the failure rate, are 

undesired from the practical viewpoint. Furthermore, the detection method 

should be applicable even to unpredictable collisions in realtime. 

To satisfy these demands, simplification can be an important challenge for 
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collision detection methods. 

1.2.3  Tool Fracture 

Tool fracture (Fig. 1-8) generally occurs when overload is applied to the tool 

edge. In other words, it is a beneficial criterion to evaluate the adequacy of the 

cutting condition, although tool fracture sometimes occurs even under a proper 

cutting condition because of non-uniformity of work materials, individual 

differences of the tool, and runout of the spindle shaft. In either case, the 

fractured tool should be changed as soon as possible because it can easily lead to 

tool breakage and a worse cutting accuracy, e.g., a larger burr and machining 

error, and lower machined surface quality. Particularly when drilling with a 

fractured tool, thread-shaped chips occur, entwine, and injure the workpiece 

surface and the tool holder as shown in Fig. 1-9. 

 

However, the fracture on a tool edge is difficult to detect in realtime. In the case 

of a large fracture, the variation due to unstable machining such as larger 

vibration and unusual machining sound are certainly available signals for the 

detection. However, no remarkable change occurs during machining by using a 

tool having a small fracture and the process can continue. In order to detect small 

fractures, a direct observation using a microscope would be one of the most 

reliable approaches, but it is an impractical method because it requires frequent 

machining stoppage. 

 

To detect tool fracture in the process, some researchers have proposed 

sensor-based detection methods. In an interrupted process like milling, the 

Fig. 1-8  Fracture on a tool edge. Fig. 1-9  Snuggling chips. 
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fractured edge induces a smaller cutting force than do the other non-fractured 

edges because the fractured edge cannot ensure enough depth of cut. Therefore, a 

tool edge fracture is detectable by measuring the cutting force or acoustic 

emission and applying a frequency analysis like Fourier transform [25-28]. In 

contrast, drill fracture detection is comparably difficult because the process is 

continuous and the fracture-induced change is infinitesimal. Furthermore, the 

sensor mounting space is strictly regulated in the general drilling process using 

cutting oil. Therefore, not only high accuracy but also the potential of application 

to the machining condition is a necessary consideration for the tool fracture 

detection method. Although several researchers showed that a drastic change in 

cutting force is detectable by using a dynamometer or an acceleration sensor 

when a tool breakage occurs [29-31], the author could not find a proposal that 

focuses on small tool fractures in drilling and clearly defines a relation between 

the scale of fracture and the fracture-induced variation in sensor signals.  

1.2.4 Chatter Vibration 

Chatter vibration exponentially grows because of interaction between the 

mechanical transfer function and the cutting process, and causes large dynamic 

displacements between the tool and workpiece. As a result, tool life reduces and 

machined surface quality deteriorates as shown in Fig. 1-10. Many studies have 

been conducted to clarify the chatter mechanism and analyze the stable cutting 

condition. 

The main causes of chatter vibration are the “regenerative effect” and “modal 

coupling.” The regenerative effect is a process involving uncut-chip thickness 

Fig. 1-10  Chatter mark on a 

machined surface. 

Fig. 1-11  Regenerative effect in turning. 
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variation due to the surface waviness modulated by the previous cutting cycle as 

shown in  Fig. 1-11 [32]. Modal coupling is defined as an integration of some 

frequency modes and mainly occurs during machining with a rotational tool. In 

particular, the regenerative effect occurs in most cutting processes and generates 

self-excited chatter vibration. Many researches have focused on the regenerative 

chatter mechanism during the past few decades, e.g., Merritt theoretically 

explained the mechanism of self-excited chatter generation for an orthogonal 

cutting model [33]. Furthermore, several studies enhanced the prediction 

accuracy by introducing a dynamic cutting force effect to the cutting model [34, 

35]. Compared with the continuous process, the interrupted process is difficult to 

analyze in the frequency domain. For the milling process, Altintas and Budak 

finally established a prediction method for chatter stability in 1995 [36], which is 

cited by many other researchers.  

In contrast, modal-coupling-type chatter occurs because of the coupling of two 

vibration modes that have almost the same resonance frequency. It tends to occur 

when a long-type tool is used because the vibration modes normal to each other 

sometimes have similar modal parameters [37-39]. When cutting with a 

rotational tool like a milling tool as in Fig. 1-12, vibration in one mode easily 

affects another mode because of the tool rotation. However, modal-coupling-type 

chatter is rare compared with regenerative chatter, because its excitation 

condition is more strictly limited than the regenerative effect. 

In both cases, information on the modal parameters of the tool or the workpiece 

is necessary to predict chatter stability. However, stability prediction sometimes 

does not agree with a real process because of identification errors for modal 

parameters. Therefore, accurate chatter detection and the identification of stable 

cutting conditions are necessary to ensure machining accuracy. 

Fig. 1-12  Example of a rotational tool. 
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1.3 Process Monitoring Technology 

1.3.1 State-of-the-Art Studies 

The importance of process monitoring is widely acknowledged and many 

studies have been conducted to develop an efficient monitoring technology [4-8]. 

Teti et al. [4] surveyed recent studies for process monitoring and reported that 

monitoring techniques can be categorized into direct approaches and indirect 

approaches. Examples of the direct method are measurements by using cameras, 

radioactive isotopes, laser beams, and electrical resistance to evaluate such as the 

width of tool wear quantitatively. Although the direct methods certainly 

guarantee high accuracy of the evaluation of the machining state and the tool 

condition, these methods are difficult to perform in realtime because of access 

problems during machining, illumination, and the use of cutting fluid. In contrast, 

there are some measurable signals that help evaluate the cutting state as shown 

in Fig. 1-13 [4]. The indirect information is less accurate than direct 

measurement to monitor the machining state, but comparably easy to obtain by 

using additional sensors. By comparing signal features, Tlusty and Andrews 

reported that force information is one of the suitable means for process 

monitoring [40]. Although the signals close to the process are usually captured by 

mounting additional sensors on the machining space, this approach requires the 

Fig. 1-13  Measurable phenomenon for online sensor monitoring [4]. 
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regulation of the tool-path design, frequent maintenance, and higher cost. In 

particular, a force sensor mounted between the machine table and the workpiece 

holder leads to low machine-tool stiffness and machining accuracy because it 

measures the applied force based on the displacement. In contrast, armature 

current is used to estimate the cutting force without any negative effects on the 

machining space [41-43]. However, estimation accuracy is difficult to ensure 

because armature current information includes considerable noise when a 

clamp-type current sensor is used and some cutting force information is lost 

owing to filtering. Therefore, enhancing the monitoring accuracy of the indirect 

methods is one of the most important issues related to practical applications in 

industries. 

 

As a new trend in the manufacturing technology, the advent of information 

technology has enabled a more efficient and sophisticated manufacturing system. 

For example, “Inderstrie 4.0” in Germany and “Industrial Internet” in the US are 

national projects to apply IoT (Internet of Things) technology in the industrial 

fields. In these projects, a super-high efficient manufacturing system by sharing 

precise demand predictions, an adaptive manufacturing system for varying-lot 

production of wider-ranging products, and ubiquitous supporting systems are 

being experimented via IoT. In this trend, the intelligent machine tool is one of 

the most important key technologies that are capable of gathering machining 

information as shown in Fig. 1-13, and controlling machining operation 

adaptively by sharing information with an enormous number of other similar 

machine tools. 

Against this background, recent studies on process monitoring focus on indirect 

methods that can be easily fitted to machine tools to collect machining 

information efficiently. 

1.3.2 New Challenges 

Despite the almost overwhelming scope of monitoring solutions for diverse 

purposes as presented by scientific literature, industries remain reluctant to 

implement advanced process monitoring systems because of frequent 

maintenance, the limitation of the tool path design, and use of cutting fluid [4, 44]. 

Simplification is required with regard to monitoring algorithms and sensor 

technology [4, 45]. The “sensorless” approach focuses on using the information 
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provided by machine tool control and feed drives to carry out process monitoring 

instead of installing expensive and complicated external sensor systems [46, 47]. 

Additionally, the monitoring method needs to be an add-on technique, whereby 

it can be easily installed on commercial machine tools to collect machining 

information for a new industrial IoT-based system. 

 

From this viewpoint, certain challenges need to be solved for advanced process 

monitoring: 

 

 The number of additional devices must be as few as possible. 

 No devices must be mounted on the machining space. 

 Industries’ concerns regarding cost and maintenance must be addressed. 

 Accuracy that is high enough to detect problems must be guaranteed. 

 

1.4 Identification of a Stable Machining Condition 

1.4.1 State-of-the-Art Studies 

Not only detection but also analysis is necessary for chatter stability because 

the mechanism is complicated and the stable cutting condition is difficult to 

identify. As explained in Section 1.2.4, several studies showed analysis methods 

of the stable cutting condition with respect to chatter vibration by constructing a 

cutting model. Compared with an orthogonal cutting model, the milling process is 

difficult to analyze in the frequency domain because of non-linearity of 

interrupted cutting. Research on the milling process led to the development of the 

chatter prediction method in 1995 [36]. In the same manner, several studies 

applied a frequency-domain model and proposed a stability prediction method for 

ball endmills [48] and micro tools [49]; a method introducing a process damping 

coefficient to enhance prediction accuracy in the low rotational region [50]; and a 

method applicable to continuous spindle speed variation [51]. Furthermore, a 

time-domain simulation approach is also adopted for a special tool like an 

unequal pitch cutter, which is difficult to analyze in the frequency domain [52]. 

However, stability prediction often does not agree with the realtime machining 

process, in spite of extensive research and improvements as explained before. 

This gap occurs because of the identification error of modal parameters, which 

must be accurately identified for the prediction methods that are based on a 

milling model. Generally speaking, hammering tests are conducted to analyze 
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modal parameters for a mechanical system. However, the coherence of the 

hammering test results is difficult to enhance because coherence changes because 

of a small difference in impact force. Expert knowledge to correctly treat 

measurement devices is also necessary to obtain an adequate analysis result. 

Furthermore, by developing a non-contact measurement method with magnetic 

force, Matsubara et al. [53] experimentally showed that the static stiffness of the 

tool changes according to the spindle rotation because of heat generation in 

bearings, centrifugal forces on rotation elements, lubrication oil films at contact 

points, and so on. This result indicates that stability prediction cannot enhance 

reliability based on modal parameters during machine stoppage, and that modal 

parameters should be identified only during machine movement. 

In order to obtain high reliability, chatter stability should be identified by using 

results of real cutting tests, e.g., Quintana described stability lobes diagram by 

repeating real milling tests on a triangle-shaped workpiece with various spindle 

rotations [54]. Suzuki proposed an identification method for a transfer function of 

a mechanical system by applying the inverse analysis method to some milling 

tests [55]. Although these experimental identification methods are highly 

accurate and reliable, they warrant measurement devices and special-shaped 

workpieces and multiple rounds of milling tests. 

1.4.2 New Challenges 

Experimental approaches should be adopted to ensure identification accuracy 

involving chatter stability. Furthermore, practicability and usability are also 

necessary for identification of stable cutting conditions. Thus, the identification 

method should be simple to use and easy to apply to all machine tools. As a result, 

certain conditions should be satisfied to develop an efficient identification 

method. 

 Does not require special analysis devices. 

 Guarantees high usability. 

 Ensures high accuracy. 

 Is simple enough to perform. 
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1.5 Research Purpose 

This section summarizes Chapter 1 and explains the purpose of this research. 

 

Manufacturing technologies are still in a progressive state toward enhancing 

production efficiency and accuracy. These objectives can be met by developing and 

applying an automation technology for manufacturing systems. In contrast, 

worker expertise is still indispensable for selecting a proper tool, designing a tool 

path, modifying cutting conditions, and finishing the product. Although the 

industries consider automation of these processes vital, they are reluctant 

because the automation solution requires usage of additional sensors, which are 

expensive, require frequent maintenance, increase the failure rate, and reduce 

machine-tool stiffness. 

 

Against this background, this study seeks to develop a sensorless process 

monitoring system for tool wear, tool collision, tool fracture, and chatter vibration 

based on the disturbance observer theory, which does not require additional 

measurement devices. Furthermore, development of a sensorless identification 

method for a stable cutting condition against chatter vibration is also carried out. 

In concrete terms, by applying the disturbance observer technique to the spindle 

and the ballscrew driven-stage control systems in a machine tool, the monitoring 

systems for cutting force variation due to tool wear, collision force in feed 

direction, fracture-induced vibration, and chatter-induced fluctuation in cutting 

force are developed. Additionally, novel signal processing methods named 

“Rotational Digital Filter” and “Moving Variance and Moving Fourier Transform” 

are developed to enhance detection accuracy. The practicability of both developed 

systems is experimentally evaluated with vertical 3-axis machining centers. 

The proposed methods only utilize servo information, which is available from 

the machine-tool controller. It is easy to install on commercial machine tools as 

one of the programs, and does not require additional measurement devices. As a 

result, this research has great significance to making process monitoring 

practical, if detection and identification accuracy for abnormal states in 

machining is sufficiently high. 
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1.6 Organization of Dissertation 

In Chapter 1, key technologies for intelligent machine tools and problems in 

machining are introduced. By explaining state-of-the-art technologies for process 

monitoring and stability diagnosis, the applicability and feasibility of sensorless 

approaches are clarified from the practical viewpoint, and the purpose of this 

research is declared. 

 

Chapter 2 provides fundamentals to perform the proposed process monitoring 

and stability diagnosis methods. Furthermore, two kinds of novel 

signal-processing methods are proposed for improvement of the aberrance 

detection accuracy; one is “rotational digital filter (RDF)” which has a special 

characteristic to extract only a signal moving on a circular orbit in clockwise 

direction, and the other is “integration of moving variance and moving Fourier 

transform algorithms (MV+MFT)” which can detect chatter with a small number 

of computation. Additionally, how to construct a time-domain milling simulator is 

explained, which is applied to theoretically evaluate the proposed stability 

diagnosis method. 

 

Chapter 3 summarizes experimental apparatuses and a parallel calculation 

system for the time-domain milling simulation. Furthermore, the applicability of 

the proposed method according to the encoder resolution is discussed with a 

time-domain simulation. 

 

From Chapters 4 to 7 present the proposed process monitoring method for each 

problem in machining. Chapter 4 shows the cutting force and torque estimation 

using servo information in each axis ballscrew-driven stage and spindle control 

systems, which successfully captures the wear-induced increases in cutting force 

and torque in drilling and tapping in realtime. Applying the cutting force 

estimation algorithm, Chapter 5 shows that the tool collision can be detected with 

high responsiveness by monitoring a differential value of the estimated cutting 

force. Chapter 6 presents that drill fracture is detectable by employing the RDF 

to the estimated cutting force in X and Y directions. Chapter 7 describes that 

chatter can be detected independently from forced vibration in realtime by 

adopting the MV+MFT to the estimated cutting torque information. 
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Chapter 8 contains the experiment and discussion for the proposed stability 

diagnosis method to identify stable spindle rotations against chatter. The results 

of side milling tests and the time-domain milling simulation indicate that the 

stable spindle rotations can be identified by monitoring drastic chatter frequency 

shifts. Furthermore, the adequacy of the diagnosis result is discussed on the basis 

of the time-domain simulation and a frequency-domain analysis. 

 

Finally, conclusions of the thesis are summarized in Chapter 9. The above 

organization of this thesis is summarized in Fig. 1-14. 

Fig. 1-14  Organization of dissertation. 
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2 Theories for Process Monitoring and 

System Identification 

2.1 Introduction 

A motion control method for mechanical structures in a machine tool must be 

carefully constructed to archive high machining accuracy, because tool 

displacements have direct effects on machining errors. Generally speaking, the 

P-PI control method, which introduces a proportional control (P control) for the 

angle and a proportional-integral control (PI control) for the angular velocity (Fig. 

2-1), is applied to the driven-stage motors and spindles in most machine tools. 

Furthermore, to enhance the control performance and obtain the sophisticated 

functionality, modern control theory has drawn attention recently. 

The performance of a control system is generally evaluated by two criteria; 

trajectory performance and robustness [56]. Additionally, positioning accuracy is 

an important factor for machining control. To enhance the trajectory performance 

and positioning accuracy, applying feed-forward compensation to a P-PI controller 

is an efficient method. On the other hand, a higher gain setting is an effective 

method to enhance the robustness of the control system. In a classical PID control 

system, the control gain must be increased to enhance the system robustness. 

However, the higher control gain leads to unexpected vibration and a dangerous 

movement of the controlled object because of extra-high trajectory performance. 

Additionally, feed-forward compensation is regarded as a pseudo-enhancement of 

gain, but the tradeoff relation between the trajectory performance and robustness 

cannot be fundamentally resolved because it also leads to unstable movement. 

Alternatively, the disturbance observer is one of the modern control techniques 

to solve the tradeoff relation between the trajectory performance and robustness. 

Fig. 2-1  Block diagram of a P-PI controlled system. 
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The disturbance observer is a technique to estimate a disturbance in a control 

system only from the servo information and some nominal parameters. The 

estimated disturbance information is fed forward to the current reference 

information in order to compensate the disturbance. Moreover, the disturbance 

observer enables the controller to design the trajectory performance and 

robustness separately. These merits are the reasons why the disturbance 

observer is widely introduced to the controllers of industrial robots and electric 

automobiles, and many studies have applied the disturbance observer to 

establish a new control theory. 

 

In this study, the disturbance observer is utilized to estimate the cutting force 

and torque without any additional measurement devices. For a spindle and a 

ballscrew-driven stage controller, the cutting force and torque can be regarded as 

a disturbance that interferes with precise motion control. By analyzing the 

estimated cutting force and torque, process monitoring can be performed and 

stable cutting condition analysis would be possible. In this chapter, the 

disturbance observer theory and the analysis methods for the estimated 

disturbance are explained. 

2.2 Disturbance Observer-Based Cutting Force and 
Torque Estimation 

Although the original theory of the disturbance observer [57] is aimed at the 

robust control of a system, its aspect for disturbance estimation is a focus of this 

study. This section provides an explanation of disturbance observer theory and 

how to apply it to cutting force and torque estimations. 

To explain the disturbance observer theory, a physical model of a simple 

drive motor is used. In Laplace domain, the dynamic equation is described as: 

 𝐽𝜔𝑠 + 𝑇𝑙 = 𝑇𝑚 (2-1) 

where 𝐽 [kgm2] is the inertia about the motor shaft, 𝜔 [rad/s] is the rotational 

Fig. 2-2  Block diagram of motor. 
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speed of the motor shaft, 𝑇𝑙 [Nm] is the load torque, and 𝑇𝑚 [Nm] is the motor 

torque. The block diagram of this equation can be represented in the Laplace 

domain as shown in Fig. 2-2.  

The load torque contains three kinds of components. 

  Inertial torque 𝑇𝑖𝑛𝑡 : The load works without contact, such as Coriolis 

torque and centrifugal torque. 

  External torque 𝑇𝑒𝑥𝑡: The load due to contact, such as reaction torque 

  Friction torque 𝑇𝑓𝑟𝑖𝑐: Mainly the sum of Coulomb and viscosity torques 

Therefore, the following equation is satisfied. 

 𝑇𝑙 = 𝑇𝑖𝑛𝑡 + 𝑇𝑒𝑥𝑡 + 𝑇𝑓𝑟𝑖𝑐 (2-2) 

Assuming that the motor current 𝐼𝑎 [A] is regulated by a high-gain current 

controller and the output current completely coincides with its reference 𝐼𝑎
𝑟𝑒𝑓

 [A], 

the motor torque is described by introducing the motor torque coefficient 𝐾𝑡 

[Nm/A] as follows: 

 𝑇𝑚 = 𝐾𝑡𝐼𝑎 = 𝐾𝑡𝐼𝑎
𝑟𝑒𝑓

 (2-3) 

Substituting Eqs. 2-2 and 2-3 to 2-1, the dynamic equation is represented as 

 𝐽𝜔𝑠 = 𝐾𝑡𝐼𝑎
𝑟𝑒𝑓

− (𝑇𝑖𝑛𝑡 + 𝑇𝑒𝑥𝑡 + 𝑇𝑓𝑟𝑖𝑐) (2-4) 

The inertia moment of the spindle shaft 𝐽 hardly changes but can vary because 

of axial runout. Thus, an inertia moment is represented as the sum of the 

nominal inertia 𝐽𝑛 and its variation ∆𝐽: 

 𝐽 = 𝐽𝑛 + ∆𝐽 (2-5) 

The torque coefficient also varies because of magnetic flux distribution: 

 𝐾𝑡 = 𝐾𝑡𝑛 + ∆𝐾𝑡 (2-6) 

By using these parameter variations, torque variations are represented in 

torque dimension variables as 

  ∆𝐽𝑠: changed inertia variation torque 

  ∆𝐾𝑡𝐼𝑎
𝑟𝑒𝑓

   : torque ripple due to the space harmonics 

The sum of these torque variables and the load torque is defined as disturbance 

torque as 

 𝑇𝑑𝑖𝑠 = 𝑇𝑙 + ∆𝐽𝜔𝑠 − ∆𝐾𝑡𝐼𝑎
𝑟𝑒𝑓

= 𝑇𝑖𝑛𝑡 + 𝑇𝑒𝑥𝑡 + 𝑇𝑓𝑟𝑖𝑐 + (𝐽 − 𝐽𝑛)𝜔𝑠 + (𝐾𝑡𝑛 − 𝐾𝑡)𝐼𝑎
𝑟𝑒𝑓

 (2-7) 

Equation 2-1 is transformed with the above torque variables as: 

 (𝐽𝑛 + ∆𝐽)𝜔𝑠 + 𝑇𝑙 = (𝐾𝑡𝑛 + ∆𝐾𝑡)𝐼𝑎
𝑟𝑒𝑓

 (2-8) 

Therefore, following dynamic equation can be derived: 

 𝐽𝑛𝜔𝑠 = 𝐾𝑡𝑛𝐼𝑎
𝑟𝑒𝑓

− (𝑇𝑙 + ∆𝐽𝜔𝑠 − ∆𝐾𝑡𝐼𝑎
𝑟𝑒𝑓

) (2-9) 

Furthermore, the dynamic equation is transformed with Eq. 2-7 as 

 𝑇𝑑𝑖𝑠 = 𝐾𝑡𝑛𝐼𝑎
𝑟𝑒𝑓

− 𝐽𝑛𝜔𝑠 (2-10) 
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Figure 2-3 shows the block diagram of Eq. 2-10 in a Laplace-domain expression. 

This block diagram shows that the disturbance torque can be estimated when the 

current reference and rotational acceleration (the time differential value of the 

rotational speed) are detectable, because nominal values 𝐾𝑡𝑛  and 𝐽𝑛  are 

constant. 

Current reference is easily obtained from a controller; on the other hand, a 

rotational acceleration sensor is hardly used because of less demand. Usually, the 

rotational speed is measured or estimated by using an encoder, a resolver, or a 

tachogenerator. To implement the system in Fig. 2-3, the rotational speed must be 

processed with a differential process. To suppress the high-frequency signal noise 

expanded by the differential process, a first-order low-pass filter is generally 

installed. Therefore, the disturbance torque is estimated as the following 

equation: 

 𝑇̂𝑑𝑖𝑠 =
𝑔𝑑𝑖𝑠

𝑠 + 𝑔𝑑𝑖𝑠

𝑇𝑑𝑖𝑠 (2-11) 

where 𝑔𝑑𝑖𝑠 [rad/s] is the cutoff rotational frequency of the low-pass filter. Then, 

the block diagram of Eq. 2-11 can be described as shown in Fig. 2-4. 

Figure 2-4 can be transformed to Fig. 2-5. This block diagram shows that the 

disturbance observer can be implemented with an integral process, without the 

differential process.  

The disturbance observer can estimate the disturbance information without 

any additional sensors. By analyzing the estimated disturbance information, the 

cutting states can be estimated without additional sensors. 

As mentioned in Chapter 1, many studies have implemented process 

monitoring by measuring cutting force and torque with dynamometers or 

armature current measurement. However, using additional sensors causes 

several problems, such as high cost and frequent maintenance. On the other hand, 

Fig. 2-3  Disturbance torque estimation from the rotational speed. 
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disturbance observer-based monitoring would be useful to estimate the cutting 

torque, because the cutting torque is also a disturbance that interferes with the 

precise motion control of the spindle rotation. Furthermore, it uses only the servo 

information of the control system and never requires additional sensors. 

 

The preceding explanation is the theory of the disturbance observer for a single 

inertia system such as a spindle control system. In the case of the spindle control 

system, the disturbance torque mainly includes cutting torque and friction torque, 

assuming that the parameter variations are negligibly small. To apply the 

disturbance observer to a ballscrew-driven stage control system, on the other 

hand, both the screw inertia moment and the driven-stage mass should be 

considered synthetically. Although the physical model becomes complex compared 

with the spindle, the disturbance observer also should be introduced to the 

Fig. 2-4  Disturbance torque estimation suppressing the noise. 

Fig. 2-5  Disturbance torque estimation from the rotational speed 

(constructed with integral process only). 
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ballscrew-driven stage system for cutting force monitoring in each axial direction. 

The ballscrew-driven stage is a mechanical component constructed with a screw, 

a nut, and balls to convert the rotational movement to linear movement (Fig. 2-6). 

The ballscrew has sufficiently high stiffness to ensure stability even when a high 

load is applied to the controlled object. Therefore, it is widely used in machine 

tools for high-load metal cutting. On the other hand, time-dependent 

deterioration such as wear, low positioning accuracy due to large friction, and 

necessity of periodic maintenance for lubrication oil are demerits of the ballscrew 

structure. To analyze the ballscrew-driven stage physically, the rotational motion 

of the screw and the linear motion of the stage must be considered separately; 

thus, a multi-mass model is utilized. Though a two-mass model as shown in Fig. 

2-7 is generally used, a four-mass model is used when precise analysis is 

necessary [58]. However, the four-mass model requires many parameters that 

must be identified accurately. Furthermore, coupling stiffness is difficult to 

identify in the case of a semi-closed loop control system in which the stage 

position is controlled indirectly with the rotational angle control of the screw. 

From this viewpoint, assuming that the coupling stiffness between the screw and 

the stage is sufficiently high, the two-mass model is similarly transformed into a 

single-mass model in this research. 

 

First, to introduce the disturbance observer to the ballscrew-driven stage, 

dynamic equations for a screw and a driven stage must be established separately. 

In the case of a ballscrew-driven stage in a vertical direction, the dynamic 

equation of the screw during cutting is represented in the Laplace domain as 

Fig. 2-6  Ballscrew-driven stage. Fig. 2-7  Two-inertia system model. 
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 𝐾𝑡𝜃𝑧𝐼𝑎
𝑟𝑒𝑓

= 𝐽𝜃𝑧𝜔𝜃𝑧𝑠 + 𝐷𝜃𝑧𝜔𝜃𝑧 + 𝐶𝜃𝑧sgn(𝜔𝜃𝑧) + 𝜏𝑟𝑒𝑎𝑐 (2-12) 

where 𝐾𝑡𝜃𝑧 [Nm/A] is the torque coefficient of the servo motor for the screw, 𝐽𝜃𝑧 

[kgm2] is the inertia moment of the screw, 𝜔𝜃𝑧 [rad/s] is the rotational speed of 

the screw, 𝐷𝜃𝑧 [Nm/(rad/s)] is the damping coefficient, 𝐶𝜃𝑧 [Nm] is the Coulomb 

friction torque, and 𝜏𝑟𝑒𝑎𝑐 [Nm] is the reaction torque from the driven stage.  

Considering a drilling process, the reaction force from the screw, the cutting 

force, the friction force, the gravity force, and the inertia force are applied to the 

driven stage. Therefore, the dynamic equation of the driven stage is described as 

follows: 

 𝐹𝑟𝑒𝑎𝑐 = 𝑀𝑧𝑣𝑧𝑠 + 𝐹𝑐𝑢𝑡 + 𝑀𝑧𝑔 + (𝐷𝑧𝑣𝑧 + 𝐶𝑧sgn(𝑣𝑧)) (2-13) 

where 𝐹𝑟𝑒𝑎𝑐 [N] is the reaction force applied to the driven stage, 𝑀𝑧 [kg] is the 

mass of the driven stage, 𝐹𝑐𝑢𝑡 [N] is the cutting force, 𝑔 [m/s2] is the gravity 

acceleration, 𝐷𝑧 [N/(m/s)] is the damping coefficient, and 𝐶𝑧 [N] is the Coulomb 

friction. As shown in Fig. 2-7, the translation between 𝜏𝑟𝑒𝑎𝑐  and 𝐹𝑟𝑒𝑎𝑐  is 

expressed with translation coefficient 𝑅 [m/rad] and coupling stiffness 𝐾 [N/m] 

as follows: 

 𝐹𝑟𝑒𝑎𝑐 = 𝐾(𝑅𝜃𝑧 − 𝑧), 𝜏𝑟𝑒𝑎𝑐 =
𝐾(𝑅𝜃𝑧 − 𝑧)

𝑅
, 𝑅 =

𝑙

2𝜋
 (2-14) 

where 𝜃𝑧 [rad] is the rotational angle of the screw, 𝑧 [m] is the position of the 

driven stage, and 𝑙 [m] is the lead of the screw. It is clear that 𝜔𝜃𝑧 = 𝜃𝑧𝑠 and 

𝑣𝑧 = 𝑧𝑠. Additionally, the reaction torque and the reaction force have a linear 

relation as 

 𝐹𝑟𝑒𝑎𝑐 =
𝑙

2𝜋
𝜏𝑟𝑒𝑎𝑐 (2-15) 

By substituting Eq. 2-14 to 2-13, following equation can be derived. 

 𝑅𝜃𝑧 − 𝑧 =
𝑀𝑧

𝐾
𝑣𝑧𝑠 +

1

𝐾
𝐹𝑐𝑢𝑡 +

𝑀𝑧𝑔

𝐾
+

𝐷𝑧𝑣𝑧 + 𝐶𝑧sgn(𝑣𝑧)

𝐾
 (2-16) 

Assuming that the coupling stiffness is sufficiently high (𝐾 → ∞) , Eq. 2-16 

represents a linear relation between the rotational angle of the screw and the 

position of the driven stage as 𝑧 = 𝑅𝜃𝑧. Therefore, the rotational speed of the 

screw and the velocity of the driven stage also have a linear relation as 

 𝑣𝑧 =
𝑙

2𝜋
𝜔𝜃𝑧 (2-17) 

Finally, the dynamic equation of the ballscrew-driven stage can be summarized 

as a single-mass model: 
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 𝐾𝑡𝜃𝑧𝐼𝑎
𝑟𝑒𝑓

= 𝐽𝜃𝑎𝜔𝜃𝑧𝑠 + 𝐷𝜃𝑎𝜔𝜃𝑧 + 𝐶𝜃𝑎sgn(𝜔𝜃𝑧) +
𝑙

2𝜋
(𝐹𝑐𝑢𝑡 + 𝑀𝑧𝑔) 

(2-18) 

 where 𝐽𝜃𝑎 = 𝐽𝜃𝑧 + (
𝑙

2𝜋
)
2

𝑀𝑧,    𝐷𝜃𝑎 = 𝐷𝜃𝑧 + (
𝑙

2𝜋
)
2

𝐷𝑧,     𝐶𝜃𝑎 = 𝐶𝜃𝑧 + (
𝑙

2𝜋
)
2

𝐶𝑧  

Therefore, the cutting force can be estimated on the basis of Eq. 2-18 by 

 𝐹𝑐𝑢𝑡 =
2𝜋

𝑙
{𝐾𝑡𝜃𝑧𝐼𝑎

𝑟𝑒𝑓
− 𝐽𝜃𝑎𝜔𝜃𝑧𝑠 − 𝐷𝜃𝑎𝜔𝜃𝑧 − 𝐶𝜃𝑎sgn(𝜔𝜃𝑧)} − 𝑀𝑧𝑔 (2-19) 

The rotational speed of the screw is not directly measured with the encoder 

obtaining the angle information. Generally, it is acquired with a differential 

process on the encoder information. Assuming that the parameter variations are 

small enough, the cutting force can be estimated by nominalizing Eq. 2-19 and 

using a pseudo-differential process as follows: 

𝐹̂𝑐𝑢𝑡 =
2𝜋

𝑙
∙

𝑔𝑑𝑖𝑠𝑧

𝑠 + 𝑔𝑑𝑖𝑠𝑧

{
𝑔𝐿𝑃𝐹𝑧

𝑠 + 𝑔𝐿𝑃𝐹𝑧

𝐾𝑡𝜃𝑧𝑛𝐼𝑎
𝑟𝑒𝑓

− 𝐽𝜃𝑎𝑛𝜔̂𝜃𝑧𝑠 − 𝐷𝜃𝑎𝑛𝜔̂𝜃𝑧 − 𝐶𝜃𝑎𝑛sgn(𝜔̂𝜃𝑧)} − 𝑀𝑧𝑔 

(2-20) 

 where 𝜔̂𝜃𝑧 =
𝑠𝑔𝐿𝑃𝐹𝑧

𝑠 + 𝑔𝐿𝑃𝐹𝑧

𝜃𝑧 

where 𝜃𝑧 [rad] is the rotational angle of the screw available from the rotary 

encoder. In this case, a first-order low-pass filter is applied to the motor output 

information, i.e., 𝐾𝑡𝜃𝑧𝑛𝐼𝑎
𝑟𝑒𝑓

, to compensate the phase delay caused by the filter. 

The block diagram of Eq. 2-20 is shown in Fig. 2-8. Considering that the gravity 

force term 𝑀𝑧𝑔 is constant value, the following equation is satisfied because 

first-order low-pass filter passes static component without damping. 

 𝑀𝑧𝑔 =
𝑔𝑑𝑖𝑠𝑧

𝑠 + 𝑔𝑑𝑖𝑠𝑧

∙
𝑔𝐿𝑃𝐹𝑧

𝑠 + 𝑔𝐿𝑃𝐹𝑧

∙ 𝑀𝑧𝑔 (2-21) 

where 𝑀𝑧𝑔 is a constant value. By substituting Eqs. 2-19 and 2-21 to Eq. 2-20, a 

following approximation equation can be obtained when the nominal values are 

almost same with the actual values. 

 𝐹̂𝑐𝑢𝑡 ≈
𝑔𝑑𝑖𝑠𝑧

𝑠 + 𝑔𝑑𝑖𝑠𝑧

∙
𝑔𝐿𝑃𝐹𝑧

𝑠 + 𝑔𝐿𝑃𝐹𝑧

∙ 𝐹𝑐𝑢𝑡 (2-22) 

As a result, the cutting force can be estimated only from the motor current and 

the encoder information in the ballscrew-driven stage control system. The 

estimated cutting force is nearly equal to the cutting force filtered with 

second-order low-pass filter. Furthermore, this theory is applicable to X- and 

Y-stage control systems to estimate the X- and Y-direction cutting force by 

canceling the gravity force term.  

The cutting toque can also be estimated from the spindle control system by 
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 𝑇̂𝑐𝑢𝑡 =
𝑔𝑑𝑖𝑠

𝑠 + 𝑔𝑑𝑖𝑠

{
𝑔𝐿𝑃𝐹

𝑠 + 𝑔𝐿𝑃𝐹

𝐾𝑡𝐼𝑎
𝑟𝑒𝑓

− 𝐽𝑛𝜔̂𝑠 − 𝐷𝑛𝜔̂ − 𝐶𝑛sgn(𝜔̂)} 

(2-23) 

 where 𝜔̂ =
𝑠𝑔𝐿𝑃𝐹

𝑠 + 𝑔𝐿𝑃𝐹

𝜃 

Although the frequency response characteristics should be identified accurately 

to suppress the estimation error due to resonance, this research adopts the 

simple single inertia model because number of nominal parameters is 

comparatively small. As a result, the cutting torque and force in each direction 

can be estimated only from the servo information. By analyzing the estimated 

cutting force and torque, several kinds of problems in machining are detectable. 

 

In case of tool wear monitoring, an increase in cutting force is a beneficial 

criterion [40]. Thus, the proposed algorithm would be directly utilizable to 

evaluate the progress of tool wear by estimating the cutting force and toque. 

Collision detection is also possible with the disturbance observer. As an efficient 

sensorless approach, Takakura proposed observer-based collision detection for an 

industrial robot arm, including the recovering motion [59]. Though the 

mechanical structures are different between the robot arm and the ballscrew, 

large external force would be applied when tool collision occurs in both systems. 

 

Although several studies have proposed a tool fracture detection method for 

milling processes [25-28], a drill fracture detection method has rarely been 

Fig. 2-8  Block diagram of the algorithm to estimate thrust force, based on 

disturbance observer theory. 
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proposed. This is because the fracture-induced variation in cutting force is too 

small to detect and the use of cutting oil precludes mounting any sensors on a 

machine tool. As a sensorless approach, the armature current measurement does 

not require mounting a sensor on the machining space, but the estimation 

accuracy is not too high to detect an infinitesimal fluctuation due to drill fracture. 

From this viewpoint, the disturbance observer solves the sensor mounting 

problem and can detect a small cutting force variation due to tool fracture in 

drilling. This is just as valid for chatter detection. The frequency of chatter is 

generally too high to suppress actively and is out of the control frequency band. In 

this case, the armature current does not include chatter-induced fluctuation 

because the high-frequency information is lost because of filtering. On the other 

hand, the disturbance observer can estimate the force information with a wider 

frequency range by integrating the current information and the encoder signals 

and can detect the chatter. The fluctuation in the cutting force could be captured 

by applying a frequency analysis method to the disturbance information. 

 

2.3 Signal Processing for Abnormal State Detection 

Obviously, process monitoring should be performed in realtime to sufficiently 

ensure safety and reduce damage. Thus, the analysis method must be selected 

and modified carefully for the estimated disturbance force. In particular, the 

frequency resolution and the time response always have a tradeoff relation in a 

frequency analysis method. Furthermore, the computational load also should be 

considered because the calculation is performed in realtime with the NC device 

whose performance is not too high to process a complicated calculation. In this 

section, four kinds of frequency analysis methods are introduced, which are used 

in the proposed monitoring system: fast Fourier transform (FFT), continuous 

wavelet transform (CWT), integration of moving variance and moving Fourier 

transform, and rotational digital filter. The FFT and the CWT are conventional 

methods that are generally employed in typical realtime frequency analysis 

devices. On the other hand, the integration of moving variance and moving 

Fourier transform is a time-frequency domain analysis method developed for 

chatter analysis in this research, and has the same resolution as the discrete 

Fourier transform (DFT) but is specialized to reduce the computational load. The 

rotational digital filter is a novel signal processing method having a unique 

characteristic to extract a signal moving in the clockwise direction on an XY 
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plane, and was invented for drill fracture detection in this study. The two 

proposed methods are experimentally compared with the conventional methods 

to evaluate the performance and detection accuracy. 

2.3.1 Fast Fourier Transform 

The FFT is simply an algorithm that can compute the DFT much more rapidly 

than other available algorithms [60]. For this reason, the DFT algorithm is first 

explained in this section. 

A Fourier transform identifies or distinguishes the different frequency 

sinusoids and their respective amplitudes that combine to form an arbitrary 

waveform. Mathematically, this relationship is stated as 

 𝐻(𝑓) = ∫ ℎ(𝑡)exp(−𝑗2𝜋𝑓𝑡)𝑑𝑡
∞

−∞

 (2-24) 

where ℎ(𝑡) is the waveform to be decomposed into a sum of sinusoids, 𝐻(𝑓) is 

the Fourier transform of ℎ(𝑡), and 𝑗 = √−1.  

Frequency analysis is generally a procedure to require how much of each 

frequency component is included in the signal. Spectrum analysis is a well-known 

Fourier transform-based analysis method, which requires the absolute value of 

the Fourier transform called spectrum |𝐻(𝑓)|, and in some cases, power spectrum, 

which is the square of the absolute value |𝐻(𝑓)|2. These values are useful criteria 

to identify the included frequency components and compare the amplitude of each 

component.  

When the waveform ℎ(𝑡) is sampled as a discrete waveform ℎ′[𝑛] with a 

sampling time 𝑇, the Fourier transform of 𝐻(𝑓) can be approximated with 𝐻′[𝑘], 

which is the DFT of ℎ′[𝑛], assuming that ℎ(𝑡) is a periodic function of interval 

𝑁𝑇 and does not include any frequency component higher than 1/(2𝑇). 

 𝐻′[𝑘] = ∑ ℎ′[𝑛]

𝑁−1

𝑛=0

 exp (
−𝑗2𝜋𝑛𝑘

𝑁
) , 𝑘 = 0, 1, … , N − 1 (2-25) 

In the DFT, spectrum |𝐻′[𝑘]| and power spectrum |𝐻[𝑘]|2 are also applicable 

as in the Fourier transform.  

If 𝑁 = 4 and 𝑊 = exp(−𝑗2𝜋 𝑁⁄ ), Eq. 2-25 can be written as  

 

𝐻′[0] = ℎ′[0]𝑊0 + ℎ′[1]𝑊0 + ℎ′[2]𝑊0 + ℎ′[3]𝑊0 

𝐻′[1] = ℎ′[0]𝑊0 + ℎ′[1]𝑊1 + ℎ′[2]𝑊2 + ℎ′[3]𝑊3 

𝐻′[2] = ℎ′[0]𝑊0 + ℎ′[1]𝑊2 + ℎ′[2]𝑊4 + ℎ′[3]𝑊6 

𝐻′[3] = ℎ′[0]𝑊0 + ℎ′[1]𝑊3 + ℎ′[2]𝑊6 + ℎ′[3]𝑊9 

(2-26) 
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Furthermore, these equations can be summarized in matrix form as 

 

[
 
 
 
𝐻′[0]

𝐻′[1]

𝐻′[2]

𝐻′[3]]
 
 
 
= [

𝑊0 𝑊0

𝑊0 𝑊1
𝑊0 𝑊0

𝑊2 𝑊3

𝑊0 𝑊2

𝑊0 𝑊3
𝑊4 𝑊6

𝑊6 𝑊9

]

[
 
 
 
ℎ′[0]

ℎ′[1]

ℎ′[2]

ℎ′[3]]
 
 
 
 (2-27) 

or more compactly as 

 𝑯′[𝒌] = 𝑾𝒏𝒌𝒉′[𝒏] (2-28) 

where the boldface denotes a matrix. 

Because 𝑾𝒏𝒌  and possibly 𝒉′[𝒏]  are complex, 𝑁2  complex multiplications 

and 𝑁 ∙ (𝑁 − 1) complex additions are necessary to perform the required matrix 

computation. The FFT algorithm reduces the number of multiplications and 

additions required in the computation of Eq. 2-27. 

The following two equations are satisfied for the twiddle factor 𝑊. 

 𝑊𝑚 = 𝑊𝑚±𝑛𝑁 (2-29) 

 𝑊𝑚 = 𝑊𝑛 ∙ 𝑊𝑚−𝑛 (2-30) 

By applying Eq. 2-29 to Eq. 2-27, the following equation is derived: 

 

[
 
 
 
𝐻′[0]

𝐻′[1]

𝐻′[2]

𝐻′[3]]
 
 
 
= [

1 1
1 𝑊1

1 1
𝑊2 𝑊3

1 𝑊2

1 𝑊3
𝑊0 𝑊2

𝑊2 𝑊1

]

[
 
 
 
ℎ′[0]

ℎ′[1]

ℎ′[2]

ℎ′[3]]
 
 
 
 (2-31) 

The second step is to factor the square matrix in Eq. 2-31 as follows: 

 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ =

[
 
 
 
𝐻′[0]

𝐻′[2]

𝐻′[1]

𝐻′[3]]
 
 
 
= [

1 𝑊0

1 𝑊2
0   0
0   0

0   0
0   0

1 𝑊1

1 𝑊3

] [

1 0
0 1

𝑊0 0
0 𝑊0

1 0
0 1

𝑊2 0
0 𝑊2

]

[
 
 
 
ℎ′[0]

ℎ′[1]

ℎ′[2]

ℎ′[3]]
 
 
 
 (2-32) 

where 𝑊0 is replaced to 1 as necessary. Note that an interchange has been 

taken between rows 1 and 2 in the multiplication of the two square matrices of Eq. 

2-32, in which the row-interchanged vector is denoted by 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅. First, the number 

of computations is discussed. 

 𝒉′𝟏[𝒌] =

[
 
 
 
ℎ′1[0]

ℎ′1[1]

ℎ′1[2]

ℎ′1[3]]
 
 
 

= [

1 0
0 1

𝑊0 0
0 𝑊0

1 0
0 1

𝑊2 0
0 𝑊2

]

[
 
 
 
ℎ′[0]

ℎ′[1]

ℎ′[2]

ℎ′[3]]
 
 
 
 (2-33) 

Focusing on the element 𝑔1[0] , the computation includes one complex 

multiplication and one complex addition (𝑊0 = 1 is not reduced to unity in order 

to develop a generalized result). 

 ℎ′1[0] =  ℎ′[0] + 𝑊0ℎ′[2] (2-34) 

Element ℎ′1[1] is also determined by one complex multiplication and addition. 

Only one complex addition is required to compute ℎ′1[2]. This follows from the 

fact that 𝑊0 = −𝑊2; hence 
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 ℎ′1[2] =   ℎ′[0] + 𝑊2 ℎ′[2] =  ℎ′[0] − 𝑊0 ℎ′[2] (2-35) 

where the complex multiplication 𝑊0 ℎ′[2] has already been computed in the 

determination of ℎ′1[0] shown in Eq. 2-34. In addition, ℎ′1[3] is computed by 

only one complex addition and no multiplications. The intermediate vector 𝒉′𝟏[𝒌] 

is then determined by four complex additions and two complex multiplications. 

In the next step, the following matrix multiplication is discussed. 

 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ =

[
 
 
 
𝐻′[0]

𝐻′[2]

𝐻′[1]

𝐻′[3]]
 
 
 
=

[
 
 
 
ℎ′2[0]

ℎ′2[1]

ℎ′2[2]

ℎ′2[3]]
 
 
 

= [

1 𝑊0

1 𝑊2
0   0
0   0

0   0
0   0

1 𝑊1

1 𝑊3

]

[
 
 
 
ℎ′1[0]

ℎ′1[1]

ℎ′1[2]

ℎ′1[3]]
 
 
 

 (2-36) 

The term ℎ′2[0] is determined by one complex multiplication and addition. 

 ℎ′2[0] =  ℎ′1[0] + 𝑊0ℎ′1[1] (2-37) 

Element ℎ′2[1] is computed by one addition because 𝑊0 = −𝑊2. By similar 

reasoning, ℎ′2[2] is determined by one complex multiplication and addition, and 

ℎ′2[3] by only one addition. 

Computation of 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ by means of Eq. 2-32 requires a total of four complex 

multiplications and eight complex additions. Computation of 𝑯′[𝒌] by Eq. 2-27 

requires 16 complex multiplications and 12 complex additions. Note that the 

matrix factorization process introduces zeros into the factored matrices and 

reduces the required number of multiplications. 

For 𝑁 = 2𝑀 (i.e., 𝑀 = log2 𝑁), the FFT algorithm is a procedure for factoring 

an 𝑁 × 𝑁 matrix into 𝑀 matrices (each 𝑁 × 𝑁 matrix) such that each of the 

Fig. 2-9  Comparison of multiplications required by direct calculation and 

FFT algorithm. 
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factored matrices has the special property of minimizing the number of complex 

multiplications and additions. In this case, the FFT requires 𝑁𝑀/2 complex 

multiplications and 𝑁𝑀 complex additions, whereas the direct method (shown in 

Eq. 2-27) requires 𝑁2 complex multiplications and 𝑁(𝑁 − 1) complex additions. 

The number of multiplications for each 𝑁 is given as shown in Fig. 2-9.  

The matrix factoring procedure does introduce one discrepancy. Recall that the 

computation of Eq. 2-32 yields 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ instead of 𝑯′[𝒌]; that is, 

 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ =

[
 
 
 
𝐻′[0]

𝐻′[2]

𝐻′[1]

𝐻′[3]]
 
 
 
 instead of  𝑯′[𝒌] =

[
 
 
 
𝐻′[0]

𝐻′[1]

𝐻′[2]

𝐻′[3]]
 
 
 
 (2-38) 

This rearrangement is inherent in the matrix factoring process and is a minor 

problem because it is straightforward to generalize a technique for unscrambling 

𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ to obtain  𝑯′[𝒌]. 

Rewrite 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ by replacing argument 𝒌 with its binary equivalent 

 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ =

[
 
 
 
𝐻′[00]

𝐻′[10]

𝐻′[01]

𝐻′[11]]
 
 
 
  (2-39) 

Observe that if the binary arguments of Eq. 2-39 are flipped or bit reversed (i.e., 

01 becomes 10, 10 becomes 01, and so on), then 

 𝑯′[𝒌]̅̅ ̅̅ ̅̅ ̅ =

[
 
 
 
𝐻′[00]

𝐻′[10]

𝐻′[01]

𝐻′[11]]
 
 
 
  flips to  

[
 
 
 
𝐻′[00]

𝐻′[01]

𝐻′[10]

𝐻′[11]]
 
 
 
=  𝑯′[𝒌] (2-40) 

It is straightforward to develop a generalized result for unscrambling the FFT. 

For 𝑁  > 4, it is cumbersome to describe the matrix factorization process 

analogous to Eq. 2-32. For this reason, Eq. 2-32 can be translated in a graphical 

manner. For 𝑁 = 4, the signal flow graph can be described as shown in Fig. 2-10. 

Fig. 2-10  Signal flow graph of FFT when 𝑵 = 𝟒. 
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This can be extended for other 𝑁 = 2𝑀, e.g., for 𝑁 = 16 as shown in Fig. 2-11. 

In this section, the detail of matrix factoring procedure is omitted.  

 

Recent progress of NC devices contributes to the development of a 

wide-frequency-range control. In other words, the computation load must be 

strictly regulated when an additional algorithm is installed on the NC controller. 

The FFT is an effective method to reduce the computation of DFT; however, it is 

difficult to perform within a short servo term. 𝑁 must be a bit number so that 

the window width is not optioned freely. In order to overcome these challenges, a 

frequency analysis method integrating moving variance and moving Fourier 

transform algorithms is proposed in Section 2.3.3. 

Fig. 2-11  Signal flow graph of FFT when 𝑵 = 𝟏𝟔. 
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2.3.2 Continuous Wavelet Transform 

FFT can distinguish frequency components in a signal for a wide frequency 

range; on the other hand, is not suited to detect a time-dependent variation in 

the signal. The widow width should be shortened to ensure the detection 

response, whereas it must be extended to enhance the frequency resolution. 

To capture the time-dependent variation and identify the frequency 

simultaneously, a short-time Fourier transform (STFT) is a well-known 

method that performs the DFT intermittently at some interval. However, 

when the same damping coefficient is given is mechanical systems, a 

high-frequency variation attenuates earlier than a low-frequency one because 

the motion energy is converted to the heat earlier because of the larger 

viscous friction. Although the same window width is utilized for all 

frequencies in the STFT algorithm, the window width should be changed 

according to the frequency. In order to overcome this challenge, the CWT 

algorithm was invented. 

It is said that first practical usage of the CWT was for the seismology 

community. In 1984, Morlet introduced Gaussian-windowed sinusoids for the 

time-frequency analysis of an artificial earthquake wave to identify the 

prospect position (from the time variation) and the kinds of deposit (from the 

frequency) in oil-well drilling [61]. In order to adjust the window width 

properly according to the height of the frequency, the CWT employs scaling 

coefficients to make the window width inversely proportional to the analyzed 

frequency.  

The CWT uses only one mother wavelet 𝜓(𝑡) to analyze the signal. A 

Fig. 2-12  Examples of the mother wavelet. 
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square-shaped wavelet is initially employed as shown in Fig. 2-12 (a). After 

that, a window function is applied and windowed wavelets such as the Gabor 

wavelet (Fig. 2-12(b)) are introduced to enhance the time resolution. In this 

case, an equation of the mother wavelet can be described as  

 𝜓(𝑡) = 𝑤(𝑡)exp(−𝑗2𝜋𝑓𝛼𝑡) (2-41) 

where 𝑤(𝑡) is a window function. By extending or shrinking the mother 

wavelet 𝜓(𝑡), the continuous wavelet transform of a signal 𝑥(𝑡) at a scale 

coefficient 𝛼  and translational value 𝛽  is expressed by the following 

integral: 

 𝑋𝑓(𝛼, 𝛽) =
1

√𝛼
∫ 𝑥(𝑡)𝜓̅ (

𝑡 − 𝛽

𝛼
) 𝑑𝑡

∞

−∞

 (2-42) 

where 𝜓̅ is the conjugate complex of 𝜓. The width and the amplitude of the 

mother wavelet can be modified by changing the scale coefficient 𝛼 . 

Furthermore, the translational value 𝛽 enables the wavelet to slide along with 

the time axis. The analyzed frequency 𝑓 is generally included in the wavelet 

𝜓(𝑡) as a twiddle factor, exp(−𝑗2𝜋𝑓𝛼𝑡). Combining Eq. 2-41 and 2-42, the 

following equation is derived. 

 𝑋𝑓(𝛼, 𝛽) =
1

√𝛼
∫ 𝑥(𝑡)𝑤 (

𝑡 − 𝛽

𝛼
) exp(𝑗2𝜋𝑓(𝑡 − 𝛽))𝑑𝑡

∞

−∞

 (2-43) 

Equation 2-43 indicates that the computation of CWT is similar to that of 

the DFT because the integral includes the multiplication of the analyzed 

signal and the twiddle factor as in Eq. 2-24. Although the time resolution can 

be enhanced with the CWT, the frequency-dependent scale variation due to 

the window function does not allow reducing the complex computation of 

CWT like the FFT algorithm. As a result, CWT should be used not for wide 

frequency-range analysis, but for a special frequency component. In the case 

of this research, the CWT would be a suitable method for drill fracture 

detection because the fracture-induced fluctuation in cutting force would 

depend on the spindle rotation, i.e., a special frequency. 

 

The above two frequency (or time-frequency) analysis methods are 

conventionally applied not only for research purposes but also practical uses. 

On the other hand, two novel time-frequency analysis methods are dedicated 

to chatter and fracture detection in this research. By comparing their 

performance, the merits of the proposed methods will be theoretically and 

experimentally shown. 
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2.3.3 Moving Variance and Moving Fourier Transform 

In this section, “integration of moving variance and moving Fourier transform 

algorithms (MV+MFT)” is proposed for chatter detection. Its performance is 

evaluated by comparing the number of computations. 

 

The merit of the FFT is the reduction of the complex multiplications of DFT 

from 𝑁2  to 𝑁log2𝑁  as explained above. In order to enhance the frequency 

resolution, the width of window 𝑁  has to be extended and the number of 

computations grows. From this viewpoint, FFT has an efficient approach to 

realize the realtime characteristic and high-frequency resolution at the same 

time. On the other hand, the window width should be set to bit numbers, i.e., the 

frequency resolution and the time response cannot be fine-tuned arbitrarily. (The 

number of computations can be reduced most efficiently when the window width 

is a bit number, although the window width does not strictly have to be set to a bit 

number.) 

These characteristics of FFT are well-known and are the reason why the FFT is 

widely applied as a frequency analysis method. In some cases, however, FFT is 

not applicable for realtime analysis because of a short update interval. Recent 

measurement devices have high performance to enhance the sampling period less 

than 100 s even for a current measurement that takes a comparatively long time. 

When the window width is set to a large size, the complex matrix computation of 

FFT cannot be processed within a short time (such as 100 s) even with a 

high-spec computer. Practically, the analysis should be performed at an interval 

of once in tens or hundreds samples, but it simply skips some analyzable 

information and deteriorates the analysis accuracy of the time-dependent 

variation. Parallel calculation with computer clusters or graphic processing units 

may enable processing of large computations in realtime; however, adapting these 

devices or systems causes the same troubles as mounting additional sensors. 

 

To develop a sophisticated time-frequency analysis method for realtime chatter 

vibration, the following respects should be satisfied: 

 Ability to evaluate the amplitude of the vibration 

 Ability to distinguish whether the vibration frequency is the same as a 

harmonic of the spindle rotational frequency. 

The chatter should be separately detected because the mechanism and the 

countermeasure are complicated as explained in Section 1.4.4. In milling, the 
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vibration is caused mainly by the regenerative effect or the resonance. The forced 

vibration due to an interrupted cutting process has a harmonic frequency of the 

spindle rotational frequency, and chatter due to the regenerative effect fluctuates 

at the other frequency. Therefore, in order to capture the chatter, it is necessary 

only to distinguish whether it is forced vibration or not, i.e., the exact chatter 

frequency need not be identified. To satisfy this purpose with a small computation 

and high-frequency resolution, MV+MFT is developed. 

 

To evaluate the amplitude of a fluctuation in a signal, the moving average 

algorithm is explained first. 

Assuming that only the amplitude is necessary for the evaluation and the 

frequency does not have to be identified, variance of the signal would be a 

suitable criterion. This is because the variance is theoretically equal to the 

average of power spectrum of all frequencies excepting its static component. The 

proof of this principle is given as follows. 

 

The power spectrum of DFT 𝑃𝑆(𝑘) for a signal ℎ′[𝑛] is given as 

 𝑃𝑆(𝑘) = |𝐻′[𝑘]|2 = 𝑎𝑘
2 + 𝑏𝑘

2
 

(2-44) 
 where 𝐻′[𝑘] = ∑ ℎ′[𝑛]exp (

−𝑗2𝜋𝑛𝑘

𝑁
)

𝑁−1

𝑛=0

= 𝑎𝑘 − 𝑗𝑏𝑘 

On the other hand, inverse DFT is described as 

 ℎ′[𝑖] =
1

𝑁
∑ 𝐻′[𝑛]exp (

𝑗2𝜋𝑛𝑖

𝑁
)

𝑁−1

𝑛=0

=
1

𝑁
∑(𝑎𝑖 − 𝑗𝑏𝑖)exp (

𝑗2𝜋𝑛𝑖

𝑁
)

𝑁−1

𝑛=0

 (2-45) 

Assuming that ℎ′[𝑛] incudes only actual values, the Fourier series expansion 

of ℎ′[𝑛] is given as 

 ℎ′[𝑖] = 𝑎0 + ∑ {
2𝑎𝑖

𝑁
cos (

2𝜋𝑛𝑖

𝑁
) +

2𝑏𝑖

𝑁
sin (

2𝜋𝑛𝑖

𝑁
)}

𝑁−1

𝑛=1

 (2-46) 

Each Fourier series can be required as the following equations: 

 𝑎𝑖 = ∑ ℎ′[𝑛] cos (
2𝜋𝑛𝑘

𝑁
)

𝑁−1

𝑛=0

, 𝑏𝑖 = ∑ ℎ′[𝑛] sin (
2𝜋𝑛𝑘

𝑁
)

𝑁−1

𝑛=0

 (2-47) 

Here, the definition of variance 𝑉[ℎ′] of signal ℎ′[𝑛] is described as Eq. 2-48, 

where 𝐸[ℎ′] is the expectation value of the signal ℎ′[𝑛]. (In case of Fourier series, 

the expectation value is the static component, i.e., 𝐸[ℎ′] = 𝑎0.)  

 𝑉[ℎ′] =
1

𝑁
∑(ℎ′[𝑘] − 𝐸[ℎ′])2

𝑁−1

𝑘=0

 (2-48) 

By substituting Eqs. 2-46 and 2-47, Eq. 2-48 can be transformed as follows: 
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 𝑉[ℎ′] =
2

𝑁
∑ [∑ {

𝑎𝑖

𝑁
cos (

2𝜋𝑘𝑖

𝑁
)}

𝑁−1

𝑖=1

+ ∑ {
𝑏𝑖

𝑁
sin (

2𝜋𝑘𝑖

𝑁
)}

𝑁−1

𝑖=1

]

2𝑁−1

𝑘=0

 (2-49) 

Because of the orthogonality of the trigonometric functions, the following 

equations are satisfied, where 𝑚 and 𝑛 are integer numbers, and 𝑁 is a integer 

number larger than 1. 

 

∑ {cos (
2𝜋𝑚𝑘

𝑁
) ∙ cos (

2𝜋𝑛𝑘

𝑁
)}

𝑁−1

𝑘=0

= {

𝑁

2
 (𝑚 = 𝑛)

0 (𝑚 ≠ 𝑛)
 

∑ {cos (
2𝜋𝑚𝑘

𝑁
) ∙ sin (

2𝜋𝑛𝑘

𝑁
)}

𝑁−1

𝑘=0

= 0 

∑ {sin (
2𝜋𝑚𝑘

𝑁
) ∙ sin (

2𝜋𝑛𝑘

𝑁
)}

𝑁−1

𝑘=0

= {

𝑁

2
 (𝑚 = 𝑛)

0 (𝑚 ≠ 𝑛)
 

(2-50) 

By applying these equations, Eq. 2-49 can be transformed as follows: 

 𝑉[𝑔] =
2

𝑁
∑ [∑ {(

𝑎𝑖

𝑁
)

2

∙
𝑁

2
+ (

𝑏𝑖

𝑁
)

2

∙
𝑁

2
}

𝑁−1

𝑖=1

]

𝑁−1

𝑘=0

=
1

𝑁
∑(𝑎𝑖

2 + 𝑏𝑖
2)

𝑁−1

𝑖=1

=
1

𝑁
∑ 𝑃𝑆(𝑖)

𝑁−1

𝑖=1

 (2-51) 

As shown in Eq. 2-51, the variance is certainly equal to the average value of the 

DFT power spectrum excepting the static component. Furthermore, skipping the 

division with 𝑁 in the variance calculation, the sum of the power spectrum 

excepting the static component is acquirable. 

Although the variance is usable to evaluate the amplitude of the signal as 

above, the number of computations is not small, as summarized in Table 2-1. 

 

Table 2-1  Number of computations to obtain variance. 

 Multiplication Addition 

① Average calculation 1 𝑁 − 1 

② Difference between each sampling and 

the average 
𝑁 − 

③ Square values of ② − 𝑁 

④ Average of ③ 1 𝑁 − 1 

Total number of computations 𝑁 + 2 3𝑁 − 2 

 

The number of computations is certainly smaller than that of FFT. This would 

be an adequate result because the variance calculation cannot identify the 

frequency information as in FFT. The number of computations for variance 

proportionally increases according to 𝑁, whereas the computation increase in 

FFT is proportional to 𝑁log2𝑁. Computation load of an algorithm is generally 

evaluated by using the Landau symbol 𝑂(𝑁) for the variance calculation, and 
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𝑂(𝑁log𝑁) for FFT.  

 

When the window width is set to 𝑁, the number of computations naturally 

becomes larger than 𝑁. However, the number of computations can be reduced to 

less than 𝑁  under some special conditions. The moving average algorithm 

should be a good example that requires the number of computations to be less 

than 𝑁. 

The moving average algorithm is a signal processing method to reduce signal 

noise by continuously calculating the average of samples in the window as shown 

in Fig. 2-13. If the calculation is performed faithfully following the definition of 

the average, 𝑁 − 1 additions and one division (multiplication) are required, then, 

the algorithm is regarded as 𝑂(𝑁). However, the number of computations can be 

reduced more by leaving the past samples with a memory structure. 

Fig. 2-14  Concept of a ring buffer. 

Fig. 2-13  Moving average algorithm. 
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A ring buffer is a data structure that uses a single fixed-size buffer as if it were 

connected end-to-end. A new data item always overwrites the oldest data in this 

data structure as shown in Fig. 2-14, and this repetition looks as if a ring-shaped 

structure is rotating and storing new data in order. It is generally used to 

compensate time lag caused by the difference of processing time between devices 

such as from a computer to a printer. In order to apply the ring buffer to the 

moving average algorithm, sampling data divided by 𝑁 are stored to the ring 

buffer. Where the oldest data is 𝑥′[𝑛]/𝑁, the newest data is 𝑥′[𝑛 + 𝑁 − 1]/𝑁 in 

the ring buffer, and the average from 𝑥′[𝑛] to 𝑥′[𝑛 + 𝑁 − 1] is 𝐴𝑛, the average in 

the next step 𝐴𝑛+1 (i.e., the average value of from  𝑥′[𝑛 + 1] to 𝑥′[𝑛 + 𝑁]) is 

available as follows: 

 𝐴𝑛+1 = 𝐴𝑛 − (𝑥′[𝑛] − 𝑥′[𝑛 + 𝑁])/𝑁 (2-52) 

First, the oldest data in the ring buffer, 𝑥′[𝑛]/𝑁, is subtracted from 𝐴𝑛. Then, 

the new data 𝑥′[𝑛 + 𝑁] is divided by 𝑁 and the obtained value 𝑥′[𝑛 + 𝑁]/𝑁 is 

added to 𝐴𝑛 and stored into the ring buffer. Through this procedure, the average 

value in the next step 𝐴𝑛+1 can be obtained. In this case, the special conditions 

can be said that the 𝑁 past data are left and the average in the previous step is 

already known. As a result, the average value of each interval can be required 

only with one multiplication (division) and two additions. In other words, the 

number of computations does not change even if the larger 𝑁 is selected, and the 

algorithm is evaluated as 𝑂(1). 

 

This research has a discussion whether an 𝑂(1) algorithm can be constructed 

like the moving average to reduce the number of computations, and proposes a 

“moving variance algorithm.” 

The variance for the population including 𝑥′[𝑛], 𝑥′[𝑛 + 1], … , 𝑥′[𝑛 + 𝑁 − 1]  is 

defined as 

 𝑉𝑛[𝑥′] =
1

𝑁
∑ (𝑥𝑖 − 𝐸𝑛[𝑥′])2

𝑛+𝑁−1

𝑖=𝑛

 (2-53) 

where 𝐸𝑛[𝑥′] is the average value of the population. Considering the variance at the 

next step 𝑉𝑛+1[𝑥′], the average of the next step 𝐸𝑛+1[𝑥′] differs from the former step 

𝐸𝑛[𝑥′], although only the oldest and the newest data can be treated in the ring buffer. 

Thus, the values of (𝑥′[𝑖] − 𝐸𝑛[𝑥′]) cannot be stored in the buffer because they have to 

be rewritten when 𝐸𝑛[𝑥′] changes. 

To overcome this problem, Eq. 2-53 is expanded as 



Chapter 2 Theories for Process Monitoring and System Identification 

41 

 

 

𝑉𝑛[𝑥′] =
1

𝑁
∑ (𝑥[𝑖] − 𝐸𝑛[𝑥′])2

𝑛+𝑁−1

𝑖=𝑛

 

=
1

𝑁
∑ 𝑥𝑖

2

𝑛+𝑁−1

𝑖=𝑛

− 2 ∙ 𝐸𝑛[𝑥′] ∙
1

𝑁
∑ 𝑥𝑖

𝑛+𝑁−1

𝑖=𝑛

+
1

𝑁
∙ 𝑁 ∙ (𝐸𝑛[𝑥′])2 

=
1

𝑁
∑ 𝑥𝑖

2

𝑛+𝑁−1

𝑖=𝑛

− (𝐸𝑛[𝑥′])2 = 𝐸𝑛[(𝑥′)2] − (𝐸𝑛[𝑥′])2 

(2-54) 

This development of a formula indicates that the variance can be derived by 

calculating the difference between the average of square values 𝐸𝑛[(𝑥′)2] and the 

square values of the average (𝐸𝑛[𝑥′])2 On the basis of the fact that the moving 

average requires one multiplication and two additions at each interval, the 

average of square values requires two multiplications and two additions. In this 

case, 𝑥′[𝑖]2/𝑁 should be stored in the ring buffer. At the same time, another ring 

buffer is prepared to store 𝑥′[𝑖]/𝑁  to calculate (𝐸𝑛[𝑥′])2 , which requires two 

multiplications and two additions. Finally, the variance can be derived by calculating 

the difference between 𝐸𝑛[(𝑥′)2] and (𝐸𝑛[𝑥′])2. To perform this algorithm, the values 

of 𝐸𝑛[(𝑥′)2] and (𝐸𝑛[𝑥′])2 must already be known, and the values of 𝑥′[𝑖]/𝑁 and 

𝑥′[𝑖]2/𝑁 must be stored in each ring buffer. The number of computations for this 

algorithm is summarized in Table 2-2. 

 

Table 2-2  Number of computations for moving variance. 

Procedure Multiplication Addition 

① Moving average for 𝑥′[𝑖]2 2 2 

② Moving average for 𝑥′[𝑖] 1 2 

③ Square values of ② 1 − 

④ Difference between ① and ③ − 1 

Total number of computations 4 5 

 

As a result, the moving variance algorithm can be performed with only five additions 

and four multiplications in each interval. The number of computations is independent 

of 𝑁, and the algorithm can be regarded as 𝑂(1). 

 

Although the amplitude of the fluctuation in the estimated disturbance torque could 

be evaluated with the moving variance algorithm, the extraction method for a special 

frequency component is also required to distinguish chatter from the captured 

vibration.  

Unexpected large vibration in milling is mainly chatter vibration or forced vibration. 
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Forced vibration is caused by resonance; thus, its frequency can be predicted as a 

harmonic of the spindle rotation frequency, to which the chatter frequency does not fit. 

Therefore, by eliminating the power spectrum of a special frequency component from 

the total power spectrum derived by the moving variance, the power spectrum of 

chatter can be monitored in realtime. 

As explained, the direct calculation of DFT requires 𝑁2 complex multiplications 

and 𝑁 ∙ (𝑁 − 1) complex additions for the frequency coefficient 𝑘 from 0 to N − 1; 

thus, the algorithm is 𝑂(𝑁2). However, not all frequency components have to be 

analyzed;, only some harmonics of the spindle rotation frequency should be monitored 

for chatter detection. For the direct calculation of the single frequency DFT, 𝑁 

complex multiplications and (𝑁 − 1)  complex additions are required, i.e., the 

algorithm is 𝑂(𝑁). In order to reduce the amount of the computation for realtime 

usage, an 𝑂(1)  algorithm called “sliding discrete Fourier transform (SDFT)” is 

proposed in some studies [62]. 

The SDFT algorithm performs an 𝑁-sample DFT on time samples within a sliding 

window as shown in Fig. 2-15. The definitions of the DFT for the window shown in (a) 

and the shifted window shown in (b) are described as 

Fig. 2-15  SDFT of N samples: (a) Before sifting, (b) after sifting. 
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𝐻′𝑘[𝑛] = ∑ ℎ′[𝑛 + 𝑚]

𝑁−1

𝑚=0

 exp (
−𝑗2𝜋𝑚𝑘

𝑁
) 

𝐻′𝑘[𝑛 + 1] = ∑ ℎ′[𝑛 + 1 + 𝑚]

𝑁−1

𝑚=0

 exp (
−𝑗2𝜋𝑚𝑘

𝑁
)  

(2-55) 

  where 𝑘 is an analyzed frequency. 

These equations can be combined as 

 𝐻′𝑘[𝑛 + 1] = 𝐻′𝑘[𝑛] exp (
𝑗2𝜋𝑘

𝑁
) + ℎ′[𝑛 + 𝑁] − ℎ′[𝑛] (2-56) 

As a result, the single-frequency DFT can be continuously performed under the 

conditions in which the previous DFT value 𝐻′𝑘[𝑛] and the past data from ℎ′[𝑛] to 

ℎ′[𝑚 + 𝑁 − 1] are already known. In this case, only one complex multiplication 

and two complex additions are required, and the algorithm can be regarded as 

𝑂(1). 

By the way, the number of computations for one complex multiplication can be 

translated to four actual multiplications and two actual additions. The number of 

computations for one complex addition can be translated to two actual additions in the 

same manner. Thus, the number of computations for SDFT is four actual 

multiplications and six actual additions. Additionally, two actual multiplications and 

one actual addition are required to derive the power spectrum |𝐻′𝑘|
2. In total, six 

actual multiplications and seven actual additions are required for the power spectrum 

calculation. This is already small enough to use in realtime; however, the number of 

computations can be reduce more by assuming that the analyzed signal ℎ′ is an 

actual wave. 

This research proposes the following algorithm, called “moving Fourier 

transform” (MFT), to determine the DFT power spectrum for the actual wave ℎ′ 

in the sliding window. 

 𝑀ℎ′,𝑘[𝑛] = ∑ ℎ′[𝑛 + 𝑚] exp (
−𝑗2𝜋𝑘(𝑛 + 𝑚)

𝑁
)

𝑁−1

𝑚=0

= 𝑅ℎ′,𝑘[𝑛] + 𝑗𝐼ℎ′ ,𝑘[𝑛] (2-57) 

Corresponding to the definition of DFT shown in Eq. 2-25, the MFT value 𝑀ℎ′ ,𝑘 

has a phase lag to the DFT value 𝐻′𝑘 as follows: 

 𝑀ℎ′ ,𝑘[𝑛] = ∑ ℎ′[𝑛 + 𝑚] exp (
−𝑗2𝜋𝑘𝑚

𝑁
) exp (

−𝑗2𝜋𝑘𝑛

𝑁
)

𝑁−1

𝑚=0

= 𝐻′𝑘[𝑛] exp (
−𝑗2𝜋𝑘𝑛

𝑁
) (2-58) 

The real part 𝑅ℎ′,𝑘 and the imaginary part 𝐼ℎ′ ,𝑘 can be calculated as the moving 

average of ℎ′[𝑛] cos(−2𝜋𝑘𝑛/𝑁) and ℎ′[𝑛] sin(−2𝜋𝑘𝑛/𝑁) as 
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𝑅ℎ′,𝑘[𝑛] = 𝑅ℎ′,𝑘[𝑛 − 1] − ℎ′[𝑛] cos
2𝜋𝑘𝑛

𝑁
+ ℎ′[𝑛 + 𝑁] cos

2𝜋𝑘(𝑛 + 𝑁)

𝑁
 

𝐼ℎ′,𝑘[𝑛] = 𝐼ℎ′,𝑘[𝑛 − 1] − ℎ′[𝑛] sin
2𝜋𝑘𝑛

𝑁
− ℎ′[𝑛 + 𝑁] sin

2𝜋𝑘(𝑛 + 𝑁)

𝑁
 

(2-59) 

Furthermore, the power spectrum of MFT is equal to that of DFT: 

 |𝑀ℎ′ ,𝑘[𝑛]|
2

= |𝐻′𝑘[𝑛] exp (
−𝑗2𝜋𝑘𝑛

𝑁
)|

2

= |𝐻′𝑘[𝑛]|2 (2-60) 

By employing the ring buffers to calculate the moving average of 

ℎ′[𝑛] cos(−2𝜋𝑘𝑛/𝑁)  and ℎ′[𝑛] sin(−2𝜋𝑘𝑛/𝑁) , the MFT value 𝑀ℎ′ ,𝑘[𝑛]  can be 

obtained with two actual multiplications and four actual additions. Summing with the 

power spectrum calculation, four actual multiplications and five additions are required 

for the MFT algorithm. Unlike SDFT, the MFT ignores the phase characteristic of the 

analyzed signal; however, it can determine the power spectrum with fewer 

computations. 

 

By integrating the moving variance (MV) and MFT algorithms, the chatter can be 

separately monitored as shown in the block diagram in Fig. 2-16. The total power 

spectrum is calculated with the MV. In order to distinguish the forced vibration 

components, the MFT is adapted to all harmonics of the spindle rotation frequency. 

Finally, the chatter power spectrum is determined from the difference of the total 

power spectrum and the forced power spectrum.  

Table 2-3 shows the comparison of the number of computations between FFT 

and MV+MFT for 𝑁 = 512, where 10 MFTs are simultaneously performed. Note 

that the number of computations for FFT becomes larger with larger 𝑁. 

 

 

Fig. 2-16  Proposed chatter detection algorithm flow. 
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Table 2-3  Number of computations for FFT and MV+MFT (𝑵 = 𝟓𝟏𝟐). 

 FFT MV+MFT 

Calculation order 𝑂(𝑁log𝑁) 𝑂(1) 

Actual addition 10238 64 

Actual multiplication 19456 55 

Frequency resolution 

(𝐹𝑠: sampling frequency ) 
𝐹𝑠/𝑁 𝐹𝑠/𝑁 

 

Although some conditions must be satisfied to perform the MV+MFT, the 

number of computations for MV+MFT is significantly smaller than that for FFT. 

Furthermore, both methods have the same analysis resolution for frequency 

difference because their origins are DFT in the same manner. As other merits of 

MV+MFT, the widow width 𝑁 can be set arbitrarily; it does not have to be set to 

a bit number and the number of computations. The tradeoff relation between the 

computation load and the frequency resolution is also solved. 

It can be said that the MV+MFT is a hyper-low-computation load algorithm 

that can be realized by regulating the purpose to distinguishing the chatter from 

the other vibrations, i.e., the chatter frequency itself is not focused on. In this 

research, the performance of the MV+MFT is evaluated by measuring the 

computation time and comparing it with that of FFT, and the practicability is 

evaluated by applying it to the estimated disturbance torque of the spindle. 

2.3.4 Rotational Digital Filter 

To detect a drill fracture more accurately, a novel digital filter called a 

“rotational digital filter” (RDF) is proposed in this section. The rotational digital 

filter has a unique function passing only a signal moving in the clockwise 

direction at a certain rotational speed. A drill generally rotates in the clockwise 

direction on an XY plane from the spindle side. Thus, the fracture-induced 

fluctuation in cutting force would be captured more accurately. 

 

When a signal moves in a clockwise circular orbit in the XY plane, the phase 

lag of the x-component against that of the y-component becomes 𝜋 2⁄  radians as 

follows: 

 [
𝑥(𝑡)
𝑦(𝑡)

] = [
𝐹 sin(𝜔0𝑡 + 𝜃𝑖𝑛𝑖𝑡)

𝐹 sin (𝜔0𝑡 + 𝜃𝑖𝑛𝑖𝑡 +
𝜋

2
)
] (2-61) 
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where 𝑥(𝑡) and 𝑦(𝑡) are the x- and y-components of the signal, 𝜔0 [rad/s] is the 

rotational speed, 𝐹 is the radius of the circular orbit, and 𝜃𝑖𝑛𝑖𝑡 [rad/s] is the 

initial phase. In this study, because the fracture-induced cutting force rotates 

along with spindle rotation, 𝑥(𝑡) and 𝑦(𝑡) respectively correspond to the x- and 

y-components of the cutting force, 𝜔0 [rad/s] is the rotational speed of the spindle, 

and 𝐹 [N] is the magnitude of the cutting force projected on the XY plane. It is 

necessary to monitor 𝐹 to detect a tool fracture because its magnitude depends 

on the fracture. 

By adapting a rotating coordinate at 𝜔0  rad/s in the clockwise direction 

alternative to ordinary x-y coordinates, the radius of the circular orbit 𝐹 in the 

XY plane can be monitored easily (Fig. 2-17). The x- and y-components of the 

signal are transformed to the rotating coordinates as follows: 

 [
𝑥𝜔0

(𝑡)

𝑦𝜔0
(𝑡)

] = [
cos𝜔0𝑡 −sin𝜔0𝑡
sin 𝜔0𝑡 cos𝜔0𝑡

] [
𝑥(𝑡)
𝑦(𝑡)

] (2-62) 

where 𝑥𝜔0
(𝑡) is the radius component and 𝑦𝜔0

(𝑡) is the tangential component. 

Upon substituting Eq. 2-61 into Eq. 2-62, 𝑥𝜔0
(𝑡) and 𝑦𝜔0

(𝑡) are given by 

 [
𝑥𝜔0

(𝑡)

𝑦𝜔0
(𝑡)

] = [
cos𝜔0𝑡 −sin𝜔0𝑡
sin 𝜔0𝑡 cos𝜔0𝑡

] [
𝐹 sin(𝜔0𝑡 + 𝜃𝑖𝑛𝑖𝑡)

𝐹 sin (𝜔0𝑡 + 𝜃𝑖𝑛𝑖𝑡 +
𝜋

2
)
] = [

𝐹 sin 𝜃𝑖𝑛𝑖𝑡

𝐹 cos 𝜃𝑖𝑛𝑖𝑡
] (2-63) 

Thus, the radius of the circular orbit 𝐹  can be obtained by calculating the 

geometric mean of the radius and tangential components as 

 𝐹 = √𝑥𝜔0
2 + 𝑦𝜔0

2 (2-64) 

However, this coordinate transformation does not serve to reduce noise in the 

input signal. A transform method such as a Fourier transform is required to 

extract the rotation signal like a filter. Therefore, this research proposes a theory 

Fig. 2-17  (a) Cutting force rotating at 𝝎𝟎 in the clockwise direction in XY plane;    

(b) cutting force on the rotation coordinate in the clockwise direction. 
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to transform a time-domain signal in the XY plane to a frequency domain signal 

in a rotating coordinate system. The radius and tangential components in the 

frequency domain are defined as 

 

𝐒xy_𝜔0
= lim

𝑇𝑎→∞

1

2𝑇𝑎

∫ 𝐑𝐦(𝜔0, 𝑡)𝐒xy(𝑡) 𝑑𝑡
𝑇𝑎

−𝑇𝑎

 

where 𝐒xy_𝜔0
= [

𝑋𝜔0

𝑌𝜔0

] , 𝐑𝐦(𝜔0, 𝑡) = [
cos𝜔0𝑡 −sin𝜔0𝑡
sin 𝜔0𝑡 cos𝜔0𝑡

] , 𝐒xy(𝑡) = [
𝑥(𝑡)
𝑦(𝑡)

] 

(2-65) 

where 𝑋𝜔0
 and 𝑌𝜔0

 are respectively the radius and tangential components in the 

frequency domain, and 𝐑𝐦(𝜔0, 𝑡) is the rotational matrix at 𝜔0𝑡. If 𝑥(𝑡) and 

𝑦(𝑡) do not include a frequency component of 𝜔0, 𝐒xy_𝜔0
 becomes a zero matrix 

because of the orthogonality of trigonometric functions. In other words, only the 

frequency component of 𝜔0 in the input signal should be considered. The x- and 

y-components of 𝜔𝑖𝑛 rad/s in the input signal can be represented as 

 [
𝑥(𝑡)
𝑦(𝑡)

] = [
𝐹 sin(𝜔𝑖𝑛𝑡 + 𝜃𝑖𝑛𝑖𝑡)

𝐹 sin(𝜔𝑖𝑛𝑡 + 𝜃𝑖𝑛𝑖𝑡 + 𝜃𝑑𝑖𝑓)
] (2-66) 

where 𝜃𝑑𝑖𝑓 [rad] is the phase difference between the x- and y-components. Then, 

𝐒xy_𝜔0
 must satisfy 

 𝐒xy_𝜔0
= {

                 𝟎                                             (𝜔0 ≠ 𝜔𝑖𝑛)

𝐹

2
[
sin 𝜃𝑖𝑛𝑖𝑡 − cos(𝜃𝑖𝑛𝑖𝑡 + 𝜃𝑑𝑖𝑓)

cos 𝜃𝑖𝑛𝑖𝑡 + sin(𝜃𝑖𝑛𝑖𝑡 + 𝜃𝑑𝑖𝑓)
]     (𝜔0 = 𝜔𝑖𝑛)

 (2-67) 

The geometric means of 𝑋𝜔0
 and 𝑌𝜔0

 are represented as follows: 

 |𝐒xy_𝜔0
| = √𝑋𝜔0

2 + 𝑌𝜔0

2 = 𝐹√
1 + sin 𝜃𝑑𝑖𝑓

2
 (2-68) 

If 𝜃𝑑𝑖𝑓 = 𝜋 2⁄  rad, i.e., the input signal rotates in the clockwise direction, the 

geometric mean is equal to 𝐹. On the other hand, if 𝜃𝑑𝑖𝑓 = −𝜋 2⁄  rad, i.e., the 

input signal rotates in the counterclockwise direction, the geometric mean is zero 

even though the frequency of the input signal is 𝜔0. Thus, this characteristic may 

be used to extract a signal rotating in the clockwise direction. 

Furthermore, based on this characteristic, a digital filter that passes only a 

signal rotating in the clockwise direction at a certain frequency, like a finite 

impulse response filter, could be created. The above theory transforms a time 

domain signal in the x-y coordinate system to a frequency domain signal in a 

rotating coordinate system. Therefore, inverse transformation from the frequency 

domain signal to the time domain signal is also possible. From this viewpoint, to 

obtain only a signal rotating in the clockwise direction at a certain frequency 𝜔0, 

the inverse transformation can be represented as 
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 𝐒xy_out(𝑡) = 𝐑𝐦
−𝟏(𝜔0, 𝑡)𝐒xy_𝜔0

  (2-69) 

where 𝐒xy_out(𝑡) is the signal rotating at frequency 𝜔0. However, to obtain 𝐒xy_𝜔0
, 

both limits of integration need to be infinity, as shown in Eq. 2-65. Because the 

response time must be regulated to create a filter, a window function 𝑤𝑛  is 

generally applied, by which a filter that passes only a signal rotating in the 

clockwise direction at frequency 𝜔0 can be represented as 

 

𝐒xy_out(𝑡) = 𝐑𝐦
−𝟏(𝜔0, 𝑡)

1

2𝑇𝑎

∫ 𝑤𝑛(𝜏 − 𝑡)𝐑𝐦(𝜔0, 𝜏)𝐒xy(𝜏) 𝑑𝜏
𝑇𝑎+𝑡

−𝑇𝑎+𝑡

 

                    =
1

2𝑇𝑎

∫ 𝑤𝑛(𝜏 − 𝑡)𝐑𝐦(𝜔0, 𝜏 − 𝑡)𝐒xy(𝜏) 𝑑𝜏
𝑇𝑎+𝑡

−𝑇𝑎+𝑡

 

where 𝑤𝑛(𝑡) = 0 if |𝑡| ≥ 𝑇𝑎. 

(2-70) 

In the discrete domain, Eq. 2-70 is represented as 

 
𝐒xy_out′[0] =

1

𝑁
∑ 𝑤𝑛′[𝑛] [

cos
𝜔0𝑛

𝐹𝑠

sin
𝜔0𝑛

𝐹𝑠

− sin
𝜔0𝑛

𝐹𝑠

cos
𝜔0𝑛

𝐹𝑠

] 𝐒xy′[𝑛]

𝑁−1

𝑛=0

 

where 𝑤𝑛′[𝑛] = 0 if 𝑛 < 0   or   𝑛 ≥ 𝑁, 

(2-71) 

and 𝐒xy_out′[0] is the present output of the digital filter; 𝐒xy′[𝑛], the past input of 

𝑛 sampling times before; 𝑁 , the order of the digital filter; and 𝐹𝑠  [Hz], the 

sampling frequency. In other words, this digital filter outputs the average values 

of the past samplings with proper compensations applied by rotational matrices. 

This digital filter passes only signals rotating in the clockwise direction at a 

special frequency. We call this signal processing theory an RDF, and we use it to 

monitor fracture-induced fluctuations in a disturbance force rotating in the 

clockwise direction on the XY plane. Before applying the RDF to real data, 

several time-domain simulation tests were carried out to confirm the 

characteristics of RDF. 

2.4 Identification Method for Stable Machining 
Condition 

Tool wear is an unavoidable problem, and a worn tool must be changed at the 

proper time. In addition, tool fracture should be detected because it can be 

regarded as a signal of overload. If tool wear is promoted excessively or tool 

facture happens on the tool edge, the cutting condition should be justified to 

low-load. On the other hand, chatter stability is not simple enough to be 

suppressed with a low-load cutting condition because it generates an interaction 
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of the dynamics of the tool and the waviness of workpiece surface. To identify a 

stable condition against chatter, its mechanism should be discussed. 

2.4.1 Milling Model for Regenerative Chatter Mechanism 

 To predict chatter stability in milling, a cutting model like Fig. 2-18 is usually 

used to discuss the regenerative effect. Referring to the chatter stability 

prediction method proposed by Altintas [36], the regenerative effect theoretically 

can be explained as follows. The displacements of the feed and the normal 

directions are represented with 𝑥𝑡 and 𝑦𝑡 respectively. When the tool-edge angle 

is 𝜙𝑖, the displacement of the tool in radial direction 𝑣𝑖 is represented as 

 𝑣𝑖 = −𝑥𝑡sin𝜙𝑖 − 𝑦𝑡cos𝜙𝑖 (2-72) 

 In the milling process, the uncut chip thickness can be represented as a 

function for 𝜙𝑖 as follows: 

 ℎ𝑐(𝜙𝑖) = [𝑠𝑡sin𝜙𝑖 + (𝑣𝑖0 − 𝑣𝑖)]𝑏(𝜙𝑖) (2-73) 

where 𝑠𝑡 is the feed rate per tooth and 𝑣𝑖0 is the dynamic displacement of the 

previous tooth period. 𝑏(𝜙𝑖)  is a function to determine whether the tooth 

immerses the work, expressed as 

 𝑏(𝜙𝑖) = {
1     where     𝜙𝑠𝑡 ≤ 𝜙𝑖 ≤ 𝜙𝑒𝑥

       0     where 𝜙𝑖 ≤ 𝜙𝑠𝑡  or 𝜙𝑒𝑥 ≤ 𝜙𝑖
 (2-74) 

where, 𝜙𝑠𝑡 , 𝜙𝑒𝑥  are the start and exit immersion angles. Eq. 2-73 can be 

Fig. 2-18  Dynamic milling model with two degrees of freedom. 
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transformed to the x-y coordinate expression as 

 ℎ𝑐(𝜙𝑖) = [𝑥𝑡sin𝜙𝑖 + 𝑦𝑡cos𝜙𝑖]𝑏(𝜙𝑖) (2-75) 

In Eq. 2-75, the static component of the chip thickness 𝑠𝑡sin𝜙𝑗 is eliminated   

because it does not contribute to the dynamic chip load regeneration mechanism. 

The cutting force is defined as a product of the cutting coefficient and the 

cutting area; thus, the cutting force in the tangential and radial directions can be 

represented by introducing the axial depth of cut 𝑎𝑐𝑢𝑡: 

 𝐹𝑡𝑖 = 𝐾𝑐𝑎𝑐𝑢𝑡ℎ𝑐(𝜙𝑖), 𝐹𝑟𝑖 = 𝐾𝑟𝐹𝑡𝑖 (2-76) 

where 𝐾𝑐 , 𝐾𝑟 are cutting coefficients. These cutting forces can be translated into x 

and y components as 

 𝐹𝑥𝑖 = −𝐹𝑡𝑖 cos 𝜙𝑖 − 𝐹𝑟𝑖 sin 𝜙𝑖 , 𝐹𝑦𝑖 = +𝐹𝑡𝑖 sin 𝜙𝑖 − 𝐹𝑟𝑖 cos 𝜙𝑖 (2-77) 

Summing the cutting forces of each tooth, the total dynamic cutting forces on 

the tool can be determined as 

 𝐹𝑥 = ∑ 𝐹𝑥𝑖

𝑁𝑡−1

𝑖=0

, 𝐹𝑦 = ∑ 𝐹𝑦𝑖

𝑁𝑡−1

𝑖=0

 (2-78) 

where 𝑁𝑡 is the number of teeth on the tool. 

By substituting Eqs. 2-75 and 2-77 into Eq. 2-78, the following resultant matrix 

equation can be obtained: 

 {
𝐹𝑥

𝐹𝑦
} =

1

2
𝑎𝑐𝑢𝑡𝐾𝑐 [

𝛼𝑥𝑥 𝛼𝑥𝑦

𝛼𝑦𝑥 𝛼𝑦𝑦
] {

𝑥𝑡

𝑦𝑡
} (2-79) 

where directional dynamic milling force coefficients are given by 

 

𝛼𝑥𝑥 = ∑ −𝑏(𝜙𝑖)[sin 2𝜙𝑖 + 𝐾𝑟(1 − cos 2𝜙𝑖)]

𝑁𝑡−1

𝑖=0

 

𝛼𝑥𝑦 = ∑ −𝑏(𝜙𝑖)[(1 + cos 2𝜙𝑖) + 𝐾𝑟 sin 2𝜙𝑖]

𝑁𝑡−1

𝑖=0

 

𝛼𝑦𝑥 = ∑ 𝑏(𝜙𝑖)[(1 − cos 2𝜙𝑖) − 𝐾𝑟 sin 2𝜙𝑖]

𝑁𝑡−1

𝑖=0

 

𝛼𝑥𝑦 = ∑ 𝑏(𝜙𝑖)[sin 2𝜙𝑖 − 𝐾𝑟(1 + cos 2𝜙𝑖)]

𝑁𝑡−1

𝑖=0

 

(2-80) 

The matrix expression of Eq. 2-79 is  

 {𝑭𝒄(𝑡)} =
1

2
𝑎𝑐𝑢𝑡𝐾𝑐[𝑨(𝑡)]{𝒓(𝑡)} (2-81) 

In milling, [𝑨(𝑡)] is periodic at tooth passing frequency ω𝑡 = 𝑁𝑡Ω or tooth 

period 𝑇𝑝 = 2π/ω𝑡, and thus can be expanded into Fourier series: 

 [𝑨(𝑡)] = ∑ [𝑨𝑚]𝑒𝑗𝑚ω𝑡𝑡

∞

𝑚=−∞

  where [𝑨𝑚] =
1

𝑇𝑝

∫ [𝑨(𝑡)]𝑒−𝑗𝑚ω𝑡𝑡
𝑇𝑝

0

𝑑𝑡  (2-82) 
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In the most simplistic approximation, the average component of the Fourier 

series expansion is considered, i.e., 𝑚 = 0: 

 [𝑨0] =
1

𝑇𝑝

∫ [𝑨(𝑡)]
𝑇𝑝

0

𝑑𝑡  (2-83) 

where each integrated function is given as 

 

𝛼𝑥𝑥 =
𝑁𝑡

2
[cos 2𝜙 − 2𝐾𝑟𝜙 + 𝐾𝑟 sin 2𝜙]

𝜙𝑠𝑡

𝜙𝑒𝑥 

𝛼𝑥𝑦 =
𝑁𝑡

2
[−sin 2𝜙 − 2𝜙 + 𝐾𝑟 cos 2𝜙]

𝜙𝑠𝑡

𝜙𝑒𝑥 

𝛼𝑦𝑥 =
𝑁𝑡

2
[−sin 2𝜙 + 2𝜙 + 𝐾𝑟 cos 2𝜙]

𝜙𝑠𝑡

𝜙𝑒𝑥 

𝛼𝑥𝑦 =
𝑁𝑡

2
[− cos 2𝜙 − 2𝐾𝑟𝜙 − 𝐾𝑟 sin 2𝜙]

𝜙𝑠𝑡

𝜙𝑒𝑥 

(2-84) 

The dynamic milling expression Eq. 2-81, as a result, can be reduced to 

 {𝑭𝒄(𝑡)} =
1

2
𝑎𝑐𝑢𝑡𝐾𝑐[𝑨0]{𝒓(𝑡)} (2-85) 

Therefore, the dynamic cutting force matrix can be determined from the 

dynamic displacements of the tool in the X and Y directions. 

 

The relation between the tool displacements and the dynamic cutting force also 

can be represented by employing the transfer function matrix at the cutter and 

workpiece contact zone. The transfer function matrix is  

 [𝑮(𝑗𝜔)] = [
𝐺𝑥𝑥(𝑗𝜔) 𝐺𝑥𝑦(𝑗𝜔)

𝐺𝑦𝑥(𝑗𝜔) 𝐺𝑦𝑦(𝑗𝜔)
] (2-86) 

where 𝐺𝑥𝑥(𝑗𝜔) and 𝐺𝑦𝑦(𝑗𝜔) are the direct transfer functions in the X and Y 

directions, and 𝐺𝑥𝑦(𝑗𝜔)  and 𝐺𝑦𝑥(𝑗𝜔)  are the cross-transfer functions. The 

vibrations at the present time 𝑡 and previous tooth period 𝑡 − 𝑇𝑝 are defined as 

 {𝒓(𝑡)} = {𝑥𝑡(𝑡), 𝑦𝑡(𝑡)}
𝑇 , {𝒓0} = {𝑥𝑡(𝑡 − 𝑇𝑝), 𝑦𝑡(𝑡 − 𝑇𝑝)}

𝑇
  (2-87) 

The transfer function matrix shows the ratio between the displacements and 

the applied force. In the frequency domain, therefore, the vibrations at the 

chatter frequency 𝜔𝑐 are represented as 

 {𝒓(𝑗𝜔𝑐)} = [𝑮(𝑗𝜔𝑐)]{𝑭𝒄}𝑒
𝑗𝜔𝑐𝑡 , {𝒓0(𝑗𝜔𝑐)} = {𝒓(𝑗𝜔𝑐)}𝑒

−𝑗𝜔𝑐𝑇𝑝 (2-88) 

The difference of these vibrations is a significant factor to calculate the uncut 

chip thickness: 

 {𝒓𝑑(𝑗𝜔𝑐)} = {𝒓(𝑗𝜔𝑐)} − {𝒓0(𝑗𝜔𝑐)} = [1 − 𝑒−𝑗𝜔𝑐𝑇𝑝][𝑮(𝑗𝜔𝑐)]{𝑭𝒄}𝑒
𝑗𝜔𝑐𝑡 (2-89) 

where 𝜔𝑐𝑇 is the phase delay between the vibrations at successive tooth periods 



Chapter 2 Theories for Process Monitoring and System Identification 

52 

 

𝑇 . Substituting {𝒓𝑑(𝑗𝜔𝑐)}  into the dynamic milling Eq. 2-85, the following 

equation can be derived. 

 {𝑭𝒄}𝑒
𝑗𝜔𝑐𝑡 =

1

2
𝑎𝑐𝑢𝑡𝐾𝑐[1 − 𝑒−𝑗𝜔𝑐𝑇𝑝][𝑨0][𝑮(𝑗𝜔𝑐)]{𝑭𝒄}𝑒

𝑗𝜔𝑐𝑡 (2-90) 

To have a solution excepting {𝐹} = 𝟎, its determinant must be zero. 

 det [[𝑰] −
1

2
𝑎𝑐𝑢𝑡𝐾𝑐[1 − 𝑒−𝑗𝜔𝑐𝑇𝑝][𝑨0][𝑮(𝑗𝜔𝑐)]] = 0 (2-91) 

To linearize the non-linear part [1 − 𝑒−𝑗𝜔𝑐𝑇𝑝] , the eigenvalue of the 

characteristic equation is described as 

 Λ = −
𝑁𝑡

4𝜋
𝑎𝑐𝑢𝑡𝐾𝑐[1 − 𝑒−𝑗𝜔𝑐𝑇𝑝] (2-92) 

The resulting characteristic equation becomes 

 det[[𝑰] − Λ[𝑨0
∗][𝐺(𝑗𝜔𝑐)]] = 0 

(2-93) 
where [𝑨0

∗] =
1

2𝜋
[𝑨0] = [

𝛼𝑥𝑥
∗ 𝛼𝑥𝑦

∗

𝛼𝑦𝑥
∗ 𝛼𝑦𝑦

∗] 

The eigenvalue of the above equation can easily be solved for a given chatter 

frequency 𝜔𝑐 by calculating a following quadratic function. 

 Λ2 + 𝑐0Λ + 𝑐1 = 0 

(2-94) 
where 

𝑐0 = 𝐺𝑥𝑥(𝑗𝜔𝑐)𝐺𝑦𝑦(𝑗𝜔𝑐)(𝛼𝑥𝑥
∗𝛼𝑦𝑦

∗ − 𝛼𝑥𝑦
∗𝛼𝑦𝑥

∗),  

𝑐1 = 𝛼𝑥𝑥
∗𝐺𝑥𝑥(𝑗𝜔𝑐) + 𝛼𝑦𝑦

∗𝐺𝑦𝑦(𝑗𝜔𝑐) 

By separating the eigenvalue to a real and an imaginary part as Λ = Λ𝑅 + 𝑗Λ𝐼 

and substituting 𝑒−𝑗𝜔𝑐𝑇𝑝 = cos𝜔𝑐𝑇𝑝 − 𝑗 sin𝜔𝑐𝑇𝑝  in Eq. 2-92, the critical axial 

depth of cut at chatter frequency 𝜔𝑐 can be derived as 

 𝑎𝑙𝑖𝑚 = −
2𝜋

𝑁𝑡𝐾𝑐

[
Λ𝑅(1 − cos𝜔𝑐𝑇𝑝) + Λ𝐼 sin𝜔𝑐𝑇𝑝

(1 − cos𝜔𝑐𝑇𝑝)
+ 𝑗

Λ𝐼(1 − cos𝜔𝑐𝑇𝑝) − Λ𝑅 sin 𝜔𝑐𝑇𝑝

(1 − cos𝜔𝑐𝑇𝑝)
] (2-95) 

Because the imaginary part of Eq. 2-95 is zero, the ratio Λ𝐼/Λ𝑅  can be 

determined as 

 𝜅 =
Λ𝐼

Λ𝑅

=
sin 𝜔𝑐𝑇𝑝

1 − cos𝜔𝑐𝑇𝑝

 (2-96) 

Substituting 𝜅 into Eq. 2-95, the chatter-free axial depth of cut is found as 

 𝑎𝑙𝑖𝑚 = −
2𝜋Λ𝑅

𝑁𝑡𝐾𝑐

(1 + 𝜅2) (2-97) 

Therefore, when a chatter frequency is given, the corresponding chatter limit in 

terms of the axial depth of cut can be determined from Eq. 2-97. Furthermore, the 

chatter frequency 𝜔𝑐 at tooth period 𝑇 is represented as 



Chapter 2 Theories for Process Monitoring and System Identification 

53 

 

 𝜔𝑐𝑇𝑝 = cos−1
𝜅2 − 1

𝜅2 + 1
= −cos−12𝛿 

(2-98) 

where 𝛿 = tan−1𝜅 

Thus, if 𝑘 is an integer number, 

 𝜔𝑐𝑇 = 𝜋 − 2𝛿 + 2𝑘𝜋 = 𝜀 + 2𝑘𝜋 (2-99) 

where  𝜀 = 𝜋 − 2𝛿 is the phase shift between the inner and outer modulations 

(present and previous vibration marks). The spindle speed 𝑁𝑟 [rev/min] is simply 

calculated by finding the tooth passing period 𝑇𝑝 [s]: 

 𝑇𝑝 =
1

𝜔𝑐

(𝜀 + 2𝑘𝜋)  → 𝑁𝑟 =
60

𝑁𝑡𝑇𝑝

 (2-100) 

As a conclusion, the relation between the spindle speed and the critical axial 

depth of cut can be determined by analyzing the interaction between the transfer 

functions of the machine tool system and the dynamic cutting forces. Additionally, 

the cutting coefficient of the work material also must be identified. Then, the 

stability lobes can be drawn with following procedures: 

① Select a chatter frequency from the transfer functions around a dominant 

mode. 

② Solve the eigenvalue equation (Eq. 2-94). 

③ Calculate the critical depth of cut from equation (Eq. 2-97). 

④ Calculate the spindle speed from Eq. 2-100 for each stability lobe of 

𝑘 = 0, 1, 2, …. 

⑤ Repeat steps ①  to ④  by scanning the chatter frequencies around all 

dominant modes of the structure evident on the transfer functions. 

2.4.2 Concept for Identification 

The prediction method for chatter stability explained in the previous section 

can draw a stability-lobes diagram as shown in Fig. 2-19 (the parameters are 

given in Table 2-4 as an example). The critical depth of cut locally becomes larger 

at some spindle rotation regions, which are called stability pockets. Although the 

stability pocket should be identified accurately to enhance the cutting efficiency, 

an accurate analysis is difficult because the stability lobes are drawn on the basis 

of modal parameters that change according to the spindle rotation and heat 

generation. On the other hand, chatter frequency information is also analyzable 

with a frequency-domain milling model, but this is rarely focused on. Chatter 

frequency gradually becomes higher with faster spindle rotation and suddenly 
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shifts lower at the stability pocket. This characteristic would be useful to identify 

the stability pocket accurately. 

In this study, the spindle rotation is continuously decreased during chatter as 

shown in Fig. 2-20. If the chatter frequency behaves as shown in the 

frequency-domain analysis, chatter frequency would gradually become lower and 

drastically shift higher at some spindle rotations. These spindle rotations can be 

Table 2-4  Modal parameters of       
a tool to draw Fig. 2-19. 

Parameter Value 

Tool diameter [mm] 10 

Mass [kg] 0.0483 

Natural frequency [Hz] 2082 

Damping ratio 0.0177 

Cutting coefficient [MPa] 1500 

Radius immersion [mm] 0.5 

 

Fig. 2-19  (a) Critical depth of cut and (b) chatter 

frequency along with the spindle rotation in milling. 

Fig. 2-20  Concept of the proposed identification method for stable spindle rotations.  
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regarded as the stability pockets. As a result, the stability pocket in milling can 

be identified with only one milling test. However, the chatter frequency shift is 

explained in the frequency domain. Therefore, it is necessary to confirm whether 

the frequency shift actually occurs even if the spindle rotation time-dependently 

changes.  

2.5 Time-Domain Milling Simulator 

The drastic shift of the chatter frequency when decreasing the spindle rotation 

is a phenomenon that is explained by frequency-domain analysis. However, 

frequency domain analysis assumes that the response time is infinite, whereas 

the spindle rotation changes with time. As a result, the identified spindle 

rotations would vary from the actual stable spindle rotations. Although the 

identification error would be suppressed if the milling time can be ensured long 

enough, the time of diagnosis should be short to avoid damage to the tool and the 

machine tool. Therefore, the identification error should be discussed 

corresponding to the spindle variation rate. 

To analyze the time-dependent variation of physical phenomena, a 

time-domain simulation is an effective approach. The time-domain simulation for 

dynamics sequentially progresses by calculating the force distribution and the 

movement alternately for each step. For example, movement of a single 

degree-of-freedom (1-DOF) spring-damper-mass system in the time domain can 

be simulated as shown in Figs. 2-21 to 2-23. Considering the force distribution in 

the 1-DOF system, the external force, the elastic force from the spring, and the 

friction force are applied to the mass as shown in Fig. 2-21. By calculating the 

resultant force and dividing it by the amount of mass, the acceleration can be 

obtained. Thus, the velocity and the displacement of the mass are also 

determined by integrating the acceleration with a step time. After that, the 

elastic force and the friction force can be updated on the basis of the obtained 

displacement and velocity information, and these procedures are repeated until 

the end time of the simulation. This simulation can be realized with code in the C 

language as shown in Fig. 2-22; the simulated behavior of the displacement is 

shown in Fig. 2-23. The simulation result actually corresponds to the given 

natural frequency. This basic repetition is the same even if the system has a 

complicated transfer function and multiple masses. By converting the transfer 
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function to a difference equation in the discrete domain, the displacement of the 

system is determined by calculating the resultant force applied to the system in 

every step. 

In order to create a milling model in the time domain, the determination of the 

applied external force (cutting force) to the tool must be carefully discussed 

because the regenerative effect also must be considered, whereas the tool can be 

modeled as a 2-DOF spring-damper-mass system in the X and Y directions.  

Fig. 2-21  Procedures for a motion simulation of a 1-DOF spring-damper-mass system.  

Fig. 2-23  Simulation result 

(displacement).  

Fig. 2-22  An example of C-language code for motion 

simulation of a 1-DOF spring-damper-mass system. 
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The regenerative effect is caused by the interaction between the present 

vibration of the tool and the surface waviness of workpiece left by the previous 

tooth passing. Generally, the cutting force is defined as the product of a cutting 

coefficient and the width of cut. From this viewpoint, the simulation should be 

created with a surface profile method. As shown in Fig. 2-24, the workpiece 

surface is expressed with profiles in the proposed simulation. The procedures are 

explained as follows. 

① The width of cut is obtained by linear interpolation and the cutting force is 

determined and applied to the dynamics of the X and Y directions. 

② The tool edge position is updated from the rotational angle and the 

Fig. 2-24  Procedures for the time-domain milling simulation.  
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displacement of the tool, on the basis of the integrations for the rotational 

speed and the tool acceleration with a short step time. 

③ The profiles between the present tool edge position and the previous one are 

updated with linear interpolation. Additionally, the profiles are slightly fed 

on the basis of the feed rate option. 

④ The procedures from ①  to ③  are repeated until the end time of the 

simulation. 

 

Furthermore, the tool lead is expressed by laminating the simulation layers 

that have different rotation angles, as shown in Fig. 2-25.  

 

The chatter vibration occurs because of the vibrational modes of the tool, and 

the stability lobes can be drawn for the each vibrational mode. When the transfer 

function of the system has more than two vibrational modes, multiple stability 

lobes are drawn in the stability diagram. In this case, the lowest lobes are 

dominant and regarded as the critical depth of cut, i.e., the dominant stability 

lobes are written by the vibrational mode that has a largest compliance. 

Furthermore, the stiffness of the coupling modes is generally high compared with 

that of the direct modes. Thus, the first-order direct mode tends to draw the 

dominant lobes; that is why we approximated the tool transfer function with a 

2-DOF system on the XY plane for the time domain simulation. 

  

Fig. 2-25  Tool lead expression in the proposed simulation.  
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2.6 Summary 

The significant theories for the proposed process monitoring methods and 

self-diagnosis system are introduced in this chapter. The contents are 

summarized as follows. 

 

1. By explaining disturbance observer theory with a physical model, its 

applicability to the cutting force/torque estimation is theoretically 

indicated. 

2. The FFT and CWT are explained as conventional signal processing 

methods. 

3. The MV+MFT and RDF are proposed as new sophisticated signal 

processing methods for chatter detection and drill fracture detection. The 

performance of the proposed methods will be experimentally compared 

with that of conventional methods in later chapters. 

4. A concept of a self-diagnosis method for stable spindle rotations against 

chatter is described on the basis of a frequency-domain analytical 

prediction method for chatter stability in milling.  

5. Procedures to create a time-domain milling simulation are described to 

confirm the adequacy of the proposed diagnosis method.  
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3 Simulator and Experimental Setup 

In Chapter 2, the fundamental theories for observer-based process monitoring 

and stable cutting condition identification are presented. In the cutting 

force/torque estimation algorithm, the nominal parameters must be set correctly 

to reduce the error of estimation; therefore, the nominal parameters should be 

preliminarily identified accurately.  

This chapter introduces mechanical parameters and configurations of 3-axis 

vertical machine tools used in this research. Moreover, the nominal parameters 

for the cutting force and torque estimations are summarized. 

3.1 Configurations of Machine Tool 

Configuration of controller also has influences with estimation accuracy of the 

observer. For example, the differential process for discrete variables like encoder 

pulse information causes high-frequency noise in the estimated velocity 

information, which is called “quantization error noise” and able to be suppressed 

by applying a high-resolution encoder. Furthermore, the estimation frequency 

range of disturbance information is regulated with the servo frequency of 

controller. Generally speaking, the sampling frequency of the encoder signal is 

higher than the update frequency of the current reference; thus, the multi-rate 

sampling method is sometimes applied for the disturbance estimation, which 

assumes that the current information has a zero-order holding characteristic and 

conducts the calculation of the disturbance estimation at the sampling frequency 

of encoder. Because the quantization error noise generally can be reduced with 

higher sampling rate, the estimation accuracy can be ensured with the multi-rate 

sampling method. Moreover, this is an effective method to expand the estimation 

frequency range for the disturbance information. 

 

In this study, two machine tools are utilized to confirm the adequacy of the 

proposed methods: TC-S2C, and S500X1 (both are produced by Brother Industry 

Ltd). The appearances of machine tools are shown in Figs, 3-1 and 3-2, and the 

configurations are summarized Tables 3-1 and 3-2 respectively. The both 

machines employ a same P-PI controller for the spindle and the each axis control 
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system. The remarkable differences between the both machines are the update 

frequency of current information and the rotary encoder resolution of the spindle. 

Although the update frequencies of current reference are different in both 

machine tools, the multi-rate sampling method is applied to TC-S2C in order to 

enhance the frequency of cutting force/torque estimation. The encoders of 

spindles originally have resolutions of only 1024 PPR (pulses per revolution) in 

both machine tools; thus, the resolutions are enhanced to 17 bit PPR in TC-S2C 

and 20 bit PPR in S500X1 with an electric multiplication method. On the other 

hand, the ballscrew-driven stages have same encoder resolution in both machine 

tools. In short, the controller and encoder introduced to the S500X1 have higher 

performances than that used in TC-S2C. These differences might have influences 

on the estimation accuracy of cutting torque particularly in high frequency 

domain.  

Therefore, the S500X1 is only used for the chatter experiments in this study 

because the frequency information higher than 300 Hz is not necessary to detect 

the tool wear progress and tool fracture, which is much lower than the update 

frequency of current reference in TC-S2C as 2000 Hz. (The discussion of cutoff 

frequency modification for collision detection is held in Chapter 4 and concludes 

that 53.3 Hz is proper, which is sufficiently smaller than 2000 Hz.) 

  

Fig. 3-1  Appearance of the machine 

tool 1 in this research            

(Brother Industries, Ltd. TC-S2C). 

Fig. 3-2  Appearance of the machine 

tool 2 in this research            

(Brother Industries, Ltd. S500X1). 
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Table 3-1  Characteristics of the machine tool 1 (TC-S2C). 

3 axis vertical machine tool TC-S2C (Brother Industry Ltd.) 

Rotary encoder resolution for the spindle 131072 PPR (17bit) 

Rotary encoder resolution for XYZ axis 1048576 PPR (20bit) 

Sampling frequency of the encoder information 8000 Hz 

Update frequency of the current reference 2000 Hz 

 

Table 3-2  Characteristics of the machine tool 2 (S500X1). 

3 axis vertical machine tool S500X1 (Brother Industry Ltd.) 

Rotary encoder resolution for the spindle 1048576 PPR (20bit) 

Rotary encoder resolution for XYZ axis 1048576 PPR (20bit) 

Sampling frequency of the encoder information 8000 Hz 

Update frequency of the current reference 8000 Hz 

 

 The cutoff frequency of low-pass filters in the disturbance observer and the 

pseudo differential process is an important factor to enhance the accuracy of the 

proposed process monitoring and stability identification. The signal noise should 

be suppressed to monitor the amplitude of the cutting force and torque; on the 

other hand, high-frequency information should not be eliminated when a 

frequency analysis is performed on the estimated cutting force and torque. Thus, 

the cutoff frequency also should be modified properly for each problem. 

 

In this research, drilling and tapping are focused on as targets of the wear 

monitoring. In drilling and tapping, the static components in the cutting force 

and torque are the most reliable criteria to capture the wear progress. Thus, the 

cutoff frequency should be set low to suppress high-frequency noise. In case of the 

collision detection, the cutoff frequency should be set high from the viewpoint of 

the time response, while it should be set low for the signal-noise suppression. In 

other words, a balanced modification is demanded for the cutoff frequency. 

In contrast, the cutoff frequency should not be set low for the tool fracture and 

chatter detection because a frequency analysis would be employed to capture a 

periodic variation in cutting force/torque due to tool fracture or chatter. From this 

viewpoint, the cutoff frequency for tool fracture detection should be set to higher 

than 267 Hz because the tool fracture is detected by monitoring a cutting force 

fluctuation at the spindle rotation frequency and the maximum spindle rotation 

is 16000 min-1 (≒267Hz) in S500X1. 
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For the chatter detection, the cutoff frequency should be higher than at least 

800 Hz which is the observed chatter frequency in the milling test of this research. 

However, the chatter-induced fluctuation could be captured even if the cutoff 

frequency is lower than 800 Hz because the first-order low-pass filter does not 

drastically suppress high-frequency information. Furthermore, when the cutoff 

frequency is higher than 800 Hz, the quantization error noise gets too large to 

observe the wave shape of estimated cutting torque. As a conclusion of these 

discussions, the cutoff frequency is set to as shown in Table 3-3. 

  

Table 3-3  Disturbance observer gain and   

cutoff frequency of LPF in pseudo-differential process. 

 𝒈𝒅𝒊𝒔[rad/s] 𝒈𝑳𝑷𝑭 [rad/s] 

Tool wear monitoring 500 500 

Tool collision detection 335 335 

Tool fracture detection 3500 3500 

Chatter detection 3500 3500 

 

Considering the other causes for the estimation error, heat deformation is also 

significant, which leads to large contact pressure between mechanical parts. In 

this case, large energy is consumed even under the same movement operation; 

thus, an error occurs in the cutting force/torque estimation. When the process 

monitoring has to be performed for a long time, the static error due to heat 

generation also should be carefully monitored. 

3.2 Characteristics of Machine Tool 

When the disturbance observer is used to enhance the robustness of the control 

system, characteristics of the controlled object have to be well understood. In 

particular, the torque coefficient, the mass of movable parts and the inertia 

moment of rotational parts have to be accurately identified because these values 

are nominalized to apply to the disturbance estimation.  

On the other hand, this research is focusing on observer-based process 

monitoring; thus, the error of nominal value does not effect on the robustness of 

the control system. However, the nominal-parameter error directly has influences 

on the estimation accuracy of cutting force and torque. 
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Although the nominal value simply can be set based on the designed value, the 

actual value often varies from the designed value because of the runout of 

rotational components, the torque ripple in motor, and so on. From the practical 

viewpoint, the nominal values should be identified based on idling experiments. 

By conducting several idling tests on the spindle and ballscrew-driven stage, the 

mechanical parameters are identified as shown in Tables from 3-4 to 3-7, which 

correspond to that in Eqs. 2-20 and 2-23.  

 

 𝐹̂𝑐𝑢𝑡 =
2𝜋

𝑙
∙

𝑔𝑑𝑖𝑠

𝑠 + 𝑔𝑑𝑖𝑠

{
𝑔𝐿𝑃𝐹

𝑠 + 𝑔𝐿𝑃𝐹

𝐾𝑡𝜃𝑧𝑛𝐼𝑎
𝑟𝑒𝑓

− 𝐽𝜃𝑎𝑛𝜔̂𝜃𝑧𝑠 − 𝐷𝜃𝑎𝑛𝜔̂𝜃𝑧 − 𝐶𝜃𝑎𝑛sgn(𝜔̂𝜃𝑧)} − 𝑀𝑧𝑔 

(2-20) 

 where 𝜔̂𝜃𝑧 =
𝑠𝑔𝐿𝑃𝐹

𝑠 + 𝑔𝐿𝑃𝐹

𝜃𝑧 

 𝑇̂𝑐𝑢𝑡 =
𝑔𝑑𝑖𝑠

𝑠 + 𝑔𝑑𝑖𝑠

{
𝑔𝐿𝑃𝐹

𝑠 + 𝑔𝐿𝑃𝐹

𝐾𝑡𝐼𝑎
𝑟𝑒𝑓

− 𝐽𝑛𝜔̂𝑠 − 𝐷𝑛𝜔̂ − 𝐶𝑛sgn(𝜔̂)} 

(2-23) 

 where 𝜔̂ =
𝑠𝑔𝐿𝑃𝐹

𝑠 + 𝑔𝐿𝑃𝐹

𝜃 

The details of the idling tests are explained in Chapter 4. 

The nominal mass in each axis is enormously larger than the designed value 

shown in Table 3-8. This is because the inertia moment of the screw is included to 

construct a single mass model as explained in Chapter 2.  

 

Table 3-4  Each parameter of X-axis nominal model. 

Nominal viscous friction coefficient 𝐷𝑎𝑛  732 N/(m/s) 

Nominal Coulomb friction 𝐶𝑎𝑛  94.0 N 

Nominal total mass of X axis 𝑀𝑎𝑛 227.0 kg 

Lead of screw 𝑙 16 mm 

 

Table 3-5  Each parameter of Y-axis nominal model. 

Nominal viscous friction coefficient 𝐷𝑎𝑛 1025 N/(m/s) 

Nominal Coulomb friction 𝐶𝑎𝑛  151.0 N 

Nominal total mass of Y axis 𝑀𝑎𝑛 325.0 kg 

Lead of screw 𝑙 16 mm 
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Table 3-6  Each parameter of Z-axis nominal model. 

Nominal mass of Z axis 𝑀𝑧𝑛 175 kg 

Nominal viscous friction coefficient 𝐷𝑎𝑛 1968 N/(m/s) 

Nominal Coulomb friction 𝐶𝑎𝑛 240 N 

Nominal total mass of Z axis 𝑀𝑎𝑛 380 kg 

Lead of screw 𝑙 16 mm 

 

Table 3-7  Each parameter of spindle nominal model. 

Nominal inertia moment of spindle 𝐽𝑛 0.0048 kg・m2 

Nominal viscos friction coefficient  5.0×10-5 Nmmin 

Nominal Coulomb friction 0.1062 Nm 

 

Table 3-8  Each designed value of each stage mass and spindle inertia moment. 

Designed mass of x stage 55.0 kg 

Designed mass of y stage 140.5 kg 

Designed mass of z stage 188.0 kg 

Designed inertia moment of spindle 0.0048 kg・m2 

 

3.3 Discussion for Encoder Resolution  

As shown in Tables 3-1 and 3-2, this research employs machine tools having 17 

bit or 20 bit PPR rotary encoders in their spindle and ballscrew-driven stage 

servo motors. To estimate the cutting force and torque accurately, encoder 

resolution is a dominant factor because the quantum error induces large noise 

when the resolution is not sufficiently high. Therefore, this section evaluates the 

quantum error of each encoder resolution with a simple time-domain simulation.  

The quantum error generally gets larger with higher motor rotational speed, 

thus, the spindle rotation is set to 16000 min-1 (maximum speed in S500X1). 

Figure 3-3 shows the simulation result of 10 bit PPR resolution. By applying FFT 

analysis to the simulated noise and requiring maximum amplitude spectrum, 

amplitude of noise is evaluated with each encoder resolution as shown in Fig. 3-4. 

The simulation result certainly shows that the quantum error-induced noise gets 

smaller with higher resolution and lower cutoff frequency. Although other causes 

such as torque ripple negatively influences on the estimation accuracy, the 
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obtained relation would be useful to know the required encoder resolution for 

cutting force and torque monitoring, e.g., the encoder resolution must be at least 

higher than 17 bit PPR to distinguish 1 Nm fluctuation in high frequency as 4000 

Fig. 3-3  Quantum error-induced noise in estimated cutting torque:                  

(a) in time-domain simulation result, (b) amplitude spectrum of FFT. 

Fig. 3-4  Maximum amplitude spectrum of noise in estimated cutting torque      

with each encoder resolution and cutoff frequency of low-pass filter. 

Fig. 3-5  Maximum amplitude spectrum of noise in estimated cutting force        

with each encoder resolution and cutoff frequency of low-pass filter. 
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rad/s. This approach is also applicable to the ballscrew-driven stage. The screw 

rotates at 3125 min-1 when the feed rate is 50000 mm/min (maximum feed rate of 

TC-S2C). Figure 3-5 summarizes the relation between the amplitude of noise due 

to quantum error and the encoder resolution. The signal noise gets smaller with 

higher encoder resolution and lower cutting frequency in the same manner with 

the estimated cutting torque.  

This research applies 3500 rad/s cutoff frequency to the cutting torque 

estimation algorithm to detect chatter, thus, 17 bit PPR would be enough high 

resolution for the spindle control system because chatter-induced fluctuation in 

cutting torque is clearly larger than 1 Nm. Furthermore, 20 bit PPR would be 

enough high resolution for the ballscrew-driven stage controller to detect 

aberrances because it can suppress the quantum error to 36 N even under the 

high screw rotation as 3125 min-1 and high cutoff frequency as 4000 rad/s. 

Considering that the original encoder resolution is 10 bit PPR, it is clear that the 

enhancement method like electric multiplication is indispensable to suppress the 

signal noise due to quantum error. 

In both estimations of cutting torque and force shown in Fig. 3-4 and 3-5, the 

signal noise can be approximately reduced by half by increasing the encoder 

resolution of 1 bit. Based on this characteristic, the required encoder resolution 

can be clarified according to the amplitude and frequency of the expected 

fluctuation due to the aberrance.  

 

3.4 Simulator Setup 

In order to perform a time-domain milling simulation, a parallel calculation 

system with a graphical processing unit (GPU) is constructed based on CUDA 

(Compute Unified Device Architecture) modules in this research. 

The CUDA is a parallel computing platform and application programing 

interface (API) model invented by NVIDIA Corporation. [63] It enables dramatic 

increases in computing performance by harnessing the power of GPU which has a 

lot of processors for various computations. Since its introduction in 2006, CUDA 

has been widely deployed to thousands of applications and focused in research 

papers of various fields; astronomy, biology, chemistry, physics, data mining, 

manufacturing, finance, and other computationally intense fields. 
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Following points are typically explained as basic concepts for CUDA [64]. 

 CUDA-enabled GPUs are separate devices that are installed in a host computer. 

 GPUs run in a memory space separate from the host processor. 

 CUDA programs utilize kernels, which are subroutines callable from the host 

that execute on the CUDA device. 

 The basic unit of work on the GPU is a thread. 

 The largest shared region of memory on the GPU is called global memory. 

 

Figure 3-6 shows a pattern diagram of the structure of GPU and host device. 

Originally, GPU is an add-on device to enhance the graphic performance of 

computer, although it is preliminarily set to some recent personal computers. 

Compared with general CPUs (central processing units) in host devices, GPUs 

have a lot of processors to perform a parallel computation because graphical 

process usually includes iterative computations. The procedures of parallel 

computation can be described as follows. 

① The host device ensures memory sections in both host device and GPU. 

② Parameters in the host memory are sent to the GPU memory. 

③ The host device calls a kernel function which is precompiled in the GPU 

device. (By providing thread programs to blocks and processing with each 

register, the parallel computation is started.) 

Fig. 3-6  Data transfer diagram among GPU and host device. 
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④ The computation results are transferred from the GPU memory and the host 

memory. 

⑤ The computation results are saved in the host device and the ensured 

memory sections are released. 

 

Although the parallel calculation is not useful for sequential processes, it can 

efficiently reduce the computation time for repetition processes. 

Considering the proposed time-domain milling simulation to parallelize, the 

workpiece surface is expressed with the surface profiles having xyz coordinate 

data, and a same calculation is applied to each profile such as the tool-workpiece 

contact determination. Furthermore, same cutting force computation is 

performed for each layer to obtain the total cutting force. These computations 

Table 3-10  Performance of the 

computer for parallel calculation. 

CPU 
Intel Core i7 

4770K 

Operating system CentOS 6.5 

GPU 
NVIDIA Geforce 

TITAN BLACK 

CUDA version 6.0 

 

Table 3-9  Conditions for a time-domain        

milling simulation. 

Cutting coefficient  MPa  1500 

Natural frequency of the tool  Hz  2082 

Damping ratio of tool 0.177 

Mass of the tool  kg 0.0483 

Time step  s 2 

Number of layers 64 

Number of surface profiles in one layer 32768 

 

Fig. 3-7  Calculation time reduction in the time-domain      

milling simulation with CUDA. 
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could be parallelized based on CUDA. 

One of the simulation results of the proposed milling simulator is shown in Fig. 

3-7, where the simulation conditions are summarized in Table 3-9, and the details 

of parallel calculation system are shown in Table 3-10. In case of CPU calculation, 

it takes more than 13 hours to obtain the result; however, the calculation time 

can be reduced less than 10 min by parallelizing the simulation program with the 

CUDA technique. As a result, the CUDA system processes the simulation 

program 83 times as fast as the CPU calculation in this milling simulation. 

 

From these results, a parallel calculation is decided to be employed for the 

time-domain milling simulation in this research. 
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4 Tool Wear Monitoring System 

4.1 Introduction 

As explained in Chapter 1, tool wear is researched on by many researchers as 

one of the unavoidable problems in process. Regarding the wear monitoring 

technique, sensorless approaches recently gather attention because of the 

practicability. In this chapter, the adequacy of the proposed observer-based tool 

wear monitoring is evaluated through drilling and tapping tests. The cutting 

force and torque estimations are carried out by installing the proposed estimation 

method and capturing the wear-induced increase.  

4.2 Disturbance Observer-Based Monitoring System 
for Tool Wear 

As explained in Section 2.2, current reference and angle information are 

Fig. 4-1  Each estimated value gained from the servo information of                     

the Z-axis ballscrew-driven stage servo motor. 
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available as servo information in spindle and stage control systems. Considering 

a ballscrew-driven stage control system, position of linear stage can be required 

from the screw angle with conversion coefficient. Moreover, the velocity and the 

acceleration of the linear stage can be estimated with a differential process. 

Based on these variables and the nominal parameters given in Tables from 3-4 to 

3-7, various information can be estimated only form the servo information during 

drilling as Fig. 4-1. The nominal parameters are determined through an idling 

test, which can suppress the estimation error most efficiently. By integrating the 

estimated information, cutting force and torque can be derived.  

When the observer-based monitoring is applied to a controller of a stage in 

vertical direction, the gravity force and friction compensation must be adopted. 

Furthermore, a first-order low-pass filter is installed to the current reference 

information in the proposed method as shown in Fig. 4-2 in order to compensate 

the phase difference caused by the low-pass filter in the pseudo-differential 

process. 

4.3 Wear Monitoring Test in Drilling and Tapping 

The tool wear monitoring is focusing on drilling and tapping in this research.  

Fig. 4-2  Cutting force estimation algorithm. 
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4.3.1 Flank Wear of Drill 

To evaluate the tool wear progress, flank wear is a beneficial criterion because 

its width gradually increases with machining time. Although, the depth of creator 

wear also progresses gradually with the machining time, the width is easier to 

measure precisely with a microscope than the depth; thus, the flank wear 

measurement is performed on drills and taps in this study. 

To confirm the tendency of tool wear progress on a drill, blind-hole drilling is 

performed under the cutting condition shown in Table 4-1, and the average width 

of flank wear is calculated with 20 evaluation sections on the tool edge as shown 

in Fig. 4-3. Carbide drills with 3- and 6-mm diameters as well as M3×0.5 and 

M6×1.0 spiral taps are prepared. 

Fig. 4-4 and 4-5 show the relation between the average width of the flank wear 

and the number of drilled holes on the stainless alloy and on the carbon steel alloy, 

Fig. 4-3  20 measurement sections on flank wear. 

Table 4-1  Cutting condition to progress the tool wear in drilling. 

Tool φ6mm drill φ3mm drill 

Rotational speed [min-1] 796 4300 

Feed rate [mm/ min] 19 130 

Hole shape 20-mm-depth blind hole 15-mm-depth blind hole 

Workpiece Stainless (SUS304) Carbon steel (S45C) 

Type of cut Wet cutting  
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respectively, under the conditions presented in Table 4-1, i.e., the relation 

between the tool wear progress and the machining time. The flank wear 

measurement tests are carried out until the tool edge chips as shown in Fig. 4-6 

The width of the flank wear increases gradually and clearly at the tool edges for 

both the 3 mm diameter and the 6 mm diameter drills. By comparing these 

results based on the cutting conditions in Table 4-1, the proposed observer-based 

wear monitoring in drilling is evaluated.  

Fig.4-4  Relation between number of holes on stainless alloy             

and width of flank wear (φ6 mm). 

Fig. 4-5  Relation between number of holes on carbon steel alloy            

and width of flank wear (φ3 mm). 
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4.3.2 Wear-Induced Increase in Cutting Force and Torque in 

Drilling 

Figures 4-7 and 4-8 show the time-dependent variations of the thrust force 

(cutting force in the tool-axial direction) and cutting torque estimated with the 

proposed method under intermittent drilling operation. Although some 

fluctuation is observed in the estimated thrust force during the nondrilling time, 

the error ranges from -100 N to 150 N even in the high-speed feeding of the stage. 

The fluctuation from 1.4 s occurred because of the coupling stiffness and the stage 

mass. Though a two-mass system should be adopted to suppress the fluctuation, 

doing so would increase the number of parameters and they would have to be 

identified accurately. Furthermore, the coupling stiffness is high enough to not 

disturb the thrust force estimation, as shown in Fig. 4-7. Thus, a single-mass 

model is utilized in this study. 

Ten cutting force and torque monitoring tests on the aluminum alloy under the 

conditions in Table 4-2 and ten or twenty tool wear progress tests under the 

conditions in Table 4-1 are alternately conducted to confirm the wear-induced 

increase in the cutting force and torque. The tests are conducted until the 

breakage of the tool. Figures 4-9 and 4-10 respectively show the increases in the 

Table 4-2  Drilling condition for cutting force and torque estimations. 

Tool φ6mm drill φ3mm drill 

Rotational speed [min-1] 9000 9000 

Feed rate [mm/ min] 1800 1350 

Hole shape 20mm-depth blind hole 15mm-depth blind hole 

Workpiece Aluminum (A2017) Aluminum (A2017) 

Type of cut Wet cutting 

 

Fig. 4-6   The appearance of a tool edge: (a) before chipping (b) after chipping. 
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estimated thrust force and cutting torque with tool wear progress in a test with 

one of the sample drills with 6-mm diameter; in these figures, the diamond plots 

represent the estimated values in the 10 cutting tests and the circular plots 

represent their average in each period. The estimated cutting force and torque 

are seen to increase owing to the wear progress. Furthermore, the variation of the 

cutting force and torque in each period is so small that a threshold could be used 

to determine the appropriate time for changing the tool. To confirm the 

repeatability of the proposed method, the wear-induced increases in the 

Fig. 4-7  Thrust force estimation by the proposed method. 

Fig. 4-8  Cutting torque estimation by the proposed method. 
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estimated thrust force and cutting torque are monitored, and the results are 

summarized in Figs. 4-11 and 4-12, respectively, where each plot shows the 

average value for the 10 monitoring tests. In all the tests with 7 sample drills, the 

estimated thrust force and cutting torque are found to increase with the tool wear 

progress. Some samples show a sudden increase in the cutting force after the 

occurrence of chipping at the tool edge. Thus, a sudden increase of more than 100 

N can be used as a criterion of tool life limitation in drilling tests with 6-mm 

drills.  
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Fig. 4-10  Relation between progress of tool wear and       

the estimated cutting torque of 6 mm drill. 

Fig 4-9  Relation between progress of tool wear and               

the estimated thrust force of 6 mm drill. 
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Fig. 4-11  Relation between progress of tool wear and                  

the average of estimated thrust force of 6 mm drill. 

 

Fig. 4-12  Relation between progress of tool wear and                      

the average of estimated cutting torque of 6 mm drill. 
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The same experiments are conducted with 7 samples of 3-mm-diameter drills. 

Figs. 4-13 and 4-14 show the wear-induced increases in the estimated cutting 

force and torque of one sample. Although the estimated thrust force increases 

gradually with the tool wear progress as shown in Fig. 4-13, no remarkable 

changes in the estimated cutting torque are observed, as shown in Fig. 4-14. In 

the case of drilling with a small-diameter tool, the cutting torque becomes so 

small that its variation is difficult to detect. Therefore, monitoring of the 

estimated thrust force is a suitable method for determining the time at which a 

small diameter drills needs to be changed. Figures 4-15 and 4-16 show the result 

of repeatability tests with 3-mm-diameter drills. A sudden increase in the thrust 

force is also observed in the tests performed using 3-mm-diameter drills. After a 

sudden change of more than 40 N occurs in the estimated thrust force, chipping is 

observed on the tool edge in this experiment. This result is also applicable as a 

criterion of tool life limitation. Furthermore, no remarkable change is observed in 

the cutting torque even after the wear progress. 

Disregarding the sudden increases in the estimated thrust force and cutting 

torque, on the basis of the obtained results, the thresholds of thrust force for tool 

life limitation can be set to 800 N for 6-mm drills and 330 N for 3-mm drills. As a 

result, it can be concluded that the proposed method is feasible for determining 

the appropriate time for changing the tools by detecting the sudden increase in 

the cutting force and torque and setting the thresholds.  
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Fig. 4-14  Relation between progress of tool wear and the estimated 

cutting torque of 3 mm drill. 

 

Fig. 4-13  Relation between progress of tool wear and            

the estimated thrust force of 3 mm drill. 
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Fig. 4-15  Relation between progress of tool wear and                  

the average of estimated thrust force of 3 mm drill. 

 

Fig. 4-16  Relation between progress of tool wear and                      

the average of estimated cutting torque of 3 mm drill. 
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4.3.3 Flank Wear of Tap Drill 

To investigate the wear progress on the tap drills under the cutting 

conditions in Table 4-3, the widths of the flank wear are measured with a 

microscope. The average width of the flank wear is obtained by setting 20 

evaluation sections on the flank wear surface as shown in Fig. 4-17. Figure 

4-18 shows the relation between the average width of the flank wear and the 

number of tapped holes. It is clear that tool wear is promoted in tapping 

under the cutting conditions in Table 4-3. The tapping tests are also conducted 

using M3×0.5 spiral taps. Although the flank wear is measured with the 

microscope, no remarkable change is observed at the tool edge, as shown in Fig. 

4-19. However, the increase in cutting torque is clearly observed in the 

monitoring tests explained later. The tool life limitation of M3×0.5 spiral taps 

should be discussed including the cutting torque monitoring results.  

Fig. 4-17  Flank wear surface and evaluation sections on tool edge of tap drill. 

Table 4-3  Cutting condition to progress the tool wear in tapping. 

Types of tap M6×1.0 M3×0.5 

Rotational speed [min-1] 2120 4300 

Feed rate [mm/ min] 2120 2150 

Depth of screw holes [mm] 12 6 

Depth of pilot holes [mm] 15 8 

Workpiece material Carbon steel (S45C) Carbon steel (S45C) 

Type of cut Wet cutting 
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4.3.4  Wear-Induced Increase in Cutting Force and Torque 

in Tapping 

In this test, an M6×1.0 spiral tap is used after drilling a pilot hole with a 

Fig. 4-19  Flank wear of M3×0.5 tap drill; (a) after tapping         

of 20 holes, (b) after tapping of 1300 holes. 

Fig. 4-18  Relation between average width of flank wear    

and number of holes on carbon steel. 
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diameter of 5 mm. The spiral tap fractures after drilling of 2500 holes, as shown 

in Fig. 4-20. However, the tapping test is continued because of the high cutting 

accuracy of the tool, which is verified using a grade-2 screw gauge. The spiral tap 

breaks after tapping of 3580 holes. The relation between the estimated thrust 

force and the tool wear progress is as shown in Fig. 4-21. In the tapping tests, the 

estimated thrust force does not increase remarkably, unlike that in the drilling 

tests. Furthermore, the thrust force decreases drastically after the occurrence of 

fracture. The estimated thrust force varies from -100 N to 150 N. However, the 

wear-induced increase in the estimated cutting torque is clearly observed, as 

shown in Fig. 4-22. After fracture occurs, the estimated cutting torque does not 

increase and it fluctuates from 2.0 Nm to 3.0 Nm. From these results, it can be 

Fig. 4-21  Relation between estimated thrust force and 

progress of tool wear on tap drill. 

Fig. 4-20  Fractured tap after tapping of 2500 holes. 
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said that the estimated cutting torque is a suitable criterion for detecting the tool 

wear progress, because the thrust force hardly contributes to the tapping process, 

and a 2.5-Nm threshold would be suitable for determining the tool life limitation. 

The tests are also conducted using M3×0.5 spiral taps. Although the flank wear 

is measured with the microscope, no remarkable change is observed at the tool 

edge, as explained in the previous section. However, the estimated cutting torque 

increases gradually with the tool wear progress, as shown in Fig. 4-23. 

Fig. 4-23  Increase in cutting torque due to tool wear 

progress with M3×0.5 tap drill. 

Fig. 4-22  Relation between estimated cutting torque and 

progress of tool wear on tap drill. 
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Together with the results for the M6 tap, the above results indicate that setting 

a threshold to three times higher value than initial torque will be appropriate for 

determining the tool life limitation of the tap. As a result, it can be confirmed that 

the proposed method is a practical approach for monitoring tool wear progress 

because it satisfactorily detects the wear-induced increase in the cutting torque 

in the tapping process without any additional sensors. 

 

These results are obtained from the servo information in the ballscrew-driven 

stage control system; however, the friction force and torque vary according to the 

heat generation. Figure 4-24 shows the behavior of low-frequency error in the 

estimated cutting force in idling tests at the maximum feed rate of 50000 mm/min. 

Although, this is the result about X direction, the Z-direction ballscrew-driven 

stage also applies the same mechanical structures. The estimation error includes 

modeling errors of the machine structures. Because the friction varies due to heat 

generation, the low-frequency error changes gradually as shown in Fig. 4-24. 

After performing the idling movement enough, the low-frequency error differs 

from the initial value by 55 N at maximum which may be said as certifiable 

accuracy of the proposed method. However, the low-frequency error can be 

reduced by idling operation, i.e., generating heat in the mechanical structure in 

advance.  

To enhance the accuracy of the proposed wear monitoring method, the change 

in friction according to the operating time should be investigated, or the idling 

operation should be performed repeatedly before machining.  

  

Fig. 4-24  Difference of low-frequency error in X direction                              

between the 1st and 50th time experiments. 
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4.4 Summary 

In this chapter, a sensorless tool wear monitoring method in drilling and 

tapping is proposed by using servo information in a spindle and a 

ballscrew-driven stage controller. 

 

The cutting torque and thrust force are successfully estimated by constructing 

physical models of the spindle and the ballscrew-driven stage and applying the 

disturbance observer technique. Experimental results for the drilling process 

show that the wear-induced increase in the thrust force of 3-mm- and 

6-mm-diameter drills can be captured using the proposed method. Although the 

estimated cutting torque also increases with tool wear progress in drilling with 

6-mm diameter drills, no remarkable change in the cutting torque can be 

observed in drilling with 3-mm-diameter drills. Experimental results for the 

tapping process show that the increase in the cutting torque can be monitored in 

tapping tests with both the M6×1.0 and the M3×0.5 spiral taps. However, the 

thrust force cannot be used as a criterion of tool wear progress because no obvious 

change is observed even after the wear of the tool. 

 

From these results and on the basis of the estimated thrust force for drills and 

the estimated cutting torque for tap drills, the tool wear progress can be 

accurately monitored using the proposed method without any additional sensors.
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5 Tool Collision Detection System 

5.1 Introduction 

The main cause of tool collision in a machine tool is human-induced wrong 

operation. When a NC machine tool continuously performs a provided program 

without any special countermeasures, a second accident and a critical damage on 

the machine structure are unavoidable. Although several studies have proposed 

collision prediction methods by constructing a 3D model and simulating the 

movement of mechanical components according to the given tool path in order to 

confirm whether tool collision will occur or not [29, 30], they cannot deal with the 

case in which the tool and the workpiece are wrongly set. It is difficult to perfectly 

avoid a tool collision; thus, damage reduction also should be considered.  

In this research, a disturbance observer-based tool collision detection method is 

proposed. In the concrete terms, the proposed method detects the 

collision-induced fluctuation in the estimated cutting force in each axis by using a 

pseudo-differential process. In order to confirm the adequacy of the proposed 

method, several tool collision experiments are performed in this chapter. 

5.2 Proposal of Collision Force Estimation Method 

Although the collision detection would be possible by using the proposed 

cutting force estimation algorithm because it does not compensate the collision 

force, this research introduces a pseudo differential to the estimated cutting force. 

The differential value of the estimated cutting force is defined as “disturbance 

jerk” and used to detect the collision-induced fluctuation in the estimated cutting 

force. Firstly, this section explains the reason why the estimated cutting force is 

not used for collision detection directly. 

The behavior of the estimated cutting force in X direction is shown in Fig. 5-1 

when the x stage is fed at 50000 mm/min (maximum feed rate of the used 

machine tool) without collision, where the nominal parameters are given as 

shown in Chapter 3. The red line shows the estimated disturbance force and the 

green line shows the moving average of 0.05 s window for the estimated 
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disturbance force respectively, where the cutoff frequency is 2000 rad/s here. 

Because the misjudgment must be avoid to ensure the reliability of the 

detection system, the threshold has to be higher than the signal noise during 

idling movement as shown in Fig. 5-1. On the other hand, excessively-high 

threshold may cause the detection delay and miss the collision-induced 

fluctuation. Therefore, a proper threshold setting method should be discussed 

from the viewpoint of the reliability and the time response. 

In order to confirm the characteristic of the high-frequency noise, the 

probability distribution of the difference between the estimated disturbance force 

and the moving average is shown in Fig. 5-2. This distribution incudes 3200 

samples from 1.05 s to 1.45 s shown in Fig. 5-1, and its average is -0.473 N and its 

standard deviation is 144.2 N. Additionally, a theoretical standard distribution 

which has the same average and standard deviation is also shown in Fig. 5-2 as a 

green line. The both distributions may fit each other well. In order to evaluate the 

degree of coincidence among two populations, 𝜒2 test is generally used. When 

the significance level is set to 5 % and the 𝜒2 test is performed on the 3200 

samples, the test result shows that the high frequency noise has a standard 

distribution because the upper probability 𝑝 is 0.3349. 

Fig. 5-1  Estimation result in X direction: red line represents the estimated 

cutting force; green line represents the moving average of 0.05 s. 
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Fig. 5-2  Probability distribution of high frequency component of estimated 

cutting force: green line represents normal distribution. 

Fig. 5-3  Probability distribution of high frequency component of estimated disturbance force    

(a) cutoff frequency of 1000 rad/s, standard deviation  = 50.65 N, (b) that of 1500 rad/s,  = 90.01 N     

(c) that of 2000 rad/s,  = 144.2 N, (d) that of 2500 rad/s,  = 215.7 N. 
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Even in case that the cutoff frequency is 500, 1000, 1500 rad/s, the each high 

frequency noise has a standard distribution. Thus, the proper threshold is 

theoretically decided based on the upper probability of the standard distribution. 

Typical upper probability of the standard distribution is summarized in Table 5-1. 

 

Table 5-1 Upper probability of standard deviation. 

Threshold Upper probability 

µ (Average) 0.500 

µ +  0.159 

µ + 3 1.35 × 10-3 

µ + 4 3.17 × 10-5 

µ + 5 2.87 × 10-7 

µ + 6 9.87 × 10-10 

µ + 7 1.28 × 10-12 

 

According to the Table 5-1, even in case of (µ + 3 threshold which is often 

used for the abnormal state detection statistically, this system is expected to 

cause more than 10 times misjudgments in 1 s because the sampling frequency is 

8000 Hz (8000×1.35×10-3=10.8). Although the number of the misjudgments can 

be reduced once three years in case of (µ + 7) threshold, the threshold is 1009 N 

when the cutoff frequency is set to 2000 rad/s. As explained above, the threshold 

should be as low as possible not to miss the collision. 

To enhance the detection reliability even with a low threshold, the criterion 

should be changed from one-data-based determination to multi-data-based 

determination. For example, the probability that five samples exceeds the (µ + 

3) threshold continuously is sufficiently small as (1.35×10-3)5=4.48×10-15, 

which is expected to happen once 884 years when the sampling frequency is 

8000Hz. Furthermore, the threshold itself can be set to lower without reliability 

reduction. 

 

However, not only high frequency noise but also the error of low frequency 

components (shown as moving average) should be discussed. In case of idling test, 

the moving average value of the estimated disturbance force always has to be 

zero theoretically, but about 100 N error is confirmed in the moving average as 

shown as the green line in Fig. 5-1. This low-frequency error would occur due to 

the parameter variation of the torque coefficient and the mass, the friction 
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identification error, and the heat generation in the mechanical components. It is 

known that the heat generation leads to the change in the contact pressure 

between the mechanical components like linear guides and bearings. As a result, 

the friction changes according to the normal force variation. Figure 5-4 is the 

behaviors of low-frequency components in the estimated disturbance force under 

the same condition with the experiment of Fig. 5-1. In this test, the difference of 

the estimated disturbance force along with the number of experiments is 

evaluated by repeating the same operation continuously. As a result, the first 

time result and 50th times result have 55 N difference at the maximum. This 

error is difficult to predict and would be a critical problem for the threshold 

determination for the collision detection. 

 

As a conclusion of the above discussion, the multi-data-based determination is 

actually a useful method to set the threshold according to the probability theory, 

but it is not applicable if the low-frequency error cannot be compensated 

sufficiently. Therefore, we decide to apply a pseudo differential process to the 

estimated disturbance force, although low-frequency components are generally 

eliminated with a high-pass filter. The collision-induced fluctuation in the 

estimated disturbance force would be drastic and able to be emphasized with a 

differential process. Furthermore, phase lead characteristic of the differential 

process would enhance the detection response at the same time. 

From the above reasons, the pseudo differential value of the estimated 

disturbance force, which is defined as “disturbance jerk” and its amplitude is 

expressed with the units of “N/s” or “kN/s”, is utilized to detect a tool collision in 

Fig. 5-4  Difference of low-frequency error in X direction                              

between the 1st and 50th time experiments. 
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this study. Thus, the characteristic of the pseudo differential value should be 

analyzed to adjust the detection system properly. 

As one of the example, the behavior of the pseudo differential value is shown in 

Fig. 5-5, where the x stage is fed at 50000 mm/min and cutoff frequency is set to 

1000 rad/s (the analysis is performed on the same data of the experiment shown 

in Fig. 5-1). The signal noise gets larger during acceleration/deceleration than 

during uniform motion. Considering that the amplitude of the signal noise does 

not change remarkably in Fig. 5-1 and the differential process expands 

particularly the high frequency components, the frequency components would be 

different in each section. In order to analyze the frequency components included 

in the disturbance jerk, the FFT analysis is performed and the result is shown in 

Fig. 5-6. The quantum error generates not a white noise but a signal noise 

including 1000, 2000, 4000 Hz components mainly, which would relate to the 

Fig. 5-5  The disturbance jerk estimation in X direction. 

Fig. 5-6  The FFT analysis of estimated disturbance jerk. 
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sampling frequency of 8000 Hz. The collision-induced variation in the 

disturbance jerk would be a pulse wave, then, various frequency components are 

included Therefore, the disturbance jerk would be usable for the collision 

detection even if the 1000, 2000, 4000 Hz components are eliminated. 

In this test, the 1000 and 2000 Hz components are eliminated with 

second-order IIR notch filter and the 4000 Hz component is omitted by 

second-order moving average. 

 

Introducing the above signal processing, the behavior of the obtained estimated 

disturbance jerk is shown in Fig. 5-7 (the cutoff frequency is set to 1000 rad/s). 

Compared with Fig. 5-5, the signal noise is suppressed. This result also indicates 

that the signal noise in the acceleration/deceleration section includes 1000, 2000, 

4000 Hz components more than the other sections, however, it is difficult to find a 

fundamental reason. This would depend on the NC controller’s configuration, but 

this research does not discuss it in detail because it is not a significant problem to 

establish the collision detection system. 

 

In order to determine a proper threshold, the distribution of the estimated 

disturbance jerk is discussed here. The probability distribution of the estimated 

disturbance jerk of 3200 samples is as shown in Fig. 5-8; its average is 0.3 kN/s, 

and its standard deviation is 13.2 kN/s. The standard distribution is also drawn 

in Fig. 5-8, which has the same average and deviation. When the cutoff frequency 

is set to 1000 rad/s, the distribution of the disturbance jerk looks fit to the 

standard distribution, however, the 𝜒2  test result shows that the upper 

probability is almost zero and denies that the population is a standard 

Fig. 5-7  The signal-processed disturbance jerk. 
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distribution. This is because two samples exceed the value of (µ + 4) in 3200 

samples. The upper probability of (µ + 4) is so small as 3.17×10-5 which 

expectedly happens only once in 31546 samples. Thus, it is abnormal that the two 

samples exceed the value of (µ + 4) in only 3200 samples when the population is 

the standard distribution. In this case, the probability distribution function 

should be derived approximately by collecting enough data. This function varies 

according to the cutoff frequency, thus, the cutoff frequency modification should 

be discussed preferentially. 

 

When the collision occurs with a 7 mm diameter drill and the cutoff frequency 

is set to 1000 rad/s, the estimated disturbance jerk fluctuates as shown in Fig. 5-9 

corresponding to the idling test result shown in Fig. 5-7, where the feed rate is 

50000 mm/min. The maximum value of the disturbance jerk is less than 70 kN/s 

in an idling test, on the other hand, the peak value of the disturbance jerk 

reaches 280 kN/s in a collision test. Therefore, this result already indicates that 

the collision detection sufficiently can be performed with the disturbance jerk 

monitoring. Here, to identify the proper cutoff frequency, two evaluation factors 

are introduced; time response to detect the collision as soon as possible, and 

robustness to distinguish the collision without mistakes. The time response of the 

proposed method can be easily evaluated by measuring the time at which the 

disturbance jerk signal exceeds a threshold. On the other hand, there would be 

Fig. 5-8  Probability distribution of the estimated disturbance jerk:         

green line represents normal distribution. 
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several ways to evaluate the robustness of the detection. In this research, the 

detection robustness is defined as the ratio between the collision-induced peak 

and the noise-induced peak values as shown in Fig. 5-9, which may be a clear 

criterion to distinguish the collision signal from the signal noise. 

By calculating the ratio of the peak values for each cutoff frequency, the 

relation shown in Fig. 5-10 is derived, where it shows three results of collision 

experiments with 7 mm diameter tools. The derived relation indicates that the 

robustness can be enhanced when the cutoff frequency is set to from 300 to 400 

rad/s. Although the peak ratio would be theoretically larger with a smaller cutoff 

frequency because of the noise reduction, low frequency fluctuation during 

accelerating/decelerating due to parameter variation would be a dominant factor 

in the disturbance jerk fluctuation when the cutoff frequency is set to too low. 

That would be why the peak ratio has a local maximum value. By calculating the 

average of obtained three cutoff frequencies at which local maximum peak ratio is 

observed, 335 rad/s is determined as the proper cutoff frequency to enhance the 

detection robustness. 

Fig. 5-9  The estimated disturbance jerk (cutoff frequency: 1000rad/s): red line represents the 

result of an idle test; green line represents the result of the collision test. 
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When the cutoff frequency is set to 335 rad/s, a drastic fluctuation is clearly 

observed as shown in Fig. 5-11. The collision peak is 59.7 kN/s and the noise peak 

is 6.19 kN/s, and the peak ratio is 9.6 as a result. 

 

As a next step, the time response of detection is also evaluated based on the 

Fig. 5-10  The ratio between disturbance jerk peak of collision and noise. 

Fig. 5-11  The estimated disturbance jerk (cutoff frequency: 335rad/s): red line represents the 

result of an idle test; green line represents the result of the collision test. 
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experimental result. In this discussion, the collision time is required by 

measuring the distance between the tool and the workpiece in advance and 

corresponding to the position response. 

A low-pass filter usually causes larger phase delay with lower cutoff frequency 

in the signal. Alternatively, the noise reduction effect of the low-pass filter 

enables the threshold to get lower. Considering these points related to the 

detection response time, the time-response evaluation is performed by setting a 

threshold of (µ + 7) and measuring the time until the disturbance jerk exceeds 

the threshold. The detection time with each cutoff frequency is summarized in 

Fig. 5-12. In this result, the detection time is not shown in the region higher than 

1840 rad/s because the disturbance jerk does not exceed the (µ + 7) threshold. 

The relation between the detection time and the cutoff frequency indicates that 

the tool collision can be detected within only 3 ms when the cutoff frequency is set 

to from 220 to 1700 rad/s. Furthermore, the detection-time variation is only 0.5 

ms with the cutoff frequency from 300 to 1600 rad/s. From this viewpoint, the 

cutoff frequency has an insignificant effect on the detection time, excepting the 

region lower than 300 rad/s and higher than 1600 rad/s. 

 

As a conclusion, we determine the proper cutoff frequency as 335 rad/s to 

enhance the robustness and the time response performance of the collision 

detection based on the disturbance jerk estimation. 

 

The remaining problem is a threshold determining procedure. When the 

distribution is not standard, it should be analyzed by repeating experiments 

Fig. 5-12  Relation between cutoff angular velocity and +7σthreshold exceed time. 
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many times. In this research, 180000 samples of the estimated disturbance jerk 

are collected with 50 times idling tests and their distribution is shown in Fig. 5-13, 

whose average is 0.062 kN/s, the standard deviation is 2.43 kN/s, the maximum 

value is 8.48 kN/s, and the minimum value is -10.42kN/s. In case that the 

threshold is set to (µ + 5=12.15kN/s), no sample exceeds it in all 180000 

samples. Assuming that the upper probability of (µ + 5) is less than 1/180000, 

the probability to continuously exceed the threshold three times is less than 

1.71 × 10−16  (once 2.31 × 104 years), although the disturbance jerk samples 

are not independent each other because high-frequency components are filtered. 

 

Furthermore, the signal noise gets smaller with lower feed rate and this 

discussion is performed with the idling test data taken at maximum feed rate. 

From this viewpoint, the threshold is utilizable even for other feed rates. Although 

idling tests should be conducted at each feed rate, the test has to be repeated so 

many times and it is against the demand of simplification.  

In order to ensure the robustness of the detection, (µ + 6) threshold 

(=14.58kN/s) is employed as an enough high value and the situation is regarded 

as tool collision when the disturbance jerk exceeds the threshold three times 

continuously. If the distribution were standard, the probability of this situation is 

equal to 1.71 × 10−28. 

 

Fig. 5-13  Distribution of the estimated disturbance jerk. 
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Summarizing the above discussion, the characteristics of the disturbance 

jerk-based tool collision is explained as follows. 

 

① The cutoff frequency of low-pass filters in disturbance observer and pseudo 

differential process is set to 335 rad/s. 

② The threshold is set to 14.58 kN/s (= µ + 6) based on the standard deviation 

 of the noise. 

③ The system regards the situation as tool collision when the disturbance jerk 

exceeds the threshold three times continuously. 

 

On the basis of the proposed detection method, the adequacy of the proposed 

method is experimentally evaluated in the next section. 

5.3 Tool Collision Test 

The spindle bearing would be broken during the collision experiments if the 

tool is set to the tool holder. In order to avoid the damages on the spindle, a tool 

holder is directly set to the Z-axis stage by mounting a jig shown in Fig. 5-14. 

5.3.1 Tool Collision in Horizontal Direction 

The toll collision in horizontal direction of tool physically would have some 

delay because of the tool deflection, compared with axial direction. Furthermore, 

Fig. 5-14  The jig mounted on the Z stage. 
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the tool would be easily broken and the collision force would be small when the 

tool diameter is small. To confirm these points, the collision tests are performed 

in X direction firstly.  

The validity of the proposed method is confirmed with three kinds of stage feed 

rates (50000, 25000, 5000 mm/min) and three kinds of tools having different 

diameters (7, 5, 3 mm). Additionally, the tests are also conducted including the 

tool collision during accelerating or decelerating the stage. Totally, 15 kinds of 

collision experiments are conducted as shown in Table 5-2. Figure 5-15 shows the 

appearance of the experiment. 

 

  

Table 5-2  Experimental condition. 

Direction Horizontal direction 

 (X-axis) 

Tool Diameter 7 mm, 5 mm, 3 mm 

Feed condition 50000 mm/min,  

25000 mm/min,  

5000 mm/min,  

Acceleration (10 m/s2), 

Deceleration (-10 m/s2) 

 

Fig. 5-15  Tool path in X direction. 
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Figure 5-16 shows the behaviors of the disturbance jerk at the moment 

different diameter drills collides at 50000 mm/min (maximum feed rate). In terms 

of the results of 7 and 5 mm diameter drills, the disturbance jerk clearly exceeds 

the threshold of 14.58 kN/s (= µ + 6). In 3 mm diameter drill, 22 samples get 

larger than the threshold. As a result, the proposed method actually has an 

ability to detect the tool collision even in case of 3 mm diameter tool. However, the 

collision detection would be difficult when the tool diameter is less than 3 mm. 

 

  

Fig. 5-16  Results of collision tests at max. feed rate (50000 mm/min)                     

in horizontal direction (X-axis). 
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Figure 5-17 shows the monitoring results at 25000 mm/min (50% of maximum) 

feed rate. The collisions with 7 and 5 mm diameter drills are detectable with the 

proposed method. However, the fluctuation due to the collision with a 3 mm 

diameter drill does not exceed the threshold, although the fluctuation itself can 

be observed in the estimated disturbance jerk.  

Therefore, the collision with the 3 mm diameter drill has a possibility to be 

detected by changing the other threshold determination. For example, a dynamic 

threshold would be useful which changes according to the movement of the stage. 

Because the variation of the disturbance jerk in acceleration section (from 1.0 to 

1.1 s) is larger, a lower threshold is available in other sections by analyzing the 

distribution in each section separately. However, the method should not be 

changed finely based on the signal features from the viewpoint of versatility.  

  

Fig. 5-17  Results of collision tests at 50 % of max. feed rate (25000 mm/min)                     

in horizontal direction (X-axis). 
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Figure 5-18 shows the experimental results at 5000 mm/min (10% of 

maximum) feed rate. In these experiments, the tool shows different behaviors 

with previous experiments at 50000 and 25000 mm/min feed rate. The tool 

collision causes from 2.75 s in all experiments, and after that, the elastic 

deformation of the tools is observed for about 1.5 s. This phenomenon is also 

confirmed from the disturbance jerk increase like a square wave, which indicates 

that the applied disturbance force proportionally and gradually increases from 

2.75 s. Moreover, tool breakage occurs at about 2.90 s and it is observable as a 

pulse wave in the estimated disturbance jerk. It indicates that the disturbance 

force drastically removes by the tool breakage. In other words, the tool contact is 

detectable in case of 7 mm diameter drill before tool breakage because the 

disturbance jerk signal exceeds in the elastic deformation section. 

As a result, the proposed method successfully detects the tool collision with all 

Fig. 5-18  Results of collision tests at 10 % of max. feed rate (5000 mm/min)                     

in horizontal direction (X-axis). 
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experimental results with 7mm, 5mm and 3mm diameter drills. 

The collision during accelerating is also focused on this experiment.  

Figure 5-19 shows the behavior of the estimated disturbance jerk when the tool 

collision occurs during the x-stage acceleration. In case of 7 and 5 mm diameter 

drills, the collision-induced fluctuations clearly exceed the threshold, then, the 

tool collisions are detectable. On the other hand, the estimated disturbance jerk 

does not exceed the threshold at the tool collision with the 3 mm diameter drill. 

As previously noted, it may be detectable with a different threshold 

determination because the fluctuation due to the collision is slightly confirmed. 

  

Fig. 5-19  Results of collision tests during accelerating                                    

in horizontal direction (X-axis). 

. 
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The similar experiments are also conducted for a tool collision in the 

deceleration section as shown in Fig. 5-20. As a result, the proposed method 

actually detects the fluctuation due to collision with 7, 5, and 3 mm diameter 

drills. 

 

Summarizing the collision experiments in X direction, it is clear that the tool 

collision can be detected when the tool diameter is 5 mm and over regardless of 

feed rate. However, the collision with 3 mm diameter drill cannot be detected at 

some feed rates because the small diameter tool breaks so easily not to generate a 

large disturbance force fluctuation. The fluctuation itself in the disturbance jerk 

can be slightly confirmed; therefore, the collision has a possibility to be detected 

by adapting a dynamic threshold, which varies according to the stage motion, 

even in case of 3 mm diameter drills. 

Fig. 5-20  Results of collision tests during decelerating                                    

in horizontal direction (X-axis). 
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The above experimental results are summarized in Table 5-3. 

 

Table 5-3  Summery of X-direction collision experiments. 

 Max. 50% of Max. 10% of Max. Acceleration Deceleration 

7mm 
○ ○ ○ ○ ○ 

5mm 
○ ○ ○ ○ ○ 

3mm 
○ △ ○ △ ○ 

○…Success  △…Need to Improve 

5.3.2 Tool Collision in Axial Direction 

The collision in axial direction generates large collision force and easily leads to 

a critical damage on the spindle parts like bearings because the tool hardly 

deforms when compressed in the axial direction. Therefore, the collision detection 

system for axial direction is indispensable. 

The ballscrew-driven stages for X axis and Z axis have a same rotary encoder 

resolution and the same P-PI control method  is applied to them. Thus, the 

proper cutoff frequency for X-axis collision detection (335 rad/s) would be also 

available for Z-axis collision detection to enhance the robustness and the time 

Table 5-4  Experimental Condition. 

Direction Vertical direction 

 (Z axis) 

Tool Diameter 3 mm 

Feed condition 50000 mm/min,  

25000 mm/min,  

5000 mm/min,  

Acceleration (10 m/s2),  

Deceleration (-10 m/s2) 

 
Fig. 5-21  Tool path in Z direction. 



Chapter 5 Tool Collision Detection System 

109 

 

response. 

When the Z-axis collision tests are performed, only 3 mm diameter drills are 

used because the collision force would be too large to avoid a serious damage on 

the Z-axis ball screw stage, although spindle damage is avoidable by using the jig. 

For the same reasoning, 150 mm length long-type drill is selected, which is easy 

to break. By using five kinds of feed rate, (50000, 25000, 5000 mm/min, and 

acceleration/deceleration) the Z-axis collision tests are conducted as summarized 

in Table 5-4. Figure 5-21 shows the appearance of the experiment.  

 

The idling tests are conducted for Z-axis movement, and the distribution of the 

disturbance jerk is analyzed. As a result, the average is -0.54 kN/s and the 

standard deviation is 5.36 kN/s. From this result, the threshold is set to 32.16 

kN/s(= µ + 6) in the Z-axis tool collision tests. 

 

In case of that the feed rate is set to 50000 and 25000 mm/min, the tool collision 

can be detected as shown in Fig. 5-22. In Fig. 5-22 (a), the estimated disturbance 

jerk exceeds the threshold three times because the broken tool hits the workpiece 

repeatedly. 

Fig. 5-22  The result of collision tests in Z direction: (a) maximum speed (50000 mm/min),   

(b) 50% of maximum speed (25000 mm/min). 
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Then, the behavior of the disturbance jerk when the collision occurs during 

accelerating/decelerating the z stage is shown in Fig. 5-23, where the feed rate is 

set to 50000 mm/min. In both cases, the disturbance jerk clearly gets larger than 

the threshold of (µ + 6). 

As a next, the collision experiment at the feed rate of 5000 mm/min is shown in 

Fig. 5-24. The estimated disturbance jerk exceeds when the collision occurs. 

However, a large fluctuation in the disturbance jerk is observed during 

accelerating/decelerating, which is not observed in the X-axis collision tests. 

Fig. 5-23  The result of collision tests in Z direction (a) acceleration, (b) deceleration. 

Fig. 5-24  The result of collision test in 5000 mm/min in Z direction． 
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Furthermore, the misdetection occurs because this fluctuation exceeds the 

threshold, which is generated at the resonance frequency of the stage. Although it 

is an infinitesimal vibration for the position control, the error becomes large in 

the disturbance jerk dimension. In this case, a two mass system model should be 

adopted; however, the number of parameters which has to be identified increases. 

This is against the simplification for the versatility. From this viewpoint, the 

dynamic threshold may be a useful method to avoid a misdetection. 

The above Z-axis collision experimental results are summarized in Table 5-5.  

 

Table 5-5  Summary of the Z-axis collision experiments. 

 Max. 50% of Max. 10% of Max. Acceleration Deceleration 

3mm 
○ ○ △ ○ ○ 

○…Success  △…Need to be improved 
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5.4 Summary 

In this chapter, the applicability of the observer-based cutting force estimation 

to tool collision detection is discussed through the abundant experiments. By 

requiring the differential value of the disturbance force named “disturbance jerk,” 

the collision force is captured based on the servo information in the x and z 

ballscrew-driven stage control system. The archived results are summarized as 

follows. 

 

1. To explain the reason why the disturbance jerk is employed to tool collision 

detection in the proposed method, the estimated disturbance information 

is analyzed based on the probability theory. Furthermore, the modification 

method is proposed for the cutoff frequency of low-pass filters in the 

disturbance observer and the pseudo differential process on the basis of 

the evaluation of time response and robustness. 

 

2. In the horizontal direction, tool collisions with 7 and 5 mm diameter drills 

can be detected by setting a threshold on the estimated disturbance jerk 

information. On the other hand, collision with a 3 mm diameter tool 

cannot be detected with the static threshold because the collision-induced 

fluctuation is not so large to exceed the threshold. 

 

3. During accelerating/decelerating the z stage, the fluctuation at the 

resonance frequency is observed in the estimated disturbance jerk when 

the feed rate is set to 5000 mm/min. The collisions at the other feed rate 

are successfully detected with the proposed method. 
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6 Tool Fracture Detection System 

6.1 Introduction 

A tool fracture is a useful criterion to evaluate the cutting condition and predict 

a tool breakage because it generally occurs when an extra load is applied on the 

tool edge. However, excepting a large fracture which should be regarded as a tool 

breakage, tool fracture detection in drilling is hardly proposed because the 

fracture-included variation is small and the sensor mounting space is difficult to 

ensure due to usage of cutting oil. Therefore, a new approach has to be created to 

detect a small vibration caused by the drill fracture. 

As explained in Section 2.3.4, this research proposes drill fracture detection 

based on the disturbance observer in the x and y ballscrew-driven stages. 

Furthermore, a novel signal processing method named “rotational digital filter 

(RDF)” is proposed to enhance the fracture detection accuracy, which has a 

unique characteristic to pass only a signal which is rotating in clock-wise 

direction on an XY plane. In this chapter, the proposed detection method is 

evaluated through several drilling tests with fractured drills. Furthermore, the 

filtering effect of the RDF is confirmed through a time-domain simulation. 

6.2 Concept of Drill Fracture Detection 

How to detect a drill fracture is explained in this section. Under usual drilling 

Non-axial 
component 

Cutting force 

Resultant force 

Rotational angle 

X 

Y 

Z 

θ 

(b) (a) 

Fracture 

Non-axial 
component 

Fig. 6-1  Cutting force direction in drilling with a fractured drill:              

(a) inclined resultant force, (b) rotation of XY component in cutting force. 
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condition, the resultant cutting force generates in the axial direction because of 

the axial symmetrical structure of the drill. However, the resultant force has 

non-axial component when the drill fracture occurs because the structure 

becomes axially asymmetrical as shown in Fig. 6-1 (a). The generated non-axial 

component rotates along with the spindle rotation as Fig. 6-1 (b); thus, the tool 

fracture can be detected by capturing the vibration at the spindle rotation 

frequency in X and Y directions with the proposed cutting force estimation. 

Furthermore, the non-axial component moves in clockwise direction because a 

drill generally rotates in the clockwise direction from the spindle side. To enhance 

the detection accuracy of drill fracture, this research invented the RDF theory. 

6.3 Proposal of Rotational Digital Filter 

6.3.1  Investigation of the Characteristics with a 

Time-Domain Simulation 

Firstly, the filtering effect of RDF is evaluated by inputting a combined wave as 

shown in Fig. 6-2 on a time-domain simulation. The combined wave has three 

Fig. 6-2  Extracting performance of RDF for a signal moving in clockwise direction. 
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circular signal components; 150 Hz clock-wise circular orbit signal, and 110 Hz 

noise and 180 Hz noise. In this case, the RDF actually extracts the 150 Hz 

clock-wise signal as confirmed from the output signal. Although 110 Hz and 180 

Fig. 6-3  Each output signals of RDF when various phase difference is applied to input signals. 
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Hz noises move on an elliptic orbit in the clock-wise direction, the influence of the 

both noises is hardly confirmed in the output signal. Therefore, RDF would have 

a band-pass filtering effect and a clock-wise rotating signal pass effect 

simultaneously. 

 

As a next step, the influence of the phase lag between x and y components in 

case of only 150 Hz is input, where the components of input signal are described 

as Eq. 6-1. 

 {
𝑥 =  1000sin(2𝜋𝑡 × 150 +  𝛼)

𝑦  =      1000 sin(2𝜋𝑡 × 150)
 (6-1) 

Figure 6-3 shows the output signal of the RDF corresponding to the each phase 

delay in the input signal components 𝛼. 

The output signal always draws a circular orbit and its radius varies according 

to the phase lag 𝛼 in the input signal. In particular, the output radius becomes 

zero when the phase lag is 𝛼 = 𝜋 2⁄ , i.e., the input signal is rotating in 

counter-clock-wise direction. Furthermore, the input signal just passes when the 

phase lag is 𝛼 = −𝜋 2⁄ , i.e., the input signal is rotating in clock-wise direction. 

From these results, the RDF certainly provides a clock-wise signal pass effect as 

expected in the proposed theory.  

 

An interesting point of the results shown in Fig. 6-3 is that the RDF always 

outputs a circular orbit even if the input signal moves in an elliptic orbit or a line 

orbit. Moreover, the output with small radius is observed even when the input 

signal draws elliptic orbit in counter-clock-wise direction. The output becomes a 

zero matrix only when the input signal moves on a circular orbit in 

counter-clock-wise direction. The mathematical meaning of the RDF output is 

discussed here. 

 

Theoretically, two types of RDF can be created for clock-wise signals and 

counter-clock-wise signals. Although it is difficult to image that a signal is 

rotating in the clock-wise and the counter-clock-wise directions at the same time, 

symmetrical results can be obtained by analyzing the input signals in Fig. 6-3 

with a counter-clock-wise RDF. Therefore, excepting complete circular orbits, all 

elliptic orbits can be said to have both a clock-wise component and a 

counter-clock-wise component. From this viewpoint, a hypothesis can be 

established, which assumes that all circular, all elliptic, and all linear movements 



Chapter 6 Tool Fracture Detection System 

117 

 

on a two dimensional plane at a certain frequency can be separated into the 

clock-wise and the counter-clock-wise components of the same frequency. In an 

opposite way, all circular, all elliptic, and all linear movement at a certain 

frequency can be generated by combining a clock-wise signal and a 

counter-clock-wise signal at the same frequency. This assumption is 

mathematically proven in this section. 

 

On an XY plane, a clock-wise signal (𝑥𝑐𝑤(𝑡), 𝑦𝑐𝑤(𝑡)) and a counter-clock-wise 

signal (𝑥𝑐𝑐𝑤(𝑡), 𝑦𝑐𝑐𝑤(𝑡)) can be represented as Eq. 6-2, where 𝑎 ≥ 𝑏. 

 
(𝑥𝑐𝑤(𝑡), 𝑦𝑐𝑤(𝑡)) = (𝑎 cos(𝜔𝑡 + 𝜃), 𝑎 sin(𝜔𝑡 + 𝜃)), 

(𝑥𝑐𝑐𝑤(𝑡), 𝑦𝑐𝑐𝑤(𝑡)) = (𝑏 cos(−𝜔𝑡 + 𝜃), 𝑏 sin(−𝜔𝑡 + 𝜃) ) 
(6-2) 

Their orbits can be drawn on the XY plane as shown in Fig. 6-4. 

By adding both signals in Eq. 6-2, the combined signal (𝑥(𝑡), 𝑦(𝑡)) is derived as 

follows: 

(𝑥(𝑡), 𝑦(𝑡)) = (𝑎 cos(𝜔𝑡 + 𝜃) + 𝑏 cos(−𝜔𝑡 + 𝜃),   𝑎 sin(𝜔𝑡 + 𝜃) + 𝑏 sin(−𝜔𝑡 + 𝜃) ) (6-3) 

Equation 6-3 can be transformed as Eq. 6-4. 

(𝑥(𝑡), 𝑦(𝑡)) = (√𝑎2 + 𝑏2 + 2𝑎𝑏 cos 2𝜃 cos(𝜔𝑡 +  𝛼),  √𝑎2 + 𝑏2 − 2𝑎𝑏 cos 2𝜃 sin(𝜔𝑡 +  𝛽)) 

where 

cos 𝛼 =
(𝑎 + 𝑏) cos 𝜃

√𝑎2 + 𝑏2 + 2𝑎𝑏 cos 2𝜃
, sin 𝛼 =  

(𝑎 − 𝑏) sin 𝜃

√𝑎2 + 𝑏2 + 2𝑎𝑏 cos 2𝜃
 , 

cos 𝛽 =
(𝑎 − 𝑏) cos 𝜃

√𝑎2 + 𝑏2 − 2𝑎𝑏 cos 2𝜃
, sin 𝛽 =  

(𝑎 + 𝑏) sin 𝜃

√𝑎2 + 𝑏2 − 2𝑎𝑏 cos 2𝜃
 

(6-4) 

In order to confirm whether the combined signal of Eq. 6-4 describes an elliptic 

Fig. 6-4  Orbits of signals represented with Eq. 6-2. 
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orbit or not, the rotated coordinate system at −𝜃  rad is introduced. The 

combined signal (𝑥(𝑡), 𝑦(𝑡))  can be translated to the signal on the rotated 

coordinate system (𝑋(𝑡), 𝑌(𝑡)) as follows: 

[
𝑋(𝑡)
𝑌(𝑡)

] = [
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

] [
√𝑎2 + 𝑏2 + 2𝑎𝑏 cos 2𝜃 cos(𝜔𝑡 +  𝛼) 

√𝑎2 + 𝑏2 − 2𝑎𝑏 cos 2𝜃 sin(𝜔𝑡 +  𝛽)
] = [

(𝑎 + 𝑏) cos𝜔𝑡
(𝑎 − 𝑏) sin 𝜔𝑡

] (6-5) 

Thus,  

 sin2 𝜔𝑡 + cos2 𝜔𝑡 = (
𝑋(𝑡)

𝑎 + 𝑏
)

2

+ (
𝑌(𝑡)

𝑎 − 𝑏
)

2

= 1 (6-6) 

Therefore, the combined signal actually draws an elliptic orbit which has 𝑎 + 𝑏 

length long axis and 𝑎 − 𝑏 length short axis on the rotated coordinate system at 

−𝜃 rad as shown in Fig. 6-5. The rotational angle 𝜃 is arbitrary, thus, all elliptic 

movement can be generated by combining proper clock-wise and 

counter-clock-wise components. Furthermore, a circular orbit and a linear orbit 

can be generated by substituting 𝑏 = 0 or 𝑏 = 𝑎 respectively. 

Following the inverse order, it is clear that all circular, elliptic, and linear 

orbits can be separated into a clock-wise component and a counter-clock-wise 

component. Moreover, the same procedure can be applied to the case of 𝑎 < 𝑏. 

Considering the linearity of trig functions and the counter-clock-wise signal 

cancelation characteristic of RDF shown in Eqs. 2-63 to 2-65, it is obvious that 

only the clock-wise component is extracted by the clock-wise-type RDF. 

 

This proof also can be referred to a discrete domain as similar procedures. As a 

Fig. 6-5  The combined signal. 
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conclusion, all circular, elliptic, and linear orbits can be separated into clock-wise 

and counter-clock-wise components, and the clock-wise-type RDF can extract the 

clock-wise component from the signal moving on the two dimensional coordinate.  

The characteristic of RDF would be useful to enhance the detection accuracy of 

drill fracture because the non-axial component of the resultant cutting force 

moves in clockwise direction as explained in Section 6.2. By applying RDF to the 

estimated cutting force in X and Y directions, the fracture-induced fluctuation 

could be extracted more clearly.  

6.3.2 Investigation of the Pass Region with a 

Time-Domain Simulation 

The output of RDF draws a circular orbit as shown in the previous section. In 

this research, the radius of the output orbit of RDF is defined as spectrum density, 

and the pass region of the clock-wise-type RDF for 150 Hz is investigated with the 

spectrum density by applying various inputs as shown in Eq. 6-7. 

 
{

𝑥 =  sin 2𝜋𝑓𝑡

𝑦 = sin(2𝜋𝑓𝑡 + 𝜃)
 

 where 100 ≤ 𝑓 ≤ 200, −𝜋 ≤ 𝜃 ≤ 𝜋 

(6-7) 

The distribution of the spectrum density is shown in Fig. 6-6. The band-stop 

effect of RDF is certainly confirmed because the spectrum density appears only 

the frequency region around 150 Hz. Furthermore, the signal is cut when the y 

Fig. 6-6  Passband of 150 Hz clockwise-pass-type RDF. 
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component has 𝜋/2  rad phase delay against x component, i.e., the signal 

rotating in counter-clock-wise direction, even if the signal frequency is 150 Hz. 

The necessity of the window function is also discussed in chapter 2. Figure 6-7 

shows the distribution of the spectrum density of RDF when the input is defined 

as Eq. 6-7. In this pass region characteristic, 130 and 170 Hz fluctuation also can 

pass the RDF to some extent, which should be regarded as signal noises. Thus, 

the window function should be installed to regulate the pass region more strictly. 

Furthermore, the RDF can evaluate the fracture-induced fluctuation separately 

from the low-frequency component due to modeling error of friction shown in Fig. 

5-4 in Chapter 5, because the RDF extracts only a special frequency component. 

 

As a conclusion of the time-domain simulation, it is obvious that the RDF 

certainly provides band-pass effect and clock-wise signal pass effect at the same 

time. In the next section, the performance of the RDF is experimentally evaluated 

through several drilling tests. 

6.4 Drilling Test 

6.4.1 Conditions 

The proposed method detects a drill fracture by monitoring the integrated 

information of the estimated disturbance force in X and Y directions. The cutting 

Fig. 6-7  Passband of 150 Hz clockwise-pass RDF (without a window function).  
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condition is summarized in Table 6-1. Although the drilling experiments are 

conducted basically with spindle rotation of 9000 min-1, spindle rotations of 8000 

and 10000 min-1 are also used only to confirm the adequacy of the proposed 

concept of drill fracture detection. 

The drilling test is intermittently performed along with X axis with 16 mm 

intervals as shown in Fig. 6-8. Carbide drills with 6 mm diameter are used in the 

experiment, and one new drill and nine types of fractured drills having different 

corner edge fractures are prepared. The picture and the fractured area are shown 

in Fig. 6-9, where two values are shown for drills with fractures on both teeth. 

Fig. 6-8  Tool path of the drilling test. 

Table 6-1  Drilling condition for  

fracture detection.  

Drill diameter 6 mm 

Rotational speed of 

the spindle [min-1] 

9000, 

(10000, 8000) 

Feed rate [mm/min] 1800 

Shape of holes 20mm blind hole 

Workpiece Aluminum alloy 

(A2017) 

Cutting fluid Soluble cutting oil 

 

Fig. 6-9  Appearances of fractured drills. 
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6.4.2 Experimental Result 

First of all, continuous wavelet transform (CWT) is applied as a conventional 

analysis method to the estimated disturbance force in X and Y direction 

respectively to confirm the possibility to detect a drill fracture. The analyzed 

result with CWT is compared with that with RDF later. 

Figure 6-10 shows the examples of CWT analysis results on the estimated 

disturbance force in y axis in drilling with a new drill and one of the fractured 

drills. The spectrum density clearly becomes large in drilling using the fractured 

drill, though no remarkable change is observed in drilling using the non-fracture 

drill.  

Furthermore, the relation between the fractured area and the spectrum density 

is investigated by comparing three different fracture drills as shown in Fig. 6-11. 

The spectrum density gets larger with larger fractured area, though it is not a 

simple linear relation. This result is adequate because larger fracture leads to the 

more unbalanced cutting forces on the tool edges and the x and y components in 

the resultant force also get larger. 

 

In order to investigate the adequacy of the proposed concept for drill 

fracture detection, drilling tests with other rotational speeds 10000 and 8000 

Fig. 6-10  CWT analysis results of Y-axis disturbance force. 
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min-1 are also conducted and the CWT analysis results are shown in Fig. 6-12. 

The large spectrum density is clearly observed at 167 Hz when the rotational 

speed is 10000 min-1 (=167 Hz) and at 133 Hz when the rotational speed is 

8000 min-1 (= 133 Hz). This result also indicates that the fracture-induced 

variation in the disturbance force certainly depends on the spindle rotation as 

explained in the concept for the proposed drill fracture detection. 

 

As a next step, the analysis results with RDF are discussed. The simulation 

result has shown that the RDF output has two components and they draw a 

circular orbit. The each component is not suitable to evaluate stably because 

of the drastic fluctuation. Therefore, the geometric mean of both RDF output 

components (i.e., the radius of the circular orbit) is utilized as spectrum 

density. 

Fig. 6-11  CWT analysis results of 3 different fractured drills. 
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Figure 6-13 shows the 500th order clock-wise-type RDF analysis result on a 

drilling test with a fractured drill. The spectrum density of RDF also becomes 

large in drilling using the fractured drill, and this spectrum density variation is 

not observed in drilling with the non-fractured drill. Therefore, the drill fracture 

detection also can be performed with the RDF-based analysis.  

Fig. 6-12  CWT analysis results in drilling with other rotational speeds 

(a) 8000 rpm (b) 10000 rpm. 

Fig. 6-13  The frequency analysis result with an 150 Hz clockwise pass RDF. 
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In the light of calculation load, there is no remarkable difference between the 

CWT and the RDF assuming that the number of analyzed samples is more or less 

the same. The detection delay is also similar because the both analysis methods 

introduce same window function. Therefore, the robustness of both methods 

should be discussed in order to distinguish the fractured tool without mistakes. 

The detection accuracy can be evaluated by comparing how they can emphasize 

the difference between the non-fractured drill and the fractured drills. 

 

To evaluate the detection accuracy quantitatively, 0.4 s evaluation sections are 

set to the drilling terms as shown in Fig. 6-14 and the average value of spectrum 

density is calculated. The CWT is only performed for 150 Hz component. 

By repeating the drilling tests 20 times with the non-fractured drill and the 

nine fractured drills respectively, the relation between the fractured area and the 

spectrum density is obtained with CWT (Fig. 6-15) and RDF (Fig. 6-16), where 

the spectrum density of the CWT here is defined as a geometric mean value of 

both spectrum densities of x and y disturbance force. The blue square plot shows 

the result of each drilling test and the yellow circular plot shows the average 

value of 20 drilling tests.  

Fig. 6-14  The evaluation sections of spectrum density: (a) CWT, (b)RDF. 
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Fig. 6-15  Average spectrum density with CWT. 

Fig. 6-16  Average spectrum density with RDF. 
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Both Figs. 6-15 and 6-16 show that the nine fractured drills induce higher 

spectrum density than the non-fractured drill. These results sufficiently indicate 

the versatility of the observer-based drill fracture detection. Then, the detection 

accuracy should be compared between the CWT and the RDF more quantitatively. 

Although the resultant cutting force on a non-fractured drill does not have x and 

y components theoretically, low spectrum density is actually observed in the 

analysis results on the drilling using the non-fractured drill because of the signal 

noise. The noise has to be suppressed enough with a low-pass filter in order to 

enhance the detection accuracy. However, the cutoff frequency of the low-pass 

filter cannot get down lower than the target frequency (spindle rotational 

frequency). On the other hand, the RDF reduces the noise from a viewpoint of 

rotating direction, without reducing the cutoff frequency. Because the signal noise 

expanded by the differential process does not move in a special direction, the 

fracture-included fluctuation can be extracted as the clock-wise component more 

clearly. 

Therefore, the spectrum density due to drilling with the non-fractured drill 

would be smaller by applying the RDF, but this change is difficult to confirm Figs. 

6-15 and 6-16. To compare the detection accuracy, (1) ratio of average values and 

(2) ratio between the minimum spectrum density of fractured drill and the 

maximum spectrum density of non-fractured drill (Fig. 6-17) are required. These 

evaluation values are important factor to emphasize the difference between 

Fig. 6-17  Evaluation of difference between fractured and non-fractured drill.               

(1) ratio of Average. (2) ratio between fractured min. and non-fractured max.  
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fractured drills and non-fractured drills. The analysis result is summarized in 

Table 6-2. 

 

Table 6-2  Evaluation result of Fig. 6-17 (1) and (2). 

Sample 

Fractured 

area 

[mm2] 

(1) (2) 

CWT RDF CWT RDF 

C001 1.947 3.480  5.174  1.213  1.692  

C002 5.752 10.414  20.302  5.782  9.459  

C003 1.046 3.591  6.076  1.339  2.206  

C004 3.157 7.772  14.781  3.142  5.196  

C005 3.002 7.180  13.660  3.994  5.809  

C006 5.199 9.597  18.310  3.125  5.953  

C007 1.362 4.640  7.903  1.589  2.516  

C008 0.526 2.113  2.136  0.459  0.347  

C009 1.386 4.317  5.896  1.468  2.081  

 

In Table 6-2, the columns are filled with green when the RDF shows a 

larger value than CWT and filled with red in the opposite case. Excepting the 

sample C008, the evaluation values (1) and (2) of RDF become two times as 

large as the CWT results. This is because the spectrum density of drilling 

using the non-fractured drill gets lower by the RDF. 

In case of the sample C008, the evaluation value (2) of the RDF is smaller than 

the CWT. However, the outer edge is mainly fractured and its area is small as 

0.526 mm2 on the sample C008, and the cutting edge is almost left as shown in 

Fig. 6-18. Furthermore, the snuggling chip as explained in chapter 1.2.3 does not 

appear during drilling with the sample C008. As a result, the sample C008 can be 

regarded as a normal drill which is available for usual drilling. 

 

As a conclusion of the drill fracture detection, the proposed method certainly 

can detect a small drill fracture on the tool edge without any additional sensors. 

Furthermore, the experimental results show that a new signal processing method 

named rotational digital filter can enhance the accuracy of the drill fracture 

detection. 

 

 



Chapter 6 Tool Fracture Detection System 

129 

 

 

 

 

 

  

Fig. 6-18  Appearance of the fractured drill sample C008. 
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6.5 Summary 

An observer-based drill fracture detection method is proposed and evaluated 

through the drilling experiments in this chapter. Furthermore, a novel signal 

processing method named “rotational digital filter” is proposed to enhance the 

detection accuracy, which has a unique characteristic to distinguish the 

clock-wise component and the counter-clock-wise component in a signal moving 

on a two dimensional plane. The archived results are summarized as follows. 

 

 

1. The experimental results with nine fractured drills and one non-fractured 

drill indicate that the fracture-induced fluctuation in the x and y components 

of resultant cutting force is certainly detectable by applying the disturbance 

observer to the ballscrew-driven stage control system and analyzing the 

estimated disturbance information in frequency domain. 

 

2. Rotational digital filter is invented to enhance the detection accuracy. Its 

characteristics are investigated with time-domain simulations, and the 

simulation results clearly shows that the rotational digital filter realizes the 

band-pass filtering effect and the clock-wise signal pass effect 

simultaneously. 

 

3. By applying the rotational digital filter to the estimated disturbance force in 

the X and Y directions, the fracture-induced variation can be captured from 

the servo information more clearly. The experimental results show that the 

RDF-based fracture detection has higher accuracy than a conventional 

frequency analysis method. The proposed detection method has enough 

accuracy to detect a drill fracture as small as 1 mm2 under the cutting 

condition given in this study. 
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7 Chatter Detection System 

7.1 Introduction 

In order to ensure a stable machining, many researchers focus on mechanism of 

chatter vibration and propose various stability prediction methods by 

constructing precise cutting models [33-39]. Although these approaches are 

theoretically reliable, the stability prediction result often does not agree with real 

process because the required parameters for stability prediction like modal 

parameters are difficult to identify accurately. As a countermeasure of 

unexpected chatter, automatic chatter detection is strongly demanded to monitor 

the process at all times. 

From practical viewpoint, this research presents sensorless approaches for 

various problems in process and evaluates the applicability of disturbance 

observer to realtime process monitoring. In this chapter, observer-based chatter 

detection is developed by analyzing the estimated cutting torque in milling. 

Performance of the proposed signal processing method named “integration of 

moving variance and moving Fourier transform algorithm (MV+MFT)” is 

experimentally evaluated, which is specialized for realtime chatter detection. 

7.2 Performance Evaluation of Moving Variance and 
Moving Fourier Transform 

Frequency analysis is an efficient approach to evaluate chatter-induced 

fluctuation separately from the other components like modeling error of friction. 

In order to perform a realtime process monitoring, an introduced signal 

processing method has to be suitable for realtime usage. Regarding the realtime 

characteristic, fast Fourier transform (FFT) is widely used as a low 

computation-load frequency analysis method. However, the number of 

computation in FFT is not so small to perform in realtime as explained in Section 

2.3.3. This section firstly confirms that FFT algorithm is actually not suitable 

to perform in realtime by measuring the computational time. 

 

Computer technology is progressing exponentially and recent high-spec 
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computer can perform enormous number of computation in a slightly short time. 

However, it is a fundamental rule that longer computational time is required for 

larger number of computation. In order to perform an algorithm in realtime, the 

computation time must be well considered because the processes have to be 

strictly scheduled along with the time table. This research preliminarily performs 

a computational time measurement to evaluate the realtime characteristic of the 

algorithm as following procedures. 

The calculation-time measurement is carried out by applying RT-Linux module 

to a linux operating system in order to enhance the realtime characteristic of 

computer. To measure the computational time of algorithm, a function named 

“gethrtime.3” is introduced, which returns an integer-type value of the time in 

nanoseconds since the system bootup. Therefore, the computational time can be 

measured by applying gethrtime in front and just after the process and requiring 

the difference of them as shown in Fig. 7-1. The performance of the computer 

used in this experiment is as shown in Table 7-1. 

 

Table 7-1  Performance of computer for computational time measurement. 

PC EPSON  MT-7500 

OS Red hat ver. 9.0 (rtlinux-3.2-pre3 patch applied) 

CPU Intel Pentium 4 HT  3.00GHz 

Memory device 512MB 

Fig. 7-1  An example of C language program to measure the processing time. 
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By replacing the calculated part (/*Process*/) in Fig. 7-1, to various processes, 

the calculation time of multiplication and twiddle factor are measured as 

summarized in Table 7-2. 

 

Table 7-2  100000 times measurement results of computational time. 

/*Process*/ 

Maximum 

computational 

time [ns] 

Average 

computational 

time[ns] 

Remarks column 

/*blank*/ 64 4 Nothing to process 

for(i=0;i<10000;i++){ 

} 13,536 5,120 

The int-type addition 

(increment) is repeated 

10000 times． 

for(i=0;i<1000;i++){ 

} 1,472 550 

The int-type addition 

(increment) is repeated 1000 

times． 

for(i=0;i<10000;i++){ 

 c[i]=a[i]*b[i]; 

} 
42,528 25,103 

10000 times double-type 

multiplications．Random 

values from -1.0 to 1.0 are 

substituted to a[i] and b[i]. 

for(i=0;i<1000;i++){ 

 c[i]=sin(2*pi*i/N); 

} 

82,720 78,046 
1000 times twiddle factor 

calculations. 

 

The above measurement result shows that only 25 s are required for even 

10000 times multiplications, although multiplication generally requires longer 

computation time than addition in binary number system. Because 10240 times 

actual multiplications are required for FFT of N = 512(= 29) and the sampling 

time is set to 125 s in the machine tools used in this research, the FFT algorithm 

for less than 512 samples has a possibility to finish within one sampling time. 

However, the calculation time of twiddle factor is 30 times as long as that of 

double-type multiplication. The twiddle factor calculation is also repeated 10240 

times in the FFT algorithm, thus, the FFT can be no longer performed in one 

sampling time. 

However, the calculation time of FFT algorithm can be reduced more with some 

improvements. Except parallel calculation with GPU or computer cluster system, 

following improvements are considerable to reduce the computation time. 
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① Conducting the twiddle factor calculation in the main function and storing 

its result in ensured memory sections in advance. 

② Employing float-type variables instead of the double-type. 

③ Reducing the number of multiplication including for int-type variables. 

 

Figure 7-2 shows the competition between a conventional FFT algorithm and 

the improved FFT algorithm, where both codes are written in c language. In the 

improved FFT algorithm, the twiddle factor calculation is conducted and its 

result is stored in a global variable array preliminarily in order to eliminate the 

twiddle factor calculations from the FFT function. Although float-type (32bit) 

variable is used instead of double-type (64bit) to reduce the computation load, the 

calculation accuracy reduction due to quantum error expansion should be taken 

care when analyzing an actual data. 

Fig. 7-2  Competition between usual FFT and improved FFT algorithms. 
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The computational time of the improved FFT algorithm is summarized in Table 

7-3, where each column is filled with green when the time is less than 125 s and 

red in opposite case. Even in case of the improved algorithm, the FFT cannot be 

performed within 125 s when the window width is wider than 512 samples for 

float-type variables and 256 samples for double-type variables. 

 

   Table 7-3  100000 times measurement results of computational time of FFT. 

Number of samples 

Float type (32bit) Double type (64bit) 

Maximum 

processing 

time [ns] 

Average 

processing 

time [ns] 

Maximum 

processing 

time [ns] 

Average 

processing 

time [ns] 

128(=27) 18,304 13,657 31,232 26,515 

256(=28) 35,040 29,912 64,928 60,123 

512(=29) 69,248 64,541 157,760 133,152 

1024(=210) 143,936 139,097 648,672 605,522 

2048(=211) 311,648 301,582 769,568 679,287 

 

The improvement points may still exist excepting from ① to ③. However, the 

FFT, which is an 𝑂(𝑁 log𝑁)  algorithm, basically requires larger number of 

computation to expand the window wider. To make matters worse, the width of 

window has to be a bit number to use the FFT algorithm. The window width 

option is strictly limited and the frequency resolution cannot be modified 

arbitrarily. 

 

In contrast, MV+MFT is an 𝑂(1) algorithm and reduces the computation 

number to analyze a signal in time-frequency domain. The computational time of 

MV+MFT is measured and summarized as shown in Table 7-4, in which columns 

are colored in the same manner with Table 7-3. 
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    Table 7-4  100000 times measurement results of computational time of MV+MFT. 

Number of samples 

Double type (64bit) 

Maximum 

processing time  

[ns] 

Average 

processing time 

[ns] 

128(=27) 960 286 

256(=28) 1,120 283 

512(=29) 1,184 284 

1024(=210) 1,088 284 

2048(=211) 1,056 285 

500 (frequency resolution: 16 Hz) 1,472 311 

1000(frequency resolution: 8 Hz) 1,152 312 

2000(frequency resolution: 4 Hz) 1,152 313 

4000 (frequency resolution: 2 Hz) 1,600 313 

8000 (frequency resolution: 1 Hz) 1,152 319 

16000 (frequency resolution: 0.5 Hz) 1,280 312 

 

In the upper half of Table 7-4, the window widths are set to bit numbers to 

correspond to the measurement results in FFT calculation. The computational 

time of MV+MFT are decisively small compared with that of FFT, even using 

double-type variables. Additionally, the measurement results indicate that the 

proposed MV+MFT certainly an 𝑂(1) algorithm because the computation times 

are almost same even if the window widths are different. 

Furthermore, the window width can be modified arbitrarily because it does not 

have to be a bit number and there is no limitation due to computational load. In 

the lower half of Table 7-4 shows the computational time measurements when the 

window widths are not a bit number. Compared with the result with bit number 

window widths, the average computation time gets to be about 25 ns longer when 

the window width is not a bit number. Although this would be because the 

compiling process is different between for bit and non-bit numbers, it is a 

negligibly-small difference which does not have any influences on the realtime 

characteristic of MV+MFT. 

As a conclusion, the proposed MV+MFT is certainly a super-low computation 

load algorithm and solves trade-off relation between the increase in number of 

computation and the frequency resolution enhancement. Therefore, when the 
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MV+MFT algorithm is employed, we can just focus on the trade-off relation 

between the frequency resolution and the time response, which is so-called 

uncertainty principle in Fourier transform. 

As a remaining problem, the chatter detection performance of MV+MFT also 

will be experimentally evaluated in the later section. 

7.3 Prediction of Chatter Frequency 

Chatter vibration generally has a frequency close to resonance frequency. 

Therefore, in order to roughly find a frequency band including the chatter 

frequency, a modal analysis test should be performed on the tool to identify the 

resonance frequency.  

 

The milling tests are conducted with two kinds of machine tools as explained in 

Chapter 3: TC-S2C and S500X1. Figure 7-3 shows the appearance of hammering 

tests in the X and Y directions on a tool in the machine tool TC-S2C. 

The instruments used in the impulse-response tests are summarized in Fig. 7-4 

and Table 7-5. By calculating a ratio between the applied force and the 

acceleration for each frequency, a frequency response function (FRF) of the tool 

and the resonance frequencies can be identified. 

Table 7-5  Instruments of the impulse response test. 

Impulse hammer Dytran Instruments Inc. 58500B4 

Acceleration sensor Dytran Instruments Inc. 3225F1 

DA converter National Instruments Co. NIUSB-9263 

Software MAL Inc. CutPRO 

 

The obtained FRF of TC-S2C in X direction is shown in Fig. 7-5, and that in Y 

direction is shown in Fig. 7-6 respectively. As a result, the tool would have 

resonance frequencies of 818, 1653, 1696 and 1715 Hz in X direction, and 849, 

1534 and 1730 Hz in Y direction. The chatter may have a close frequency of these 

peak frequencies in TC-S2C.  

The FRFs of S500X1 in X and Y directions are shown in Figs. 7-7 and 7-8 

respectively. The resonance frequencies are mainly 822 and 1841 Hz in X 

direction and 823, 1392 and 1692 Hz in Y direction. Although the chatter 

vibration would occur around these resonance frequencies theoretically, the 
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resonance frequency has a possibility to change according to the spindle rotation 

because of heat generation in bearings, centrifugal forces on rotation elements, 

lubrication oil films at contact points and so on [53]. Furthermore, in Figs. from 

7-5 to 7-8, several small peaks can be confirmed from 1000 to 2000 Hz. These 

resonance frequencies also have a possibility to be a cause of chatter. 

As a conclusion, chatter vibration may occur at frequency in the range from 700 

to 1000 Hz and from 1300 to 2000 Hz in both machine tools. 

Fig. 7-3  Appearance of impulse response tests for a tool in TC-S2C:                  

(a) X direction (b) Y direction. 

Fig. 7-4  Schematic of the system of the impulse-response test. 
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Fig. 7-5  FRF analysis result in X direction of TC-S2C. 

Fig. 7-6  FRF analysis result in Y direction of TC-S2C. 

Fig. 7-7  FRF analysis result in X direction of S500X1. 

Fig. 7-8  The analysis result in Y direction of S500X1. 



Chapter 7 Chatter Detection System 

140 

 

7.4 Chatter Detection in Side Milling 

Side milling tests with square endmills with 10 mm diameter are performed. 

7.4.1 Conditions of Chatter Detection Test 

Chatter stability depends on the spindle rotation and the axial depth of cut. 

The number of experiments gets large beyond necessity if milling tests are 

conducted for each combination of spindle rotation and axial depth of cut. 

Because the spindle rotation is constant in usual milling process, the axial depth 

of cut is changed in order to change the chatter stability in one milling test to 

reduce the number of experiments. That is why a triangle-shaped workpiece is 

used as shown in Fig. 7-9. The cutting conditions are summarized in Table 7-5. 

The spindle rotation changes from 5000 to 9000 min-1 in TC-S2C and from 7000 

to 15000 min-1 in S500X1 with 100min-1 interval, i.e., 41 kinds of side milling 

Fig. 7-9  Triangle-shaped workpiece. 

Table 7-5  Cutting condition. 

Tool 10mm square endmill 

Number of Tooth 2 

Rotational Speed [min-1] 5000 – 9000 (TC-S2C) 

7000 – 16000 (S500X1) 

Feed Rate [mm/tooth] 0.0875 

Type of Cut Down milling 

Workpiece Aluminum alloy (A2017) 

Radial Depth of Cut [mm] 0.3 

Axial Depth of Cut [mm] 5 – 25 

Cutting Oil Dry cutting 

 

Fig. 7-10  Surface roughness meter. 
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tests are conducted in TC-S2C and 81 kinds of side milling tests are conducted in 

S500X1. The machining results are evaluated by measuring the surface 

roughness with a stylus-type surface roughness tester (SJ-400, Mitsutoyo 

Corporation) as shown in Fig. 7-10. 

7.4.2 Experimental Result 

As an evaluation criterion to confirm the adequacy of MV+MFT analysis 

results, the arithmetic average roughness (Ra) is measured. Although the Ra is 

derived as one value for one evaluation section usually, 4 mm window is employed 

and the roughness of 103 mm section on the machined surface is evaluated by 

sliding the 4 mm window and continuously requiring the Ra. 

 

First of all, the experimental results with spindle rotations of 6400 min-1 and 

7700min-1 in TC-S2C are explained as examples of side milling tests on 

triangle-shaped workpiece.  

Figure 7-11 shows the experimental result with the spindle rotation of 6400 

min-1. Note that the picture of workpiece surface is reversed horizontally, 

corresponding to the time axis. Because the machined surface drastically waves 

and the Ra value gets large just after the milling starts, it is clear that the chatter 

vibration generates from the beginning of milling. Furthermore, the pattern of 

the chatter mark changes and the Ra value gets larger at near the end of milling. 

In the analysis result of the estimated disturbance torque with the MV+MFT, the 

chatter component gets large during milling, although the forced vibration 

component hardly varies. The drastic generation of chatter components from 5.3 s 

to 6.0 s has high coherence with the Ra variation and also indicates that the 

chatter vibration gets larger at the end of milling. 

To confirm the adequacy of the MV+MFT analysis result, Sliding FFT (N=512) 

analysis is also performed offline, which slides the window and draws the power 

spectrum density for each frequency with color gradation (Fig. 7-12) in order to 

capture the time-dependent variation of frequency components. As a result it can 

be said that the forced vibration certainly does not generate in this milling test 

because the spindle rotational frequency is 106.7 Hz (=6400min-1) and each 

frequency peak is not a harmonic of the spindle rotational frequency.  

Then, the side milling test results with the spindle rotation of 7700 min-1 

are explained here. Focusing on the Ra variation and the surface appearance, 
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the chatter would occur from a middle point of the workpiece in milling. On 

the other hand, in the MV+MFT analysis result, large chatter component is 

observed in the section of 3.8 s – 5.0 s, and the forced vibration component 

gets larger at three sections: 0.5 s – 1.3 s, 1.8 s – 3.2 s, and 3.9 s – 4.8 s.  

In the sliding FFT analysis result, it is confirmed that frequency peak of 770 

Hz generates in three sections. Furthermore, the 770 Hz vibration can be 

regarded as a forced vibration because it is a harmonic of the spindle rotational 

frequency. In detail, 7700 min-1 is equal to 128.3 Hz and the tool-passing 

frequency is 256.7 Hz, and product of 256.7 and 3 is 770, i.e. 770 Hz is a harmonic 

Fig. 7-11  MV+MFT analysis result in 6400 min-1 in TC-S2C. 

Fig. 7-12  Short-time Fourier transform analysis in 6400 min-1 in TC-S2C. 
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of the spindle rotational frequency. On the other hand, 2004 Hz and 2131 Hz are 

not the harmonics, i.e., these components are induced by chatter. From these 

results, it can be assumed that the forced vibration hardly has influence on the 

surface roughness and only chatter vibration deteriorates the surface quality. If 

this assumption is correct, the detection result of MV+MFT in 7700 min-1 is an 

adequate result. 

 

When the endmill vibrates at 770 Hz during rotating at 7700 min-1, the 

vibration of endmill is just 6 cycles in one spindle rotation. Thus, the phase of 

present tool vibration and the phase of machined surface waviness left by the tool 

Fig. 7-13  MV+MFT analysis result in 7700 min-1 in TC-S2C. 

Fig. 7-14  Short-time Fourier transform in 7700 min-1 in TC-S2C. 
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vibration in previous term become same, and the milling mark on the machined 

surface becomes a stripe pattern in horizontal direction as shown in Fig. 7-15. In 

this case, the cusp does not get high compared with stable machining because the 

present tool displacement is almost same with the previous term (Fig. 7-16). As a 

result, no large waviness appears in the horizontal direction and the Ra remains 

small, even if a large forced vibration occurs. In contrast, the stripe pattern would 

appear at 8.3 mm intervals in the vertical direction, considering that the tool lead 

is 25 mm in this experiment. However, a gentle waviness is generally filtered 

with a high-pass filter in the Ra measurement in order to evaluate only the 

surface roughness. In case of this research, the evaluation section is set to 4 mm, 

thus, the waviness of 8.3 mm interval is filtered naturally. 

From these reasons, any influence of forced vibration cannot be confirmed with 

the Ra measurement. However, the forced vibration also should be captured 

because it would yield a machining error for a wide area. 

 

As a conclusion, the MV+MFT certainly can capture chatter vibration 

separately from forced vibration by analyzing the estimated disturbance torque 

information. 

Fig. 7-15  Machining mark due to 770 Hz vibration during 7700 min-1 spindle rotation. 

Fig. 7-16  A present tool displacement and the previous term tool displacement. 
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7.5 Evaluation of Coincidence between Surface 
Quality and Detection Result 

This section presents the competition between surface roughness and 

MV+MFT analysis result to confirm the adequacy of proposed chatter detection. 

 

The chatter stability diagram generally shows a relation between the critical 

depths of cut and rotational speeds, which is obtained by analyzing the 

interaction between the process and the transfer function of the tool in frequency 

domain. On the other hand, in this study, the chatter stability diagrams are 

drawn by arranging the experimental results in each spindle rotation in parallel. 

As explained in section 7.4.1, the side milling experiments are conducted on the 

triangle-shaped workpiece to change the depth of cut from 5 mm to 25 mm 

gradually. The critical depth of cut at each spindle rotation can be measured from 

these milling test results, because chatter vibration occurs when the depth of cut 

becomes larger than the critical depth of cut. Figure 7-17 shows the milling test 

result with 8400 min-1 spindle rotation and how to determine the critical depth of 

cut from the analysis result. In the Ra measurement result, the Ra value 

suddenly gets larger in x position from 20 to 30 mm. This result is converted to a 

gradation bar by setting 1.0 m threshold on the Ra value as shown in Fig. 7-17 

Fig. 7-17   Explanation to draw the stability lobe experimentally (a) Picture (b) surface 

roughness Ra (c) color gradation expressing the surface roughness. 
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(c). By requiring the gradation bar of each spindle rotation and arranging in 

parallel rows, the surface roughness-based chatter stability diagram can be 

obtained for TC-S2C as Fig. 7-18 and S500X1 as Fig. 7-19. 

Focusing on the measurement results in TC-S2C shown in Fig. 7-18, the critical 

depth of cut certainly varies according to the spindle rotation and stable regions 

and unstable regions appear alternately. In particular, the critical depth of cut 

locally gets large at 6800, 7700, 8200 min-1, whereas the chatter easily occurs 

with small depths of cut at 6500, 7200 min-1. 

Similar results are observed in the experimental results of S500X1 shown in 

Fig. 7-19. The stable regions appear around the spindle rotations of 10500 and 

Fig. 7-18  Stability lobes based on the surface roughness in TC-S2C. 

Fig. 7-19  Stability lobes Based on the surface roughness in S500X1. 
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12800 min-1, whereas the unstable regions exist around 9100, 11000, 14000 min-1. 

It is experimentally confirmed in both machine tools that the stability lobes 

certainly can be drawn based on the relation between the critical depth of cut and 

the spindle rotation as explained in the chatter stability prediction method in 

Section 2.4.1. 

 

Then, the MV+MFT analysis results are evaluated by comparing the obtained 

stability diagrams drawn based on the Ra measurement. The MV+MFT result 

can be obtained a time-domain data as shown in Fig. 7-20. To evaluate the 

coincidence between the Ra measurement results and the MV+MFT analysis 

results, self-excited chatter component and forced vibration component are 

separately converted as gradation bars by setting the thresholds. The threshold is 

arbitrarily modified to the value able to emphasize the shape of stability lobes. 

The obtained gradation bars of each component are arranged in parallel rows. 

Figures 7-21 and 7-22 represent the chatter component in milling with TC-S2C 

and S500X1 respectively. 

In the analysis results of the MV+MFT in milling with TC-S2C, the stable 

regions at spindle rotations of 6200, 6800, 7600, 8200 min-1 are confirmed in the 

chatter component shown in Fig. 7-21, that is a highly-similar behavior with the 

Ra measurement results shown in Fig.7-18. In the experimental results in 

milling with S500X1, the large stable regions appear around 10000 and 12500 

min-1 in the chatter component shown in Fig. 7-22, which is also has a high 

Fig. 7-20  Threshold to draw the stability lobe (a) MV+MFT analysis              

(b)color gradation to draw the stability Lobe with the Result of MV+MFT. 

(a) 

(b) 
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correlation to the Ra measurements shown in Fig. 7-19 excepting the range from 

9300 to 10000 min-1. The Ra value becomes large in the spindle rotation region 

from 9300 to 10000 min-1, although the chatter component hardly generate. In 

the milling result with 9800 min-1 shown in Fig.7-23, the chatter may grow 

gradually from the beginning because the Ra value exceeds the 1 m threshold 

from just after milling starts. Furthermore, the Ra value gets large suddenly 

from the middle of workpiece. This would be because dominant vibration modes 

in the chatter are different between the former and the later section, and the 

chatter in former section is too small to detect from the servo information of the 

spindle. Considering that the chatter component slightly gets large in the former 

section, the more accurate detection result can be obtained by setting a lower 

threshold, whereas it leads to misdetection in other spindle rotation regions. The 

threshold should not be changed based on the each experimental result from the 

Fig. 7-21  Distribution of detected chatter component in TC-S2C. 

Fig. 7-22  Distribution of detected chatter component in S500X1. 
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viewpoint of versatility. Thus, the chatter component is evaluated by a same 

threshold in all milling tests in this study.  

  Excepting the result around 9800 min-1 of S500X1, it is clear that the chatter 

component certainly has high correlation with the surface roughness. 

 

On the other hand, no coincidence can be found in the forced vibration 

components which are summarized in Figs. 7-24 and 7-25. Although the forced 

vibration component is observed in some regions in the milling tests with TC-S2C 

(Fig. 7-24), its distribution no longer fits to the Ra measurements. This result also 

indicates that the forced vibration has no influence on the surface roughness and 

the chatter is a dominant factor in the machined surface quality. Furthermore, 

the forced vibration component is hardly observed in the milling experiment in 

S500X1 as shown in Fig. 7-25. (Note that the threshold is set to lower than that of 

chatter component to emphasize the distribution of the forced vibration 

component.) Additionally, the distribution of the forced vibration component is 

not similar to the Ra measurements. The milling tests with S500X1 also clearly 

Fig. 7-23  Relation between surface roughness and chatter component in the 

milling test at spindle rotation of 9800 min-1. 
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indicate that the chatter is a dominant cause in tool vibration and surface quality 

deterioration. 

 

As a conclusion, the proposed chatter detection based on MV+MFT is certainly 

applicable to milling process and able to detect chatter separately from forced 

vibration. It can be said that chatter is a main cause of the deterioration of 

surface roughness because the stable and unstable regions have highly-similar 

distribution between the analyzed chatter component and the surface roughness. 

  

Fig. 7-24  Distribution of detected forced vibration component in TC-S2C. 

Fig. 7-25  Distribution of detected forced vibration component in S500X1. 
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7.6 Summary 

This chapter proposes a sensorless chatter detection in milling based on the 

servo information and evaluates the detection accuracy through side milling tests 

with two kinds of machine tools. In particular, the applicability of MV+MFT 

algorithm to realtime process monitoring is investigated by measuring the 

computational time. The obtained results are summarized as follows: 

 

① In order to evaluate the realtime characteristic of the proposed MV+MFT 

algorithm, the computational time is measured and compared with FFT. The 

computational time measurement result shows that it only takes about 300 ns 

to process the MV+MFT analysis in one periodic term, which is enough short 

time to perform in realtime. Furthermore, it is experimentally confirmed that 

the MV+MFT algorithm is actually an 𝑂(1)  algorithm because the 

computation time hardly changes even adopting different window widths. 

 

② By applying MV+MFT analysis to the disturbance torque estimated with 

disturbance observer in the spindle control system, chatter can be detected in 

realtime, separating from the forced vibration. Under the cutting condition in 

this study, the chatter is a dominant factor in the machined surface roughness. 

The distribution of the obtained chatter components is highly-similar to that 

of the Ra measurement results. 

 

③ The forced vibration has no coincidence with the Ra value because the forced 

vibration does not have influence of cusp height on the surface.  
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8 Identification System for Stable 

Cutting Condition 

8.1 Introduction 

Chatter stability analysis has been focused on for a long time in order to 

enhance the machining efficiency. In past few decades, many researchers have 

proposed chatter stability prediction methods and analyzed the mechanism of 

chatter vibration. These studies have described that the chatter stability in 

milling heavily depends on the axial depth of cut and the spindle rotation. 

Therefore, the most stable spindle rotation against chatter should be found, at 

which stable cutting can be performed even with a large depth of cut. 

Although the chatter mechanism is theoretically clarified by many researchers, 

chatter stability prediction often does not agree with the real process because the 

transfer function of the tool system is difficult to identify accurately. From this 

viewpoint, an experiment-based approach should be taken to obtain a reliable 

analysis result on the chatter stability. 

In this chapter, the proposed identification method for stable spindle rotation 

against chatter, which is explained in section 2.4.1, is experimentally evaluated 

through side milling tests. Furthermore, the mechanism analysis and the 

identification error of the proposed method are discussed through the developed 

time-domain milling simulator explained in sections 2.5 and 3.3. 

8.2 Identification of Stable Spindle Rotation with 
Contentious Spindle Rotation Variation 

In milling, spindle rotation and critical depth of cut have a unique relation as 

shown in Fig. 8-1, where the parameters are given as Table 8-1 and 8-2. Note that 

the immersion angle is defined as an angle section between start angle and exit 

angle as show in Fig. 8-2, and cutting coefficient is a proportional constant 

expressing the relation between the cutting force and the cutting area. The 

critical depth of cut gets large in some spindle rotation regions, so-called 

“stability pockets”.  Identification of stability pocket is necessary to enhance the 

cutting efficiency because the process stability can be ensured even with a large 
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depth of cut. Chatter frequency also shows a unique behavior along with the 

spindle rotation variation. The chatter frequency gradually gets higher with 

higher spindle rotation, and drastically shifts at a certain spindle rotation at 

which the critical depth of cut gets locally largest value. Based on this 

characteristic, a stability diagnosis method for stable spindle rotation is proposed 

by changing the spindle rotation during chatter, the stable spindle rotations 

would be captured from the chatter frequency information. In the proposed 

identification method, following points should be discussed experimentally and 

theoretically. 

① Which types of the spindle rotation variation should be used: acceleration or 

deceleration. 

② How large the spindle rotation changing rate should be set. 

③ How large the identification error occurs. 

 

In following Sections 8.3, the above points of ② and ③ are discussed through 

the milling tests in which the spindle rotation is gradually changed. Section 8.4 

mainly focuses on ① and ③ based on the milling simulation.  

Table 8-1  Modal parameters of the tool. 

 X direction Y direction 

Natural frequency Hz 2080 2090 

Damping ratio 0.01 0.01 

Mass  kg 0.050 0.040 

Table 8-2  Other parameters for                        

the chatter stability prediction. 

Number of tooth 2 

Immersion angle  deg －25.8～ 0.0 

Cutting 

coefficient   

Tangential  MPa 1500 

Radial  MPa 450 

 

(a) 

(b) 

Fig. 8-1  Relation between rotational speed    

and (a) critical depth of cut, (b) chatter frequency. 

Fig. 8-2  Definition of the immersion angle. 
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8.3 Evaluation of Proposed Method by Milling Test 

This section presents a feasibility of the proposed method through the milling 

tests in two kinds of 3-axis machining centers: TC-S2C and S500X1. 

8.3.1 Conditions 

Although the milling tests are basically conducted under the same conditions 

with the tests in Chapter 7, the spindle rotation and the shape of workpiece are 

different in the stable spindle identification test. The spindle rotation is gradually 

accelerated or decelerated by changing the override rate continuously. At the 

same time, the feed rate is also changed at the same override changing rate in 

Fig. 8-3  Appearance of milling test. 

Table 8-3  Cutting condition for identification test in TC-S2C. 

Rotational speed  min-1 5400–9000 (base:7200) 

Feed rate  mm/min 1575–875 (base: 1260) 

Feed per tooth  mm 0.0875 

Number of tooth  2 

Override change rate  %/s 15, 30, 50, 75 

Override range  % -25% – +25% 

Axial depth of cut  mm 15.0 

Radial immersion  mm 0.5 

Workpiece Aluminum (A2017)  

 

Table 8-4  Cutting condition for identification test in S500X1. 

Rotational speed  min-1 7000–16000 (base:10000) 

Feed rate  mm/min 2800–1225 (base: 1750) 

Feed per tooth  mm 0.0875 

Number of tooth  2 

Override change rate  %/s 40, 50, 60 

Override range  % -30% – +60% 

Axial depth of cut  mm 15.0 

Radial immersion  mm 0.5 

Workpiece Aluminum (A2017)  
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order to keep the feed per tooth to avoid a sudden change in the cutting force. 

Furthermore, square-shaped workpiece (Fig. 8-3) is used in this test from 

viewpoint of versatility. The proposed method has to be utilizable in usual milling 

processes, i.e., the special shaped workpiece should not be used. 

Including other cutting conditions, the details of the milling test condition are 

summarized in Table 8-3 for TC-S2C and Table 8-4 for S500X1. 

8.3.2 Experimental Result 

Firstly, the milling tests results in TC-S2C are explained. 

When spindle rotation variation of 50 %/s shown in Fig. 8-4 (a) is given, the 

estimated disturbance torque drastically fluctuates during accelerating or 

decelerating the spindle rotation as shown in (b). To confirm the chatter 

frequency shift visually, short-time Fourier transform (STFT) is conducted on the 

estimated disturbance torque as shown in (c). Although STFT is an unsuitable 

Fig. 8-4  Result of the identification test with 50 %/s: (a) spindle rotation: (b) estimated 

disturbance torque: (c) short-time Fourier transform analysis. 
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analysis method to use in realtime on the aspect of computational load, the 

realtime characteristic is not required for the proposed diagnosis method because 

time-frequency analysis can be performed offline afterward, if the disturbance 

torque is successfully sampled in the experiment. In the STFT analysis result, 

four times chatter frequency shifts are clearly observed in the deceleration 

section. The frequency shifts are also confirmed in the acceleration section, 

however, the frequency variation is small compared with the deceleration area. 

Figure 8-5 represents the surface appearance after the experiment. A unique 

chatter mark of four lines obviously appears in the deceleration section, whereas 

no discriminative pattern can be found on the surface in the acceleration section. 

Therefore, the surface appearance also indicates that the chatter frequency shifts 

occur four times in the deceleration section and the frequency shift is observed 

more clearly during decelerating than accelerating the spindle rotation. From 

these results, it can be said that the spindle rotation should be decelerated to 

capture the chatter frequency shifts. This assumption will be theoretically 

discussed with the time-domain milling simulator in the later section. 

 

In order to capture the chatter frequency shift quantitatively, the power 

spectrum density of peak frequency would be a useful criterion. Figure 8-6 shows 

the extended figure of STFT analysis in the deceleration section of Fig. 8-4 (c) and 

the power spectrum density of peak frequency. In the deceleration section, the 

power spectrum density of peak frequency repeats up and down, then, some 

minimum points can be captured. Drawing the moving average of 1.0 s window 

and separating the sections on the condition that the power spectrum density of 

Fig. 8-5  Milling test with 50 %/s override changing: (a) spindle rotation (b) appearance of machined surface. 
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peak frequency gets lower than the moving average, the local minimum values 

can be captured by requiring the minimum value of each section. Comparing the 

STFT analysis result, it is clear that these local minimum values are taken when 

the chatter frequency drastically shifts. This result is adequate considering that 

the chatter frequency shifts theoretically occurs in the stability pockets at which 

the chatter is highly damped. In this study, this physical phenomenon is adopted 

to identify the stable spindle rations. 

 

The override changing rate also should be discussed because the test time 

Fig. 8-7  Behavior of power spectrum density of peak frequency test with 75 %/s override changing. 

Fig. 8-6  Behavior of power spectrum density of peak frequency test with 50 %/s override changing. 
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should be as short as possible from the practical viewpoint. The chatter frequency 

shift is not observable when the override changes excessively drastically. Figure 

8-7 shows the milling test result with override changing rate of 75 %/s. The 

frequency shifts are observed 4 times as shown in STFT analysis result, however, 

the spectrum density of peak frequency does not generate enough and only three 

minimum values are captured. Although there is a possibility to be able to 

capture the chatter frequency shifts correctly by shortening the window width of 

moving average, the misdetection would occur much more easily if the moving 

average value more drastically fluctuates due to the shorter window.  

 As a conclusion, 50 %/s is regarded as the proper override changing rate to 

capture the chatter frequency shift without misdetections in this study. In case of 

50 %/s, the identification test time to perform the proposed method is only 1.0 s, 

which would be enough short for practical usage.  

 

Here, the repeatability of the proposed method is also evaluated. The 15, 30, 

and 50 %/s deceleration tests are repeated 5 times respectively and each result is 

summarized in Table 8-5 and Fig. 8-8.  

The chatter frequency shifts are observed four times in all tests even with 

different override changing rates. The each shift is captured in four sections: 8000 

– 8100 min-1, 7000 – 7100 min-1, 6300 – 6400 min-1, and 5700 – 5800 min-1. The 

maximum error of identified spindle rotation in 5 times milling tests of each 

override changing rate is 117 min-1 as shown in Table 8-4. These results clearly 

indicate that the proposed method has sufficiently high repeatability.  

Table 8-5  Identified stability pockets with each override changing rate.in TC-S2C. 

Override 

changing rate 

 Stability  

pocket ① 

Stability      

pocket ② 

Stability  

pocket ③ 

Stability  

pocket ④ 

15 %/s 

Ave.  min-1 8059 7098 6358 5781 

Difference of identified spindle 

rotations between Max. and Min.  

in five times tests  min-1 

69 31 54 83 

30 %/s 

Ave.  min-1 8031 7027 6293 5721 

Difference of identified spindle 

rotations between Max. and Min.  

in five times tests  min-1 

34 34 56 61 

50 %/s 

Ave.  min-1 8006 6999 6292 5727 

Difference of identified spindle 

rotations between Max. and Min.  

in five times tests  min-1 

117 43 12 64 

 



Chapter 8 Identification System for Stable Cutting Condition 

159 

 

 

As a next step, the applicability of the proposed method to a different machine 

tool is evaluated by conducting similar experiments on S500X1. The cutting 

conditions are summarized in Table 8-4. Note that the base conditions of the 

rotational speed and the feed rate are different from the conditions in TC-S2C. As 

an example of the identification test results, the milling test with 40 %/s override 

changing rate is shown in Fig. 8-9 and its surface appearance is shown in Fig. 

8-10.  

The frequency shifts can be observed 7 times from 7000 to 16000 min-1 as 

shown in Fig. 8-9 (b). Compared with the experimental results with TC-S2C, the 

power spectrum density of peak frequency does not fluctuates in a regular 

manner, thus, spindle rotations of ③ and ⑥ are not captured in the proposed 

algorithm. The identified spindle rotations are summarized in Table 8-6. 

Furthermore, the power spectrum density of peak frequency is low in sections 

between ②－③  and ④－⑤ .  This result would indicates that wide stable 

regions spread in the spindle rotation ranges of ②－③ and ④－⑤, i.e., the 

cutting depth would be too small to capture the chatter frequency shifts.  

 

As a result, some chatter frequency shifts cannot be captured in the experiment 

in S500X1. The meaning of the experimental result and the cutting condition 

modification will be discussed in the next section. 

 

Fig. 8-8  Identified stable spindle rotations in tests with each override changing rate in TC-S2C. 
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Fig. 8-9  The diagnosis experiment in S500X1 with 40 %/s override changing rate:          

(a) spindle rotation, (b) STFT analysis, (c)behavior of power spectrum density  

Table 8-6  Identified spindle rotations in Fig. 8-9. 

 ① ② ③ ④ ⑤ ⑥ ⑦ 

Spindle rotations 

at which chatter 

frequency shift 

occurs min-1 

14293 (Miss) 11375 10306 9255 (Miss) 7000 

 

Fig. 8-10  Surface appearance of the diagnosis experiment in S500X1      

with 40 %/s override changing rate   
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8.4 Adequacy Investigation for Identified Stable Spindle 

Rotations  

In order to confirm that the critical depth of cut is large at the identified stable 

spindle rotations in previous section, comparison with the obtained results in 

Chapter 7 would be useful. Figure 8-11 draws the Ra (arithmetic average 

Fig. 8-11  Comparison between the Ra distribution and the identified stable 

spindle rotations with 50 %/s override changing rate in TC-S2C. 

Fig. 8-12  Comparison between the power spectrum density of forced vibration and the 

identified stable spindle rotations with 50 %/s override changing rate in TC-S2C. 
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roughness) distribution including the identified stable spindle rotations with 

50 %/s deceleration shown in Table 8-5. According to the Ra measurement results, 

the critical depth of cut gets locally large at 5800, 6200, 6900, 7700 min-1, 

whereas, the identified spindle rotations are ④5727 min-1, ③6292 min-1, ②6999 

min-1 and ①8006 min-1. Excepting the spindle ration of ①, the stable spindle 

rotations are successfully identified within 100 min-1 error. The identification 

error of ① is about 300 min-1 and it is clear that the spindle rotation of ① 

actually missed the stable pocket of 7700 min-1 in Fig. 8-11. On the other hand, 

Fig. 8-12 shows the distribution of power spectrum density of forced vibration 

including the identified spindle rotations. Large power spectrum density of the 

forced vibration is particularly confirmed in the area between the depth of cut 

from 11 to 17 mm at spindle rotation around 7700 min-1. Therefore, the forced 

vibration would be dominant in this area and suppress the chatter by disturbing 

the regenerative effect due to the waviness of machined surface. Furthermore, 

even in case that the large forced vibration occurs, the forced vibration hardly has 

influences on the surface roughness as explained in Chapter 7.  

Although the proposed method is focusing on chatter stability and does not 

consider the influence of forced vibration, the spindle rotation of 7700 min-1 also 

should be avoided because the forced vibration leads to the large waviness of the 

machined surface in the wide range. In practical usage, not only the chatter 

stability diagnosis method but also forced vibration monitoring method should be 

used to ensure the cutting stability. 

 

Here, the identification results in S500X1 are also compared with the Ra 

distribution as shown in Fig. 8-13. Although the critical depth of cut is actually 

large at the spindle rotations of ②, ④, ⑥, and ⑦, the spindle rotations of ①, 

③, ⑤ completely direct the unstable conditions. Three misdetections are found 

in seven spindle rotations, thus, the proposed method cannot be used for this 

experimental condition. However, these spindle rotations would have relation to 

the chatter stability because the behavior of the power spectrum density shown in 

Fig. 8-8 has some common characteristics with the Ra distribution, e.g., the wide 

stable region spreads between the spindle rotations of ② and ③. 

Considering that the chatter does not occur in the range from 11700 to 13000 

min-1 even if the depth of cut is large as 15.0 mm, the cutting condition is not 

suitable for the proposed diagnosis method because the chatter should always 

occur during spindle deceleration in order to capture the chatter frequency shifts 
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clearly. Thus, another milling test is conducted with a cutting condition having a 

large radial immersion. The cutting condition is basically same with Table 8-4; 

however, the radial immersion and the axial depth of cut are changed. 

 

The radial immersion and the axial depth of cut are set to 2.5 mm and 3.0 mm 

respectively in this test. Although no remarkable chatter mark can be observed 

on the machined surface as shown in Fig. 8-14, the chatter frequency shifts are 

obviously confirmed by analyzing the disturbance torque information with STFT 

Fig. 8-13  Comparison between the Ra distribution and the identified stable 

spindle rotations with 40 %/s override changing rate in S500X1. 

Fig. 8-14  Machined surface appearance with 2.5 mm                                   

radial immersion and 3.0 mm axial depth of cut. 
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in the deceleration section of the spindle rotation as shown in Fig. 8-15. 

Compared with the experimental result with small radial immersion shown in 

Fig. 8-9, the repetition pattern of chatter frequency is clear and the local 

minimum values can be captured in the power spectrum density of frequency 

peak as shown in Fig. 8-15 and 8-16. Although the local minimum value at 

spindle rotation of ① is captured by the proposed algorithm, this is clearly an 

Fig. 8-16  Expanded figure of behavior of power spectrum density of peak frequency. 

Fig. 8-15  Relation between spindle rotation and STFT analysis on    

the estimated disturbance torque. 
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unstable spindle rotation because the chatter shift does not occur in this section 

and the spectrum density is too large compared with the other local minimum 

values. This misdetection should be eliminated as an outlier by setting a 

threshold. 

The repeatability of the proposed method is also evaluated here. The five 

identified spindle rotations of five times tests are summarized in Table 8-7. 

Although the difference between the maximum and minimum in the identified 

spindle rotation of ② in five tests is large as 579 min-1, this is because the stable 

region widely spreads around ②. The power spectrum density does not get high 

in the stable region and the local minimum value easily changes. Excepting the 

spindle rotation ②, the proposed method provides high repeatability even if the 

radial immersion and the axial depth cut are different. Furthermore, spindle 

rotation of ③ is not detected in this test, although a chatter frequency shift is 

observed at ③ when the radial immersion is small. From the result of milling on 

triangle-shaped wookpiece, the critical depth of cut is clearly low at ③; thus, it 

can be said that the one of the misdetections is eliminated when the diagnosis is 

performed with large radial immersion.   

To confirm the adequacy of these identified stable spindle rotations, the milling 

tests are conducted on triangle-shaped workpiece as shown in Fig. 8-17. Although 

Table 8-7  Identified stability pockets in 5 time tests with 50 %/s override changing rate. 

Override 

changing rate 

 Stability 

pocket ① 

Stability 

pocket ② 

Stability 

pocket ④ 

Stability 

pocket ⑤ 

Stability 

pocket ⑥ 

Stability 

pocket ⑦ 

50 %/s 

Ave.  min-1 14565 12889 10464 9118 8124 7179 

Difference of identified 

spindle rotations between 

Max. and Min.  in five 

times tests  min-1 

383 579 84 177 208 230 

 

Fig. 8-17  Triangle-shaped workpiece which applies axial depth of cut variation from 0.0 to 5.0 mm. 
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similar tests are conducted in Chapter 7, the radial immersion is set to 2.5 mm 

and the depth of cut is changed from 0 to 5 mm in this test. The critical depth of 

cut is determined by measuring the surface roughness (Ra) and setting a 0.5 m 

threshold. The milling tests are carried out with spindle rotations of ①, ②, ③, 

and other 9 kinds of spindle rotations as summarized in Table 8-8 and the detail 

cutting conditions are described in Table 8-9.  

Figure 8-18 shows an example of the Ra measurement results. At the spindle 

rotation of 13495 min-1, it is clear from the Ra variation that the chatter occurs 

just before the end of machining. The Ra exceeds the threshold when the depth of 

cut is 4.30 mm. Therefore, the axial depth of cut can be determined as 4.30 mm at 

spindle rotation of 13495 min-1. In the same manner, the critical depth of cut at 

each spindle rotation is summarized in Fig. 8-19, in which the circular plots 

represent the results with the identified spindle rotations and the diamond plots 

shows the results with the other spindle rotations. The critical depth of cut 

certainly gets the locally largest values at the identified spindle rotations. As a 

result, the proposed diagnosis method also can be performed in S500X1 by 

applying a cutting condition at which the chatter sufficiently occurs. 

 

Table 8-8  Evaluated spindle rotations. 

  
Spindle rotation 

  min-1 

Feed rate 

 mm/min 

 
13495  1180.81  

② 12889  1127.79  

 
12283  1074.76  

 
11677  1021.74  

 
11070  968.63  

④ 10464  915.60  

 
10128  886.20  

 
9791  856.71  

 
9455  827.31  

⑤ 9118  797.83  

 
8870  776.13  

 
8621  754.34  

 

Table 8-9  Cutting condition for adequacy tests. 

Feed per tooth  mm 0.0438 

Number of tooth  2 

Override change rate  %/s 50 

Override range  % -30% – +60% 

Axial depth of cut  mm 0.0 – 5.0 

Radial immersion  mm 2.5 
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As a conclusion, the proposed diagnosis method certainly identifies stable 

spindle rotations against chatter, although the cutting conditions should satisfy 

following points.  

Firstly, the spindle should be decelerated to capture stable spindle rotations 

because chatter frequency shifts are observed more clearly in the deceleration 

section than the acceleration section. The reason of difference between the 

deceleration and the acceleration is theoretically discussed by using time-domain 

milling simulator in the next section.  

Secondary, the cutting condition should be suitable to generate large chatter. 

This is because the chatter frequency shifts cannot be clearly observed and the 

Fig. 8-18  The machined surface at the spindle rotation of 13495 min-1. 

Fig. 8-19  The stability competition between the identified stable spindle rotations and others. 
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stable spindle rotation cannot be identified stably when the chatter vibration is 

small. 

8.5 Chatter Mechanism Analysis Based on a Time-Domain 

Milling Simulator 

The reason of the difference between acceleration and deceleration in the 

proposed method tries to be clarified by two kinds of approaches here: 

time-domain simulation and frequency domain analysis.  

 If the cause of the difference between acceleration and deceleration is chatter 

mechanism itself, the difference would also appear in time-domain simulation 

results. By applying the modal parameters in Tables 8-10 and 8-11 and the 

cutting condition shown in Table 8-3, the time-domain milling simulations are 

conducted and the results are shown in Fig. 8-20 and 8-21. The frequency shifts 

are observed in both spindle rotation variations and certainly clearer in the 

deceleration section than in the acceleration section because the power spectrum 

density is high overall and the frequency component less than 1900 Hz is 

observable in the deceleration result. In the milling simulator, only cutting 

process including regenerative effect is realized as an excitation source of the tool, 

thus, it is theoretically clear that the difference between acceleration and 

deceleration is induced by the process itself. 

 

Considering chatter mechanism in a frequency domain, the detailed reason of 

the difference can be explained clearly. Section 2.4.1 explains regenerative 

chatter mechanism, and the following equation is derived as a critical condition of 

Table 8-10  Modal parameters of the tool. 

 X direction Y direction 

National frequency Hz 2082 2082 

Damping ratio 0.018 0.018 

Mass  kg 0.043 0.043 

Table 8-11  Other parameters for the chatter stability prediction. 

Number of tooth 2 

Immersion angle  deg - 25.8～ 0.0 

Cutting 

coefficient   

Tangential  MPa 1500 

Radial  MPa 500 
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the chatter stability. 

 {𝐹}𝑒𝑗𝜔𝑐𝑡 =
1

2
𝑎𝐾𝑐[1 − 𝑒−𝑗𝜔𝑐𝑇][𝐴0][𝐺(𝑗𝜔𝑐)]{𝐹}𝑒𝑗𝜔𝑐𝑡 (2-87) 

where {𝐹}𝑒𝑗𝜔𝑐𝑡 is the dynamic component in the cutting force, [𝐺(𝑠)] is the 

transfer function of the tool, [𝐴0] is the directional dynamic cutting force matrix, 

𝐾𝑐 is the cutting coefficient, and 𝑎 is the depth of cut. Furthermore, [1 − 𝑒−𝑗𝜔𝑐𝑇] 

expresses the difference between the present value and the previous term value. 

Checking each part of this equation carefully, the product of [𝐺(𝑗𝜔𝑐)]{𝐹}𝑒𝑗𝜔𝑐𝑡 in 

the right-hand side of the equation means the chatter frequency component of the 

present tool displacement. Thus, [1 − 𝑒−𝑗𝜔𝑐𝑇][𝐺(𝑗𝜔𝑐)]{𝐹}𝑒𝑗𝜔𝑐𝑡 describes the tool 

displacement difference between present and previous term. Furthermore, the 

cutting force is defined as a product of tool displacement, the axial depth of cut, 

the directional matrix and the cutting coefficient as follows: 

 {𝐹(𝑡)} =
1

2
𝑎𝐾𝑐[𝐴0]{∆(𝑡)} (2-82) 

where {∆(𝑡)} is the tool displacement.  

Therefore, it can be said that Eq. 2-87 expresses the present dynamic cutting 

force {𝐹}𝑒𝑗𝜔𝑐𝑡 based on the dynamic cutting force itself including the transfer 

function of tool and the directional matrix. To have a solution in Eq. 2-87 

excepting {𝐹} = 𝟎, its determinant must be zero. 

In this theory, the amplitude of the dynamic cutting force in previous term is 

Fig. 8-21 Time-domain simulation of the 

proposed method of acceleration type.   

Fig. 8-20 Time-domain simulation of the 

proposed method of deceleration type.   



Chapter 8 Identification System for Stable Cutting Condition 

170 

 

assumed to be equal to the present dynamic cutting force. In other words, the 

dynamic force is not damped or expanded but continues fluctuating at static 

amplitude. Therefore, it is clear that the chatter stability analysis is not directly 

applicable to consider the time-dependent variation in the cutting force. For 

example, the chatter amplification must be higher at the larger axial depth of cut 

in the unstable region, however, the chatter stability analysis cannot distinguish 

the difference excepting the determination of stable or unstable.  

The difference of three kinds of states (stable, unstable, critical) in the chatter 

stability analysis can be explained considering the amplitude ratio. As shown in 

Fig. 8-22, the amplitude of tool displacement is different between the present 

term 𝑦0  and the previous term 𝑦1 . When the amplitude ratio is defined as 

𝜇 = 𝑦0/𝑦1, the process can be regarded as the stability limit in case of 𝜇 = 1. If 

𝜇 < 1, the chatter is exponentially damped, and the cutting stability is higher 

with smaller 𝜇. In contract, when 𝜇 > 1, the chatter is exponentially expanded at 

the ratio of 𝜇 , i.e., the chatter grows large more drastically with higher 𝜇 . 

Therefore, not only the stability limit but also the degree of stability would be 

possible to evaluate by installing 𝜇 to the chatter analysis. 

Based on the above discussion, the amplitude ratio 𝜇  is applied into the 

equation explaining regenerative effect mechanism as follows: 

 {𝐹}𝑒𝑗𝜔𝑐𝑡 =
1

2
𝑎𝐾𝑐 [1 −

1

𝜇
𝑒−𝑗𝜔𝑐𝑇] [𝐴0][𝐺(𝑗𝜔𝑐)]{𝐹}𝑒𝑗𝜔𝑐𝑡 (8-1) 

By multiplying 1/𝜇 to the tool displacement in previous term, the cutting 

condition, in which the present tool displacement is 𝜇 times as large as the 

previous one, can be expressed. To have a solution in Eq. 8-1 excepting {𝐹} = 𝟎, 

its determinant must be zero. 

Fig. 8-22 A simple orthogonal cutting model.  
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 det [[𝐼] −
1

2
𝑎𝐾𝑐 [1 −

1

𝜇
𝑒−𝑗𝜔𝑐𝑇] [𝐴0][𝐺(𝑗𝜔𝑐)]] = 0 (8-2) 

Like the chatter stability analysis method, one diagram can be drawn for each 

𝜇 based on Eq. 8-2 corresponding to the spindle rotation and the depth of cut. 

Therefore, By changing 𝜇 and repeating drawing the diagram for each 𝜇, the 

amplitude ratio distribution can be drown as shown in Fig. 8-23. To compare with 

a usual stability lobe diagram, the obtained amplitude ratio is actually high at 

center of the unstable region and gets low in the stable region. Furthermore, the 

diagram of 𝜇 = 1 theoretically fits with the stability lobes.  

Focusing on the amplitude ratio distribution in the unstable region, the large 

amplitude ratio appears in the right side of the lobe disproportionally. Therefore, 

it can be assumed that chatter expands earlier in the right side of the lobe than 

left side. This assumption is discussed through the time-domain simulation here. 

 

By the way, when the radial immersion is small, the stable region of real 

process is wider than that analyzed with a frequency domain model. This is 

because the frequency domain model ignores the situation that the tool jumps out 

from the workpiece, which easily occurs when the radial immersion is small. 

Although such non-linearity is difficult to consider in the frequency domain, it is 

easy to realize in a time-domain simulator. Therefore, the stability lobe diagram 

Fig. 8-23  The distribution of amplitude ratio. 
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of time-domain milling model is drawn by simulating the milling on a triangle 

shaped workpiece, as the experiments in Chapter 7. By arranging the color 

gradation based on the power spectrum density of cutting torque in each 

simulation result in parallel, the stability diagram can be derived as Fig. 8-24. 

Focusing on the lobe between 8200 to 8800 min-1, the spindle rotations from 8400 

to 8500 min-1 are regarded as left side of the lobe and that from 8650 to 8750 

min-1 are regarded as right side of the lobe here. 

Figure 8-25 shows the time-domain simulation results with various spindle 

rotations in the unstable spindle rotations. To evaluate the chatter generations at 

each spindle rotation fairly, the simulations are conducted by placing the surface 

profiles as the tool has already immersed into the workpiece as shown in Fig. 8-26. 

Furthermore, to evaluate the chatter generation, power calculation of cutting 

torque is conducted by requiring the average of square values of the cutting 

torque as shown in Fig. 8-27. In Fig. 8-25, chatter occurs at the spindle rotations 

from 8500 to 8700 min-1. Comparing the time-dependent variation of chatter at 

8500 and 8550 min-1, the chatter generates clearly earlier at the spindle rotation 

of 8650 and 8700 min-1. This result also indicates that chatter generates more 

drastically under the conditions of right side of the stability lobe than that of left 

side.  

From these theoretical discussions and simulation results, the reason of the 

difference between acceleration and deceleration in the proposed method is 

obvious. The acceleration of the spindle rotation can be regarded as the variation 

from the left side to right side in the chatter stability diagram. In this case, the 

Fig. 8-24  Time-domain simulation-based stability lobe diagram. 
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chatter gradually grows at left side of a stability lobe. On the other hand, when 

the spindle rotation is decelerated, i.e. in case of the variation from the right side 

to left side, the chatter suddenly expands at the right side of the stability lobe. In 

both cases, the chatter continues in the section above the stability lobe and is 

suppressed when the cutting condition gets into the stable region. Although the 

chatter does not behave as these variations in real process because the tool jumps 

out from the workpiece when the tool displacement becomes large, the difference 

of the amplitude ratio is a capital cause of the difference between the acceleration 

Fig. 8-25  Time-domain simulation results of each spindle rotation. 

Fig. 8-26  Initial placement of workpiece and tool.  Fig. 8-27  Moving average of square value.  



Chapter 8 Identification System for Stable Cutting Condition 

174 

 

and deceleration in the proposed method. 

 

Finally, the relation between the override changing rate and the identification 

error is discussed through the time-domain milling simulation here.  

Figures 8-28 and 8-29 show the time-domain result of the diagnosis method, 

where the modal parameters and the other conditions are given as Tables 8-10 

and 8-11. The axial depth of cut is set to 15 mm and radial immersion is set to 0.5 

mm respectively. As the STFT analysis result shows, chatter frequency shift 

occurs four times during decelerating the spindle rotation. This is also confirmed 

from the machined surface appearance as the unique chatter mark of four lines in 

the deceleration section. For comparison, a stability lobe diagram is drawn by 

using the same parameters in Fig. 8-30. Four stability pockets are confirmed and 

each s table spindle rotations are obtained from 5400 to 9000 min-1. 

The identification error of the stability pocket theoretically would be 

suppressed if the identification time is ensured sufficiently long, because 

Fig. 8-28  Simulation result (50 %/s override changing rate); (a) spindle rotation;       

(b) cutting torque; (c) short-time Fourier transform analysis. 

(a) 

(b) 

(c) 
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frequency-domain analysis assumes infinite response time and its response can 

be acquired approximately with enough long response time. In contrast, the 

response time has to be as short as possible because the identification time is 

limited in process. From this viewpoint, if the expected identification error is 

preliminarily known, the identification accuracy can be enhanced by 

compensating the error, even if the identification time is strictly limited. To 

derive a theoretical compensation equation, the time-domain milling simulation 

is repeated with various override changing rates. Figure 8-31 shows the relation 

Fig. 8-29  The workpiece surface in the simulation (50 %/s override changing rate). 

Fig. 8-30  Stability lobes drawn with a frequency-domain milling model. 
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between the override changing rate and the identified stable spindle rotations 

with the proposed method. The identified spindle rotations gradually get lower 

with larger override changing rate, thus, the error becomes larger with larger 

override changing rate between the theoretical stable spindle rotation and the 

identified one. However, even at 50 %/s override changing rate which is employed 

in this research, the identification error is only from -200 to -100 min-1. It can be 

said that the time response of chatter frequency is sufficiently high to perform the 

proposed diagnosis method in a short time. 

Figure 8-32 summarizes the identification error of the stable spindle rotations 

for each override changing rate. The coherence coefficient is high as 0.84 between 

the identification error and the override changing rate. Although the 

compensation equation can be developed by performing the simulation with 

various parameters, this approach would finally require the accurate 

identification of various parameters such as modal parameters. However, it is 

against the purpose of this research focusing on the simplification. Consistently, 

the proposed method should be an approach available without complicated modal 

analysis. As a future step of this research, a simple system identification method, 

which never requires sensor devices and complicated operations, would be a 

significant challenge to enhance the identification accuracy of the proposed 

method. 

 

 

  

Fig. 8-31  Identified stability pocket in each 

override changing rate. 

Fig. 8-32  Identification error of stability pocket in 

each override changing rate. 
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8.6 Summary 

This chapter proposes a chatter stability diagnosis method and evaluates it 

through side milling tests with two kinds of 3-axis vertical machine tools. On the 

basis of chatter frequency characteristic, the proposed diagnosis method can 

identify the stable spindle rotations against chatter only with once milling test. 

The obtained results are represented as follows. 

 

① The proposed stability diagnosis method experimentally shows that the 

stable spindle rotations against chatter can be identified by contentiously 

decelerating spindle rotation during chatter and capturing a drastic shift in 

the chatter frequency with disturbance observer. This technique is applicable 

even under a large override changing rate as 50 %/s. However, in order to 

observe the chatter frequency shift clearly, the cutting condition is required 

to ensure comparatively large depth of cut to generate large chatter.  

 

② By discussing the chatter mechanism with the developed time-domain 

milling simulator and frequency-domain milling model, this research 

theoretically shows that expansion rate of chatter varies according to the 

spindle rotation and depth of cut, and the process easily becomes unstable 

when spindle is decelerated. Therefore, it is concluded that the spindle 

rotation should be decelerated in the proposed diagnosis. 

 

③ The identification error of the proposed diagnosis method is discussed with 

the milling simulator. Although the identification error certainly gets large 

when changing rate of the spindle rotation is too high, the identification 

error is small enough even with high override changing rate as 50 %/s. 

 

The proposed technique is actually practical because it can be performed with 

only once milling test without any additional devices and complicated operations. 

This research experimentally shows the practicability and usability of the 

proposed stability diagnosis; on the other hand, applicability and versatility to 

other machine tools and processes would be significant issues as future works.
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9 Conclusions  

In this thesis, realtime process monitoring method is developed to detect tool 

wear progress, tool collision, tool fracture, and chatter vibration by means of 

disturbance observer which estimates disturbance force using servo information. 

Furthermore, chatter stability diagnosis method is established by integrating 

chatter stability theory with disturbance estimation technique. The feasibility of 

both proposals is experimentally evaluated through various tests in machine 

tools. 

 

In first chapter of this thesis, background and purpose of this research are 

described by introducing significant issues in machine tools and state-of-the-art 

challenges for process monitoring and stability analysis. The necessity of 

sensorless approach is emphasized from the viewpoint of practicability and 

usability. 

 

In Chapter 2, essential theories for the proposed process monitoring and 

stability diagnosis are described. Firstly, disturbance observer theory is explained 

to propose observer-based cutting force/torque estimation. Because cutting 

force/torque is regarded as a disturbance interfering on the precise motion control 

of the spindles and stages in a machine tool, disturbance observer theory is 

applicable to estimate cutting force/torque only from servo information in a 

machine-tool control system. As many researchers have experimentally proven, 

cutting force/torque is critically useful to grasp the machining states, e.g., the 

cutting force/torque gradually increases according to tool wear progress, 

drastically increases when tool collision occurs, and periodically fluctuates when 

chatter or tool fracture occurs. In order to purely estimate cutting force/torque 

from servo information, the proposed method compensates friction and gravity 

from the estimated disturbance force/torque by considering physical models of a 

spindle and a ballscrew-driven stage. 

Moreover, novel signal processing methods named “integration of moving 

variance and moving Fourier transform (MV+MFT)” and “rotational digital filter 

(RDF)” are proposed. The MV+MFT is time-frequency-domain analysis algorithm 

specialized for realtime chatter detection, whose computation load is abundantly 

low. The MV+MFT can detect chatter separately from forced vibration. The RDF 
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has a unique characteristic to extract a clock-wise component from a signal 

moving on a two dimensional surface. Considering that the fracture-induced 

fluctuation in cutting force moves in X and Y directions along with the spindle 

rotation in drilling, the drill fracture can be detected with RDF much more 

accurately than conventional frequency analysis methods. Applying these signal 

processing methods to the estimated cutting force/torque, the applicability and 

the detection accuracy of the proposed process monitoring are enhanced. 

Finally, the concept of stability diagnosis for chatter is introduced by explaining 

chatter mechanism with a frequency-domain milling model. Focusing on a 

characteristic of chatter frequency, identification for stable spindle rotation 

against chatter is proposed, which gradually decreases the spindle rotation 

during chatter and captures drastic shifts in chatter frequency from the 

estimated cutting torque. Furthermore, how to create a time-domain milling 

simulation is also introduced to theoretically evaluate the proposed stability 

diagnosis method. 

Based on these fundamentals, the realtime monitoring and stability diagnosis 

of cutting process are developed without any additional sensors and 

measurement devices. The performance evaluations of the proposed methods are 

presented in Chapters 4 – 8. 

 

In Chapter 3, experimental apparatuses for cutting tests and simulations are 

introduced. Two kinds of 3-axis vertical machine tools are used in this research to 

evaluate the proposed methods, thus, both of their mechanical characteristics and 

nominal parameter settings are listed. Furthermore, fundamentals of CUDA 

(compute unified device architecture) are introduced because this research 

employs a CUDA-based parallel calculation system for the time-domain milling 

simulation. Generally speaking, a time-domain simulation requires much 

computation time compared with a frequency-domain analysis. Therefore, this 

research applies the CUDA-based parallel calculation to the time-domain milling 

simulation, and successfully shortens the computation time to one eighty-third 

compared with CPU calculation.  

 

In Chapter 4, tool wear monitoring is conducted in drilling and tapping with 

the proposed cutting force/torque estimation. The results of drilling and tapping 

tests clearly show that the thrust force and cutting torque are certainly able to be 

estimated from a ball-screw driven stage and a spindle control system.  
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In drilling with 3-mm-diameter drills, no remarkable change in the estimated 

cutting torque is observed, although increase in the thrust force is confirmed. In 

tapping, the wear-induced increase is observed only in the estimated cutting 

torque. Although the proposed cutting force/torque estimation has enough 

accuracy to detect the increase of cutting force and torque due to tool wear 

progress, the reliable criterion for wear monitoring should be carefully selected 

considering the wear-induced variation in each process. 

 

In Chapter 5, tool collision detection is performed with the proposed cutting 

force estimation algorithm. The collision force is regarded as an instant external 

load and is observable in the proposed method. The proposed collision detection 

uses a pseudo-differential value of the estimated collision force to emphasize the 

collision-induced fluctuation. Furthermore, a modification method for the cutoff 

frequency of low-pass filters is proposed to enhance the time response and the 

robustness against errors of detection. 

The experimental results show that tool collisions with 7- and 5-mm-diameter 

drills in horizontal direction can be sufficiently detected within 3 ms. However, 

collisions with 3-mm-diameter drills in the horizontal direction cannot be 

detected because the collision-induced fluctuation in the pseudo-differential value 

is too small to exceed the threshold. In the vertical direction, the tool collisions 

clearly can be detected even with a long-type 3-mm-diameter tool. However, the 

fluctuation at resonance frequency exceeds the threshold during 

accelerating/decelerating when the feed rate is set to 5000 mm/min. Although a 

two-mass-system would be able to eliminate the fluctuation from the pseudo 

differential value, it is not acceptable because the number of nominal parameters 

increases, which have to be identified accurately. To avoid the misdetection, a 

dynamic threshold would be a practical approach, which takes different values 

depending on the motion of the stage. 

 

In Chapter 6, drill fracture detection method is proposed and evaluated 

through drilling tests with non-fractured and fractured drills. Firstly, the 

characteristics of RDF are evaluated and confirmed through time-domain 

simulations. The simulation results clearly shows that the RDF certainly has 

band-pass filtering effect and clock-wise signal pass effect simultaneously.  

By applying RDF to the estimated cutting force in X and Y directions, the 

fracture-induced clock-wise fluctuation in cutting force is captured with high 
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accuracy. Comparing contentious wavelet transform analysis, RDF-based 

analysis can emphasize the difference between non-fractured and fractured drills 

because the RDF can reduce the signal noise more efficiently. The proposed 

fracture detection method has sufficiently high accuracy to detect a small drill 

fracture only with the servo information in X- and Y-direction ballscrew-driven 

stage system. 

 

In Chapter 7, chatter vibration detection in milling is presented by analyzing 

the estimated cutting torque. Moreover, the applicability of the MV+MFT 

algorithm to realtime process monitoring is evaluated with computational time 

measurements, comparing with that of fast Fourier transform (FFT) algorithm. 

Although FFT requires large number of computations which cannot be finished 

within a servo cycle, MV+MFT consumes only about 300 ns in one periodic term, 

which is sufficiently short time to perform in realtime. 

The milling tests are conducted with two kinds of 3-axis vertical machine tools. 

By applying the MV+MFT analysis to the estimated cutting torque, the chatter 

can be detected separately from forced vibration in realtime. The distribution of 

the obtained power spectrum density of chatter is highly-similar to that of the 

surface roughness measurement results. The analysis results also indicate that 

the forced vibration has no influences on the roughness of machined surface. This 

is because the forced vibration does not change cusp height on the machined 

surface. 

 

In Chapter 8, the proposed stability diagnosis for chatter is performed to 

identify the stable spindle rotations. The experimental result shows that 

deceleration is a suitable variation for spindle rotation in the stability diagnosis 

because chatter frequency can be observed more clearly than the result in 

acceleration. The reason of difference between acceleration and deceleration is 

theoretically discussed with time-domain simulation and frequency-domain 

analysis. As a result, it is clarified that the expansion rate of chatter is larger at 

right side of a stability lobe diagram than the left side and the chatter easily gets 

large when the spindle rotation is decelerated. 

The experimental results also indicate that the proposed stability diagnosis 

cannot identify the stable spindle rotations when enough depth of cut cannot be 

ensured. In this case, chatter does not occur largely and the chatter frequency 

shift cannot be observed clearly. The chatter frequency shift itself can be observed 
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even under the large variation of spindle rotation such as 50 %/s override 

changing rate. Furthermore, the repeatability of the proposed method is 

sufficiently high when the chatter frequency shift is clearly observed.  

The time-domain milling simulation results show that the identification error 

gets large when the spindle rotation variation is large and the error 

compensation equation can be derived with the simulation results. However, the 

simulation-based approach requires accurately-identified parameters, which is 

against demand of simplification. The practical usage of the simulation results 

would be a future work for the proposed stability diagnosis. 

 

 

Because combined and parallel machine tools start to be used in recent 

industries, process monitoring and stability diagnosis will be focused on much 

more as indispensable technologies to ensure efficiency, usability, stability, and 

safety in machining in the near future. Against this background, this thesis 

provides a sensorless approach to grasp the machining state in realtime based on 

the disturbance observer theory. Focusing on tool wear, tool collision, tool fracture, 

and chatter as problems in process, this research theoretically and 

experimentally shows that the proposed process monitoring can detect each 

problem with high accuracy and reliability without any additional sensors. 

Furthermore, the proposed chatter stability diagnosis method can identify the 

stable spindle rotations accurately with only once milling test without any 

measurement devices. From viewpoint of the practicability and usability, the 

proposed methods in this research certainly provide new sensorless solutions 

which sufficiently satisfy the demands of industries. 

 

The proposed realtime process monitoring and stability diagnosis of cutting 

process will contribute to the progress of manufacturing technology and be widely 

applied as one of the fundamental technologies. 
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