大気圧プラズマCVD法による高硬度薄膜の作製と大面積化

平成27年度

森 貴則
学位論文　博士（工学）

大気圧プラズマCVD法による
高硬度薄膜の作製と大面積化

平成27年度

慶應義塾大学大学院理工学研究科

森 貴則
目次

第1章 序論

1.1 表面処理技術

1.2 大気圧プラズマCVD法による薄膜合成

1.3 非晶質炭素薄膜

1.4 シリカ系薄膜

1.5 リモート式大気圧プラズマCVD装置の需要

1.6 本論文の目的

第1章に関する参考文献

第2章 大気圧CVD法による非晶質炭素薄膜合成

2.1 緒論

2.2 実験方法

2.2.1 非晶質炭素薄膜の合成

2.2.2 非晶質炭素薄膜の分析方法

2.3 結果および考察

2.3.1 電源パルス周波数と成膜速度の関係

2.3.2 窒素プラズマによる非晶質炭素薄膜の成長

2.3.3 ヘリウムプラズマによる非晶質炭素薄膜の成長

2.4 第2章のまとめ

第2章に関する参考文献

第3章 大気圧プラズマCVD法で合成した非晶質炭素薄膜の高硬度化

3.1 緒論

3.2 実験方法

3.2.1 希釈ガス混合によるイオン密度の増加

3.2.2 FDBDの発生

3.2.3 FDBDを用いた非晶質炭素薄膜の合成

3.2.4 合成した薄膜の分析

3.3 結果および考察

3.3.1 希釈ガス混合比率と非晶質炭素薄膜の硬度の関係
第6章 リモート式大気圧プラズマCVD装置による高硬度シリカ系薄膜の作製

6.1 緒論

6.2 装置作製および実験方法

6.2.1 リモート式大気圧プラズマCVD装置の作製

6.2.2 シリカ系薄膜の成膜条件

6.2.3 シリカ系薄膜の分析

6.3 結果および考察

6.3.1 リモート式大気圧プラズマCVD装置を用いたシリカ系薄膜の合成

6.3.2 メンテナンスフリー型リモート式大気圧プラズマCVD装置を用いたシリカ系薄膜の合成

6.3.3 リモート式大気圧プラズマCVD法により合成したシリカ系薄膜の耐摩耗性評価

6.4 第6章のまとめ

第6章に関する参考文献

第7章 総論

謝辞
第1章 序論

1.1 表面処理技術

物体が外部と接触する表面は、過酷な環境におかれ、外部の影響を最も受ける。そこで物体表面に耐摩耗性、耐食性、装飾性、耐熱性、電磁気機能や光学特性などを付加する、表面処理技術が注目されている。表面処理技術が発展する以前は、材料特性を向上するため、材料自体に手を加えることで複合材料とする方法がとられていた。近年では低コスト化を目的として表面処理技術が急速に発展し、さらにはバルク材料では得ることのできない特性を得られる新しい材料開発技術となっている。表面処理技術は、材料の価値を安価に向上させることが可能であり、材料の持つ特性と合わせて相乗効果を発揮する。また材料自体の寿命が長くなることで、コストパフォーマンスを引き上げる有効な手段である[1-1]。表面処理技術は、大きく分けると表面改質法と薄膜被覆法に分けることができ、表面改質法は、拡散や塑性変形、温度変化によって原子配列を変化させる相変態など材料の性質変化を利用する技術である。それに対して表面被覆法は、材料の表面に膜を被覆することで、基材にはない特性を持たせる技術である。具体例としては、ショットビーニング、ショットブラスト、浸炭、窒化処理などがある。この薄膜被覆法は、ドリルやバイトといった切削工具、歯車や金型といった機械製品、機械的強度やガスバリア性を求められるポリマー材料、装飾品や半導体など多方面に応用することができて、過去数十年で急速に発展し重要な役割を果たしてきた。

表面被覆法は、主にFig. 1-1のように分類され、大きく分けて液相法と気相法の二つに分類される。液相法は原料を溶液中で溶かして反応させる方法で、代表的なものがメッキ法である。メッキ法は人体や地球環境に悪影響をもたらす溶剤を用いた処理が多く、均一処理が困難である。そのため現在では気相法に移行する動きが活発化している。気相法は大きく分けてCVD (Chemical Vapor Deposition) 法と PVD (Physical Vapor
Deposition)法がある。気相法は原料となる物質を気相状態にし、基材に蒸着していく手法である。このうち、化学的反応を利用したのが CVD 法であり、物理的反応を利用したのが PVD 法である。

![Diagram of coating techniques](image)

Fig. 1-1 Classification of coating techniques.

CVD 法は原料に気体を用い、熱やプラズマによって分解し、基材に堆積させることで薄膜を形成する。特にプラズマ CVD 法は低温下において熱力学的に高温状態にすることができ、プラズマ中で生成したイオンやラジカルが反応することで基板上に薄膜を形成する。CVD 法はガスを用いるため、複雑な形状を持つ基材に対しても被覆均一性が高く、広範囲かつ多様な物質の薄膜を均一に作製できる。また気体の組み合わせによって自由な組成の制御ができ、炭素薄膜や酸化物など多様な薄膜作製できる。PVD 法は原料に固体を用いて膜を形成する方法であり、固体の反応方法により真空蒸着、スパッタリング、イオンプレーティングなどに分類される。PVD 法は高温下での緻密で密着性のよい膜を形成することができるため、TiAlN 薄膜などのセラミックス系のハード
ドコーティングなどに利用されていることが多い。CVD法とPVD法は同種の硬質膜を作製することができるため比較されがちであるが、生成機構はまったく異なるため、目的とする処理や基材に適した手法を選ぶ必要がある。

1.2 大気圧プラズマ CVD法による薄膜合成

近年、融点の低いポリマー材料への薄膜被覆の需要が高まっており、低温下での薄膜合成が望まれている。基板を低温に保ちながら薄膜を堆積する方法としてプラズマCVD法が挙げられる。プラズマCVD法は、プラズマを用いて原料ガスを分解し、プラズマ内部に導入した基板に、分解した原料種を堆積させることで薄膜を合成する。非平衡プラズマであるグロー放電が用いることで、低温での薄膜合成を可能としている。電極間に電圧をかけることで、陰極から発生した電子が陰極前面の電界により加速され、気体分子と衝突して励起、電離する。発生した正イオンが陰極に流入して2次電子が放出し、電子の生成が繰り返されることで、グロー放電が生成する。このとき電子と分子の温度差が極めて大きく、電子が高い運動エネルギーを持つのに対し分子の温度が低いため、プラズマCVD法により融点の低いポリマー材料への薄膜合成が可能となる。またグロー放電は、電極間においてプラズマが均一に生成されるため、基板上に平滑かつ均一な薄膜の合成できる。

上記のプラズマCVD法による薄膜合成は、一般的に10 Pa以下まで圧力を下げたチャンバー内で実施される。しかしながら、工業応用に際して、真空チャンバーによる合成面積の制限や、真空状態にするための処理時間などの課題があった。薄膜被覆においてランニングコストの削減かつ大面積への薄膜合成の需要は高く、従来の低圧下での合成から真空チャンバーが不要となる大気圧下での薄膜合成が注目されている。大気圧下での薄膜合成は低圧下での合成と異なり、バッチ式からライン式へと処理方式を変更できるため、上記の課題を解決できる。大気圧プラズマ技術の研究として、1985年にGoldmanによりコロナ放電と誘電体バリア放電(DBD)を用いた大気圧プラズマの維持が報告された[1-2]。この大気圧プラズマ技術を用いた薄膜合成が期待される中で、1988年にOkazakiらが、安定な大気圧プラズマの生成に関する研究を発表した[1-3]。原料ガスを希ガスであるヘリウムガスで大量に希釈することで、大気圧下でも安定なグロー放電を維持し、低圧プラズマと同様に励起種によって基材表面を化学的に改質できる。大気圧
下でグロー放電を安定に維持するために、準安定励起状態の寿命が長く拡散速度が高くまた希ガスであるヘリウムを希釈ガスとして用いる。また下部電極の内側に誘電体を設置することによって、誘電体表面の壁電荷による直流バイアスを発生させ、そしてkHz以上の交流電圧を印加することで大気圧グロー放電の維持に成功した。

誘電体バリア放電を用いて電極間に交流電圧を印加すると、気体分子が電離し、電界と平行な方向に無数の極めて細いストリーマと呼ばれる光の筋が一様に発生する。そのとき荷電粒子が発生するが、誘電体があるためにストリーマの電荷は電極に流れず誘電体の表面に蓄積される。この壁電荷による電界は、印加電圧による電界と逆方向に生成するため、壁電荷の増加に伴い電極間の電界が弱まる。しかし、印加電圧により電界的向きが変わることで壁電荷による電界と印加電圧による電界の向きが一致することで放電を容易に発生させることができる。このとき電極間にガスを導入することで分子の分解や合成などの化学反応が起きるために、薄膜を合成できる。

近年では、ヘリウムガスではなく、窒素やアルゴン等の安価な汎用ガスでも安定な大気圧プラズマを維持できることが求められている。ヘリウムガスはアルゴンや窒素ガスと比べ高価であるため、装置の投資額を削減できてもランニングコストが大きくなる。ヘリウム以外のガスを用いて大気圧プラズマを生成するためには、誘電体に用いる材料の変更[1-4]、電極間電界の印加方法の変更などが必要となる。大気圧下で生成したプラズマは、ヘリウム以外のガスを用いるとグロー放電からアーク放電に一瞬で移行してしまう。そこで、グロー放電からアーク放電へ移行する前に強制的に電界を切ることで安定なグロー放電を維持する方法が確立された[1-5]。この条件を満たす電源に求められる条件が大きく分けて二つある。一つは汎用ガスの準安定状態の寿命がヘリウムに比べて極めて短いため、高速にオンとオフを切り替えられるパルス電源であること、もう一つは、大気圧でガス分子を解離させるために数kVを超える高電圧を生成可能であることである。そこでこれら二つの条件を満たす、電圧の立ち上がり速度の高いパルス波形が用いられるようになった（Fig. 1-2）。パルス電源により大気圧下でプラズマを生成する際には、高電圧の印加による気体の温度上昇を防ぐために装置に冷却設備を設けることや、誘電率の高い材料を誘電体として用いることで印加電圧を低く抑えるなどの装置の工夫も必要となってくる。

4
誘電体バリア放電におけるプラズマの放電形態は、プラズマ中の電流や電子密度、イオン密度からTable 1-1のように大きく4つに分けられる[1-6]。大气圧プラズマ技術による薄膜合成において、均一な薄膜合成のために安定なグロー誘電体バリア放電（GDBD）が望まれてきた。GDBDは他の放電形態に比べ、均一ではあるがイオン密度や電子密度が小さいという特徴がある。一方でフィラメンタリー誘電体バリア放電（FDBD）は、無数のストリーマからなる放電であり、GDBDと比べ均一性に欠けるが、電子が拡散しづらいためにイオン密度や電子密度において高い値を示すことが知られている。

Table 1-1 Energetic species densities for different AP discharge.

<table>
<thead>
<tr>
<th>Discharge form</th>
<th>Current density (A/cm²)</th>
<th>Electron density (/cm³)</th>
<th>Metastable density (/cm³)</th>
<th>Ion density (/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDBD</td>
<td>0.001 - 0.01</td>
<td>10¹⁰-10¹¹</td>
<td>10¹¹</td>
<td>10¹¹</td>
</tr>
<tr>
<td>GLDBD</td>
<td>0.1 - 1</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>TDBD</td>
<td>0.001 - 0.005</td>
<td>10⁷-10⁸</td>
<td>10¹³</td>
<td>10¹¹</td>
</tr>
<tr>
<td>FDBD</td>
<td>1 - 10</td>
<td>10¹⁴</td>
<td>10¹³</td>
<td>10¹⁴</td>
</tr>
</tbody>
</table>
プラズマ CVD 法における薄膜の成長過程は、気相反応過程、表面反応過程、膜内反応過程の 3 つに分けられる[1-7]。気相反応過程では、マクスウェル・ボルツマン分布に従ったエネルギー分布をもつ電子と原料分子との衝突により、原料分子の解離、励起、イオン化がおこる。複数回の衝突励起過程を経て様々な化学種が生成され別の化学種に変換されながら輸送される。これらの化学種が原料ガス分子と衝突することで、イオン交換反応、イオン分子反応、挿入反応、再結合反応、引き抜き反応等が生じる。反応種ごとに形態や反応速度が異なるため、各種反応の密度に多様性が出現する。これらは質量分析装置を用いて測定することができる[1-8]。気相反応で生成した化学種のうち基板表面に到達したもののが膜の堆積に寄与する。基材表面に付着した化学種は、表面に物理蒸着した状態で自身の余剰なエネルギーを消費するために基板表面を動き回る表面マイグレーション反応を起こす。表面マイグレーション反応により、エネルギー的に安定な表面のダングリングボンドが存在する位置で化学結合を形成し薄膜が堆積する。表面マイグレーション反応は、化学種のもつ運動エネルギーや基板温度に依存する。基板表面に到達しても反射や他の化学種との再結合により気相中に戻る反応もある。このとき表面に入射した化学種の数に対して表面上に残留した化学種の数の比を、その化学種の付着確率と呼ぶ。大気圧プラズマ CVD 法では表面に入射する化学種が多様であるため、前駆体として望ましい化学種のみならず薄膜特性を劣化させる不純物や官能基も付着する。そのため成膜過程が複雑になり、その解明や制御が困難になっている。表面マイグレーション反応を起こす十分なエネルギーがなければ、粗い表面状態の形成を引き起こす[1-9,10]。粒子成長やまた、化学種によっては表面に付着した際に表面の原子や官能基と化学反応を起こし、表面の結合状態の変化を引き起こす。また基板表面で化学結合を形成した化学種は、隣接する原子と化学反応を起こし新たな結合を形成する。終端している原子は、他の原子による束縛が少ないので容易に動くことができ、膜内反応を起こす可能性が高い。反応は薄膜表面付近で最も起こりやすく、薄膜内では反応性が低くなる。この反応は薄膜のエネルギーが高いほど起こりやすいため、基板温度の上昇により堆積膜内反応が促進される。プラズマ CVD 法において、気相反応中ではイオン反応はほぼ起きず、ラジカルによる重合反応が支配的と考えられている[1-11,12]。大気圧プラズマにおいては、平均自由行程の観点から運動エネルギーも小さい。基板温度を変化させない場合、表面反応や堆積膜内反応が生じにくく、大気圧プラズマ CVD 法で合成した薄膜の軟質化の要因となっている。
1.3 非晶質炭素薄膜

炭素は同元素だけで実用化に供しうる材料を作ることができる元素の中では最も軽い元素である[1-13]。炭素原子は1つの電子を持ち、混成軌道を用いて有機分子中に結合させる。炭素の混成軌道にはsp, sp², sp³混成軌道の3種類があり、それぞれ混成軌道で結合が形成されるかによって特性が大きく変化する。代表的な炭素同素体には、ダイヤモンドとグラファイトが挙げられる。非晶質炭素薄膜は、sp³混成軌道で結合した炭素を多く含む不規則構造からなるアモルファスな炭素薄膜である。非晶質炭素薄膜は決まった構造をとらないが、Fig. 1-3のような構造であるといわれている。非晶質炭素薄膜の構造はダイヤモンド構造に対応するsp³混成軌道で結合した炭素を含み、また部分的にグラファイト構造に対応するsp²混成軌道で結合した炭素や水素との結合を含む非晶質な構造となっている。この非晶質炭素薄膜の構造についてはFerrariとRobertsonらによってFig. 1-4に示すようなsp³結合分量とsp²結合分量そして水素量の3元状態図で説明されている[1-14]。この図に示すように非晶質炭素薄膜は合成方法や合成条件によって構造が大きく変化し、材料特性も大きく異なる。

非晶質炭素薄膜の優れた特徴として、高硬度、低摩擦係数、ガスバリア性などが挙げられ、その優れた性能から幅広い分野での工業応用が期待されている[1-15,16,17]。また非晶質炭素薄膜は結晶粒界を持たず平滑性に優れているため、摩擦係数が極めて低い[1-18]。そのため、切削工具においては潤滑油を必要としないドライ加工が可能とされている。また切削工具の他にも、宇宙衛星などあらゆる摺動部に応用されている。また高密度な3次元構造を持つ非晶質炭素薄膜は気体分子の透過を抑制する効果を持つ。この優れたガスバリア性を活かして、食品や飲料、薬品などの包装材料に被覆することで内容物の劣化を防ぐ用途で用いられていることが検討されている[1-17]。
Fig. 1-3 Atomic structure of diamond like carbon.

Fig. 1-4 Ternary phase diagram of amorphous carbon films which was proposed by Ferrari and Robertson.
非晶質炭素薄膜の硬度は、薄膜の密度や摺動性などその他の物性にも大きく寄与する物性であり、向上が望まれている。非晶質炭素薄膜の硬度は、Fig. 1-4 に示すように薄膜中の sp^3 混成軌道の炭素原子の割合や、薄膜内部の水素量に影響すると言われている [1-19]。非晶質炭素薄膜の結合は、ダイヤモンドと同じ sp^3 混成軌道の炭素原子による結合と sp^2 混成軌道の炭素原子による結合が混在している。sp^2 混成軌道の炭素原子による結合は平面方向の強度には優れているが、3 次元のネットワークを形成できないため、sp^2 混成軌道の炭素原子による結合が増加すると薄膜の硬度は低下する。また薄膜内部の水素量の増加により、炭素原子間で共有結合が水素原子に置換され、末端結合を形成するため、硬度が著しく低下する。一方、水素フリーの非晶質炭素薄膜は水素終端する部分が存在しないため高硬度な薄膜となる。

水素含有量や sp³混成軌道比率に関わるため、薄膜の硬質化により密度や摩擦係数、ガスバリア性の向上につながる。硬質な非晶質炭素薄膜を得るためには、大気圧プラズマ技術においても水素含有量比率を低下させる必要がある[1-28]。大気圧プラズマ CVD 法を用いた硬質な非晶質炭素薄膜の合成に関する研究は、基板温度の増加や合成面積の縮小による方法が多く、工業応用を見越した低温かつ大面積への薄膜合成に関する報告はない。

1.4 シリカ系薄膜

シリカ系薄膜は Si-O を主骨格として、C や H などが結合した構造を持ち、その用途はシリコン半導体デバイスの層間絶縁膜の低誘電率化を目的として、CVD 法により合成された研究が数多く報告されている。主骨格である Si-O-Si 結合の結合角には、最も安定な角度である 144°を中心に、±30°にもおよぶ分布が存在する。分布の肩にあたる結合角をもつ Si-O-Si 結合は歪んでおり、SiO₄ 四面体からなる平面に近い小さな環状構造をとっている。近年では、電気特性ではなく、シリカ系薄膜の透明性と機械的特性を活かして、耐傷性付加コーティングとしての研究がなされるようになってきた[1-29]。シリカ系薄膜の作製方法は大きく液相合成法（ウェットプロセス）と気相合成法（ドライプロセス）に分けられる。ウェットプロセスでは溶剤に溶解したコーティング原料を基材に塗布し、加熱又は紫外線により硬化させ被膜を形成する。一方ドライプロセスは主にプラズマを用いて表面に薄膜を被覆する方法であり、ドライプロセスで合成したシリカ系薄膜は基本的にシリカ骨格を持ったアモルファスな構造であることが知られており、ウェットプロセスよりも硬質な薄膜合成に適している。

硬質なシリカ系薄膜合成の応用拡大のために、大気圧プラズマ CVD 法によるシリカ系薄膜コーティング技術への需要が高まっている。大気圧プラズマによるシリカ系薄膜の合成の研究は、1995 年に Sawada らによるテトラメチルシリラン (TMOS) と、ヘキサメチルジシロキサン (HMDSO) のプラズマ重合に関する報告から発展した。その後がシリカ系薄膜の光学的特性、電気的特性に着目した低誘電体被膜に関する報告である[1-30,31]。Wrobel らは、プラズマ重合によるシリカ系薄膜の合成において放電時間とともに膜密度が変化することを示した[1-32]。近年では、機械的特性やガスバリア性に着目した研究も進められており、Trunec らや Noborisaka らは、原料に HMDSO や TMOS
を使用し、基板温度を増加させることで、4 GPaもの硬度を持つシリカ系薄膜を合成した[1-29,33]。また Premkumar らは、PEN 基板上にシリカ系薄膜を合成し、膜厚を変化させることでガスバリア性の向上に成功した[1-34]。また Fanelli らは、原料ガスに TMDSO と PMDSO、HMDSO を用いて合成したシリカ系薄膜の結晶状態や炭素含有量比率について述べている[1-35]。大気圧プラズマ CVD 法で合成したシリカ系薄膜の成膜速度は、数 nm/min と従来のプラズマ CVD 法に比べ 10 分の 1 程度であり、工業応用には不向きである。基板温度の増加による硬度向上に関する研究報告が多く、室温下での硬質なシリカ系薄膜の合成が求められる。また微小領域への放電であり、自動車部品などの大面积かつ立体形状を持つ基材への硬質なシリカ系薄膜合成は実現されていない。

1.5 リモート式大気圧プラズマ CVD 装置の需要

樹脂材料は、金属やセラミックスなどの既存の材料に比べ、軽量且つ成型しやすい、種々の形状を取ることができるため、代替材料として期待されている。近年では自動車部品用途として、ヘッドライトのレンズがガラスからポリカーボネート (PC) 樹脂製のレンズへの代替が進んでいる。さらに成型技術の進歩により、PC 樹脂の成型は大型かつ三次元的になり自動車のデザインの重要な要素となっている。ヘッドライトのレンズ以外にも、自動車用窓ガラスの樹脂化がすすめられており、サイドウィンドウや、パノラマルーフなどへの実用化が進んでいる[1-36]。PC 樹脂の比重はガラスの約半分であるため、同じ厚みの場合、大幅な軽量化につながる。これは PC の利点の一つであり、自動車の燃費低減や二酸化炭素排出量の削減などの観点から環境問題へのアプローチにもなり注目を集める要因の一つである。また、熱伝導率はガラスに比べ 6 分の 1 程度であり、断熱効果が大きく社内の空調効果に貢献する。一方で曲げ弾性率がガラスの 30 分の 1 であり、荷重や風圧に対する耐性が強い。そのため樹脂の厚さを大きくすることで剛性を上げる必要がある。表面の耐傷性が極めて低く、表面にハードコート処理を施す必要があるが、PC 樹脂の荷重たわみ温度はおよそ 140°C であり、表面にハードコート処理をする場合は温度の制限がある。

Inagaki らは原料を変化させてガラスやポリマー材料上にシリカ系薄膜を被覆し、表面硬度の変化について検討した[1-37]。Noborisaka らは、密着性を向上させるためのプ
ライマー層を導入した PC 樹脂状に、大気圧プラズマ CVD 法によりシリカ薄膜を合成することで、テーパー摩耗試験の繊り度をおよそ 50%程度から数%まで低下させることに成功した[1-33]。従来の大気圧プラズマ CVD 法は、数ミリメートル程度の間隔で隔てられた二つの電極間に基板を配置し、直接プラズマにさらすることで合成する方法である（ダイレクト式）。ダイレクト式ではこの電極の面積を大きくすることでプラズマ生成面積を大きくすることができるため大面積への薄膜合成が可能となる。しかしながら大気圧下でプラズマを生成するためにはこの電極間距離を数 mm に制御する必要があるため、樹脂窓のような立体形状且つ厚さのある基材への合成が困難である。そこで立体形状を持つ基材への曲面コーティングが可能な技術としてリモート式大気圧プラズマ CVD 法に着目した。ダイレクト式とリモート式の比較図を Fig. 1-5 に示す。リモート式は縦に配置した二つの電極間に生成されたプラズマを、原料ガスを高速に流すことで噴出させ、基材に噴き付けることで薄膜を合成する。プラズマ生成部と基材が離れているため、立体形状など基材の形状に依存しない薄膜合成が可能となる。またダイレクト式と同様、プラズマ噴出面積を大きくすることで大面積への薄膜合成が可能となる。このリモート式大気圧プラズマ技術は、基材のクリーニングや濡れ性向上による基材と塗膜との接着性向上など、表面処理技術として多く使われてきた[1-38,39]。

リモート式大気圧プラズマ CVD 法においても、薄膜を合成した研究報告はあるが、その多くがプラズマジェット方式であるため放電面積は 1 mm² 程度であり、大面積には合成できず、更にはメンテナンス性に問題がある[1-40]。また合成した薄膜については、有機物が多く、低密度な薄膜であることが報告されている[1-41]。よって、リモート式大気圧プラズマ CVD 法により、大面積に硬質なシリカ系薄膜を合成できる技術の確立が求められている。
1.6 本論文の目的

非晶質炭素薄膜やシリカ系薄膜は、様々な製品への応用のため低コストな大気圧下での合成が期待されている。大気圧プラズマ技術を用いた薄膜の高硬度化の研究は盛んに進められているが、いまだ薄膜合成メカニズムは明らかではなく、また大面積合成技術や立体形状への薄膜合成技術は確立されていない。室温環境において大面積への高硬度
薄膜合成や曲面コーティングの実現は、薄膜分野のさらなる応用拡大につながると考えられる。そこで本論文の目的は、大気圧プラズマ CVD 装置の機器設計により、放電形態や薄膜合成方法を変更させて非晶質炭素薄膜やシリカ系薄膜を合成し、実用可能な大気圧下での薄膜形成技術を確立することとした。

第 1 章では、非晶質炭素薄膜とシリカ系薄膜について述べ、大気圧プラズマ技術により合成した薄膜の現状と課題について記述し、本研究の目的を述べた。

第 2 章では、大気圧プラズマ CVD 法において、希釈ガスや電源パルス周波数と合成した非晶質炭素薄膜の物性の関係について分析した。また合成した非晶質炭素薄膜を異なる膜厚ごとに分析してその表面状態から非晶質炭素薄膜の合成過程について考察した。

第 3 章では、希釈ガス種比率と放電形態を変化させプラズマ中のイオン密度を変化させて堆積させた非晶質炭素薄膜の硬度向上について議論した。

第 4 章では、希釈ガスと酸素流量などの条件を変化させてシリカ系薄膜を合成し、薄膜の化学状態や硬度などの分析とプラズマ内部の励起状態を調べ、シリカ系薄膜の合成過程について議論した。第 5 章では、合成した硬質なシリカ系薄膜を PET 基板上に合成しガスバリア性を評価した。

第 6 章では、従来では困難な曲面形状への大面積合成を可能とするため、リモート式大気圧プラズマ CVD 装置を作製し、装置の最適のため電極の大きさ、排気設備や冷却設備の有無が噴出したプラズマに及ぼす効果について調査した。さらに、リモート式合成において酸素流量など種々の条件が薄膜に及ぼす影響を評価した。また作製したリモート式大気圧プラズマ CVD 装置により合成したシリカ系薄膜をポリカーボネート樹脂状に合成し、テーパー摩擦試験により耐摩耗性を評価した。

第 7 章ではこれまで示した大気圧プラズマ技術により合成した非晶質炭素膜およびシリカ系薄膜の物性評価の結果を総括し、またその有用性についてとりまとめた。
第1章に関する参考文献

第2章 大気圧CVD法による非晶質炭素薄膜合成

2.1 緒論

非晶質炭素薄膜は、高硬度、低摩耗係数、ガスバリア性など優れた性能から多くの分野での工業応用が期待されている[2-1,2,3,4]。第1章でも述べたように、より安価で大面积に合成するために大気圧プラズマ技術による薄膜合成が望まれる。Yokoyamaらは希釈ガスにヘリウムを用いることで均一成膜に好ましくないアーク放電への移行を抑制し、大気圧下で安定なグロー放電を得ることに成功した[2-5,6]。またさらに安価に薄膜を合成するために、希釈ガスにヘリウムではなく窒素を用いて安定な放電を生成する取り組みもなされてきた[2-7]。Suzukiらは大面积合成可能なAP-PECVD装置を作製し、低温下での非晶質炭素薄膜の合成に成功した[2-8,9]。

誘電体バリア放電を用いた大気圧プラズマCVD法での薄膜合成は、高い成膜速度を示し、最大でおよそ1μm/sにもおよぶ[2-8]。しかしながら低圧下で合成した薄膜に比べ、水素含有量が多くまたsp\(^{3}\)混成軌道由来の結合が少ないと、軟質な薄膜となる。その薄膜は薄膜の合成条件によって変化し、窒素プラズマを用いて合成した非晶質炭素薄膜は大きな粒子（パーティクル）で構成される[2-10]。また合成した薄膜の硬度は、パーティクルの粒径が増加するにつれて軟質化することが知られている。Sakuraiらは窒素プラズマで生成した非晶質炭素薄膜のパーティクル形状を変化させ、表面粗さが増大するにつれて薄膜の硬度が低下することを示している[2-11]。このとき大きなパーティクルで構成された非晶質炭素薄膜には、多量の水素が混入していることが知られている。低圧下での非晶質炭素薄膜の合成において、軟質化の要因である水素の脱離反応は表面反応が支配的だといわれている[2-12]。しかしながら大気圧下での非晶質炭素薄膜の合
成は、平均自由行程が小さく気相反応が支配的になるために、低圧下での堆積モデルを用いることができない。また大気圧環境ではプラズマを生成するために種々のガスを混入するために、反応過程が複雑となりまだ明らかになっていない。誘電体バリア放電による大気圧プラズマCVD法において、気相反応を制御するパラメータとして希釈ガス種と電源パルス周波数が挙げられる。希釈ガス種ごとに分子の持つイオン化エネルギーや異なり、前駆体に与えられるエネルギーも異なる。また電源パルス周波数を制御することで、気相での単位時間当たりの反応回数が変化する。これらにより気相反応の制御することで、大気圧下における非晶質炭素薄膜の成長過程を明らかにできると考えた。

本章では、大気圧プラズマ技術を用いて合成した非晶質炭素薄膜の膜厚ごとの表面形態を分析することで、薄膜を構成するパーティクルの成長過程を明らかにした。成膜条件として希釈ガスには窒素とヘリウムを用い、また電源パルス周波数を変化させることで、パーティクル生成を制御した。また低温化において平滑な表面を保つことで大気圧非晶質炭素薄膜の厚膜化を試みた。

2.2 実験方法

2.2.1 非晶質炭素薄膜の合成

Fig. 2-1に使用した大気圧プラズマCVD装置の概略図を示す。Okazakiらが提案した平行平板型の誘電体バリア放電の原理を参考に装置を作製した[2-5]。電極として銅を使用し、上部電極をパルス電源に、下部電極をアースに接続した。銅電極を固定する材料としては絶縁体かつ強度の高いガラスを用い、誘電体にはアルミナ（誘電率:9.5）を用いた。電極間距離は1 mmに固定し、電極間に原料ガスと希釈ガスの混合ガスを導入することでプラズマを生成し薄膜を合成した。基板は単結晶シリコンを用いた。原料ガスには、高い成膜速度が得られるアセチレン (C₂H₂) を使用し、希釈ガスはHeとN₂の2種類用いた。原料流量比率: [C₂H₂/(C₂H₂+He or N₂)]×100（%）を2%とし、総流量を5 L/minで統一した。

本章で使用するパルス電源は、SPD1高電圧パルス電源であり、印加可能電圧は最大20 kV、周波数は1-30 kHz、パルス幅は1-10 μsの間で可変である。パルス波形を用いることで、ヘリウムを用いない大気圧プラズマにおいても、アーク放電への移行を抑制し、
安定した放電を得ることができる。パルス幅を 5 µs、電極間の電圧を 10 kV に統一した。また薄膜のパーキュルの成長過程を調べるために、電源パルス周波数を 2, 5, 10, 15 kHz まで変化させた。それに伴い、パルス電源の出力は 16 W から 120 W まで増加した。

Fig. 2-1 Schematic diagram of atmospheric-pressure plasma CVD apparatus.

2.2.2 非晶質炭素薄膜の分析方法

合成した非晶質炭素薄膜の膜厚は、触針式段差測定器 (Dektak3030, Veeco) を用いて測定した。基板の固定に使用したポリイミドテープをはがし、その面に沿って 5 か所無作為に測定した。ポリイミドテープから 5 mm 離れた箇所の前後 2 mm の段差を測定し算術平均値を求めた。その 5 点の平均値を薄膜の膜厚とし、成膜速度はその測定した膜厚を成膜時間で除することで算出した。非晶質炭素薄膜の表面および断面状態を走査型電子顕微鏡 (SEM) を用いて観察した。またレーザー顕微鏡を用いて表面の凝集体を観察し、算術平均表面粗さ RMS (root-mean-square) を原子間力顕微鏡のコンタクトモードにより測定した。走査範囲は 1 × 1 µm² で、走査速度は 1 Hz で実施し、各サンプル表面の 4 か所測定し平均を求めた。また薄膜の組成を X 線光電子分光装置 (XPS) により、分析した。エネルギー分解能は 0.65 eV とし、組成分析の前に表面のコンタミや酸化物を除去するために、アルゴンクラスターによるエッチングを行った。また薄膜の化学構造をラマン分光法により分析した。ラマンスペクトルは 532 nm の波長のレーザーを使用、解像度は 0.75 cm⁻¹ とした。
2.3 結果および考察

2.3.1 電源パルス周波数と成膜速度の関係

電源パルス周波数と成膜速度の関係を Fig. 2-2 に示す。成膜速度は、触針式段差測定器で測定した膜厚を成膜時間で除することにより算出した。窒素で希釈した大気圧プラズマにより合成した非晶質炭素薄膜の成膜速度は、電源パルス周波数を 2 kHz から 15 kHz まで増加させることで、0.23 μm/min から 1.44 μm/min まで増加し、ヘリウムで希釈した大気圧プラズマにより合成した非晶質炭素薄膜の成膜速度は、0.20 μm/min から 1.9 μm/min まで増加した。本章で得られた成膜速度は、希釈ガスに関わらず一般的な生成方法である 10 Pa 以下でのプラズマ合成の成膜速度 (0.0030 - 0.13 μm/min [2-13,14]) よりも高い値を示した。また電源パルス周波数と成膜速度は、希釈ガス種にかかわらず比例関係を示した。このことから原料ガスにアセチレンを用いた成膜過程について考える。第一章でも述べたが、大気圧プラズマ CVD 法においては、大きく気相反応による前駆体生成、表面反応および堆積膜内反応による水素脱離が考えられる。大気圧プラズマ CVD 法において非晶質炭素薄膜の前駆体としては以下のような反応による C_2H ラジカルや C_2 ラジカル、C_3H_2 ラジカルなどの炭化水素ラジカルが挙げられる。

\[
\begin{align*}
H-C=C-H &\rightarrow H-C=C-C+H \\
H-C=C-H &\rightarrow C.C+C+2H \\
H-C=C-H &\rightarrow H-C=C.H
\end{align*}
\]

これらの炭化水素ラジカルが、プラズマ中で生成し、互いに衝突しながらパーティクルとなり表面に堆積する。電源パルス周波数と成膜速度が比例関係にあったことから、電源パルスの 1 パルスと 1 インターバル間に、気相中で生成した炭素および炭化水素イオンが互いに衝突を繰り返し基板上に堆積していると考えられる[2-11,15]。
2.3.2 窓素プラズマによる非晶質炭素薄膜の成長

本項目では、希釈ガスに窒素を用いて合成した非晶質炭素薄膜の成長過程について述べる。Fig. 2-3 に電源パルス周波数を 10 kHz で合成した非晶質炭素薄膜の各膜厚での表面 SEM 観察像、Fig. 2-4 に電源パルス周波数を 5 kHz で合成した非晶質炭素薄膜の各膜厚での表面 SEM 観察像を示す。周波数に関わらず、膜厚が 500 nm まではパーティクルの少ない均一な表面が観察された。しかしながら周波数 10 kHz で合成した場合、膜厚が 1.1 µm になると、パーティクルが薄膜成長方向に成長した表面が観察された。さらに膜厚が 2 µm を超えるとパーティクルが、球状からカリフラワー状に変化した。一方で、周波数 5 kHz で合成した非晶質炭素薄膜は、10 kHz の合成した薄膜と異なり、生成したパーティクルの形状は球状を保っており、電源パルス周波数を小さくすることでパーティクルの異なる成長過程が観察された。Mishra らは大気圧プラズマ技術を用いて合成した非晶質炭素薄膜は、多くのパーティクルから構成され、平滑な表面と高い成膜速度の間に互換性がないと報告しているが[2-16]。本章で作製した非晶質炭素薄膜は周波数を小さくすることで、薄膜の成長を抑制し平滑な表面を得ることに成功した。Fig. 2-5 に SEM による非晶質炭素薄膜の断面観察像を示す。電源パルス周波数が 10 kHz の場合、膜厚が 1 µm のときには、パーティクルが球状を保ち隙間のない繊密な構造が観察され

Fig. 2-2 Deposition rate of a-C:H films as a function of pulse frequency.
たが、膜厚が 2\,\mu m になると、表面付近でパーティクルが縦方向に伸びる成長をしていった。一方で、電源パルス周波数が 15\,kHz のときは、膜厚が 1\,\mu m のときにすでにパーティクルがカリフラワー状に成長していた。また膜厚の増加に伴い、カリフラワー状のパーティクルが縦に成長する構造となった。

Fig. 2-3 The surface SEM image of a-C:H films synthesized from C_2H_2/N_2 at 10 kHz with changing the thickness, (a) 0.5 \, \mu m, (b) 1.1 \, \mu m, and (c) 2.0 \, \mu m.
Fig. 2-4 The surface SEM image of a-C:H films synthesized from C$_2$H$_2$/He at 5 kHz with changing the thickness, (a) 0.5 µm, (b) 1.3 µm, and (c) 2.7 µm.
Fig. 2-5 Cross-sectional SEM image of a-C:H films synthesized from C\textsubscript{2}H\textsubscript{2}/N\textsubscript{2} with various pulse frequency and film thickness. (a) 10 kHz, 1 μm, (b) 10 kHz, 2 μm, (c) 15 kHz, 1 μm, (d) 15 kHz, 2 μm.

また Fig. 2-6 に膜厚ごとの非晶質炭素薄膜のレーザー顕微鏡による表面観察結果を示す。膜厚が 0.5 μm のとき、SEM での表面観察像と同様、均一で平滑な薄膜が得られたが、膜厚の増加に伴い、凝集体が観察された。この凝集体の部分に SEM 像で観察されたカリフラワー状のパーティクルが散見され、密度の小さい層が表面に生成されたと考える。
Fig. 2-6 Surface observation of a-C:H films at 10 kHz with various film thickness, (a) 0.5 µm, (b) 1.1 µm, and (c) 2.0 µm.
Fig. 2-7 に AFM により測定した算術平均粗さ RMS と非晶質炭素薄膜の膜厚の関係を示す。算術平均粗さは、各サンプルから 1 μm × 1 μm の視野を 4 か所無作為に選択し、その平均値から算出した。電源パルス周波数にかかわらず、非晶質炭素薄膜の膜厚の増加に伴い、薄膜の表面粗さが増加した。これは膜厚の増加に伴い、バーティクルが縦方向に成長し、SEM 像で得られたような密度の小さい表面形態に変化したためだと考えられる。また薄膜の膜厚が一定の時、周波数が小さいほど平滑な表面が得られた。表面粗さが 50 nm を超えたのち、バーティクルの薄膜成長方向への成長および球状からカリフラワー状への形状変化により、表面粗さが指数関数的に增加了。つまり表面粗さが 50 nm 以下では、バーティクルの成長が抑制されたと考える。表面粗さが 50 nm を境にバーティクルがカリフラワー状に変化し、さらにバーティクルが成長することで薄膜が粉状の形態に変化したと考える。これは表面粗さの標準偏差が著しく増加したことからも判断できる。さらに薄膜表面が粉状に変化すると、薄膜の膜厚が増加しなかった。各周波数変化時の限界膜厚は、15 kHz のときに 0.5 μm、10 kHz のときに 1.0 μm、5 kHz のときに 2.7 μm だった。薄膜を構成するバーティクルが縦方向に成長を始めると、成膜時間に関わらず薄膜成長が止まると考える。また電源パルス周波数の減少に伴い限界膜厚が増加したのは、バーティクルが粉形状に変化することを抑制したためだと考える。表面粗さが減少した理由として、表面反応と堆積膜内反応の促進が挙げられる。表面反応においては、気相で生成した活性種が基板表面に付着し、過剰なエネルギーを消費しながらエネルギー的に安定な位置に科学的な結合をするために材料表面をマイクロスケールで移動する[2-17]。この表面拡散と呼ばれる反応時間は成膜速度の低下に伴い増加し、より安定した結合を構成し、平滑な表面の形成につながる[2-11]。また非晶質炭素薄膜を形成する粒子間の欠陥を抑制することにより、薄膜の硬さやガスバリア性が向上する[2-18,19]。つまり表面の平滑性を保ち厚膜化が可能となれば、非晶質炭素薄膜の機械的特性およびガスバリア性向上が期待できる。
2.3.3 Helium Plasma by amorphous carbon薄膜の成長

ヘリウムプラズマを用いて合成した非晶質炭素薄膜の成膜時間と膜厚の関係を Fig. 2-8 に示す。ヘリウムプラズマを用いて合成した非晶質炭素薄膜の成膜時間と膜厚は比例関係にあり、膜厚に関係なく定常的に薄膜が合成されていることがわかった。Fig. 2-9 に周波数 10 kHz のヘリウムプラズマを用いて合成した非晶質炭素薄膜の SEM による断面観察像を示す。合成した非晶質炭素薄膜は膜厚に関わらず細かいパーティクルで構成されていた。また窒素プラズマで合成した非晶質炭素薄膜と異なり、膜厚が増加しても薄膜は粉形状に変化しなかった。
Fig. 2-8 The relation between deposition time and film thickness of a-C:H films synthesized from C₂H₂/He with various pulse frequency.

Fig. 2-9 Cross-sectional SEM images of the film synthesized from C₂H₂/He at 10 kHz.

Fig. 2-10 に電源パルス周波数 10 kHz のヘリウムプラズマを用いて合成した非晶質炭素薄膜の各膜厚時の SEM による表面観察像を示す。膜厚が 1 μm の時にはパーティク
ルが観察されず，均一で平滑な表面が観察された．膜厚を19.3 µmに増加させると，非晶質炭素薄膜表面全体が横に広がったドーム状のパーティクルで覆われていた．さらに膜厚を増加させるとドーム状パーティクルが形状を保ったまま拡大し，膜厚が增加了(Fig. 2-10(c))．

Fig. 2-10 The surface SEM images of a-C:H films synthesized from C₂H₆/He at 10 kHz whose thickness was (a) 1 µm, (b) 19 µm, and (c) 26 µm.
Fig. 2-11 に電源パルス周波数 10 kHz のヘリウムプラズマを用いて合成した非晶質炭素薄膜の膜厚と表面粗さの関係を示す。非晶質炭素薄膜の膜厚が 1 µm から 5 µm までのとき、表面粗さは 5 nm と平滑な薄膜が得られた。膜厚が 5 µm を超えると、表面粗さが膜厚の増加に伴い増加した。SEM による表面観察像からもわかるように、これはヘリウムプラズマ特有のドーム状のパーティクルが同心円状に拡大を始めたためだと考える。窒素プラズマで得られるパーティクルは薄膜の成長方向と同じ縦方向に成長しており、希釈ガスによって薄膜の成長形態が異なることがわかる。窒素プラズマを用いたときと異なり、電源パルス周波数を変化させて合成した非晶質炭素薄膜の表面粗さと膜厚の間に相関関係はみられなかった。アセチレンを混合させた場合、ヘリウムプラズマは窒素プラズマと比較してイオン化率が高いという報告がある[2-7]。そのためヘリウムプラズマを用いることで、前駆体となる炭化水素ラジカルが気相中で過剰な運動エネルギーを持ち[2-17]、そのエネルギーを表面反応において移動・拡散することでパーティクルの成長を抑制し、ドーム状のパーティクルが形成されたと考える。
また窒素プラズマとヘリウムプラズマによる合成過程の違いの要因を考察するために、合成した非晶質炭素薄膜の組成を分析した。合成した非晶質炭素薄膜からは、炭素(C)、窒素(N)、酸素(O)の3種類の元素が検出された。検出された元素の含有量比率をTable 2-1に示す。分析は表面のコンタミや酸化物を除去するために、アルゴンクラスターを用いたエッチングを10秒実施したのちに行った。またバックグラウンド校正をShirley法とGaussian peak fittingを用いた[2-20]。希釈ガスにヘリウムを用いて合成した非晶質炭素薄膜にはNが含まれず、酸素の含有比率を示すO/C比はおよそ0.12だった。一方で希釈ガスに窒素を用いて合成した非晶質炭素薄膜には、希釈ガス由来のNが混入しており、N/C比率が0.044、O/C比率が0.080だった。大気圧プラズマCVD法で、窒素で希釈してプラズマを生成した場合、気相中で生成した炭化水素ラジカルに、NH2基の結合や、C=N結合の生成により窒素が混入したと考えられる。この酸素の混入は、二つの要因が考えられる。一つは、合成時の環境にある空気中の水分や酸素がプラズマ内部に巻き込まれ、OラジカルやOHラジカルが形成したことである。もう一つは、薄膜合成後に非晶質炭素薄膜内部に存在するダングリングボンドに大気中の酸素が結合したことである。窒素の場合は、薄膜中のダングリングボンドが、アミノ結合やC=N結合により減少しているため、ヘリウムプラズマに比べ、酸素含有量比率が低下したのだと考える。また窒素含有量比率の増加に伴い、表面粗さが増加したという報告がある[2-17]。これはC-N結合が増加することにより、三次元的なC-Cのsp³結合が減少したためだと考える[2-21]。ヘリウムプラズマ内の高エネルギーなHe²⁺イオンは、非晶質炭素薄膜内のダイヤモンド由来のsp³構造からグラファイト構造由来のsp²構造に変化させることなく、非晶質炭素薄膜の脱水素化を促進するという報告がある[2-22]。つまりヘリウムプラズマを用いて合成することで高硬度かつ平滑な構造を保ったまま、より硬質な非晶質炭素薄膜になることが示唆された。
Table 2-1 The relative atom concentration of a-C:H film surfaces synthesized at 10kHz.

<table>
<thead>
<tr>
<th>Dilution gas</th>
<th>C (at.%)</th>
<th>N (at.%)</th>
<th>O (at.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>88.9</td>
<td>0.0</td>
<td>11.1</td>
</tr>
<tr>
<td>N₂</td>
<td>89.0</td>
<td>3.9</td>
<td>7.1</td>
</tr>
</tbody>
</table>

532 nm の波長のレーザーを用いたラマン分析による非晶質炭素薄膜の構造分析結果を Fig. 2-12 に示す。膜厚を 500 nm，電源パルス周波数を 10 kHz に統一した。大気圧プラズマを用いて合成した非晶質炭素薄膜は，希釈ガス種によらず同等のピークが得られた。2500 から 3300 cm⁻¹ 付近にみられるピークが CHₓ のピークだと予測される[2-23]。一方で非晶質炭素薄膜特有のピークである，1540 cm⁻¹ 付近の G-band, 1380 cm⁻¹ 付近の D-band 由来のピークがどちらの条件からも観察されなかった。G-band, D-band のピークが観察されない非晶質炭素薄膜は，水素含有量比率が高いということが考えられる[2-24]。つまり本章にて窒素プラズマ，ヘリウムプラズマそれぞれを用いて合成した非晶質炭素薄膜は，水素含有量が高くポリマー上構造を持つことが考えられる。つまり，より硬質な非晶質炭素薄膜の合成には気相反応でのポリマー化を防ぎ，薄膜内部の脱水素化に取り組まなければならない。
Fig. 2-12 532 nm Raman spectra of a-C:H films synthesized from C$_2$H$_2$/N$_2$ and He with thickness of 500 nm at 10 kHz.

成膜速度や表面観察、構造分析から、希釈ガス種を変化させて合成した非晶質炭素薄膜は、それぞれ異なる成長過程を示した。Fig. 2-13に窒素プラズマおよびヘリウムプラズマを用いたときの非晶質炭素薄膜のパーティクルの成長イメージ図を示す。窒素プラズマで合成したとき、気相中で重合したパーティクルが薄膜表面に付着したのち、イオンエネルギーが小さいために表面拡散を起こさずそのまま積み重なり、パーティクルは縦方向に成長する。この成長が繰り返されることにより、薄膜の表面が粉状になり薄膜が堆積しなくなる。ヘリウムプラズマを用いたとき、窒素との結合が少なく気相でのパーティクル成長が窒素に比べ少ない。またヘリウムのイオン化エネルギーが20.6 eVと高いため、前駆体の持つイオンエネルギーも高くなり、表面に付着した前駆体はそのエネルギーをもとに表面を拡散する。その拡散により、パーティクルは横方向に延びドーム状に成長するため、平滑な薄膜成長となる。薄膜の成長のためには、イオンエネルギーの高い前駆体を生成し、表面拡散を引き起こすことで平滑な表面を保つ必要があるといえる。
Fig. 2-13 Image of adsorption precursors to film surface in the case of (a) nitrogen plasma, (b) helium plasma.
2.4 第2章のまとめ

本章では、大気圧プラズマ CVD 法を用いて非晶質炭素薄膜を膜厚を変化させて合成し、各膜厚時の表面粗さや表面形態、成膜速度を分析することで非晶質炭素薄膜の成長過程を考察した。薄膜の合成条件として、希釈ガスに窒素とヘリウムを用い、また電源パルス周波数を変化させることで気相反応を制御した。また膜厚と薄膜を構成するパーティクルの状態の関係も調べた。これらの結果から明らかになったことを以下に示す。

1) 希釈ガスに窒素を用いた場合、非晶質炭素薄膜の膜厚の増加に伴い、薄膜表面で成長するパーティクルは薄膜の成長方向と同じ方向（縦方向）に成長した。そしてパーティクルの形状は球状からカリフラワー状に変化し最終的に凝集した。パーティクルがカリフラワー状になるにつれ、薄膜の膜厚増加が抑制された。この現象は電源パルス周波数を減少させることにより抑制された。薄膜が粉状に変化した理由の一つとして、窒素プラズマにより合成した非晶質炭素薄膜内に窒素が多く含有していたことが挙げられる。

2) 希釈ガスにヘリウムを用いた場合、膜厚が 5 µm 以下のとき薄膜表面にパーティクルの休憩場は観察されなかった。しかし成膜時間を増加させ、膜厚を増加させることで表面にドーム状に広がったパーティクルが観察された。このパーティクルは膜厚の増加に伴い、同心円状に大きくなり薄膜の成長過程に大きく寄与していると考える。ドーム状パーティクルを形成し薄膜の表面粗さを小さくすることで、最大 37 µm の膜厚を持つ非晶質炭素薄膜の合成に成功した。またラマンスペクトルの結果から、希釈ガス種に関わらずアセチレンで合成した非晶質炭素薄膜の内部に多量の水素が含有していた。
第2章に関する参考文献

第3章 大気圧プラズマCVD法で合成した非晶質炭素薄膜の高硬度化

3.1 緒論

非晶質炭素薄膜は、高硬度、耐摩耗性、化学的安定性、熱的安定性、ガスバリア性、生体親和性、耐候性、低摩擦係数、平滑性など優れた物性を数多く有しており、様々な分野への応用が期待されている。特にPET表面への薄膜合成によるガスバリア性の向上など、ポリマー材料への被覆が望まれている[3-1]。非晶質炭素薄膜の硬度は薄膜中の水素量やsp²とsp³混成軌道の炭素原子の割合に影響するといわれている。大気圧中で合成した非晶質炭素薄膜は、2章でも述べたように、ポリマー化し水素を多く含んだ軟質な薄膜になることが知られている。水素の含有量が増加すると、炭素原子間での共有結合が水素原子により終端するため、硬度が低下する。この問題を解決するためには気相での重合反応の抑制や、薄膜内部の水素脱離反応の促進などが挙げられる。膜中の水素量を減少させる方法として、表面反応過程においてイオンスパッタにより膜中の水素を脱離させる方法が挙げられる。大気圧プラズマを用いた薄膜合成は、連続成膜や大面积合成などその応用可能性の高さから誘電体パリア放電（DBD）が多く用いられている。DBDでの薄膜合成の場合、電極間に電流が流れるが誘電体に電荷が蓄積し、その電荷により逆方向の電界が生じ、そして放電が停止する。つまりこの誘電体により電流が制限されるため、電極間に大電力を導入することは困難であり、硬質な非晶質炭素薄膜合成に必要なプラズマ中のイオン密度が低くイオンスパッタ効果は小さい。

このような課題の中、大気圧プラズマ技術により合成した非晶質炭素薄膜の高硬度化は多くの研究グループで取り組まれている。2000年にLiuらはDBDにおける水素によるエッチング効果を高めるため、CH₄をH₂で希釈し、さらに300℃の基板温度をかけることで、硬さ10GPaを達成した[3-2]。しかし、危険性の高いH₂を用いることによる
安全性の課題があったため、Sakata らはヘリウムで希釈した C_{2}H_{2} を用いて、基板温度を 200 ℃に昇温することで薄膜硬度を 2.6 GPa まで向上させた[3-3]。しかしながら、DBD の大面積に薄膜を合成できるという利点は有するものの、耐熱性の低いポリマー材料に応用できないという問題点がある。また、DBD とは別にマイクロ放電と呼ばれる放電方式により、硬質な非晶質炭素薄膜を合成したという報告もある。マイクロ放電とは µm から mm スケールの微小さな空間で形成される反応性プラズマを指し、荷電粒子やガス粒子の滞在時間が短くなり、界面でのエネルギー放出が相対的に大きくなるため、非平衡性を高めることができる。2007 年に Ohtake らは微小面積の放電において硬度 20 GPa の a-C:H 薄膜合成の報告をしており[3-4]、マイクロ放電の高いイオン生成量によって、DBD に比べ高硬度な非晶質炭素薄膜の合成に成功している。しかしながらマイクロ放電はその特性上、合成面積が限られるという大きな課題を抱えている。

大面積への合成が可能な誘電体バリア放電による大気圧プラズマ CVD 法において、イオンスパッタの効果を高めるためには、膜表面に分子量の大きいイオンを入射させることが効果的と考えた。そのため、均一なグロー放電を行うことのできるヘリウムガスに、分子量の大きいアルゴンガスを混合させることでアルゴンイオンを生成し、スパッタ効果の向上を目指した。

また誘電体バリア放電におけるプラズマの放電形態は、電流値や電子密度、イオン密度などからグロー誘電体バリア放電 (GDBD) やフィラメンタリー誘電体バリア放電 (FDBD) に分けられる[3-5]。大気圧プラズマ技術による非晶質炭素薄膜の合成において均一に薄膜を合成するために、均一な放電の得られる GDBD が一般的に用いられてきた[3-6,7]。GDBD を用いて生成したプラズマによる薄膜合成は、均一な成膜を可能とするためである。しかしながら GDBD は他の放電形態に比べ、均一でイオン密度や電子密度が小さく、硬質な非晶質炭素薄膜を得るには適していない。GDBD で合成された非晶質炭素薄膜の硬度に関する報告は多くあるが、低圧下での合成と比較するいずれの軟質である[3-8,9,10]。一方で FDBD は、無数のストリーマからなる放電であり、GDBD と比べ均一性に欠けるが、電子が拡散しづらいためにイオン密度や電子密度において高い値を示すことが知られている。この高いイオン密度により表面でのイオンスパッタによる水素脱離反応が生じると考えた。

本章では、アルゴンおよびヘリウム希釈が非晶質炭素膜の硬さに及ぼす効果および電極間距離や基材など FDBD を発生させる条件を調査し、また原料をメタンにすることで気相反応を抑制し、また sp^3 結合比率の増加を狙い、FDBD による大面積へ高硬度
非晶質炭素薄膜を合成することを目的とした。合成した薄膜の硬度と、薄膜の化学結合状態を分析し高硬度化のメカニズムについて議論した。

3.2 実験方法

3.2.1 希釈ガス混合によるイオン密度の増加

第2章と同じ誘電体バリア放電によるダイレクト式大気圧プラズマCVD装置を用いて非晶質炭素薄膜を合成した。大気圧中においてイオンスパッタを発生させるために希釈ガスにヘリウムガスとアルゴンガスを用いた。プラズマ中で生成されるHeラジカルがペニング電離によりAr原子をイオン化させ、分子量の大きいArイオンによるイオンスパッタ現象が期待できる。

\[\text{He}^- + \text{Ar} \rightarrow \text{He} + \text{Ar}^+ + e \] (3-1)

原料ガスには、気相反応を抑制するためにメタンガスを用いた。原料ガスに3重結合をもつアセチレンを用いることで、大気圧プラズマにおいてラジカル重合が起き、ポリマーライクになりやすいことがわかっている[3-6]。一般的に大気圧下での非晶質炭素薄膜合成は原料にアセチレンを用いるが、気相反応の抑制およびsp3結合の生成確率を増加させるためにメタンを用いた。ガスの総流量を5 L/minとし、メタン流量は100 mL/minとした。またアルゴンガスとヘリウムガスの混合率を0%から100%まで変化させて非晶質炭素薄膜を合成した。印加電圧を10 kV、電源パルス周波数を20 kHzとした。基板にはシリコンを用いた。

3.2.2 FDBDの発生

DBDにおいて、グロー放電からフィラメンタリー放電への遷移は、Meekのストリーマ放電発生の式から求めることができる[3-11]。

\[\alpha d = \ln 4 \pi e E_0 / \varepsilon \varepsilon_0 > 18 \sim 20 \] (3-2)
αが電離係数、d が電極間距離であり、\(\alpha d \) の値が 18-20 を超えるとグロー状態からストリーマへ遷移するといわれている。この現象は半定量的説明として用いられており、いままだ明らかになってはない。DBD において、電極間で発生した電子雪崩は拡散できず急速に成長するために、ストリーマが容易に生成される。この Meek の式を満たすために、電子雪崩の先端部分の正イオン空間電荷電界が電極間の電解とほぼ等しくなるために、電子雪崩先端部分に電子が引き込まれ、2 次電子が不要となる。そして電子雪崩先端部分は高い電子密度、イオン密度となるといわれている。以上の計算式から、電極間距離と放電形態には大きな因果関係があることが分かる。この式から電極間距離を変化させて放電形態を観察した。

2 章で述べたように、DBD 方式の大気圧プラズマ CVD 法において、窒素をプラズマに用いることでバーティクルの成長が進み、密度の低い薄膜が合成され、一方でヘリウムを希釈ガスに用いることで、平滑かつ密度の高い非晶状炭素薄膜が得られた。そこで本章では、イオンエネルギーが高く、密度の高い薄膜の得られるヘリウムを希釈ガスとして用いた。またヘリウムプラズマは、安定したグロー放電を生成するために用いられるように拡散係数が高くストリーマの生成が困難である。そこで拡散係数が低く、ヘリウムであるアルゴンを混合し、ストリーマが生成しやすい環境とした。また FDBD は高いイオン密度、イオン密度を有することから重合しやすいアセチレンのようなガスを用いると、2 章の窒素希釈で得られたような粉状の膜が合成されると考えられる。そこで気相反応を抑制するために、原料ガスにアセチレンではなく、単結合を有するメタンを使用した。

3.2.3 FDBD を用いた非晶質炭素薄膜の合成

DBD を用いた大気圧プラズマ CVD 法において、電極間に大量のストリーマ放電を有する FDBD の生成に必要な条件を調べるために、導電率の異なる 2 種類の基板を準備した。一つがホウ素をドーピングした 0.38 mm の厚さのシリコン基板: Si (100)、もう一つが厚さ 50 µm のポリエチレンテレフタレート (PET) である。Si 基板、PET 基板それぞれの基板の表面抵抗率は、47.2 Ω/sq., 10Ω/sq.だった。表面抵抗率の測定は、四探針法 (Loresta-GP: 三菱化学アナリテック) を用いて行った。

Fig. 3-1 に FDBD 発生および薄膜合成に使用した装置の概略図を示す。原理としては 2 章で用いた装置と同様、平行平板型の DBD 形式を使用している。上部電極の大きさ
は 10×100 mm、下部電極の大きさは 300×180 mm として、電極間にストリーマ放電を発生させた。アーク放電への移行を防ぐために、上部電極には厚さ 1 mm のアルミナ製の誘電体を導入した。基板は下部電極上に設置し、下部電極を台速 0.1 mm/s で上部電極と平行に 30 mm 間隔で 4 回移動させた。またストリーマ放電を発生させるために、電極間距離を 1 mm から 4 mm まで変化させた。

プロセスガスとして、ヘリウムとアルゴン、メタンガスを用いた。ヘリウムは高いイオン化エネルギーを持つことから、ペニング電離によるメタンの分解が予想される。一方で、アルゴンは拡散係数がヘリウムに比べて低く、ストリーマの生成に必要である。総流量は 5 L/min に固定して、ヘリウムガスとアルゴンガスの比率が 4:1 になるようにした。またマイクロ放電においてはメタン濃度が低いと、生成される炭化水素イオン量が減るため、硬度が低下するという報告がある[3-12]。そのため、メタン流量は十分な前駆体が生成し、かつガスの反応性も考慮して総流量の 4% とした。パルス電源による入力電力は 90 W に統一し、電極間にかかる電圧は 7 kV とした。またパルス周波数を 30 kHz とし、パルス幅を 5 µs とした。

Fig. 3-1 Schematic diagram of the line type atmospheric pressure plasma CVD apparatus.
3.2.4 合成した薄膜の分析

合成した非晶質炭素薄膜の膜厚は、触針式段差測定器（Dektak3030:Veeco Instruments, Inc., USA）を用いて5か所測定した。基板の固定に使用したポリイミドテープをはがし、その面から3 mm 離れた箇所の前後2 mmの段差を測定し算術平均値を求めた。その5点の平均値を薄膜の膜厚とし、成膜速度はその測定した膜厚を成膜時間で除することで算出した。成膜速度は、測定した膜厚を成膜時間で除することで計算して求めた。また薄膜の断面観察をSEM（S-4700: Hitachi High Technologies Corp., Japan）を用いて、加速電圧を5 kVとして行った。薄膜硬度はバーコビッチ圧子によるナノインデンテーション法を用いて測定した。押し込み荷重は1.0 mN とし、荷重変位曲線をOliverとPharrの方法を用いて測定した[3-13]。表面粗さはダイナミックモードを用いて10 μm×10 μmの範囲で3点測定し、その平均値を求めた。化学結合状態をFT-IR 法を用いて、またベースラインとスムージング補正にはGRAMSを用いた。またラマン分光法を用いて構造分析を実施した。ラマンスペクトルは、波長532 nmのレーザーを用いた。組成分析にはX 線光電子分光装置を用いた。表面のコンタミや酸化物を除去するために、アルゴンエッチングを20 s 行い、測定時にはアルゴンを検出することで、サンプルのチャージアップによるピークシフト補正を行った。

3.3 結果および考察

3.3.1 希釈ガス混合比率と非晶質炭素薄膜の硬度の関係

まず希釈ガス混合比率を変化させたときの非晶質炭素薄膜の硬度について述べる。硬度測定にはナノインデンテーション試験を用いた。このときの押し込み深さは150 nm程度であり、基板の影響を減らすために膜厚を1 μmとした。各条件における試料の硬度測定結果をFig. 3-2に示す。希釈ガス混合率 R_Ar が0%から20%まで増加すると、硬度は0.8 GPaから2.7 GPaまでおよそ3倍に増加した。しかし、さらに R_Ar を増加させると硬度は低下した。また、希釈ガスにアルゴンおよびヘリウムのみを用いて合成した薄膜の硬さは、それぞれ0.8 GPa、0.9 GPaであり、希釈ガス種による大きな差はみられなかった。またアセチレンガスを原料としてヘリウムプラズマで合成した非晶質炭素薄膜の硬度はおよそ1.1 GPa程度であることが知られている[3-10]。その硬度と比較すると、原料にアセチレンを用いた場合とメタンを用いた場合では、硬度に大きな差はみられな
かった。大気圧下においては、原料種に関わらず多量の水素が含まれ構造によらず硬度がほぼ一定になったのだと考える。

次に合成した非晶質炭素薄膜をラマン分光法により微構造を分析した。各条件における試料のラマンスペクトロの測定結果をFig. 3-3に示す。一般に、低圧下で合成した非晶質炭素膜には、1590 cm⁻¹付近のグラファイトにおける炭素原子の6員環構造の面内伸縮振動によって生じるGバンドや、1350 cm⁻¹付近のグラファイトの欠陥によって生じるDバンドが観察される[3-12]。しかし、2章で得られたアセチレンで合成した薄膜と同様、これら2つのピークは確認できなかった。これは薄膜内部に大量に水素が含有し、ポリマーのような構造を持ったためだと考える。
薄膜中の水素量を評価するために, FT-IR を用いて水素端末結合を定性的に評価した. 各条件における試料の IR スペクトルを Fig. 3-4 に示す. 本実験で観察された FT-IR スペクトルを比較したところ, 3500 cm\(^{-1}\)および 1740 cm\(^{-1}\)付近に OH 基に起因するピーク, 1460 cm\(^{-1}\), 1380 cm\(^{-1}\)および 3000 cm\(^{-1}\)付近に CH\(_x\)基に起因するピークが観察された. \(R_{Ar}\) による発光強度の差は, 3000 cm\(^{-1}\)付近の CH\(_x\)基に起因するピークのみに生じた. この CH\(_x\)吸収帯には9つの構造が含まれている[3-14,15]. アルゴンの混合によって膜中の C-H 結合量は減少していた. FT-IR における C-H 基吸収強度と膜中の水素量の関係に関する報告は多く, C-H 基吸収強度と膜内水素量の間には高い相関があるとされている [3-16]. したがって, ヘリウムプラズマへのアルゴン添加により生じた非晶質炭素薄膜の C-H 基吸収強度の減少は, 膜中の水素量が減少したためであると考えられる. 以上より, 硬さの向上は膜中の水素が減少したことにより水素終端が減少し, 炭素同士の結合が増加したことで, 末端構造の多いポリマーライクな構造から高密度なネットワーク構造に変化したためだと考えられる.
次に膜中の水素量減少の要因について考察するために, 複膜合成する際のプラズマに注目した。ラジカル種を確認するために発光分光法を行ったところ, 前駆体として,
\(\text{C}_2 \) ラジカルと \(\text{CH} \) ラジカルがプラズマ中で生成されていることが確認された。\(\text{C}_2 \) ラジカルと \(\text{CH} \) ラジカルは, 非晶質炭素膜を合成するために原料に用いた \(\text{CH}_4 \) の分解により生成したものである。発光分光法では, \(\text{He} \) ラジカルおよび \(\text{Ar} \) ラジカルの代表的な発光がそれぞれ 668 nm, 697 nm にあらわれることが知られている[3-17,18]。発光分光法により測定した \(\text{Ar} \) ラジカルおよび \(\text{He} \) ラジカルの発光強度をそれぞれ Fig. 3-5, Fig. 3-6に示す。\(\text{Ar} \) ラジカルの発光強度は \(R_{\text{Ar}} \) の增加に伴って単調増加した。一方で, \(\text{He} \) ラジカルの発光強度は \(R_{\text{Ar}} \) の増加に伴って急激に減少した後, 減少が緩やかになる傾向がみられた。

Fig. 3-4 FT-IR spectra of a-C:H films with various argon content ratio. (a) 0%, (b) 5%, (c) 10%, (d) 20%, (e) 40%, (f) 60%, (g) 80%, and (h) 100%.
Fig. 3-5 Peak intensity of excited argon atom in the plasma as a function of argon content ratio.

Fig. 3-6 Peak intensity of excited argon atom in the plasma as a function of helium content ratio.
まず、気相中で原料を分解する元となる He ラジカルと Ar ラジカルについて考察する。Fig. 3-5 より Ar ラジカルは R_Ar の増加と共に単調増加していた。一方、Fig. 3-6 に示すように He ラジカルは R_Ar の増加と共に最初は急激に減少するが、徐々に減少が緩やかとなった。R_Ar の増加に伴う He ラジカルの急激な減少は、He ラジカルのエネルギーが Ar に衝突することで、Ar のイオン化に使われたためであると考えられる。プラズマ中の He ラジカルは Ar の電離電圧以上であるため、Ar に衝突することで Ar^+ が生成される。上記のペニング電離の効果である。He ラジカルの衝突により Ar イオンが生成することは多数の先行研究によっても示されている[3-19,20]。また、Ar イオンは電界によって加速され、膜表面の水素を選択的にスパッタする作用も報告されている[3-21]。このため、本研究においても Ar イオンが薄膜表面をスパッタすることによって、合成された膜中の水素量が減少したと考えられる。また、本実験では R_Ar が 20% までは硬さが増加したが、それ以上 R_Ar が増えると硬さは減少した。これは、希釈ガス中の He ラジカルと Ar 分子の割合によるものだと考えられる。R_Ar が 20% までは、He ラジカルは十分にある一方で、Ar 分子が少ないため Ar イオンが十分に生成できていないと考えられる。したがって、R_Ar の増加により Ar 分子が増加するため、Ar イオンが増加する。また、R_Ar が 20% 以上になると、Ar 分子はプラズマ中に十分に存在する一方で、He ラジカルが少ないため Ar イオンが十分に生成できていないと考えられる。したがって、R_Ar の増加により He ラジカルが減少したため、Ar イオンが減少したと推測できる。この Ar イオンの減少によってスパッタの効果が減少し、硬さと表面粗さが低下したと考えられる。

以上より、膜中における水素量減少の要因は、He ラジカルによるペニング電離によりイオン化した Ar が、膜表面をスパッタし、水素を脱離させたためであると考えることができる。

3.3.2 FDBD を用いて合成した非晶質炭素薄膜

次に放電形態を変化させて合成した非晶質炭素薄膜について述べる。まず Fig. 3-7 に電極間距離ごとの放電形態の様子を示す。このとき基板は設置せず、銅電極間での放電した。電極間距離が 1 mm のときは均一な GDBD が得られた (Fig. 3-7 (a))。電極間距離 2 mm では、GDBD と FDBD が混在したような放電形態となり(Fig. 3-7 (b)), 電極間距離が 3 mm および 4 mm のときは、無数のストリーマが観察され、FDBD に移行していた。
観察された無数のストリーマは一か所にとどまるのではなく際限なく移動していた。つまりメタンとヘリウム、アルゴン混合ガスを用いた場合、電極間距離の増加によって容易に FDBD が生成した。このときの高電圧プローブで測定した電極間の電圧値と電流値の値を Fig. 3-8 に示す。電圧値は 7 kV で統一したため、電極間距離に関わらず 7 kV と一定であった。一方で、電流値は、電極間距離の増加に伴い低下した。電極間距離を増加させることで、電極間に発生する電界が小さくなった。

![Fig. 3-7 Discharge images without substrates at electrodes gaps of (a) 1 mm, (b) 2 mm, (c) 3 mm, and (d) 4 mm.](image)

![Fig. 3-8 Voltage and current as a function of electrodes gaps.](image)
次に Fig. 3-9 (a) に基板にシリコンを使用した時の放電形態の様子を, Fig. 3-9 (b) に, 基板にポリエチレンテレフタレート (PET) を用いたときの放電形態の様子を示す. シリコンの表面抵抗率は 47.2 Ω/sq.であり, PET は絶縁体である. シリコン基板を設置したとき, 基板を設置していない Fig. 3-7 (d) のようなストリーマが観察された. しかしながら, PET 基板を設置すると, 電極間距離が 4 mm にもかかわらず, Fig. 3-7 (a) のようなグロー状の放電が観察された. この観察結果から, 基材の表面抵抗率が FDBD の生成に寄与していると推測できる. 基板の表面抵抗率が高い場合, 基材の表面が分極することで電界が小さくなることにより FDBD が消減したと考える.

Fig. 3-9 ダイスチャージ写真, (a) 鉴音導入シリコン基板（FDBD）, (b) PET 基板（GDBD）。

Fig. 3-10 に電極間距離と非晶質炭素薄膜の成膜速度の関係を示す。成膜速度は, 触針式段差測定器で測定した膜厚の平均値を成膜時間で除することにより算出した。電極間距離を 1 mm から 4 mm まで増加させると, 成膜速度は 1.1 nm/s から 1.9 nm/s に増加した。また各電極間距離で合成したサンプルの成膜速度の標準偏差は, 500 nm の厚さまでは小さい値を示しており, FDBD は無数のストリーマによる放電にもかかわらず, どちらの薄膜も均一に合成されていた。FDBD により合成した非晶質炭素薄膜の均一性を確認するために, SEM 像だけでなく触針式段差測定器を用いて, 下部電極の移動方向に対して垂直, 平行方向に 3 mm の間隔で膜厚を測定した。このとき薄膜は下部電極を 1 方向に 3 回スキャンさせることで合成し, 電極間距離は 4 mm, 成膜時間は 300 s とした。その結果, どの地点でも 540 nm ± 20 nm の値を示し, ストリーマ放電を用いても局的に集中するのではないか, 均一な薄膜が得られた。基板を導電性の低い PET にしたときに, 電極間距離を 4 mm にしてもグロー上の放電になったことから (Fig. 3-9 (b)),
ストリーマにより合成された非晶質炭素薄膜が絶縁体として働き、その都度ストリーマが一箇所にとどまるのではなく表面抵抗の高い地点から低い地点に移動したため、薄膜が均一に合成されたのだと考える。

Fig. 3-10 Deposition rate of the a-C:H films as a function of the electrodes gap.

Fig. 3-11 に、電極間距離 1 mm および 4 mm の条件で合成した非晶質炭素薄膜の断面 SEM 像を示す。Fig. 3-9 の成膜速度を元に、膜厚が 500 nm になるように成膜時間を調整した。放電形態にかかわらず、パルティクルが小さくきわめて緻密な構造であり、パルティクルの成長による粉上の表面は観察されなかった。これは希釈ガスにヘリウムを用い、また原料ガスにメタンを用いたために、気相での重合が抑制され、かつ表面拡散によるパルティクルの成長の抑制されたためだと考える。メタンガスを原料として合成したとき、成膜過程において表面反応が強く依存していることがわかる。つまり、メタンを原料ガスとした FDBD による非晶質炭素薄膜の合成は、大気圧下での合成にもかかわらず、Robertson らが提唱する低圧下での非晶質炭素薄膜の合成過程 [3-22] と同様だと考えられる。
Fig. 3-11 Cross-sectional SEM images of the a-C:H films synthesized with electrodes gaps of (a) 1 mm, and (b) 4 mm.

Fig. 3-12 に電極間距離と非晶質炭素薄膜の硬さの関係を示す。このときの押し込み深さはおよそ 100 nm であり，基板の影響を減らすために硬度測定に用いたサンプルの膜厚は 500 nm で統一した。電極間距離を 1 mm から 3 mm まで増加させ，放電形態を GDBD から FDBD に遷移させることにより，合成した非晶質炭素薄膜の硬度が 3.7 GPa から 11.9 GPa まで増加した。放電形態がほぼ同じだった電極間距離 3 mm と 4 mm では，薄膜の硬度はほとんど変化がなかった。つまり，放電形態を FDBD にすることで，高硬度な非晶質炭素薄膜の合成できたといえる。一般的に GDBD により合成した非晶質炭素薄膜の硬度は最大で 3 GPa だという報告があり[3-2,3]，従来の大気圧プラズ
マによる非晶質炭素薄膜と比較して低温かつ大面積への合成にもかかわらず硬質な薄膜が得られた。

Fig. 3-12 Hardness of the a-C:H films as a function of the electrodes gap.

Fig. 3-13 に各電極間距離で合成した非晶質炭素薄膜のラマンスペクトルを示す。電極間距離が 1 mm と 2 mm のとき、つまり GDBD のときにはラマンスペクトルが右肩上がりの曲線を示した。非晶質炭素薄膜の分析において、右肩上がりの曲線を示し大きく検出されるバックグラウンド部分は、薄膜内部の高い水素含有からなるポリマー構造の蛍光に由来する[3-23]。つまり、非晶質炭素薄膜の蛍光強度、つまり薄膜内部の水素含有量は、ラマンスペクトルのバックグラウンドの強度と高い関係があるといえる。電極間距離が 3 mm と 4 mm のとき、つまり FDBD のとき、GDBD のときと比較してバックグラウンドが極めて小さい曲線が得られた。これらの結果より、FDBD で合成することにより、非晶質炭素薄膜の水素含有量が低減していたことがわかった。また Miura らはラマンスペクトル G-band のピーク強度を S、水素結合の蛍光によるバックグラウンドの強度を N としたとき、\(\log (S/N) \) と \(N/(N + S) \) が薄膜の水素含有量と相関があると報告している [3-24]。そこで本章では、非晶質炭素薄膜の水素含有量の評価にラマンスペクトルから計算できる \(N/(N + S) \) を用いた。Fig. 3-14 にラマンスペクトルの \(N/(N + S) \) と薄膜の硬度の関係を示す。\(N/(N + S) \) の増加、つまり水素含有比率の増加に伴い、非晶質炭素
薄膜の硬度が低下していた。放電形態が FDBD に遷移することで、水素含有量が大きく低下したといえる。FDBD を用いて非晶質炭素薄膜を合成することにより、ストリーマ先端の高いイオン密度により、炭化水素ラジカルや炭化水素イオンが生成し、薄膜表面に存在する C-H 結合から水素が脱離したのだと考える [3-25]。これは成膜速度の傾向とも一致しており、FDBD による非晶質炭素薄膜合成の場合、薄膜の前駆体である C-H ラジカルや、C-H イオンが薄膜の水素脱離に大きく寄与していると考えられる。

Fig. 3-13 Raman spectra of the a-C:H films synthesized with various electrodes gaps.

Fig. 3-14 The relationship between the hardness of a-C:H films and N/(N + S) of Raman spectra.
また FT-IR による化学結合状態の分析結果を Fig. 3-15 に示す。すべてのサンプルから 3 つのピークが観察された。1 つ目は 3500 cm\(^{-1}\)付近に見られるブロードなピークが水分子由来の O-H 結合のピークである。2 つ目が 2980 cm\(^{-1}\)付近に見られる鋭いピークは sp\(^3\) の-CH\(_x\)結合由来のピーク、そして 3 つ目が 1700 cm\(^{-1}\)付近に見られるピークが C=O 結合由来のピークである[3-26]。電極間距離の増加に伴い、これらすべてのピーク強度が低下した。また高密度な構造ほど水分子が拡散しやすく、ピーク強度が小さくなるといわれている。また 2980 cm\(^{-1}\)付近の-CH\(_x\)のピークはさらに細かく分離することができる。2960 cm\(^{-1}\)に sp\(^3\)-CH\(_x\)，2950 cm\(^{-1}\)に sp\(^2\)-CH\(_2\)，2925 cm\(^{-1}\)に sp\(^3\)-CH\(_3\)，2870 cm\(^{-1}\)に sp\(^3\)-CH\(_3\)，2855 cm\(^{-1}\)に sp\(^3\)-CH\(_2\)がそれぞれ割り当てられている。電極間距離 1 mm のとき強く見られる 2870 cm\(^{-1}\)付近のピーク (sp\(^3\)-CH\(_3\)) が特に減少した。ラマンスペクトルとあわせて考えると、減少した水素は-CH\(_3\)結合などの末端結合からの水素脱離によって生じていると考えられる。ただ、水素含有量を低下させただけでは、必ずしも硬さが向上するわけではない。sp\(^2\)/sp\(^3\)が高くなると、グラファイトライクな構造になり硬度が低下する[3-27]。FDBD ではグラファイト化を抑えながら水素含有量を抑えることができたため、硬さを向上することができたと考える。

Fig. 3-15 FT-IR spectra of a-C:H films with various discharge gaps.
以上の結果から、メタンガスを原料として FDBD を用いたときの非晶質炭素薄膜の成膜挙動を考察する。メタンガスは単結合のみで構成されることから、2 章のアセチレンと異なり、気相反応はきわめて小さいと考えられる。そのため、本章のメタンガス原料の FDBD による非晶質炭素薄膜合成は、Robertson が提案している低圧下での合成プロセスと酷似しているといえる。以下に Robertson が提唱するプロセスを述べる[3-22]。

非晶質炭素薄膜の合成過程において表面反応が支配的な反応過程の場合、まず、炭素イオンが薄膜表面に打ち込まれる (Fig. 3-16)。その際に、エネルギーの小さいイオンだと表面内部に打ち込まれるだけのエネルギーを有していないため、表面拡散を起こし、そのまま sp2 の低いエネルギー状態で安定化する。イオンエネルギーが高ければ、イオンが薄膜表面に浸透し、表面下の格子間にて安定化し、新しい結合が生成する。イオンが表面まで浸透するイオンのエネルギーが高いほど、イオンは表面から深い位置まで浸透する。浸透したイオンはそのまま安定化するものであるが、表面付近まで拡散するものも存在する。

Fig. 3-16 Schematic diagram of the processes in subplantation.

次に Fig. 3-17 に非晶質炭素薄膜の合成過程の概略図を示す。低圧下での非晶質炭素薄膜合成において、バイアス電圧によって物性が大きく変化することから、非晶質炭素薄膜の合成において炭素イオンが重要であると考えられている。まず炭化水素イオンが薄膜表面に衝突し、分解されエネルギーが均等に振り分けられる。分解された原子イオンはそれぞれのエネルギーによって薄膜内部へと浸透する。また励起種と同士の反応や水素脱離反応も重要である。
一般的に非晶質炭素薄膜の堆積に用いられる前駆体はイオンと中性粒子で構成されている。中性粒子とは閉殻した状態である解離していない原料ガス、CH₃などのモノラジカル、C₂H₄やC₂H₂などのジラジカルや不飽和ラジカルを指す。また、プラズマ中には多量の原子状水素（H·）も含まれている。非晶質炭素薄膜の表面は化学的に安定なC-H結合で覆われている。C₂H₄やC₂H₂などのジラジカルや不飽和ラジカルは表面付近のC-C結合やC-H結合に直接挿入される。一方で、CH₄のような閉殻した中性分子の付着確率は極めて低い。モノラジカルの付着係数はその中間であり、表面にダングリングボンドがある場合のみ反応する。このときモノラジカルはC-C結合を形成するように導入される。ダングリングボンドはC-H結合から水素が取り除かれることによって生成される。この水素の引き抜きは原子状水素や水素原子、炭化水素ラジカルによって行われる。

\[\equiv \text{C-H} \rightarrow \equiv \text{C} + \text{H}^- \] \hspace{1cm} (3.3)

\[\equiv \text{C-H} + \text{H}^- \rightarrow \equiv \text{C} + \text{H}_2 \] \hspace{1cm} (3.4)
つまり本章において電極間距離を増加させ FDBD を発生させることで、水素含有量が減少したのは、炭化水素イオンと原子状水素がストリーマ先端部分において多く生成したためだと考えられる。また原子状水素の存在下においてなどの炭化水素ラジカルの付着係数が増加するという報告もある[3-28]。電流値が低下したのにに関わらず成膜レートが増加したのは、水素の引き抜きによる CH₃の付着確率の増加も寄与していると考えられる。また、炭化水素イオンのエネルギーが高いほど水素の引き抜き効果が大きくなると報告されている[3-29]。つまりストリーマ放電中のイオン密度が高まることで、高いエネルギーを持ったイオンや水素原子が到達しやすくなったため、放電形態を FDBD にすることで成膜速度が増加し水素含有量が低下したと考える。

また、上記の考察を裏付けるために、合成した非晶質炭素薄膜の表面粗さを測定した。電極間距離と非晶質炭素薄膜の表面粗さの結果を Fig. 3-18 に、また電極間距離 1 mm と 4 mm のときに AFM による表面形態の観察結果を Fig. 3-19 に示す。電極間距離の増加に伴い、表面粗さが低下していた。また電極間距離が 4 mm のとき、電極間距離が 1 mm に比べ、粒子成長が抑制されていた。前駆体が高いイオンエネルギーをもつとき、前駆体は表面拡散により表面の欠陥や粒子を排除するため、表面粗さが低下したのだと考えられる[3-30]。また Peng らはイオンエネルギーの増加によって、表面でのイオン衝突が盛んになり非晶質炭素薄膜表面を平滑すると報告している[3-31]。したがって、FDBD により合成した非晶質炭素薄膜の表面粗さが減少したことから、GDBD から FDBD に遷移させることによってイオンエネルギーの増加したと考える。

Fig. 3-18 Surface roughness of the films as a function of electrodes gap.
Fig. 3-19 Surface image of a-C:H films observed by AFM with changing the electrodes gap, (a) 1 mm, and (b) 4 mm.
3.4 第3章のまとめ

本章では、大気圧プラズマ CVD 法において、希釈ガス混合比率および放電形態に着目し、室温かつ大面積への硬質な薄膜合成の可能性を示した。また電極間距離と基材の導電率を変化させることでフィラメンタリー放電（FDBD）を発生させる条件を検討した。また FDBD を用いて硬質な非晶質炭素薄膜を合成し、その分析をすることでプラズマ内での合成過程を明らかにした。得られた結論を以下に列挙する。

1) ヘリウムガスにアルゴンガスを混合することで硬度は 0.8 GPa から 2.7 GPa まで、およそ 3 倍向上した。アルゴンガス混合の増加に伴い、水素量が減少していることから、膜内水素量の減少により炭素同士の結合が増加したことで、ポリマー状構造から高密度な構造に変化したと考えられる。しかし、アルゴンガスをヘリウムガスに対して 20% 以上混合すると、硬度は 0.9 GPa まで減少した。

2) ヘリウムガスにアルゴンガスを混合することで He ラジカルが急激に減少した。これは、He ラジカルによって Ar がペニング電離し、Ar イオンが生成したことを示唆している。したがって、ヘリウムガスにアルゴンガスを混合すると Ar 分子の増加により、Ar イオンが増加した。しかし、さらにアルゴンガスを混合すると He ラジカルの減少により、Ar イオンが減少した。このため Ar イオンが最大となった希釈ガス混合率において、硬度が最大となったと考えられる。

3) 電極間距離を 3 mm 以上にすることでグロー状放電（GDBD）からフィラメンタリー放電（FDBD）に放電形態が遷移した。しかしながら、PET のような表面抵抗率の高い基材を挿入すると、電界が弱まり FDBD は観察されなかった。FDBD を生成するには、高い導電性（50 Ω/sq.）を有する基材を用いる必要がある。

4) 電極間距離の増加に伴い、薄膜内部の水素量が低下し、薄膜の硬度は増加し、最大で 11.9 GPa を示した。大面積への薄膜合成が可能な構造を持つ誘電体バリア放電の原理において、低温下かつ大気圧下で 10 GPa を超える非晶質炭素薄膜の合成は初のことである。ストリーマ先端に集中した高いエネルギーを持つイオンが、薄膜表面での水素の引き抜きを活発化させ、非晶質炭素薄膜の水素含有量を低下させた。
5) 希釈ガスにヘリウムだけでなくアルゴンを用いることでペニング電離を促進した。合成した薄膜のラマンスペクトルから、FDBD で合成した非晶質炭素薄膜の水素含有量は GDBD で合成した薄膜に比べて小さくなった。これは-CH₃などの末端結合に含まれる水素が、ストリーマ先端で生じた高イオンエネルギー状態の炭化水素イオンによって脱離したためである。
第3章に関する参考文献

[3-16] 藤巻康人, 中尾節尾, 上田志津代, 寺山帳之李, 笹倉大背, 基昭夫, “東京都立産

第4章 大気圧プラズマCVD法によるシリカ系薄膜の合成

4.1 緒論

近年では、シリカ系薄膜の電気特性ではなくその透明性、耐摩耗性、耐傷性に着目し、ポリマー材料上に大気圧プラズマCVD法を用いてシリカ系薄膜を被覆する需要が高まっている。一般的にシリカ薄膜の合成は真空チャンバー内でのプラズマCVD法により合成される。プラズマCVD法により合成したシリカ系薄膜は、非晶質な構造を持ち高硬度、平滑性に優れるといった特徴を持つ。しかしながら大気圧下での合成においては、平均自由行程、プラズマ密度が小さいため、原料であるトリメチルシラン（TrMS）やヘキサメチルジシロキサン（HMDSO）などといった有機シランが分解できず、有機物を多く含んだ構造になりやすく、軟質な薄膜となる。

Tornecらは、原料にHMDSOを用いて基板温度を増加させることにより、ガラスと同等の硬度である7GPaもの硬度を示すシリカ系薄膜の合成に成功した[4-1]。またNoborisakaらは、原料にテトラメチルオキシシラン（TMOS）を用いて、基板温度を増加させることで薄膜の硬度を向上させることに成功した[4-2]。またポリカーボネート（PC）上にシリカ系薄膜を合成することで、耐傷性が飛躍的に向上したと報告している[4-2]。これらシリカ系薄膜の研究は、その多くがテトラメチルジシロキサン（HMDSO）やテトラメチルオキシシラン（TMOS）などといった液体原料から合成される。しかしながら、液体原料による薄膜合成は、気化器などの大型設備が必要となる。また原料を昇温する必要があるために、工業材料に取り入れられるポリプロピレン（PP）やポリエチレンテレフタレート（PET）、ポリカーボネート（PC）などといった一般的なポリマー材料への低温下での合成が困難であり、先行研究のような高い基板温度での合成ではなく、常温での薄膜合成が望ましい。
シリカ系薄膜の高硬度化には、SiO_4の高密度な四面体構造を生成する必要があり、原料である有機シランガスの有機物を除去しなければならない。しかしながら、大気圧プラズマ CVD 法において、原料の分解過程はまだ明らかにされていない。誘電体バリア放電 (DBD) による大気圧プラズマ CVD 法を用いてシリカ系薄膜の合成する場合、プラズマを生成するために使用する希釈ガスと薄膜の原料となる有機シランガス以外に、有機シランガスの有機物を除去するための酸化ガスが必要となる。有機物除去のメカニズム解明のために、気相反応及び表面反応の制御が必要となる。そこで希釈ガス種および酸化ガスである酸素流量を変化させると考えた。DBD による大気圧プラズマ CVD 法は、安定なグロー放電を得るために希釈ガスにヘリウムを用いる[4-3]。ヘリウムはイオン化エネルギーが 25 eV と最も高く、準安定状態のエネルギーも 19.6 eV と高い。準安定状態のヘリウムのもつエネルギーは、他のすべての原子のイオン化エネルギーよりも高く、ペニング電離によりイオン化させる。また、ヘリウムガスではなくアルゴンガスや窒素ガス希釈の場合でもパルス電源を用いることでグロー状の DBD を得ることができる。大気圧プラズマ CVD 法においてアルゴンを希釈ガスとして用いてシリカ系薄膜を合成したという報告もある[4-4]。また大気圧プラズマにおいてアルゴンプラズマは、ヘリウムプラズマに比べエネルギー伝達効率に優れているといわれている[4-5]。アルゴンの準安定状態のエネルギーは 11.5 eV と高いため、ヘリウムやアルゴンなどの希ガスではなく、窒素や酸素などの二原子分子ガスは、大気圧プラズマ CVD 法の特徴である低コストをさらに効果的にすることができる[4-6,7,8]。準安定状態のエネルギーが 6.2 eV と低く、原料の導入により放電が不安定になるという報告もあり、原料のイオン化には不向きである[4-9]。Massines らは窒素プラズマに N_2O ガスを導入することでプラズマを安定化させ、シリカ系薄膜の合成が窒素プラズマでも可能であることを示した[4-10]。上記のように大気圧下でのシリカ系薄膜の合成に関する研究は数多く存在するが、希釈ガス種を変化させたときの薄膜の硬度と化学結合状態の関係を明らかにした報告はない。

本章では、大気圧プラズマ CVD 法において、高硬度シリカ系薄膜を合成するための有機物除去のメカニズムを解明することを目的とした。希釈ガスにはヘリウム、アルゴン、窒素を希釈ガスとして用い、酸素を酸化ガスとして用いた。また酸素流量を変化させることでプラズマ内の酸化ラジカル生成を制御し、希釈ガス種ごとのシリカ系薄膜の成長過程を明らかにした。
4.2 実験方法

4.2.1 実験条件

平行平板型の誘電体バリア放電を用いた大気圧プラズマ CVD 装置によりシリカ系薄膜を合成した。使用した装置の概略図を Fig. 4-1 に示す。シリカ系薄膜を合成する場合、原料ガスの酸化剤として酸素を導入する必要がある。シリカ系薄膜の原料としてよく用いられている TrMS や HMDSO などのモノマーがポリマー化する反応は主に発熱反応であり、また反応種による堆積もエネルギーの散逸過程である[4-11]。つまり薄膜を合成することで基板の温度が著しく上昇するため、冷却設備を導入し基板温度を 25℃ に保った。希釈ガスにはヘリウムガス、アルゴンガス、窒素ガスを使用し、酸素ガス流量を各希釈ガス条件下において 0 mL/min から 500 mL/min まで変化させた。放電ガスの総流量は 20 L/min（流入面積：100 mm × 1 mm）とし、原料ガスであるトリメチルシラン (TrMS) の流量は 0.4 mL/min とした。また 1 mm のガラス板スペーサを電極間に設置することで、電極間距離を 1 mm に固定した。ヘリウムガス以外の希釈ガスを用いることから、放電の安定性を保つために、両電極に厚さ 1 mm のアルミナ（誘電率：ε = 8.5）を溶接し、また交流パルス電源を用いることで大気圧中でも安定なグロー放電を生成に成功した。電極には冷却設備を接続し、基板温度が 25℃ になるように調節した。プラズマ電源には高周波パルス電源を用いており、パルスプラズマ電源の出力を 140 W、電極間電圧を 10 kV、電源パルス周波数を 20 kHz として薄膜を合成した。また合成した薄膜の成膜速度を算出し、その成膜速度から膜厚が 200 nm になるように成膜時間を調整した。
4.2.2 成膜挙動の検討

プラズマ CVD 法における反応過程として、薄膜の原料となる前駆体が気相中で生成し、その分子やラジカル、イオンなどが基板表面に蒸着する反応（気相反応）、H イオンや O イオンによる表面エッチング効果（表面反応）、表面付近で生じる堆積した薄膜内部でのメチル基（-CH₃）やカルボニル基（-COOH）などの官能基同士での反応による H₂O や H₂の脱離（堆積膜内反応）の 3 つがあげられる[4-12]。大気圧プラズマ CVD 法でのシリカ系薄膜の合成過程については、種々のラジカル、イオンが生成するために、反応過程が複雑となる。そこで低圧下での TrMS を原料として用いた際の反応過程のイメージ図を Fig. 4-2 に示す。
プラズマ中でのTrMSの反応は、水素引き抜きやメチルシリル基からのメチル基の脱離が生じると考えられる[4-13]。プラズマ内において、本章で使用した希釈ガスは以下の反応によりイオン化、ラジカル化し、プラズマを生成する。

\[
\begin{align*}
\text{He} + e & \rightarrow \text{He}^+ + 2e \\
\text{He} + e & \rightarrow \text{He}^+ + e \\
\text{Ar} + e & \rightarrow \text{Ar}^* + 2e \\
\text{Ar} + e & \rightarrow \text{Ar}^+ + e \\
\text{N}_2 + e & \rightarrow \text{N}_2^* + 2e \\
\text{N}_2 + e & \rightarrow \text{N}^+ + \text{N} + 2e \\
\text{N}_2 + e & \rightarrow 2\text{N}^* + e
\end{align*}
\]

(4-1) (4-2) (4-3) (4-4) (4-5) (4-6) (4-7)

また、酸素をプラズマ内に導入した際、Oイオン、ラジカルが生成する。そのときの反応過程は以下の通りである。

\[
\begin{align*}
\text{O}_2 + e & \rightarrow \text{O}_2^* + 2e \\
\text{O}_2 + e & \rightarrow \text{O}^+ + \text{O} + 2e
\end{align*}
\]

(4-8) (4-9)
O₂ + e → 2O⁻ + e \quad (4-10)

また原料ガスである TrMS の分解反応は以下の通りである。

\begin{align*}
≡\text{Si-H} & \rightarrow ≡\text{Si} + \text{H}⁻ \quad (4-11) \\
≡\text{Si-CH₃} & \rightarrow ≡\text{Si} + \text{CH}_₃⁻ \quad (4-12) \\
≡\text{Si-CH₃} & \rightarrow ≡\text{Si-CH}_₂ + \text{H}⁻ \quad (4-13)
\end{align*}

上記反応による生成したシリコンの未結合種に O ラジカルやメチル基の再結合が生じる。

\begin{align*}
≡\text{Si} + \text{O}⁻ & \rightarrow ≡\text{Si-O} \quad (4-14) \\
≡\text{Si} + \text{CH}_₃⁻ & \rightarrow ≡\text{Si-CH}_₃ \quad (4-15) \\
≡\text{Si-O} + \text{H}⁻ & \rightarrow ≡\text{Si-OH} \quad (4-16)
\end{align*}

堆積膜内反応として、脱水縮合反応が挙げられる。

\begin{align*}
≡\text{Si-OH} + ≡\text{Si-OH} & \rightarrow ≡\text{Si-O-Si}≡ + \text{H}_₂\text{O} \quad (4-17)
\end{align*}

4.2.3 シリカ系薄膜の分析方法

合成した薄膜の膜厚は、触針式段差測定器 (Dektak3030: Veeco) により 10箇所測定した。基板の固定に使用したポリイミドテープをはがし、その面に沿って無作為に測定した。ポリイミドテープから 5 mm 離れた箇所の前後 2 mm の高さを測定しその算術平均値を求めた。その 10点の平均値を薄膜の膜厚とし、成膜速度はその測定した膜厚を成膜時間で除することで算出した。薄膜硬度はパーコビッチ圧子によるナノインデンテーション法 (Agilent Nano Indenter G200: Agilent Technologies, Inc., USA) を用いた。深さ指定モードを用いて押し込み深さを 50 nm とし、荷重変位曲線を Oliver と Pharr の方法を用いて測定した[4-14]。無作為に 10か所測定し、その平均値を薄膜の硬度とした。表面粗さは原子間力顕微鏡 (SPM-9700: Shimadzu Corporation, Japan) のコンタクトモードを用いて 10 μm×10 μm の範囲で 3点測定した。化学結合状態を FT-IR (ALPHA-B: Burker, USA) を用いて、またベースラインとスムージング補正には GRAMS を用いた。また組
成分析には、X線光電子分光装置 (JPS-9010TR: JEOL Ltd., Japan) を用いた。表面のコ
ンタミや酸化物を除去するために、アルゴンエッチングを 20 s 行い、測定時にはアルゴ
ンを検出することで、サンプルのチャージアップによるピークシフト補正を行った。ま
たプラズマ内部の励起状態を観察するために、発光分光測定（C7460: Hamamatsu
Photonics K.K., Japan）を実施した。

4.3 結果および考察

4.3.1 希釈ガス種がシリカ系薄膜の物性に及ぼす影響

まず、希釈ガスであるアルゴンとヘリウムを希釈ガスに用いて合成したシリカ系薄膜に
関して述べる。Fig 4-3 にヘリウムプラズマおよびアルゴンプラズマで合成したシリカ
系薄膜の、酸素流量と薄膜の成膜速度の関係を示す。アルゴンプラズマにより合成した
シリカ系薄膜は、酸素流量を 100 mL/min 導入することで、成膜速度が 3.8 nm/s から 6.2
nm/s まで増加した。しかしながら酸素流量をさらに増加させ 500 mL/min とすると、成
膜速度は 4.2 nm/s まで低下した。一方で、ヘリウムプラズマで合成したシリカ系薄膜は、
酸素流量の変化に関わらず、およそ 4.0 nm/s と一定の成膜速度を示した。次に Fig. 4-4
にヘリウムプラズマおよびアルゴンプラズマで合成したシリカ系薄膜の、酸素流量と薄膜
の硬度の関係を示す。アルゴンプラズマにより合成したシリカ系薄膜は酸素流量の増
加に伴い、硬度が徐々に増加し、最大でおよそ 1.1 GPa を示した。一方で、ヘリウムプ
ラズマにより合成したシリカ系薄膜の硬度は、酸素流量に関わらず、およそ 0.6 GPa で
一定の値を示した。
Fig. 4-3 The deposition rate of SiOC(-H) films as a function of oxygen flow rate

Fig. 4-4 The relationship between the oxygen flow rate and hardness of SiOC(-H) films diluted by argon and helium.
プラズマ内には自由電子や希釈ガスのイオンやラジカルなどの励起種が存在する。そのプラズマ中にシリカ系薄膜の原料ガスを導入すると、原料ガスが分解もしくは励起され、薄膜の前駆体が生じる。さらに酸素を導入することにより、Oラジカルなどの励起種が生成され、気相中においてモノマーの分解が促進される。そして生成された励起種が基板上に吸着され、薄膜が堆積する（Fig. 4-2）。酸素を導入することで、プラズマ内に存在する励起帯の数が増え、原料ガスの分解が盛んになるという報告がある[4-15]。つまり酸素を導入することにより成膜速度が増加したのは、酸素ガス導入により気相反応が活発になり、前駆体が加増したためだと考えられる。

またFig. 4-2のように薄膜の成長過程には気相反応だけでなく、表面反応、堆積膜内反応が挙げられる。気相で生成した前駆体は、大きく重合することなく、原料由来の有機物を多分に含んだ状態で基板に吸着する。付着した前駆体から表面反応により酸化ラジカルがその有機物を除去する。また酸素は電子親和力の高い気体であることが知られている。プラズマ生成のために用いたヘリウムやアルゴン、窒素の電子親和力はそれぞれ、-48 kJ/mol, -96 kJ/mol, -8 kJ/mol なのでに対し、酸素の電子親和力は141 kJ/mol と高い。この高い電子親和力により、酸素は他の分子に比べプラズマ中の電子を吸着して負イオンになり、プラズマ密度を低下させるといわれている[4-16]。以上のことから酸素ガスの導入により、気相反応が活発化、成膜速度が増加したと考えられる。また酸素流量の増加にも伴い成膜速度が低下したのは、表面反応で有機物の脱離反応が付着確率が低下し、かつ酸素ガスの電子吸着によりプラズマ密度の低下し前駆体生成数が減少したためだと考える。

シリカ系薄膜の硬度と結合状態の関係を調べるために FT-IR を用いて、薄膜内部の結合状態を分析した。その結果をFig. 4-5, Fig. 4-6 に示す。各サンプルから3500 cm⁻¹, 1100 cm⁻¹, 800 cm⁻¹付近に3つのピークが検出された。結合ごとにピーク位置が割り当てられており、各サンプルはヒドロキシル基 (-OH), メチル基 (-CH₃), シロキサン結合 (Si-O-Si) の結合で薄膜が形成されていた。まず3500 cm⁻¹付近に見られるブロードなピークが水分子由来の O-H 結合の吸収ピークである。また 820 cm⁻¹ と 2980 cm⁻¹ に見られるピークは Si-Me の伸縮振動のピークである。また 2980 cm⁻¹ に見られるピークは -CH₃の sp³-CH₃ の伸縮振動によるピークであり、波数が大きくなると x の値が大きくなるが、末端結合の増加を示す。1280 cm⁻¹ 付近が Si-Me, (x = 1, 2, 3) の変角振動、780 cm⁻¹ に見られるピークも Si-Me の横揺れ振動由来のピークであり、薄膜内部の有機物含有を示している。最も強く出ている1100 cm⁻¹付近のブロードなピークは Si-O-Si 結合の伸縮
振動によるピークである。アルゴンプラズマで合成したシリカ系薄膜の有機物由来のピーク強度は、酸素流量の増加に伴い減少し、-OH 由来のピーク強度は増加した。また Si-O-Si 結合の伸縮振動を示す 1100 cm⁻¹ 付近のブロードなピークは鋭くなり、ピーク位置は高波数側に移動した。一方でヘリウムプラズマを用いて合成したシリカ系薄膜のピーク形状は、酸素流量の変化に対して大きな変化はみられなかった。ここで酸素流量に対する吸収ピーク全体の面積に対する有機物関係のピーク面積の比率を Fig. 4-7 に示す。アルゴンプラズマで生成したシリカ系薄膜の場合、酸素を導入することで有機物の面積比率が著しく減少していた。一方でヘリウムプラズマで合成したシリカ系薄膜では、酸素流量の増加に対して徐々に減少した。希釈ガス種で比較すると、アルゴンプラズマで生成したシリカ系薄膜はピーク面積比率が小さく有機物が多く除去されていた。このことから、ヘリウムプラズマによる有機物の除去は生じにくく、アルゴンプラズマ内部では酸化力のあるラジカルやイオンが生成していると考えられる。

Fig. 4-5 FT-IR spectra of SiOC(-H) films using argon plasma with changing oxygen flow rate, (a) 0 mL/min, (b) 10 mL/min, (c) 100 mL/min, (d) 300 mL/min, (e) 500 mL/min.
Fig. 4-6 FT-IR spectra of SiOC(-H) films using helium plasma with changing oxygen flow rate, (a) 0 mL/min, (b) 10 mL/min, (c) 100 mL/min, (d) 300 mL/min, (e) 500 mL/min.

Fig. 4-7 Relative absorption area of related Si-Mex with Ar and He plasma as a function of oxygen flow rate.
次に、窒素プラズマで合成したシリカ系薄膜について述べる。窒素はアルゴンやヘリウムなどの希ガスとは異なり、自身が原料ガスと反応する。まず、酸素流量と窒素プラズマで合成したシリカ系薄膜の成膜速度、硬度の関係をFig. 4-8に示す。酸素流量の増加に伴い、薄膜の硬度が徐々に増加し、成膜速度が低下した。硬度に関しては、アルゴンプラズマによる合成と同じ傾向が得られたが、成膜速度に関しては異なる結果となった。気相もしくは表面反応での窒素の結合が要因だと考え、合成したシリカ系薄膜の表面粗さをと化学組成を分析した。その結果をFig. 4-9に示す。酸素流量の増加に伴い、薄膜の表面粗さは低下し、成膜速度の分布と同じ傾向を示した。窒素プラズマはプラズマ密度が低く、原料の分解反応が生じず、かつ窒素が薄膜内部に含まれるために、大きなパーティクル形状を持つようになる。薄膜がパーティクルで構成されるため、薄膜の密度が低下し、成膜速度が増加したと考える。また酸素を導入することにより、気相及び表面反応での有機物除去が促進され、パーティクルが小さくなり表面粗さが低下したのだと考える。実際に合成したシリカ系薄膜の窒素含有量比率は、酸素流量が0 mL/minのときにおよそ3.4 at.%, 500 mL/minのときに0.8 at.%であった。この結果は、酸素流量が小さいときの薄膜のパーティクル成長を示している。

Fig. 4-8 The deposition rate and the hardness of SiOC(-H) films as a function of oxygen flow rate.
次に窒素プラズマで合成したシリカ系薄膜の FT-IR による化学結合状態測定結果を Fig. 4-10 に示す。酸素流量の増加に伴い、メチル基のピークが減少し、有機物が除去されたことがわかる。アルゴンプラズマで合成したシリカ系薄膜のピーク形状と異なる点として、-OH 基のピーク強度が挙げられる。アルゴンプラズマによる合成では、酸素流量の増加に伴いヒドロキシル基のピークが徐々に増加していたが、窒素プラズマではアルゴンプラズマに比べ、ヒドロキシルピークの増加は抑制されていた。-OH 基は、(4-17)式で示される堆積膜内反応によって脱水縮合反応を起こし強固な Si-O-Si 結合を生成する。しかしながら堆積膜内反応が生じない場合、末端結合となり薄膜の密度の低下につながる。窒素プラズマで合成したシリカ系薄膜において、酸素流量の増加に伴い、硬度が増加したのは、有機物が除去されヒドロキシル基の末端結合が少ない薄膜が合成されたためだと考える。
4.3.2 成膜挙動

上記の結果から、大気圧プラズマ CVD 法におけるシリカ系薄膜の生成過程を考察する。Fig. 4-2 のように気相中で希釈ガスラジカルと原料が衝突し、TrMS に含まれる Si-H 結合が切断され、前駆体が生成する。その前駆体の未結合種と薄膜表面の未結合種が結合し薄膜が堆積する。このとき最表面に存在するメチル基などの有機物が、各プラズマ内の酸化ラジカルにより除去される。

\[
\text{≡Si-CH}_3 + O \cdot \rightarrow \text{≡Si} + \text{CO}_2 + \text{H}_2\text{O}
\] \hspace{1cm} (4.18)

この有機物除去によって生成した未結合種と酸化ラジカルが結合し、Si-O 結合を生成し、その未結合種にさらに前駆体が結合、有機物の除去による未結合種の生成という過程を繰り返すことで薄膜が堆積すると考えられる。つまりプラズマ中に存在する酸化ラジカルの数が、薄膜の硬質化の要因である。酸素流量の増加によって元素含有量比率や結合
状態が変化したのは酸化ラジカルによるものだと考える。

続いて希釈ガスにより、酸素流量変化に対する結果が異なった理由について考察する。要因のひとつにイオン密度の違いが上げられる。誘電体バリア放電を用いた大気圧ヘリウムプラズマの電子密度は、8.3×10^{13} cm$^{-3}$、アルゴンプラズマの電子密度は、2.6×10^{15} cm$^{-3}$ である[4-20]。ヘリウムより電子密度の高いアルゴンプラズマによって、多量の酸化ラジカルが生成し、未結合種との結合確率が増加したためだと考える。窒素プラズマの場合は気相中での反応が有機物除去に関与していると考える。ヘリウムプラズマやアルゴンプラズマの場合、気相中で Si-H や Si-C 結合が切断され、未結合種が生成した場合、その多くが周囲に O ラジカルが存在せず、再結合すると考えられる。またヘリウムプラズマでは、生成した Si-O 結合が高いイオンエネルギーにより再度切断され、有機物の再結合が促進される。そのため酸素流量の変化に対して結合状態が大きく変化しなかったのだと考える。アルゴンプラズマでは、生成した Si-O 結合の再切断は生じず、前駆体内に Si-O もしくは Si-OH 結合を取り込むことで硬度が増加したのだと考える。一方で窒素プラズマの場合、プラズマ中の励起した窒素と結合し、Si-N 結合が気相中で生成する。Si-N 結合の結合エネルギーは 3.4 eV と低く、表面反応による有機物除去の際に容易に結合が切断され Si-O 結合が生成される。このことにより、前駆体内に存在する有機物の除去が促進され、最も高い硬度を示したのだと考える。またプラズマ内部の生成ラジカルを発行分光法 (OES) により測定した。Fig. 4-11 にアルゴンプラズマ、ヘリウムプラズマ、窒素プラズマのプラズマ発光分光測定結果を示す。それぞれのプラズマにおいて、原料や前駆体のラジカルは観察されなかった。これは希釈ガスであるラジカル種の量が大きく、ノイズに隠れてしまっていたためだと考えられる。707 nm 付近の He ラジカルのピーク、778 nm および 844 nm 付近の O ラジカルのピーク、309 nm 付近の OH ラジカルのピーク、300 nm から 400 nm の N$_2$ ラジカルのピーク、200 nm から 250 nm 付近の NO ラジカルのピークが検出されている。4-4] 大気圧下においてアルゴンプラズマに酸素を導入することで、OH ラジカルのピークが検出された。また窒素プラズマからは、窒素の励起種のピーク以外に NO ラジカルのピークが検出された。ヘリウムプラズマからは酸素を導入することで O ラジカルがプラズマ内部に生成していた。原料である TrMS の有機物除去に使用される酸化ラジカルは、それぞれのプラズマにおいて異なるといえる。O ラジカルは酸化力が弱く、OH ラジカルや NO ラジカルは強い酸化力を有し、有機物除去反応が容易に進むと考える。
Fig. 4-11 OES spectra of the atmospheric plasma diluted by (a) helium, (b) nitrogen, and (c) argon gases.
4.4 第4章のまとめ

本章では、シリカ薄膜の工業応用を目指して、大気圧プラズマ技術による室温環境でのシリカ系薄膜の合成に取り組んだ。シリカ系薄膜の合成条件として、希釈ガスにヘリウム、アルゴン、窒素を用い、それぞれの希釈ガス種において酸素流量を変化させてシリカ系薄膜を合成した。そして希釈ガス種と酸素流量を変化させたときの、成膜速度、硬度、化学結合状態、表面粗さ、プラズマ状態を分析することで、大気圧プラズマCVD法を用いて硬質なシリカ系薄膜を合成するときの堆積過程を考察した。得られた結論を以下に記す。

1) ヘリウムプラズマを用いた場合、酸素流量に関わらず一定の膜質のシリカ系薄膜が得られ、プラズマ状態に関しても酸素流量に関わらず変化はなかった。一方でアルゴンプラズマによりシリカ系薄膜を合成した場合、OHラジカルをプラズマ中に生成することにより酸素流量の増加に伴い硬度が増加した。

2) シリカ系薄膜の合成において、高硬度薄膜の合成の要因として原料に含まれる有機物の除去が挙げられる。大気圧プラズマ CVD 法において有機物除去の反応は、気相反応ではなく表面反応での酸素エッチングが支配的だった。また薄膜の構造を低密度にする要因として、原料由来の有機物のみならず、薄膜内に残留した末端結合であるヒドロキシル基が挙げられる。

3) 窒素プラズマを用いて、酸素流量を大きくすることで硬度がおよそ 2.2 GPa の硬質なシリカ系薄膜の合成に成功した。窒素プラズマによる Si-N 結合の生成による有機物の再吸着の抑制と NO ラジカルによる有機物除去により、薄膜内部の末端結合が減少し、高密度な薄膜が得られた。
第4章に関する参考文献

第5章 大気圧プラズマCVD法で合成したシリカ系薄膜のガスバリア性評価

5.1 緒論

高分子材料は、耐屈曲性などの機械的特性に優れ、透明、軽量かつ安価で、加工が容易であるなどの特長を持つ。このため、金属材料やセラミックス材料の代替材料として、産業資材をはじめとする幅広い分野で使用されている。特に、高分子材料の3分の1は基板（フィルム）として利用されており、その高分子基板の半分以上が包装材料として利用されている。特に、高分子基板へのガスバリア性能付与の要求が高まっており、食品や医薬品などの包装材料としてだけでなく、ディスプレイ材料および太陽電池材料などの応用が期待されている。

食品・医薬品包装分野では、酸素や水蒸気などの外部からの浸透、あるいは窒素や炭酸ガスなどの内部からの漏えいによる包含物の変質や腐食を防ぐために、ガスバリア性が要求されている。ディスプレイ分野では、ガラス代替基板として高分子基板が研究されており、包装材料以上のガスバリア性能が要求されている。これまでガスバリア性を有する包装材料としては、PVDC（ポリ塩化ビニリデン）などの高分子材料、あるいは高分子基板へコーティングを施したアルミ蒸着膜、非晶質炭素膜、シリカ系薄膜などが用いられてきた。しかし、PVDC膜は焼却時にダイオキシンを発生する可能性があるため、環境面に問題があり、アルミ蒸着膜は包含物を目視できない、あるいは金属探知機が利用できないなどの欠点を有する。また、非晶質炭素膜は膜厚が厚いと黄色みを呈するため、包含物の視認性を損なう。それらに対し、シリカ系薄膜は安全性や衛生性だけでなく透明性にも優れるため、ディスプレイ応用が可能となる。

シリカ薄膜によるガスバリア性の向上に関しては様々な研究報告がある[5-1]。高密度なシリカ系薄膜の合成によりガスバリア性は向上するが、シリカ系薄膜のような無機薄膜
薄膜ではクラックなどの欠陥がガスバリア性を低下させる要因であると報告されている[5-2]。同様に大気圧プラズマ CVD 法を用いたシリカ系薄膜の合成においても、Pertersenらが基板温度の上昇に伴うバリア性の向上を報告しているが、基板温度の増加により表面にクラックが形成され、バリア性が低下したことを報告している[5-3]。そこで大気圧プラズマ CVD 法を用いて、低温で高密度なシリカ系薄膜を合成しクラックを抑制することで、高いガスバリア性を持つ材料合成が期待できる。そこで前章で取り組んだ高硬度シリカ系薄膜の条件をもとに、室温かつ大気圧下で透明で高密度な薄膜を合成を試みた。

5.2 実験方法

5.2.1 成膜条件

本章では第3章で用いたようなダイレクト式大気圧プラズマ CVD 装置を用いてシリカ系薄膜を合成した。また安価かつ硬質なシリカ系薄膜を合成するために希釈ガスに窒素を用い、原料ガスには TrMS と酸素を用いた。一般に、シリカ系薄膜の原料としては TEOS（沸点 166 ℃）や HMDSO（100 ℃）といった液体原料が用いられるが、大気圧プラズマ CVD 技術で合成するためにはバブリングなどの気化設備が必要となる。装置を簡略化するため、本実験では常温常圧下で気体である TrMS ガス（6.7 ℃）を原料とした。プロセスガスの総流量を 20 L/min、TrMS ガスの流量を 0.5 mL/min とし、酸素ガスの流量を 0 mL/min から 1000 mL/min まで変化させた。基板には Si やポリエチレンテレフタラート (PET) を用いた。薄膜の物性を測定する際、膜厚の違いによって物性が変化するため[5-4]、すべてのサンプルの膜厚を 100 nm に固定した。また、結合状態分析、元素組成分析を実施し酸素流量がシリカ系薄膜の合成に及ぼす効果を調査した。またガスバリア性は、PET 基板に合成したサンプルを用いて酸素透過試験により評価した。また、表面観察から酸素流量が PET 基板上におけるシリカ系薄膜の合成に及ぼす影響を調査した。さらに、プラズマ処理によって基板表面を粗面化とるとの報告[5-5]であることから、PET 基板に窒素と酸素の混合ガスによるプラズマを照射した。プラズマ照射実験では、原料ガスである TrMS を導入せず窒素と酸素の混合ガスの総流量を 20 L/min とし、酸素流量を 100, 500, 750, 1000 mL/min に変化させた。その後、酸素透過試験、表面粗さ測定、表面観察を行い、窒素酸素混合ガスによるプラズマが PET
基板に与える影響を分析した。

5.2.2 分析方法

表面粗さはダイナミックモードを用いて 10 µm × 10 µm の範囲で 5 点測定した。測定した粗さの平均値を各サンプルの表面粗さとした。化学結合状態を FT-IR 法 (ALPHA-E, Bruker, Germany) を用いて、またベースラインとスムージング補正には GRAMS を用いた。組成分析には X 線光電子分光装置 (XPS: JPS-9002TR, JEOL LTD., Japan) を用いた。膜の最表面はコンタミネーションの付着や酸化、O 原子の吸着等の影響を受けている可能性があるため、アルゴンプラズマにより表面を 30 s エッチングしたのちに測定し組成を算出した。測定時にはアルゴンを検出することで、サンプルのチャージアップによるピークシフト補正を行った。また薄膜および基板の酸素透過率の測定には、酸素透過率測定装置を用いた。高分子材料は分子鎖と分子鎖が絡み合った構造をしている。この分子鎖の間の直径１～数 nm 程度の微小な空隙（ミクロポイド）は、熱運動により常に変動している。この中に気体分子（直径 0.1～1 nm 程度）が溶解し、さらに拡散していく現象が気体透過であり、気体の透過しにくさをガスバリア性と呼ぶ。

高分子のガス透過係数は、次式で表される。

\[P = \frac{QL}{\Delta tAp} \]

ここで、\(P \) はガス透過係数 (cc・cm/m²/24h/atm), \(Q \) は透過ガス量 (cc), \(L \) は平均材料厚さ (m), \(\Delta t \) は単位時間 (24h), \(A \) はガス透過面積 (m²), \(p \) は透過ガスの圧力差 (atm) である。つまり、厚みの材料に対して単位時間・単位面積あたりにどの程度のガスが透過するかを表したものである。各パラメータの単位はさまざまなが、一般的には cc・m/m²/24h/atm が使われている。気体透過係数は厚みを考慮した値であるため材料固有のものとなる。本研究では材料固有の透過係数よりも、実際に透過するガスの量を評価し実用性を検討したため、厚みを考慮に入れないガス透過率 (cc/m²/24h/atm) でガスバリア性を評価することとした。酸素透過率測定には、酸素透過率測定装置 (OX-TRAN: MOCON) を用いた。原理図を Fig. 5-1 に示す。測定手順はまず試験装置片面側には酸素を循環させ、反対側には窒素を循環させる。この状態を長時間続けることによって酸素が試料を透過する。このとき、窒素側のセンサー先端部で酸素流入量に比例した電流が Coulox 検知器により検出される。検出した電流から酸素流入量を算出し,
酸素透過率として表示される。実際は室温 23 ℃のもと、100 %酸素を用いて透過面積 50 cm²の酸素透過量を 30 min ごとに測定した。測定時間は 15 h であるが、材料内に吸着している酸素を追い出すためのコンディショニング時間として始めの 5 h は測定していない。測定精度は 0.01 cc/m²/24h/atm であるため、小数点第二位を四捨五入した値で評価した。

Fig. 5-1 Image of oxygen transmission ratio tester.

5.3 結果

5.3.1 合成したシリカ系薄膜の分析

各条件において PET 基板に合成した試料および未処理 PET 基板の酸素透過率の測定結果を Fig. 5-2 に示す。酸素流量を 0 mL/min から 500 mL/min まで増加させることにより、酸素透過率が 21.3 cc/m²/24h/atm から 8.2 cc/m²/24h/atm まで減少し、ガスパリア性が向上した。未処理 PET 基板の酸素透過率は 22.1 cc/m²/24h/atm であるため、酸素透過率を約 3 分の 1 まで抑制した。酸素流量を 500 mL/min から 1000 mL/min まで増加させると、酸素透過率は 8.2 cc/m²/24h/atm から 18.1 cc/m²/24h/atm まで増加し、ガスパリア性
は低下した。

Fig. 5-2 OTR of SiOC(-H) films as a function of oxygen flow rate.

すべての試料において分析前に 10 秒間、薄膜表面をアルゴンエッチングしてから XPS を用いて薄膜の元素組成分析を行った。本実験で用いた希釈ガスおよび原料ガスには、C, O, Si, N, H の元素が含有されている。H は XPS で測定することができないので、本実験では C, O, Si, N についての組成分析を行った。各試料の元素含有比率の測定結果を Fig. 5-3 に示す。酸素流量を 0 mL/min から 100 mL/min まで増加させると、C, N の含有量比率は減少し、Si, O の含有量比率は増加した。特に、酸素流量を 0 mL/min から 100 mL/min まで増加させると、N の含有量比率は 11.5 at.%から 1.7 at.% まで減少し、酸素流量が 100 mL/min 以降において N の含有量比率は 1 at.%程度となったことから、薄膜中に N はほとんど含有されていないと考えられる。酸素流量を 100 mL/min から 1000 mL/min まで増加させると、いずれの元素も含有量比率に顕著な変化は見られなかった。
Fig. 5-3 Elemental composition ratio of SiOC(-H) films as a function of oxygen flow rate.

Each sample's FT-IR spectrum is shown in Fig. 5-4 from 500 cm$^{-1}$ to 4000 cm$^{-1}$. The peaks at 800 cm$^{-1}$ are Si-Me3, 1270 cm$^{-1}$ are Si-Mex (x = 1, 2, 3), 1100 cm$^{-1}$ are Si-O-Si, 1580 cm$^{-1}$ are C-N, 1650 cm$^{-1}$ are C=O, 2970 cm$^{-1}$ are CH3, 3350 cm$^{-1}$ are H$_2$O peaks. Peaks were observed at each oxygen flow rate. With increasing oxygen flow rate, the peaks of C and N decreased.

When focusing on the shape of the peaks, the shape of the peak at 1100 cm$^{-1}$ is different. This peak is composed of 1030 cm$^{-1}$ (Suboxide), 1070 cm$^{-1}$ (Network), and 1130 cm$^{-1}$ (Cage) peaks. Suboxide has 2 O's, Network has only O, and Cage has 3 O's and 3 H's. The area of Cage structure decreases when increasing oxygen flow rate.

From 500 cm$^{-1}$ to 4000 cm$^{-1}$, the elemental content ratio is shown as a function of oxygen flow rate. The elemental content ratio is shown for N, Si, O, and C.
少し、1070 cm⁻¹ 付近の Network 構造の割合は増加した。また、酸素流量が 300 mL/min 以降ではピーク形状に大きな変化はみられなかった。

Fig. 5-4 FT-IR spectra of the films with various oxygen flow rate.

5.3.2 プラズマ処理をした PET 表面の分析

各条件において窒素酸素混合ガスによるプラズマを照射した試料および未処理 PET 基板の酸素透過率の測定した。各試料の酸素透過率はいずれも約 22 cc/m²/24h/atm であり、未処理 PET 基板の酸素透過率と同程度であったことから、大気圧プラズマ照射は PET 基板のガスバリア性に影響しなかった。未処理 PET 基板の表面粗さ、および各条件において窒素プラズマに酸素を導入した際の PET 基板の表面粗さと O₂ 流量の関係を Fig. 5-5 に示す。大気圧窒素プラズマ照射において酸素流量を増加させると、表面粗さが 6.1 nm から 17.3 nm まで増加し、基板表面が粗面化した。
5.4 ガスバリア性に関する考察

まず、酸素流量を 500 mL/min まで増加させるとガスバリア性が向上した要因について、薄膜の結合状態に着目して考察する。ガスバリア性に影響を与える因子として、薄膜の厚さの他に薄膜の密度が挙げられる。これは、膜密度が高いと気体分子が膜内部で拡散しにくくなるためである。FT-IR の結果より酸素流量の増加に伴い、シリカ系薄膜内部の Si-O-Si の Network 構造が増加していた。Network 構造は純粋なシリカ構造に近く、3 つの Si-O-Si 結合の中で最も高密度な構造であるため、酸素流量の増加によって薄膜の密度が向上したと考えられる。すなわち、薄膜の密度が向上したことで酸素透過率が減少し、ガスバリア性が向上したと考えられる。

次に、酸素流量が 500 mL/min 以降においてガスバリア性が低下した要因について、薄膜の表面に着目して考察する。AFM による薄膜の表面観察結果を Fig. 5-6 に示す。PET 基板上に合成された膜表面は、酸素流量 750 mL/min 以降の条件では薄膜表面に穴が存在することがわかった。シリカ系薄膜中のガス透過機構には、溶解・拡散に起因する活性化拡散流れの他に、毛細血管流れ（粘性流）とよばれる機構がある[5-8]。具体的には、薄膜中に存在するピンホールやクラックなどを気体分子が透過する際の流れを指す。これらの欠陥のガス透過量は孔径の 4 乗に比例するほど敏感であり、欠陥の存在によりガ
スパリア性が低下するととの報告がある[5-9]。薄膜表面に見られた穴の直径は約 30 nm、酸素分子の直径は約 0.36 nm であることから、薄膜表面に形成された穴は酸素分子が透過するに十分な大きさであるといえる。よって、酸素流量 750 mL/min 以降の条件では酸素分子が薄膜表面の穴を通して通過することで酸素透過率が増加し、ガスバリア性が低下したと考えられる。酸素流量を 0 mL/min から 500 mL/min まで増加させた場合のガスバリア性向上の要因として、酸素流量の増加に伴う高密度な薄膜が形成されたことが挙げられるが、酸素流量が 750 mL/min 以降では薄膜の欠陥による影響が支配的になったと推測される。

Fig. 5-6 Surface observation of PET substrate and SiOC(-H) films with various oxygen flow rate.

また、酸素流量が 750 mL/min 以降において薄膜表面に穴が形成される要因について、薄膜合成時のプラズマが基板に及ぼす影響に着目して考察する。高分子材料にプラズマ処理を施すと、プラズマ中の反応種が高分子材料の表面と衝突し、その各種の化学反応などで必要な活性エネルギーが供給され、高分子材料の表面での化学反応が進行する。このため、プラズマ処理を施すことにより高分子材料の表面に存在する汚染物質や低分子化合物は除去され、表面が粗面化される一方で、表面が粗面化されるとの報告がある[5-10]。そこで、プラズマ処理が PET 基板に及ぼす効果を明らかにするため、原料である TrMS を除いた大気圧プラズマを PET 基板に照射した。基板が粗面化することで酸素分子が透過しやす
くなり、酸素透過率が増加すると推測されたものの、大気圧プラズマを照射した PET 基板はいずれの流量においても酸素透過率に変化は見られなかった。Fig. 5-5 よりプラズマ処理における酸素流量を増加させると表面粗さが増加し、また酸素流量の増加に伴い凹凸が大きくなった。シリカ系薄膜を合成する際にも、同様の反応が生じていると考えられることから、酸素流量が多い場合は、表面の粗い PET 基板上に薄膜が合成されていると考えられる。よって、基板表面の凹凸が大きいため、薄膜が凹凸に堆積できずに穴が形成されたと考えられる。なお、FT-IR の Si-O-Si 結合のピーク分離の結果より、プラズマ処理により PET 基板の表面を粗面化したものの、その上に合成される膜の結合状態への影響はないといえる。

5.5 第 5 章のまとめ

本研究では、大気圧プラズマ CVD 法により、TrMS および酸素を原料として PET 基板上にシリカ系薄膜を合成した。このとき、酸素流量を変化させて合成することで、酸素流量がシリカ系薄膜の結合状態、元素組成、表面状態、およびガスバリア性に与える影響について調査した。また、プラズマによる基板への影響を明らかにするため、窒素酸素混合ガスによるプラズマを PET 基板に照射することにより、表面状態、ガスバリア性に及ぼす影響を調査した。以下に得られた結論を述べる。

1) 酸素流量の増加に伴い、C、N の含有量比率が減少したことから低密度な Suboxide 構造、Cage 構造が減少した。また、Si、O の含有量比率が増加し、Si-O-Si 結合における高密度な Network 構造が増加したことから、酸素流量の増加に伴い、合成されたシリカ系薄膜の密度が増加した。

2) 合成したシリカ系薄膜は基材の表面形状に追従し、粗い表面上に合成した場合薄膜表面に穴が生成することが明らかとなった。酸素流量の増加に伴い、薄膜の密度が増加することで酸素透過率が減少し、酸素流量が 500 mL/min において 8.2 cc/m²/24h/atm となり、ガスバリア性が向上した。また、酸素流量を 500 mL/min から 1000 mL/min まで増加させると、PET 基板に凹凸が形成され、その上に合成されたシリカ系薄膜に穴が形成され、ガスバリア性は低下した。
第5章の参考文献

第 6 章 リモート式大気圧プラズマ CVD 装置による高硬度シリカ系薄膜の作製

6.1 緒論

第4章において、大気圧下でのシリカ薄膜合成において酸化ラジカルが発生する条件で合成することが重要であることがわかった。これまで、第4章のように大気圧プラズマ技術を用いて電極間に直接基板を挿入したダイレクト式による研究は数多くされてきたが[6-1,2]。電極外に基板を設置し、プラズマを噴出させて薄膜を合成するリモート式の研究は少ない。

大気圧プラズマ CVD 法で合成するシリカ系薄膜の工業応用を目的とした、薄膜合成装置の開発および高硬度薄膜の合成に取り組んだ。誘電体バリア放電 (DBD) を用いた大気圧プラズマ技術において、電極間距離の制御は重要な要因の一つである。一般的に安定なグロー放電を得るためには、電極間距離を数 mm 程度に制御する必要があるため、湾曲形状かつ厚みのある高分子材料への薄膜合成が困難である。DBD を用いた大気圧プラズマ技術の場合、平行に配置された電極間に高周波パルス電圧を引火することで、大気圧下でも安定したプラズマを発生させることができる。DBD によるリモートプラズマ技術では、このとき電極間で生成したプラズマのプラズマ密度を上げ、またガス流量を大きくすることでプラズマの噴出を可能とする。これまでこのリモート式大気圧プラズマ CVD 法は、薄膜合成ではなく基材のクリーニングや表面処理、殺菌処理などに用いられてきた[6-3,4]。

近年では、リモート式の大気圧プラズマ CVD 法による薄膜合成の研究がすすめられ、シリカ系薄膜の合成に関する報告も存在する[6-5]。しかしながら、合成した薄膜は有機物が多く、低密度な薄膜であることが知られている[6-6]。リモート式により合成したシリカ系薄膜の硬度向上に関する研究は多く存在する。TEOS と HMDSO を混合した原料
を用い, 大気圧プラズマジェット式によりシリカ系薄膜を合成し, さらに基板温度を大きくすることで硬度向上を実現している[6-7,8]. また Lommatzsch らは, 大気圧プラズマジェット方式により, 密着性は低いものの 750 nm/s ものの高い成膜速度を実現した[6-9]. 放電形態が DBD ではなく, プラズマジェット式であるため合成面積が極めて小さく, 大気圧下での合成のメリットである大面積への薄膜合成が困難である. したがって DBD による大気圧プラズマ CVD 法を用いた大面積への硬質なシリカ薄膜合成技術を確立しなければならない.

リモート式大気圧プラズマ CVD 法は, 従来のダイレクト式に比べ, 気相反応の時間が長く, また基材表面に到達する前駆体及び酸化ラジカル数が少ないと考えられる. プラズマの噴出距離であるワーキングディスタンスと酸素流量を変化させることで, リモート式の特徴である長い気相時間内での反応過程を考察できると考えた.

本章では, 大面積かつ立体形状かつ厚みのあるポリマー材料へのシリカ薄膜合成を可能とするために, DBD によるリモート式大気圧プラズマ CVD 装置を作製し, 硬質なシリカ系薄膜を合成すること, リモート式での反応過程を明らかにすることを目的とした. まず作製したリモート式大気圧プラズマ CVD 装置を用いて薄膜を合成し, リモート式において酸素流量, 基板温度が薄膜の物性に及ぼす影響を明らかにした. 次に原料の導入位置を変更し, プラズマの噴出距離や酸素流量, 基板温度を変化させ酸化ラジカルの生成や前駆体の付着確率を制御することでシリカ系薄膜の硬質化に取り組むとともに, リモート式におけるシリカ系薄膜の合成過程を考察した.

6.2 装置作製および実験方法

6.2.1 リモート式大気圧プラズマ CVD 装置の作製

本研究で作製したリモート式大気圧プラズマ CVD 装置の全体写真を Fig. 6-1, 概略図を Fig. 6-2 に示す. この装置もプラズマ生成の原理として, 平行平板型電極を用いている. 放電ガスを上部中央から導入し, 電極間を通過させプラズマを発生させる. そのプラズマを電極外に設置した基材に向かって噴出させ薄膜を合成する仕組みである. アルミナと鋼板の間の空隙による以上放電を抑制するために, 電極表面には誘電体であるアルミナを溶射した. また誘電体の端は面取り加工がしてあり, 異常放電を防いでいる. アースに接続する電極の大きさは 30 mm × 100 mm で固定し, 電源に接続された電極の
大きさは 20 mm × 100 mm と 10 mm × 100 mm の 2 種類の電極を用意した。

Fig. 6-1 Image of remote-type AP-PECVD apparatus.
電極の大きさと成膜速度や合成した薄膜の物性の関係を評価するために、6.2.2 項で述べる成膜条件にて、電極の大きさを変化させてシリカ系薄膜を合成した。合成したシリカ系薄膜の成膜速度と FT-IR による結合状態分析の結果を Fig. 6-3 および Fig. 6-4 に示す。電極の大きさを 20 mm にすることで、成膜速度が増加し、また原料由来のメチル基のピークが減少しており有機物の除去が促進されていた。電極が大きくなることで噴出するヘリウムガスが電極を通過する時間が長くなり、噴出したプラズマの密度が増加し、原料ガスの分解が促進されたことが要因だと考える。この結果より、本章で用いたリモート式大気圧プラズマ CVD 装置の電極の大きさは 20 mm × 100 mm に固定した。またプラズマを生成するために高電圧をかける際、電極の温度が上昇し正確な評価が困難となる。10 mm × 100 mm の電極を用いて、6.2.2 項で述べる条件にて、放電実験をしたところ 5 min 後には電極の温度が 40℃ まで、10 min 後には 60℃ まで上昇した。この問題を解決するために、電極の裏に冷却水を通した銅板を設置し、電極の温度を一定に保つ機構とした。また装置の両側にシャワーヘッドを設け、中央部分から導入したガスを排気する仕組みとなっている。また基板温度を制御するために、基材の保持台にヒーターを設け、保持台の材質はプラズマの引き込む効果を見込んで鈑を用いた。銅板を保持台として用いることにより、不導体であるポリマー材料へのプラズマ噴出を可能としている。
Fig. 6-3 Deposition rate of SiOC(-H) films with changing the size of electrode.

Fig. 6-4 FT-IR spectra of SiOC(-H) films with changing electrode size (a) 10 mm and (b) 20 mm.

また前章にて、硬質なシリカ薄膜合成をするためには、O ラジカル以外の酸化力の高い酸化ラジカルの必要性が示唆された。したがって、原料ガスが電極間での O ラジカルによる分解のみならず空気中の成分である窒素や水分由来の NO ラジカルや OH ラジ
カルと反応するように、原料を装置下部のプラズマ噴出口に原料導入管を設置し、噴出したプラズマに原料ガスを横から導入した (Fig. 6-5)。この方式により、原料ガスを電極間に導入する必要がなくなり、電極間に薄膜が合成されプラズマ密度が低下するなどといった問題を排除することに成功した。応用にあたってはこのメンテナンスフリー化により連続成膜が可能となっている。また原料ガスや酸化ガスの電極外からの導入が可能となるため、プラズマ内部の反応制御が容易になると考えられる。

Fig. 6-5 Schematic diagram of remote-type AP-PECVD apparatus.

6.2.2 シリカ系薄膜の成膜条件

一般的にシリカ系薄膜の原料にはヘキサメチルジシロキサン (HMDSO) やテトラエチルオキシシラン (TEOS), テトラメチルオキシシラン (TMOS) などを用いる [6-10,11]。特に HMDSO は揮発性が高く工業分野で主に用いられている。Cui らは、原料に TEOS, ビストリエキシシリルエタン (BTESE), テトラメチルシクロテトラシロキサン (TMCTF) などといった原料を用いることで、ポリマー材料上に高密度なシリカ系薄膜の合成に成功するなど [6-12]、原料の選定に関する研究も盛んである。しかしながら、それぞれ液体原料であるために、気化器やバブリングなどといった設備が必要となる。一方、トリメチルシラン (TrMS) は、常温常圧で気体であるために、上記設備が必要と
しない。また流量制御が HMDSO よりも容易かつ、構造が HMDSO に似ており、反応過程の考察に適しているといえる。これらの理由から、シリカ系薄膜合成の原料には TrMS を採用した。リモート式大気圧プラズマ CVD 法において、装置が基材に触れないよう、プラズマの噴出距離の制御はきわめて重要である。そのため装置の軽量化のために、原料ガスには液体原料に必要となるバブリングや気化器の設備を必要としない TrMS を採用した。

まず原料ガスを希釈ガスとともに電極内から導入したときの成膜条件について記載する。用いた装置の概略図は Fig. 6-2 に示したとおりである。プロセスガスとしてヘリウムと酸素、TrMS ガスを用い、総流量 20 L/min で装置中央部から導入した。導入されたプロセスガスにより電極間でプラズマを生成し、保持台の上に設置した基板に向かって噴出する。プラズマ生成部の電極間距離は 1 mm とした。プラズマの噴出距離は 10 mm とし、基板温度を 60℃から 140℃まで変化させた。基板を設置した保持台の台速を 0.3 mm/s として、大面積への均一合成を可能とした。原料である TrMS 流量は 1 mL/min とし、酸素流量を 100 mL/min から 1000 mL/min まで変化させた。パルス電源による入力電力は 170 W に統一し、電極間の電圧を 13 kV とした。またパルス周波数は 20 kHz とし、パルス幅を 5 µs とした。

次に原料ガスを電極外から噴出したプラズマに向かって導入したときの成膜条件について記載する。作製した装置の概略図は Fig. 6-5 に示したとおりである。この装置ではプラズマを生成、噴出するために用いるガスと、原料を導入するためのプロセスガスの 2 種類の経路が存在する。プラズマ生成用いるガスはヘリウムとし、流量を 20 L/min で固定した (プロセスガス 1)。酸素流量を 100 mL/min から 1000 mL/min まで変化させた。パルス電源による入力電力は 170 W に統一し、電極間の電圧を 13 kV とした。またパルス周波数は 20 kHz とし、パルス幅を 5 µs とした。
ト式大気圧プラズマにおける気相反応および前駆体の付着確率変化について検討した。また堆積膜内反応を促進し、硬質なシリカ系薄膜を合成するために基板温度を 25, 60, 100℃ と変化させた。保持台の台速は 0.1 mm/s とした。印加電圧を 10 kV、周波数を 20 kHz、パルス幅を 5 μs 固定した。

6.2.3 シリカ系薄膜の分析

合成したシリカ系薄膜の膜厚は、触針式段差測定器 (Dektak3030: Veeco Instruments, Inc., USA) を用いて 5か所測定した。ポリイミドテープから 5 mm 離れた箇所の前後 2 mm の高さを測定し算術平均値を求めた。その 5 点の平均値を薄膜の膜厚とし、成膜速度はその測定した膜厚を成膜時間で除することで算出した。また薄膜の断面観察を SEM (S-4700: Hitachi High Technologies Corp., Japan) を用いた。薄膜硬度はパーコピッチ圧子によるナノインデンテーション法 (Agilent Nano Indenter G200: Agilent Technologies, Inc., USA) を用いた。押し込み深さを 50 nm に統一し、各サンプルの表面を無作為に 10 点測定し、その平均値をそのサンプルの硬度とした。表面粗さはダイナミックモードを用いて 10 μm×10 μm の範囲で 5点測定した。測定した 5 点の数値の平均値を表面粗さとして算出した。化学結合状態を FT-IR 法 (ALPHA-E, Bruker, Germany) を用いて、またベースラインとスムージング補正には GRAMS を用いた。組成分析には X 線光電子分光装置 (XPS: JPS-9002TR, JEOL LTD., Japan) を用いた。薄膜の最表面はコンタミネーションの付着や酸化、酸素原子の吸着等の影響を受けている可能性があるため、アルゴンプラズマにより表面を 30 秒エッチングしたのち測定し組成を算出した。測定時にはアルゴンを検出することで、サンプルのチャージアップによるピークシフトを補正した。また噴出プラズマ内部の励起状態を観察するために、発光分光測定 (OES: C7460 spectrometer: Hamamatsu Corporation, Japan) を実施した。

6.3 結果および考察

6.3.1 リモート式大気圧プラズマ CVD 装置を用いたシリカ系薄膜の合成

作製したリモート式大気圧プラズマ CVD 装置を用いて、電極間を通して原料導入させたときの結果を記す。装置の概略図は Fig. 6-2 のとおりである。まず酸素流量とシリ
カ系薄膜の成膜速度の関係を Fig. 6-6 に示す。基板温度は 60°C、噴出距離は 10 mm に固定して実験した。酸素流量を 0.1 L/min から 0.8 L/min まで増加させると、シリカ系薄膜の成膜速度は 335 nm/min から 532 nm/min まで増加した。プラズマ内に酸素を導入することで、励起種の波長体が増加し気相反応が活発となり、シリカ系薄膜の前駆体が多量に生成したためだと考える。しかしながら、酸素流量を 0.8 L/min より増加させても成膜速度は一定であり、1.0 L/min まで増加させると、シリカ系薄膜の成膜速度は 505 nm/min まで低下した。次に合成したシリカ系薄膜の SEM による断面像を Fig. 6-7 に示す。Fig. 6-7 (a) が酸素流量が 0.5 L/min、Fig. 6-7 (b) が酸素流量が 1.0 L/min のときの結果である。酸素流量を 0.5 L/min としたとき薄膜内部にパーティクルは存在せず、ち密な構造が観察された。一方で酸素流量が 1.0 L/min のときは、合成したシリカ系薄膜は 100 nm 程度の大きなパーティクルで構成されていた。プラズマ内で励起した酸素は気相反応において、原料の分解および有機物の除去に極めて重要な役割をもつといわれている [6-13]。そのため、プラズマ内に酸素ガスを導入することで、気相反応が活発になり前駆体の生成頻度が増加し、その増加した前駆体が基板に吸着するために薄膜の成膜速度が増加したと考える。しかしながら、過剰な酸素の導入はクエンチ効果によりプラズマ密度の低下につながる [6-14]。気相で TrMS のようなモノマーが分解され、中間生成体となりその中間生成体が基板の上に吸着することで薄膜が堆積するといわれている [6-15]。これら活性種はお互いに気相中で反応し、前駆体を生成しながら分子量を増加させていく。これは酸素流量の増加に伴い、基板上に大きなパーティクルが生成したことからもいえる。
Fig. 6-6 Deposition rate of SiOC(-H) films as a function of oxygen gas flow rate.

Fig. 6-7 Cross-sectional SEM image of SiOC(-H) films with various oxygen flow rate. (a) 0.5 L/min, (b) 1.0 L/min.
Fig. 6-8 に、発光分光法により観察したプラズマ内酸素流量を変化させたときの O ラジカルのピークを示す。酸素流量が 0.1 L/min から 0.7 L/min まで増加するにしたがって、O ラジカルを示すピークの強度が徐々に大きくなった。しかしながら酸素流量を 0.7 L/min 以上にしてもピーク強度にほとんど変化は見られなかった。これは、噴出したプラズマ内の O ラジカルの量には限界があり、酸素流量を増加させるにしたがってプラズマ自体の密度が低下したことを示す。そのことが成膜速度の飽和と前駆体分子のポリマー化につながったのだと考える。

Fig. 6-9 に基板温度を変化させたときのシリカ系薄膜の成膜速度の推移を示す。酸素流量は 0.5 L/min に固定した。シリカ系薄膜の成膜速度は、基板温度が 60℃ から 140℃ に増加するに従い、456 nm/min から 249 nm/min まで低下した。一般的にプラズマ CVD 法によるシリカ系薄膜合成において、基板温度の上昇に伴い成膜速度が低下する [6-15,16]。先行研究において、シリカ系薄膜の合成過程は以下のように考えられている [6-17]。まず気相中で生成した中間生成体が気相内を拡散し、基板上に着着する。その中間生成体が表面上で拡散し、薄膜を形成する。その過程で生成された副生成物や除去
された有機物が基板表面から脱着し気相に拡散する。プラズマ CVD 法によるシリカ系薄膜の合成は、薄膜の前駆体である分子やラジカル、イオンが基板表面に吸着する反応だけでなく、イオンエネルギーの高い前駆体が表面で拡散する表面マイグレーション反応、酸化力のあるラジカルやイオンによる薄膜表面のエッチング作用、また膜内のメチル基やカルボニル基、ヒドロキシル基などの官能基同士で生じる有機物や H₂O の脱離が生じる[6-18]。

この説明を参考に本章での実験における反応過程を考察する。まず原料である TrMS の分解によって生じたパーティクルや中間生成体が表面に吸着する。そして噴出プラズマ内に存在する O ラジカルのエッチングによって薄膜表面から有機物が除去され、そのとき生成した副生成物が脱着する。このとき大量の有機物が薄膜表面から気相に拡散する。O ラジカルのエッチングにより生成したヒドロキシル基が脱水縮合反応を起こし高密度な Si-O 結合が生成し薄膜が堆積すると考えられる。基板温度を増加させたときを考えられる現象として、前駆体の付着確立が低下することと堆積膜内反応である脱水縮合反応の反応性、反応速度が向上することが挙げられる。付着確率の低下に関しては、反応熱の観点からも言わざるみ、シリカ系薄膜の原料である TrMS や HMDSO などのモノマーのポリマー化反応は発熱反応であり、また反応種による膜体積もエネルギーの散逸過程である[6-19]。そのため基板温度の上昇に伴い基板上での反応種によるエネルギー輸送が困難となるために成膜速度が低下したと考える。また基板温度を増加させるることによってその有機物の再吸着を抑制している。炭化水素系の有機物の付着は、パーティクルの生成につながり成膜速度の増加につながる。基板温度の増加に伴い、成膜速度が低下しているのは、前駆体や副生成有機物の付着係数が低下したためだと考えられる。
Fig. 6-9 Deposition rate of SiOC(-H) films as a function of substrate temperature. The oxygen flow rate was fixed at 0.5 L/min.

Next, the chemical bonding state analysis result obtained by FT-IR is shown in Fig. 6-10. When the oxygen flow rate is changed, similar peaks are obtained in all oxygen flow rates, such as the strong peak of Si-O-Si and peaks from -OH and -CH_{x} which are observed. Especially, the peak at around 3500 cm^{-1} is attributed to the O-H stretch vibration peak of water molecules. The peak at around 820 cm^{-1} is attributed to the deformation vibration of Si-OH. The peak at around 2980 cm^{-1} is attributed to the C-H stretching vibration of sp^{3}CH_{x}. The peak at around 1280 cm^{-1} is attributed to the bending vibration of Si-Me (x = 1, 2, 3). The peak at around 780 cm^{-1} is attributed to the bending vibration of Si-Me, indicating the presence of organic species in the film. The strongest peak at around 1100 cm^{-1} is attributed to the stretching vibration of Si-O-Si, and its intensity increases with an increase in the organic content. The peak at around 1100 cm^{-1} is attributed to the stretching vibration of Si-O-Si and Si-O-C, which is due to the bond angle variation from 120° to 180°. The peak at around 1100 cm^{-1} is attributed to the cage structure, the network structure, and the suboxide structure. The suboxide structure is attributed to the bond angle of 130° or less, and the OH and CH_{3} bonds are attributed to the repulsion of the electron pairs, which causes the bond angle to become smaller. The network structure is attributed to the quartz-like structure, with a bond angle of around 140°. The cage structure is attributed to the quartz-like structure, with a bond angle of 150° or more.
上であり低密度な構造を示す。さらに 1104 cm⁻¹，もしくは 1180 cm⁻¹ の位置には Si-O-C の非対称振動のピークが割り当てられている[6-26]。この Si-O-C のピークは Si-O-Si の Cage 構造のピーク位置と一致している。これらのことから，Suboxide 構造や Cage 構造（もしくは Si-O-C 結合）由来のピークがみられるとき，有機物に関連した結合が多く残っていることを示すといえる。また，3500 cm⁻¹ と 940 cm⁻¹ に見られるヒドロキシ基由来のピークは酸素流量に強い関係がある。酸素流量の増加に伴い，ヒドロキシル基のピーク強度が増加したのは，リモート式大気圧プラズマ CVD 法において，導入した酸素が Si-O 結合のために用いられたのではなく，-OH 結合を構成したのだと考える。過剰な酸素の導入は，原料である TrMS のポリマー化し，気相反応で粒径の大きいパーティクルが生成した。このパーティクルサイズの拡大は，このヒドロキシル基のピーク強度が増加したこととも関連付けられる。また酸素流量を変化させたとき，Si-O-Si 結合を示す 1100 cm⁻¹ 付近のピーク形状が幅の広いものから鋭い形状へ変化したが，そのピーク位置は 1060 cm⁻¹ 付近から変化しなかった。つまり，酸素流量の増加は Cage 構造や Si-O-C 結合，Suboxide 構造に含まれる炭素の除去につながったといえる。また酸素流量の増加は，気相反応における Ο ラジカルの増加のみならず，噴出したのち基板に到達する Ο ラジカルの増加にもつながり，表面反応における有機物の除去につながったのだと考える。Fig. 5-11 に酸素流量とシリカ系薄膜の組成の関係を示す。酸素流量の増加に伴い，炭素含有量比率が低下し，酸素含有量比率が増加した。この変化は，FT-IR における Si-O-Si 結合のピークが鋭くなったことと，-OH 由来のピーク強度が増加したことと対応している。
基板温度を変化させたときのシリカ系薄膜のFT-IRスペクトルをFig. 6-12に示す。基板温度の増加に伴い、3500 cm⁻¹付近に見られる水分子由来の-OH 基および940 cm⁻¹付近に見られる Si-OH 結合由来の-OH 基のピーク強度が著しく低下した。さらに840 cm⁻¹、1270 cm⁻¹、2980 cm⁻¹に見られる有機物由来のピーク強度も低下した。Fig. 6-10の酸素流
量を変化させたときのFT-IRの結果では、有機物由来のピーク強度に変化は見られなかった。つまりシリカ系薄膜の無機物化に対して、基板温度の増加は副生成有機物の脱着および再吸着抑制の観点から極めて効果的であるといえる。また基板温度の増加に伴い、Si-O-Si結合のピーク位置が1065 cm\(^{-1}\)まで徐々に増加し、Si-O-SiのCage構造もしくはSi-O-C結合由来のピーク強度が低下した。リモート式大気圧プラズマCVD法において、従来のダイレクト式の大気圧プラズマCVD法に比べて、気相反応時間が長いため気相中でのポリマー化もしくはパーキクル形成が促進される。酸素流量変化では有機物除去反応が小さく、基板温度変化によって薄膜の有機物除去反応が促進されたことからシリカ系薄膜は表面反応が支配的な反応であることを示している。

Fig. 6-12 FT-IR absorption spectra of the films with various substrate temperatures. (a) 60ºC, (b) 100ºC, and (c) 140ºC. The oxygen flow rate was fixed at 0.5 L/min.

Fig. 6-13にXPSを用いて測定した基板温度とシリカ系薄膜の元素含有量比率の関係を示す。基板温度の増加に伴い、Siの含有量比率は32 at.%でほぼ一定だったが、酸素含有量比率は52.1 at.%から65.7 at.%まで増加した。また基板温度を140ºCにすることで、シリカ系薄膜の炭素含有量比率が1.8 at.%まで低下した。このことから、基板温度上昇に伴い、薄膜中のCが脱離し、その代わりにOが混入していることがいえる。Fig.
6.14 基板温度を変化させたときのSi2pエリアのXPSスペクトルを示す。このXPSスペクトルは、SiOₓにおいて、Siに結合するOの数によって4つのピークに分離できることが知られている[6-27]。ピーク位置が103.4 eVの位置にSiOₓ、101.8 eVにSiOₓ₂となっており、高エネルギー側であれば、Siに結合するOの数を示すxが大きくなる。基板温度の増加に伴い、明らかにピーク位置が高エネルギー側に遷移し、Siに結合するOの数が増加していた。これは炭素含有量比率の推移の結果とも関連している。リモート式大気圧プラズマCVD法によるシリカ系薄膜の合成において、基板温度は成膜速度に関わる前駆体の吸着、脱着反応だけでなく、脱水縮合反応による高密度なSi-O-Si結合の形成に強く影響している。これらの結果から基板温度の増加により、低密度な構造が減少したと考える。

基板温度上昇に伴い、合成したシリカ系薄膜の炭素が脱離した要因はすでに述べたように基板温度上昇に伴う前駆体及び副生成有機物の付着確立の低下により、OやHeラジカルによる表面反応の時間が長くなり、Si-CH₃結合の分解、除去が促進されたためだと考える。次に基板温度上昇に伴い、940 cm⁻¹付近のSi-OHの変角振動ピークおよび3500 cm⁻¹付近のブロードな-OHのピーク強度が減少した要因について考察する。これは基板温度上昇による堆積膜内反応により説明できる。低温時は、膜中の隣接し合うSi-OHの脱水縮合反応は起きず、膜内に末端結合として残留するが、基板温度を上昇させることで、Si-OH同士の脱水縮合反応が促進され、Si-O-Si結合がつくられると共に、Si-OHが減少すると考えられる。Si-OH結合は末端結合であるため、メチル基と同様に薄膜の密度を低下させると考えられる。また、3400 cm⁻¹以降の-OHのブロードなピークが減少した要因について考察する。これはSi-OH結合と水素結合で存在する水分子由来の3500 cm⁻¹付近のブロードな-OHのピークが減少したことからも説明できる。
Fig. 6-13 Chemical composition of SiOC(-H) films as a function of substrate temperature.

Fig. 6-14 Si 2p photoemission spectra corresponding to SiOC(-H) films with various substrate temperature, (a) 60°C, (b) 100°C, and (c) 140°C.
6.3.2 メンテナンスフリー型リモート式大気圧プラズマ CVD 装置を用いたシリカ系薄膜の合成

この節では、原料の電極外にて噴出したプラズマに向かって導入して合成したシリカ系薄膜について検討する。装置の概略図は Fig. 6-5 のとおりである。第 6.3.1 節では、原料ガスおよび酸素ガスをプラズマ生成ガスと同じ経路から導入していたが、本節では、原料の導入経路を新たに設け、噴出ガスに対して垂直方向から導入した。噴出したプラズマの様子を Fig. 6-15 に示す。電極間にヘリウムガスを導入し電圧をかけることで生成したプラズマが保持台上に設置した基板に向かって噴出している。また噴出したプラズマは均一に噴出しており、均一な薄膜合成に成功した。原料導入位置が電極外になったことにより、メンテナンスフリー型になっただけでなく、電極間で生成したプラズマ内の自由電子による分解がなくなり、ベニング電離によって原料や酸素が分解されるため、気相でのモノマーの重合反応を抑制している。

Fig. 6-15 Observation of afterglow plasma.

リモート式の場合、ダイレクト式と異なり気相反応の時間が長く原料の分解が気相で生じやすいと考える。そこでまずシリカ系薄膜合成がワーキングディスタンス (W. D.) を変化させて合成したときのワーキングディスタンスとシリカ系薄膜の成膜速度と表面粗さの関係を Fig. 6-16 に示す。ワーキングディスタンスが 8 mm のとき成膜速度は 116 nm/min にのに対し、ワーキングディスタンスを 12 mm まで増加させると、成膜速度は 19 nm/min まで低下した。また表面粗さも同様の傾向を示し、ワーキングディスタンスを 8 mm から 12 mm まで増加させることにより、1.50 nm から 0.24 nm まで減少した。ワーキングディスタンスの増加に伴い、TrMS 原料がプラズマ内を通過する時間が
長くなり原料の分解が促進され、また基板に吸着する薄膜の前駆体数が減少したため成膜速度が低下したと考える。また表面粗さの低下に関しては、ワーキングディスタンスが8 mmのときは、薄膜が粒子で構成されていたのに対し、ワーキングディスタンスを増加させることにより粒子径が小さくなったためだと考える。ワーキングディスタンスが小さいときは原料の分解が進まず、末端構造が多く薄膜の前駆体の分子量も大きく、数も多いと考えられる。よって、薄膜の前駆体数が多いと成膜速度が高くなる一方、有機物除去に必要な堆積時の表面反応が促進されると、次の前駆体が堆積するため、表面粗さが増加したのだと考える。また、薄膜の前駆体の分子量が大きいと、堆積時に Si-O-Si 結合が形成されることなく、メチル基を多く含むポリマーのような構造をとり、粒子が形成すると考えられる。以上のことからワーキングディスタンスの増加に伴い、気相反応による原料の分解の促進および、前駆体の付着確率が低下して表面反応が促進されることで、粒子の形成が抑制されたことが、成膜速度と表面粗さの低下の要因であると考えられる。

次に薄膜硬度の測定結果を Fig. 6-17 に示す。ワーキングディスタンスの増加に伴い、シリカ系薄膜の硬度が0.2 GPa から2.7 GPa まで向上した。Tajima は薄膜中の炭化水素結合の減少が成膜速度と関係があると指摘している。
素基が少ないほど高分子のネットワークを架橋しやすくなり、機械強度が向上すると報告している[6-28]。つまり成膜速度の低下に伴い、表面反応の時間が長くなり、合成したシリカ系薄膜の炭化水素基が少なくなったのだと考えられる。

この結果を裏付けるために FT-IR による結合状態分析を実施した。その結果を Fig. 6-18 に示す。いずれの条件においても、750 cm⁻¹ 付近の Si-Me (x = 1) の横揺れ振動によるピーク、850 付近の H-Si-O の変角振動によるピーク、950 cm⁻¹ 付近の Si-OH の変角振動によるピーク、1050 cm⁻¹ 付近の Si-O-Si の伸縮振動によるピーク、1280 cm⁻¹ 付近の Si-Me (x = 1, 2, 3) の変角振動によるピーク、2980 cm⁻¹ 付近の sp³CH₃ の伸縮振動によるピーク、3100 cm⁻¹ 以降にブロードな -OH のピークが見られたが見られた [6-16,24,29,30]。また Fig. 6-19 に Si-Me (x = 1), Si-Me (x = 1,2,3) および Si-OH の各ピークの面積強度比を示す。ワーキングディスタンス増加に伴い、Si-Me (x = 1) および Si-Me (x = 1,2,3) のピーク強度が減少した。気相での TrMS の反応過程について考えると、He ラジカルや O ラジカルが TrMS と衝突すると結合エネルギーの小さい Si-H がまず切断される。切断されて生成された未結合手は、気相中に存在する O ラジカルや気相中で生成したOH ラジカルと結合する。Si-CH₃ も同様に、-CH₃ 基が酸化ラジカルと
反応して CO₂ と H₂O となりガスとして排気されると考えられる。こうして気相中で生成された前駆体が基板に吸着して薄膜が堆積する。そしてこの吸着した前駆体に酸化ラジカルなどが反応することにより有機物が除去され、硬質な薄膜が形成される。ワーキングディスタンスが大きいとき、この吸着する前駆体の数が低下し成膜速度が低下すると考えられる。この成膜速度の低下により、表面反応の時間が長くなりより有機物の除去が進んだといえる。またワーキングディスタンスが増加すると、TrMS 原料がプラズマ内を通じる時間が長いため、He ラジカルおよび O ラジカルの衝突回数が増加し、それに伴い C の少ない前駆体が形成されると考えられる。薄膜内部の有機物が減少したのだと考える。

Fig. 6-18 FT-IR spectra of SiOC(-H) films with various working distance. (a) 8 mm, (b) 10 mm, and (c) 12 mm.
またピークの形状に着目すると，1100 cm⁻¹付近の Si-O-Si 結合の非対称伸縮モードのピークの部分に変化がみられた．前節でも述べたが，このピークは 1030 cm⁻¹ 付近の Suboxide 構造，1070 cm⁻¹ 付近の Network 構造，1130 cm⁻¹ 付近の Cage 構造の 3 つのピークから構成されている[6-24]．Network 構造では Si と結合を形成しているのは O のみであり，純粋なシリカに近い構造であり，その結合角は 140°である．Suboxide 構造は Si に 3 つの O が結合しており，残りの 1 つが H，C あるいは Si の構造であり，その結合角は 130°以下である．Cage 構造は Si に O が 3 個，H が 1 個結合している構造である．この構造は環状の構造をとることもあり，その結合角は 150°以上と大きい値を示す．Si と結合を形成する元素の電気陰性度の違いにより，Si-O-Si の結合角が変化するために，赤外光の吸収波長が変化する．そこで 1100 cm⁻¹ 付近の Si-O-Si のピークを 3 つに分離し面積比をとることで，構造の変化を調べた．ピーク分離による各ピークの面積強度比を Fig. 6-20 に示す．ワーキングディスタンスの増加に伴い，低密度な Cage 構造および Suboxide 構造が減少し，高密度な Network 構造が増加した．Cage 構造のピーク位置は，Si-O-C 由来の結合のピーク位置と重なっているが，Si-O-C 結合自体も炭素の影響を強く受けた結合であり，その推移は薄膜の密度に大きく寄与している．低密度な Cage 構造および Suboxide 構造は結合の末端を形成する C や H の存在が要因と言われている．よって，この要因は Si-C および Si-H の結合の切断を促進できたことだと考える．

![Fig. 6-19 Relative absorption area of Si-Mex and Si-OH as a function of working distance.](image_url)
FT-IR スペクトルの結果から、ワーキングディスタンスの増加により Si-Mex (x = 1,2,3) などの炭素由来のピーク強度が低下し、高密度な Network 構造から低密度な Cage, Suboxide, Si-O-C 構造へと変化したことにより、膜の密度が低下したと考えられる。一般的に高密度であるほど押し込み硬さが向上し、低密度であっても硬度は低下する。ワーキングディスタンスの増加に伴い、TrMS の分解が促進され、Si-C および Si-H の結合が減少したことで Si-O-Si の低密度な構造が減少したことが薄膜の硬質化の要因と考えられる。

本節のリモート式大気圧プラズマ CVD 装置の機構より、導入した酸素や原料の励起は、喷出した He ラジカルのペンニング電離のみによって生成されると考えられる。ペンニング電離とは Penning により提唱された反応であり、電子励起状態にある中性の原子あるいは分子が他の原子や分子と衝突することにより起こる電離のことである[6-31]。ペンニング電離が起こるためには、電子励起状態にある化学種の励起エネルギーが、衝突する分子や原子のイオン化エネルギーより大きい必要がある。本実験でメインガスとして用いた He は励起エネルギーが 20.6 eV と多くの分子や原子と比較してエネルギーが高い。一方で O の励起エネルギーは 11.2 eV であるため、ペンニング電離が容易に起こると考えられる。しかしながら、この O ラジカルの励起寿命は He と比較して非常に短く（数
\(\mu s \) 程度), 動いた後すぐに基底状態に戻ってしまう. そのため, 基板付近に O ラジカルを輸送するには, 噴出したプラズマ中で He によるペニング電離を何度も繰り返さなければならないため, 噴出プラズマの密度は基板に近づくにつれ減少する. そのため,堆積時の O ラジカルによるエッチング反応が減少し, 薄膜内部に有機物が残留, 成膜速度は向上すると考えられる. 本節での結果はこの仮説に対し, ワーキングディスタンスの向上に伴い, シリカ系薄膜の成膜速度は低下していたことから, 成膜レートの減少の要因は, 気相中での反応過程にあると考えられる. 電極外にてプラズマ中に導入された TrMS 原料は, He ラジカルもしくは O ラジカルの衝突によって分解される. ワーキングディスタンスが小さいときは TrMS が分解されておらず, プラズマ中に分子量の大きい前駆体が生成されていると考えられる. しかしながら, ワーキングディスタンスが大きくなりプラズマ内の通過時間が長くなると, O ラジカルとの衝突回数の増加によって, 前駆体の分子量は小さくなると考えられる. よって, ワーキングディスタンスが小さいときは, 分子量の大きな前駆体が基板に堆積することで成膜速度が大きくなり高くなり, ワーキングディスタンスが大きいときは, O ラジカルの衝突により分解が促進され, 分子量の小さい前駆体が堆積することで成膜レートは小さくなったと考えられる. また, 薄膜の前駆体は気相中の H ラジカルや大気中の空気の巻き込みによる N2 ラジカルと結合し, 容易に失活してしまうと考えられ, ワーキングディスタンス増加に伴い,薄膜の前駆体数が減少すると考えられる. このことも成膜速度が低下した要因であると考えられる.

次に, 作製したリモート式大気圧プラズマ CVD 法において原料導入位置を電極外にして酸素流量を変化させたときのシリカ系薄膜について述べる. Fig. 6-21 に酸素流量とシリカ系薄膜の成膜速度の関係を示す. 酸素流量が 0 mL/min のときは成膜速度がおよそ 16 nm/min であり, 酸素流量を 100 mL/min にすると成膜速度は 28 nm/min まで増加した. それ以降は緩やかな上昇になり, 酸素流量 500 mL/min での成膜速度は 30 nm/min, 酸素流量 1000 mL/min のときの成膜速度は 33 nm/min となった. 前節での結果とほぼ同様の傾向が得られた. 噴出したプラズマ中に TrMS などの原料分子が導入されると, プラズマ中の He ラジカルの衝突によって原料分子が励起され, 薄膜の前駆体となるラジカルやイオンが生成する. このとき酸素ガスをプラズマ中に導入すると, 薄膜の前駆体以外に O ラジカルなどの酸化物ラジカルが生成され, 原料である有機シランに酸素原子が結合した中間生成物が多く生成され, 気相反応が活発化される. 前節と同様, 酸素流量の増加に伴い成膜速度が増加したのは, 酸素導入により気相中での分解反応が促進
され、薄膜の前駆体となる励起種が多く生成されたためだと考える。また、プラズマ中で生成した O ラジカルは基板上に吸着した前駆体との反応により、有機物を除去する反応を示す。つまり酸素流量を増加させることにより、気相反応及び表面反応における有機成分の脱離反応が促進される。また酸素流量 100 mL/min 以降での成膜速度の増加が緩やかになった理由として、酸素が Si に結合することによる反応熱による付着確立の低下と、酸素によるプラズマ密度の低下が挙げられる。特に酸素は電子親和力が高く、プラズマ中の電子を吸着し、負イオンになると言われており[6-32]。その結果プラズマ中の電子を奪いプラズマ密度を低下させると言われている[6-33]。よって、酸素流量増加に伴い、堆積時の薄膜表面の有機物の脱離反応が促進されたこと、および酸素原子の電子吸着効果によりプラズマ密度が低下したことが、酸素流量 100 ml/min 以降で成膜レートが一定となった要因だと考える。

Fig. 6-21 Deposition rate of SiOC(-H) films as a function of oxygen flow rate. The working distance was fixed at 10 mm.

酸素流量とシリカ系薄膜の算術平均粗さ (Ra) の関係を Fig. 6-22 に示す。酸素流量が 0 mL/min の条件では表面粗さは 1.40 nm だったが、酸素を導入することで表面粗さは減少し、酸素流量が 100 mL/min から 1000 mL/min の条件下においても、シリカ系薄膜の
表面粗さはおよそ 0.5 nm であった。このことからリモート式においても酸素導入により気相でのパラティカル成長が抑制され緻密な構造を持つことが推測される。

Fig. 6-22 Surface roughness of SiOC(H) films as a function of oxygen flow rate.

ナノインデンテーション法による薄膜硬度の測定結果を Fig. 6-23 に示す。酸素流量が 0 mL/min のとき、薄膜の硬度は 0.4 GPa であったのに対し、酸素流量が 750 mL/min の条件では 2.3 GPa となった。しかしながら、酸素流量 1000 mL/min では、硬度が低下し、1.8 GPa となった。酸素流量 750 mL/min まで硬度が増加した要因は、酸素ガスを混合することにより、TrMS の分解反応および有機成分の除去反応が促進され、膜中の Si-O-Si の結合が Cage 構造や Suboxide 構造から Network 構造に変化して密度が増加したことにより、高硬度薄膜が合成できたと考えられる。しかし、気相中で生成された OH ラジカルにより、末端結合である Si-OH 基が膜中に形成されたために、シリカ系薄膜の硬度が酸素流量 1000 mL/min で低下したと考えられる。硬度の最高値は 2.3 GPa であったが、この値は PC の 10 倍程度の硬度であり、常温下でも高分子基材の保護膜となりうる硬質なシリカ系薄膜であった。薄膜中の末端結合である Si-OH 基を減少させることで、さらに硬度を向上させることができると考える。

121
また XPS を用いて薄膜表面の Si, O, C 含有量比率の測定した。酸素流量 0 mL/min の条件では、C が 32.2 at.%, O が 34.1 at.%, Si が 33.7 at.% 含有していたが、O₂流量増加とともに C の含有量が減少し、酸素流量 750 mL/min の条件では、C が 12.2 at.%, O が 54.6 at.%, Si が 33.2 at.% 含有されていた。このことから、酸素ガスの混合によって有機成分を除去できた。また、どの条件においても Si の含有量比率は酸素流量によらず一定であり、33 at.%程度であった。このことはシリカ系薄膜の硬度が増加した結果と一致する。次に、500 cm⁻¹から 4000 cm⁻¹の FT-IR スペクトルを Fig. 6-24に示す。いずれの条件においても、750 cm⁻¹付近の Si-Meₓ (x = 1) の横揺れ振動によるピーク、850 cm⁻¹付近の H-Si-O の変角振動によるピーク、950 cm⁻¹付近の Si-OH の変角振動によるピーク、1050 cm⁻¹付近の Si-O-Si の伸縮振動によるピーク、1280 cm⁻¹付近の Si-Meₓ (x = 1,2,3) の変角振動によるピーク、2980 cm⁻¹付近の sp³CH₃ の伸縮振動によるピーク、3100 cm⁻¹以降にブロードな -OH のピークが見られた。
Fig. 6-24 FT-IR spectra of the films with various oxygen flow rate. (a) 0 ml/min, (b) 50 ml/min, (c) 100 ml/min, (d) 500 ml/min, (e) 700 ml/min, and 1000 ml/min.

Fig. 6-25 に酸素流量を変化させたときの、Si-Me_x (x = 1), Si-Me_x (x = 1,2,3), Si-OH の各ピークのピーク面積比率を示す。酸素流量増加に伴い、C 由来の Si-Me_x (x = 1), Si-Me_x (x = 1,2,3) のピーク強度が減少した。酸素流量 0 mL/min から 750 mL/min において、酸素流量増加に伴い C に関する Si-Me_x (x = 1), Si-Me_x (x = 1,2,3) のピーク強度が減少した。これは XPS による元素組成分析において、C の含有量比率が減少したことと一致する。気相では原料が分解、励起され、生成した Si の未結合種に、O ラジカルや OH ラジカルが結合する。Si-O 結合が生成した後もプラズマ内を通過する際に He ラジカルや O ラジカルとの衝突により TrMS は更に分解されると考えられるが、Si-O の結合エネルギーや 8.3 eV であり、他の Si-C や C-H と比較して非常に高い。そのため、Si-O 結合は一度形成されれば、気相中で分解される可能性が低いと考えられる。一方で CH_3 基は O ラジカルとの衝突でさらに分解されると考えられる。すなわち、酸素流量を増加させることで、気相中での TrMS の有機物の除去が促進され、有機物の少ない薄膜の前駆体が形成されると推測される。また有機物の除去反応は、気相中だけでなく基板表面でも生じていると考えられる。基板表面に到達し、結合を形成した薄膜の前駆体は、基板付近の O ラジカルによっても有機物の除去反応が行われ、さらに有機物が除去されると考えられる。Si-OH 結合は上記の式のように、TrMS 中の Si-H が切断される。もしくは Si-CH_3 が切断・除去された際に生成された未結合種と気相中の OH ラジカルが
結合する、もしくは生成した Si-O 結合に H ラジカルが結合することで形成されると考えられる。Fig. 6-26 に発光分光分析による酸素流量を変化させたときのプラズマの発光スペクトルを示す。707 nm 付近の He ラジカルのピーク、778 nm および 844 nm 付近の O ラジカルのピーク、309 nm 付近の OH ラジカルのピーク、300-400 nm 付近の N₂ ラジカルのピーク、200-250 nm 付近の NO ラジカルのピークが見られた[5-33]。N に関するピークは大気中の N₂ の巻き込みによるものと考えられる。酸素の少量添加時はヘリウムのピーク強度に違いは見られず O ラジカルのピーク強度のみ増加した。これは、噴出プラズマの密度を低下させることなく、O ラジカルが生成していることを示す。しかしながら酸素流量增加に伴い、O ラジカルのピーク強度が増加した。また、OH ラジカルについても O ラジカルと同様に増加した。気相中の O ラジカル量が増加すると、先に述べた Si-CH₃ が切断・除去された際に生成された未結合種と気相中の OH ラジカルが結合する確率が増加すると考えられる。Si-O の結合エネルギーは 8.3 eV であり、O-H の結合エネルギーは 5.1 eV であるため、他の Si-C や Si-H などと比較して結合エネルギーや非常に高い。そのため、一度 Si-OH が形成されると、気相中で再分解される確率が小さく酸素流量増加に伴い、Si-OH が増加したと考えられる。しかしながら酸素流量を増加させ 1000 mL/min にしたとき、He ラジカルのピーク強度が低下しており、プラズマ密度が低下していることが分かった。O ラジカルの励起寿命は He ラジカルの励起寿命に比べて極めて小さく、このことはすべての活性種の強度の低下につながり、薄膜の硬度が低下した要因の一つだと考えられる。また Si-OH 結合が薄膜内部に多量に存在するとき、脱水縮合反応が生じる。3600 cm⁻¹ 付近の Si-OH のプロードなピークについて考えると、このピークには、3747 cm⁻¹ の孤立した Si-OH 基に帰属するピーク、3660 cm⁻¹ の水素分子と水素結合した Si-OH に帰属するピーク、3450 cm⁻¹ の水分子に帰属するピークからなる。ピークの形状からみると、3747 cm⁻¹ の孤立した Si-OH 基に帰属するピークはほとんど見られなかったが、3660 cm⁻¹ の水分子と水素結合した Si-OH に帰属するピークと 3450 cm⁻¹ の水分子に帰属するピークは酸素流量増加に伴い、ピーク強度が増加した。3660 cm⁻¹ の水分子と水素結合した Si-OH の増加は、850 cm⁻¹ 付近の Si-OH の変角振動によるピークの増加と一致している。水分子が生成し、さらにそれが膜中に取り込まれている要因は、トリメチルシラン分子から脱離した H ラジカルが O イオンや O ラジカルと結合して水分子となり、それらが膜中の Si-OH と水素結合を形成して膜中に取り込まれていると考えられる。
Fig. 6-25 The ratio of relative absorption area of Si-Me and Si-OH peaks as a function of oxygen flow rate.

Fig. 6-26 OES spectrum of the plasma with various deposition conditions: oxygen flow rate was (a) 0 mL/min, (b) 100 mL/min and (c) 1000 mL/min.
また、Si-O-Si のピーク形状が変化したため、ピーク分離を行った。各ピークの面積強度比を Fig. 6-27 に示す。酸素流量 0 mL/min から 750 mL/min において、酸素流量増加に伴い、低密度な Cage 構造および Suboxide 構造が減少し、高密度な Network 構造が増加した。この低密度な Cage 構造と Suboxide 構造は、C 由来の結合の末端を形成する Si-Me\(_x\) (x = 1), Si-Me\(_x\) (x = 1,2,3) が要因と言われている。また Cage 構造のピーク位置は Si-O-C 結合由来のピーク位置に近いため、いずれにしても炭素由来のピーク位置に近く、酸素流量減少に伴い、末端を形成する Si-Me\(_x\) の脱離を促進できたことが Si-O-Si の低密度な構造が減少し、高密度な構造が増加した要因であると考える。一方で、酸素流量 1000 mL/min では硬さが低下していた。これは、基板付近の酸化物ラジカル量の低下による C の除去の低下によるものと考えられる。

Fig. 6-27 Relative absorption areas of Si-O-Si (suboxide), Si-O-Si (network) and Si-O-Si (cage) or Si-O-C with changing of working distance.
6.3.3 リモート式大気圧プラズマ CVD 法により合成したシリカ系薄膜の耐摩耗性評価

近年、樹脂材料が軽量性や加工成型の容易さを活かした用途で用いられている。樹脂材料は、強度などの機械的特性において金属はセラミックス材料に劣るが、デザインの自由度の高さを利用し、構造設計で補うことにより利点を生かしている。樹脂材料の中でもポリカーボネートは透明性、耐衝撃性、耐熱性に優れることから、フィルム、自動車部品、光ディスクリなどの応用されてきた。とすれば自動車部品においては、ヘッドライトのレンズガラスから PC 製のレンズに置き換えられている。また自動車用窓ガラスの樹脂化は、1998年に Smart Fortwo のリアクウォーターウィンドウに採用されて以来、サイドウィンドウ、パノラマルーフなどへの実用化が進んでいる[6-34]。樹脂材料は柔らかく傷つきやすいため、表面を保護する研究がなされてきた。そのためには透明性、かつ耐摩耗性に優れるシリカ系薄膜のコーティングが有効である[6-35]。実際にには、PC 基材の上にアクリル系の中間層を形成した後にシリコン系のコーティングを被覆するケースが多い。Exatec 社が開発した Exatec900 システムでは PC 基材とにベースコーティングとしてシリコンハードコーティングを施し、さらにその上に無機ガラスに近い組成のプラズマコーティングを施している[6-36]。このプラズマコーティング技術においては厚膜化や立体形状物への被覆が難しくコストが高いといった問題を抱えている。この問題の解決にあたって、リモート式大気圧プラズマ CVD 装置を作製した。電極間で生成したプラズマを電極外に噴出させ、離れた位置に設置した基板上でも硬質なシリカ系薄膜を合成できる。この装置により、立体形状かつ厚基板への薄膜合成が可能となる。本章では、シリカ系薄膜の応用を想定している PC 基板上に薄膜を合成し、テーパー摩耗試験を実施することにより保護膜としての性能を評価した。リモート式大気圧プラズマ CVD 装置を用いて、プロセスガス 1 はヘリウムガスを流量20 L/min とした。プロセスガス 2 は、原料である TrMS を1 mL/min、酸素ガスを500 mL/min、ヘリウムガスを4 L/minとした。薄膜中のヒドロキシル基を除去するために基板温度を100℃とした。基材はコーティングのしていない PC と、アクリル系の中間層（プライマー層）を導入したプライマー層付き PC の2つを用意した。シリカ系薄膜の膜厚は100, 200, 400 nm の3種類のサンプルを作製した。印加電圧を10 kV とし、電源パルス周波数を20 kHz とし、ワーキングディスタンスを10 mm に固定した。

テーパー摩耗試験の条件は、荷重4.9 N、回転数を1000回転、回転速度を60 rpm とした。この試験条件は、自動車の窓ガラスの採用基準に準じており、この摩耗試験後の摩耗面の濁度の差（ΔHaze）が2%以下であることが条件である。まず膜厚を200 nm と
したときのテーバー摩耗試験後のサンプルの外観を Fig. 6-28 に示す。プライマー層上にシリカ系薄膜を合成したサンプルについては、サンプル間で差が見られなかったため、膜厚が 200 nm ののみを載せてある。ドーナツ状に白濁している部分が摩耗輪により摩耗した部分である。この図より、PC 単体は摩耗面が他のサンプルより白濁しており、特に摩耗していることがわかる。PC 上にアクリルプライマー層を作製したものは PC より白濁が軽減されていた。このアクリルプライマー層は PC に比べて硬度が高い。よって、表面の硬さが高いほど、このテーバー摩耗試験においては摩耗がされにくいと言える。

(a) (b) (c) (d)

Fig. 6-28 Image of the samples after taber abrasion test. (a) bare PC, (b) SiOC(-H) films on bare PC, (c) primer PC, and (d) SiOC(-H) films on primer PC.
テーバー摩耗試験は硬い物質による軟らかい物質の掘り起しによって生じるアプレッシブ摩耗を評価する試験であり、摩耗量について以下の式が成り立つと言われている

\[V = \frac{KW}{p_m} \]

(6-1)

ただし、\(V \) は摩耗量、\(K \) は材料の表面特性、摩擦条件、材料パラメータなどによるアプレッシブ摩耗の定数、\(W \) は荷重、\(p_m \) は材料の降伏圧力である。この式より、摩耗量は材料の硬度に反比例するため、この式からも硬さが高いほど摩耗がされにくいと言える。

次に、シリカ系薄膜を合成した後のサンプルの外観を見てみると、プライマー層を挿入せずに PC 上にシリカ系薄膜を合成したものは PC と同程度、白濁しており、摩耗がされていることがわかる。プライマー層上にシリカ系薄膜を 200 nm 合成したサンプルを見てみると、PC 上にそのまま成膜するよりも白濁が抑えられていることがわかる。次に、Fig. 6-29 にデジタル顕微鏡を用いてテーバー摩耗試験後の摩耗面の表面観察を行ったサンプルの図を示す。

PC 単体では、引摺いたような傷が多く入っており、摩耗がされていることがデジタル顕微鏡の画像からもわかる。このときのヘイズ値は 28.6% であった。

PC 上にシリカ系薄膜を合成したサンプルは、大部分の薄膜が剥離してしまい、PC 上にシリカ系薄膜を合成したサンプルは、大半の薄膜が剥離してしまい、PC ともなるの傷が大幅に減少した。このときのヘイズ値は 19.8% であった。PC 単体と比較すると傷が抑えられていることがわかる。自動車の窓ガラスの基準はヘイズ値 2% 以下定められているため、リモート式大気圧プラズマ CVD 装置によって作製したシリカ系薄膜においても密着性付加のためのプライマー層を併用することで基準を満たした。
Fig. 6-29 Surface observation of the samples after taber abrasion test. (a) bare PC, (b) SiOCl-H) films on bare PC, (c) primer PC, and (d) SiOCl-H) films on primer PC.

次に，シリカ系薄膜の膜厚の影響を調査するため，プライマー層付 PC 上にシリカ系薄膜を 100 nm, 200 nm, 400 nm 合成した．試験後の摩耗面のデジタル顕微鏡像を Fig. 6-30 に示す．シリカ系薄膜の膜厚が 100 nm および 200 nm では，多少の傷は見られるが，PC と比較して傷が飛躍的に抑えられていることがわかる．特に 200 nm では，薄膜は摩耗に耐えており，このときのヘイズ値は 1.98％であった．しかしながら，100 nm では，薄膜が摩耗されている様子が観察された．そのため，ヘイズ値は 200 nm のときよりも高く 2.31％であった．400 nm の膜厚では薄膜の剥離が多く見られた．一般的に，膜厚が増加すると，基材と薄膜の追従性が低下し，密着性が低下すると言われている．よって，本実験においてもシリカ系薄膜の膜厚が増加したことで，基材との密着性が低下し，400 nm では剥離が生じたと考えられる．薄膜が剥離したために耐摩耗性が低下し，このと
きのヘイズ値は2.57%であった。以上より膜厚の最適値は200 nmであると考えられる。

以上より、プライマー層付PC上にリモート式大気圧プラズマCVD法によりシリカ系薄膜を200 nm程度合成することでPC樹脂を自動車の窓ガラスの代替材料として用いるための基準を満たした。

Fig. 6-30 Surface observation of the SiOC(-H) films on primer PC after taber abrasion test with various film thicknesses. (a) 100 nm, (b) 200 nm, and (c) 400 nm.
耐摩耗性を向上させるためには薄膜が摩耗輪との摩擦により傷がつかない程度の硬
度を有していることに加え、薄膜の変形を抑えることが重要であると考える。そのため
にプライマー層を用いることが有効ではあるが、その場合にはプライマー層と SiOC(-H)
薄膜の密着性が重要となる。これらの考えをもとに結果について考察する。本研究で作
製したシリカ系薄膜は硬度が最高でおよそ 2 GPa であり、低圧下で合成した薄膜に比べ
硬度が劣るが、十分な耐傷性を得られた。膜厚を増加した際に薄膜がはく離した要因と
しては、膜厚増加に伴い内部応力の増加、そしてプライマー層との高度差により薄膜が
変形してクラックが生じることより剥離したと考える。膜厚が小さいときにヘイズ値
が上昇したのは、摩耗試験により薄膜が摩耗していき剥離したためだと考える。
6.4 第6章のまとめ

本章では、リモート式大気圧プラズマCVD装置を設計、作製し、その装置を用いて硬質なシリカ系薄膜の作製に着手した。噴出用のプラズマとしてヘリウムガスを用いて、酸素流量やワーキングディスタンス、基板温度を変化させて電極外に噴出させたプラズマによりシリカ系薄膜を合成し、その成膜速度、硬度、化学結合状態、元素組成、プラズマ状態を分析した。得られた結果を以下に記す。

1) リモート式大気圧プラズマCVD法を作製し、電極外に設置した基板に対して均一かつ大面積への薄膜合成を実現した。得られたシリカ系薄膜の硬度は常温下において2.25 GPaであり、ダイレクト式とほぼ同等の硬度を有する薄膜の合成に成功した。

2) ワーキングディスタンスを増加させることにより、成膜速度が減少し、硬度が増加した。また基板温度の増加させることにより成膜速度が減少し、薄膜の硬度が増加した。成膜速度の減少は、表面反応での酸素のエッチングによる有機物除去の反応時間の増加につながるため、硬質なシリカ系薄膜を合成する要因となる。

3) 酸素流量の増加に伴い、気相反応の活発化と表面反応により有機物除去が盛んとなり、成膜速度および硬度が増加した。ダイレクト式に比べ、リモート式では、基材表面に到達する酸化物ラジカルの量が低下するため、表面反応による有機物除去反応が小さくなる。気相反応の活発化による前駆体の生成と、気相反応による有機物除去反応、表面反応の両立が必要であることが明らかとなった。リモート式大気圧プラズマCVD法を用いて合成したシリカ系薄膜の成膜速度は、ダイレクト式と比較して低く、工業応用のためには硬度を保ちつつ成膜速度をさらに向上させる必要がある。

4) 合成したシリカ系薄膜は、Si、O、Cで構成されており、Si-C結合やSi-O-C結合、メチル基の減少により硬度が増加した。また薄膜内部に存在するSi-O-Si結合の結合角の割合により、薄膜の硬度が大きく変化した。

5) リモート式大気圧プラズマCVD装置を作製し、硬質なシリカ系薄膜を10 mm離れた位置に設置した基板上に合成することに成功した。そこで実際にポリカーボネート
ト基板上にシリカ系薄膜を作製し、テーパー摩耗試験により保護膜としての性能評価を試みた。ポリカーボネート上にシリカ系薄膜を被覆したものは密着性が悪く、テーパー摩耗試験によりすべて剥離してしまったが、プライマー層を塗布したポリカーボネート上にシリカ系薄膜を被覆することにより密着性が改善され、ポリカーボネートへの傷付きが低減された。このときの摩耗面の濁度の差（ΔHaze 値）は最高で 1.6%であり、自動車の窓ガラスの代替基準を満たし、リモート式大気圧プラズマ CVD 法で作製したシリカ系薄膜の応用可能性を示した。
第6章に関する参考文献

[6-34] 天野宏彦, “自動車窓ガラスの樹脂化 (樹脂グレージング)”, 技術情報協会.
(2010).

[6-36] Exatec LLC, P2010-514625A.

第7章 総論

本論文では、大気圧プラズマ CVD 法を用いて、希釈ガス種や放電形態に着目し、非晶質炭素薄膜とシリカ系薄膜の堆積過程を明らかにするとともに、硬質な非晶質炭素薄膜およびシリカ系薄膜を合成すること、そしてリモート式大気圧プラズマ CVD 装置を設計、作製することを目的とした。以下に得られた結果を総括する。

1) 大気圧プラズマ CVD 法により、原料にアセチレンガスを用いて、希釈ガス種と電源パルス周波数を変化させて非晶質炭素薄膜を合成し、膜厚ごとの表面や断面状態、表面粗さを評価した。原料にアセチレンを用いて合成した非晶質炭素薄膜は、大きなパーティクルで構成されていた。窒素ガスを希釈ガスとして用いると表面拡散が起きず薄膜表面で成長するパーティクルが垂直方向に成長、凝集することで粉上の表面に変化し、低密度な構造を示した。希釈ガスをヘリウムガスにした場合、前駆体の持つ高いイオンエネルギーによる表面拡散によりパーティクルの粒成長が抑制され、高密度な薄膜が形成され、膜厚を37μm まで成長した。以上より、平滑な表面を保つことで、高密度構造を保ったまま薄膜の成長させ続けることができ、またプラズマ内の存在する前駆体のイオンエネルギーを増加させることで、平滑な表面を得ることが明らかになった。また大気圧プラズマ CVD 法によりアセチレンを原料として合成した非晶質炭素薄膜は、気相での反応が支配的であり、水素を多量に含有したポリマーライクな構造を示した。

2) 高硬度非晶質炭素薄膜合成のために、大気圧プラズマ中でのイオン密度に着目し、希釈ガス混合比率やフィラメンタリー誘電体バリア放電 (FDBD) を用いて非晶質炭素薄膜を合成し、その硬度や内部構造を評価した。まず希釈ガスにヘリウムガスとアルゴンガスを用いることで、プラズマ中でのペニング電離によりアルゴンイオンや炭化水素イオン生成量が増加し、薄膜の硬度が増加した。また誘電体バリア放電
において電極間距離の増加に伴い放電形態がグロー状 DBD から FDBD に遷移した。また FDBD に用いて非晶質炭素薄膜を合成することにより、薄膜の硬度をおよそ 12 GPa まで増加させることに成功した。また FT-IR やラマン分光分析の結果より、硬質な薄膜において非晶質炭素薄膜内の末端結合である -CHx から水素が脱離していた。また原料ガスにメタンを用いることで、気相での多重反応を抑制し、表面でのイオンによる水素脱離効果が促進された。また FDBD において生成するストリーマ状の放電は、一か所に留まるのではなく際限なく移動し続けるため、均一な薄膜合成を可能となる。以上より、大気圧プラズマ CVD 法による非晶質炭素薄膜の場合、メタンガスを原料として用いることで気相反応でのパーキュタクル化を抑制することが明らかとなった。大気圧プラズマ CVD 法においてもプラズマ中のイオン密度を増加させることで、原子状水素などによるイオンスパッタ反応が生じ、非晶質炭素薄膜の脱水素反応が促進されることが明らかとなった。

3) 大気圧プラズマ CVD 法において、希釈ガス種と酸素流量を変化させ、原料に TrMS を用いてシリカ系薄膜を合成した。希釈ガスごとに生成される酸化ラジカルが異なり、窒素プラズマを用いることで硬質なシリカ系薄膜が得られた。また希釈ガスにアルゴンを用いると、OH ラジカルがプラズマ内に生成され、末端結合 Si-OH 結合が薄膜内部に残留し、薄膜の硬度増加が抑制された。以上より、酸化ラジカルによる有機シランの有機物除去や薄膜内部の末端結合と硬度の関係を明らかにした。また大気圧プラズマ CVD 法を用いて、PET 基板上にシリカ系薄膜を合成し、そのガスバリア性を評価した。シリカ系薄膜の構造が高密度になるに従い、ガスバリア性は向上した。しかしながら酸素流量を増加させると、合成時のプラズマ処理により PET 基板表面がエッチングされ表面粗さが増加した。その PET 表面によりシリカ系薄膜にピンホールが生じ、ガスバリア性は低下した。

4) 大面積かつ立体形状を持つ基材への合成を可能とするリモート式大気圧プラズマ CVD 装置を設計・製作した。ヘリウムガスを希釈ガスとして用いたプラズマ密度の増加および希釈ガス流量制御によりプラズマ噴出が可能となり、また均一なシリカ系薄膜の合成に成功した。またリモート式大気圧プラズマ CVD 法における前駆体の付着確率および酸化ラジカルの量とシリカ系薄膜の硬度の関係を明らかにした。リモート式では噴出距離の増加に伴いプラズマ密度が低下するため、前駆体の
付着確率が低下するが表面反応時間の増大により薄膜の硬度が増加した。また基板に到達する酸化ラジカルを増加させることにより、表面での有機物除去反応を促進し薄膜の硬度が増加した。

以上より、大気圧プラズマCVD法による非晶質炭素薄膜およびシリカ系薄膜の堆積過程について明らかにし、硬質な非晶質炭素薄膜およびシリカ系薄膜の合成に成功した。またリモート式大気圧プラズマCVD装置により、大面積かつ立体形状をもつ基材への薄膜合成の可能性を示した。

大気圧プラズマ技術において問題視されていた薄膜硬度の向上により、さらなる大気圧プラズマ技術の発展、そして材料開発の進歩につながると考えている。
謝辞

本研究は、著者が2013年度から2015年度まで慶應義塾大学大学院理工学研究科開放環境科学専攻に在籍中、鈴木哲也教授の御指導の下で行われたものである。本研究を遂行するにあたり、多大なる御指導、御鞭撻を賜った本塾理工学部鈴木哲也教授に対し、深甚の謝意を示すとともに厚く御礼申し上げます。また日ごろより数々のご助言をいただいた本塾理工学部堀田篤教授に対し、厚く御礼申し上げます。また日ごろより数々のご助言をいただいた本塾理工学部堀田篤教授に対し、厚く御礼申し上げます。本塾理工学部、小茂島満教授、朝倉浩一教授には、本論文を作成にあたり御費査読と貴重なご助言を頂き厚く御礼申し上げます。本研究を遂行するにあたり、多くのご助言をいただいたオールテック株式会社、白倉昌氏、神奈川県産業技術センター、渡辺敏行氏、積水化学工業株式会社、平子智章氏、本研究室秘書、曽根芽美氏に深く感謝致します。また株式会社豊田自動織機、村松久司様、林秀高様、上田真男様には、リモート式大気圧プラズマCVD装置の作製にあたって、御指導いただいたこと深く御礼申し上げます。本研究の材料解析を遂行するにあたり、多大なご協力、ご指導をいただいた本塾中央試験所職員、三谷智明氏、李在錫氏、高野朋幸氏、菅原正美氏をはじめ職員の方々に深く感謝いたします。また材料解析にあたって御指導、御助言を頂いた独立行政法人物質・材料研究機構、橋本綾子様に深く感謝致します。博士課程での研究生活を進めるにあたり、博士課程の大先輩である吉本幸洋氏、登坂万結氏に深く感謝いたします。お忙しい中、論文の添削をしていただいたり、相談に乗っていただいたりありがとうございました。大変忙しくなりました。そして大気圧プラズマCVD法による薄膜合成の研究に際して、大変お世話になった桜井孝親氏（丸紅株式会社）、二神裕哉氏（新日鉄住金株式会社）、増子大樹氏（本田技研工業株式会社）に深く感謝いたします。皆様のおかげで本論文を完成することができました。そして私と同時期に研究室生活を共にした3年間研究生活をともにしてきた、上見将規君、越本研成君、唐澤俊嗣君、中敦君、堀越亮平君に深く感謝いたします。充実した研究生活を送られたのはみんなのおかげです。また合宿などを通じてともに頑張ってきた堀田研究室の皆様に感謝します。また、常に心の支えとなり私の生活を支えてくれた向井香穂氏に心から感謝致します。

最後に、大学、大学院での研究生活を送るにあたり、学業に専念できる環境を整えてくれ背中を押してくれた両親、相談に乗ってくれた兄姉、そして悩んだときに支えてくれ
た友人に深く感謝いたします。