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Preface

Locally risk-minimizing (LRM, for short) is a well-known hedging method for contin-
gent claims in a quadratic way for incomplete financial markets. Theoretical aspects of
LRM have been developed to a high degree (see e.g., Schweizer [45] and [46]). LRM has
an intimate relationship with Follmer-Schweizer decomposition (FS decomposition, for
short), which is a kind of orthogonal decomposition of a random variable into a stochas-
tic integration and an orthogonal martingale. The necessity of researches on its explicit
representations has been increasing. However, it is generally very difficult to derive an
explicit expression for the locally risk-minimizing hedge. In this thesis, we obtain ex-
plicit representations of LRM for incomplete market models whose asset price process
is described by a solution to a stochastic differential equation (SDE, for short) driven by
a Lévy process, as a typical framework of incomplete market models. In particular, we
use Malliavin calculus for canonical Lévy processes to achieve our purpose. Especially,
we adopt a Clark-Ocone type formula under change of measure (COCM) for canonical
Lévy processes. The Clark-Ocone (CO) formula is an explicit martingale representation
of functionals of Brownian motions (Lévy processes) in terms of Malliavin derivatives.
Girsanov transformations versions of this theorem are Clark-Ocone type formulas under
change of measure. Since many applications in mathematical finance require representa-
tions of random variables with respect to risk neutral martingale measure, the theorem
was studied by many people (see introduction of Chapter 3).

For our purpose, we develop and review Malliavin calculus for canonical Lévy pro-
cesses. We review related topics of Malliavin calculus for canonical Lévy processes and
we show some formulas to show the COCM for canonical Lévy processes, such as clos-
ability of Malliavin derivatives, chain rules for Malliavin derivative and commutation
formulas for integrals and the Malliavin derivative. By using these results, we derive a
COCM for canonical Lévy processes.

We next derive an LRM for Lévy markets by using these results. We first focus on
deriving a representation of FS decomposition under some mild conditions by using
the martingale representation theorem. In order to compute its explicit expressions, we
use Malliavin calculus. Especially, we will formulate representations of LRM including
Malliavin derivatives of the claim to hedge. We also derive formulas on representations
of LRM for three typical options such as call options, Asian options and lookback options.

In summary, main contribution of this thesis is sixfold as follows:

1. deriving some calculation tools such as commutation formula for the Lebesgue
integral and the Malliavin derivative and chain rules for Malliavin derivative.

2. formulating a Clark-Ocone type formula under change of measure for canonical
Lévy processes.
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3. deriving versions of the Poincaré inequality for Lévy functionals (with respect to

IP*) and the logarithmic Sobolev inequality (with respect to both IP* and IP).

formulating representations of LRM with Malliavin derivatives for Lévy markets.

. illustrating how to calculate Malliavin derivatives for non-smooth functions of a
random variable, and the running maximum of processes by using approximation
methods.

6. introducing concrete representations of LRM of call options, Asian options and

lookback options for Lévy markets.

o

This thesis is organized as follows. Chapter 2 deals with a short review of Classical
Malliavin calculus. In Chapter 3, basic notions and some preliminaries of mathemat-
ical finance and (L)RM are given. Chapter 4 deals with a Malliavin calculus for Lévy
processes and a Clark-Ocone type formula under change of measure for canonical Lévy
processes. In Chapter 5, we obtain explicit representations of LRM for Lévy markets.
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Chapter 1

Introduction

In this thesis, we consider the local risk minimization problem which is a very well-
known problem in mathematical finance. Especially, we obtain explicit representations
of LRM for Lévy markets by using Malliavin calculus for Lévy processes.

The Malliavin calculus (stochastic calculus of variations) is an infinite-dimensional dif-
ferential calculus on the Wiener space, which was first introduced by Paul Malliavin in
the 70’s (see Malliavin [31]). The purpose of this calculus was to prove the results on exis-
tence and smoothness of densities of solutions to stochastic differential equations driven
by a Brownian motion. This theory was developed by Bismut, Kusuoka, Shigekawa,
Stroock, Watanabe and others (see, e.g., Shigekawa [47] and references therein). At the
beginning, Malliavin calculus was not very popular due to its technical difficulties. How-
ever, in modern times, it is one of the most famous theories in probability. There are
many applications of Malliavin calculus in many fields (see e.g., Nualart [33] and Di
Nunno [20]). In Chapter 2, we give a short review of classical Malliavin calculus.

The representations of functionals of Brownian motions (or Lévy processes) by
stochastic integrals are important results in Probability theory. They has been widely
studied (see, e.g., survey paper by Davis [16]). In particular, the Clark-Ocone (CO)
formula is an explicit martingale representation of functionals of Brownian motions in
terms of Malliavin derivatives. If an L2-random variable F has certain regularity in the
Malliavin sense, we have

T
F = E[F] + / E[D;F|F]dW,,
0

where W is a Brownian motion and D;F is the classical Malliavin derivative. This for-
mula was shown by Clark, Ocone and Haussmann [13, 14, 23, 36]. A white noise version
of the CO formula was proved by Aase et al. [1]. This formula has various applications.
For example, the log-Sobolev and Poincare inequalities are obtained in Capitaine et al.
[11]. In the application to mathematical finance, its representation of an optimal portfolio
is given by this formula (see e.g., Ocone and Karatzas [35]).

Malliavin calculus for Lévy processes has been also widely studied (see, e.g., Di Nunno
[20], Delong [17], Ishikawa [25] and their references). This theory was at first motivated
by study about existence and smoothness of densities of solutions to stochastic differen-
tial equations driven by Lévy processes as classical Malliavin calculus. Later, Malliavin
calculus for Lévy processes has been also applied to mathematical finance theory in in-
complete markets. In incomplete markets, the CO formula for Lévy processes is one of
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the most useful formula to get representation of an optimal portfolio just as the cases
complete markets. The CO formula for Lévy processes has been also studied. Leokka [30]
got a CO formula for functionals of pure jump Lévy processes. A white noise version
of the CO formula for functionals of pure jump Lévy was proved by Di Nunno et al.
[19]. We know that one for general LZ-Lévy functionals also holds (see Benth et al. [9],
Delong[17] and Chapter 4 of this thesis).

Because many applications in mathematical finance require representation formula
with respect to risk neutral martingale measure, CO formulas under Girsanov transfor-
mations were studied by many people. First, Ocone and Karatzas [35] showed a Clark-
Ocone type formula under change of measure (COCM) for Brownian motions:

T T " X
F = Ep[F] + / Ep- [DtP—P / Dyutsd WP ‘ft] aWr".
0 0

They also applied it to get an optimal portfolio of Brownian market. A white noise ver-
sion of it was proved by Okur [37] and she also derived an explicit representation of
hedging strategy of digital option for Brownian market. Huehne [24] got a COCM for
pure jump Lévy processes and derived an optimal portfolio. Later, Di Nunno et al. [20]
and Okur [38] also introduced a white noise version of COCM for Lévy processes by
using white noise theory. In this thesis, we also derive a COCM for Lévy processes:

T
F=Ep[Fl+0 / Ep- {Dt,ol-“ _FK,
0

;ft_] dWF"

T
+ /0 [ Ep[F(H}. — 1) + zH].DyF| 7o N7 (d, dz)
0

We precisely define K; and Hy ,, and give sufficient conditions for this formula in section
4.5. However, note that their results are different from our results. In our results, we
use different settings and derive different representation. By using this result, we obtain
log-Sobolev and Poincare type inequalities for Lévy functionals. For that purpose, we
adapted Malliavin calculus for Lévy processes based on Geiss and Laukkarinen [22] and
Solé et al. [49]. Moreover, we show some formulas to show the main theorem, such
as chain rule for Malliavin derivative and commutation formulas for integrals and the
Malliavin derivative. By using o-finiteness of Lévy measure (see e.g., Applebaum [3]),
we prove it. Moreover, we applied it to LRM in Chapter 5.

The quadratic criterion of local risk-minimization is one of the most famous concepts
of hedging in incomplete markets. At the beginning, Foéllmer and Sondermann [21] in-
troduced the risk-minimizing (RM, for short) hedging strategies for contingent claims,
written on a one-dimensional, square-integrable discounted risky asset S which is a mar-
tingale under the original probability measure IP. Later, Schweizer [43] showed that RM
dose not always exist in the semi-martingale case. Therefore, Schweizer [44] introduced
the concept of locally risk-minimizing hedging strategies to hedge claims for the case
that the discounted risky asset is a semi-martingale. See survey papers Pham, Schweizer
and, Vandaele and Vanmaele [39, 45, 53]. In Chapter 3, we review a basic notions and
some preliminaries of mathematical finance and (L)RM.

However, the theory does not give a method of obtaining a concrete representation.
Hence, the necessity of researches on its explicit representations has been increasing.



From this insight, we obtain explicit representations of LRM for incomplete market mod-
els whose asset price process is described by a solution to a stochastic differential equa-
tion driven by a Lévy process. To achieve our purpose, we use Malliavin calculus for
Lévy processes. In Chapter 5, we deal with explicit representations of LRM by using
Malliavin calculus for Lévy processes.






Chapter 2

A short review of classical Malliavin

calculus

2.1 Classical Malliavin derivative

In this chapter, we review classical Malliavin calculus, based on Di Nunno et al. [20]. Let
T > 0 be a finite time horizon, (Q, 7, P; {Ft},c(o 1) @ one-dimensional Wiener space on
[0, T]; and W its coordinate mapping process, that is, a one-dimensional standard Brow-
nian motion with Wo = 0. Let F = {F},(o 7] be the canonical filtration completed for IP.

Let L% | denote the set of product measurable, deterministic functions  : ([0, T])" — R
satisfying

h|? ::/ h(ty, -« ta)[2dty - dty < oo,

Iy o= [ e )Pt

where A is Lebesgue measure on [0, T]. For n € N and h,, € LZT’ Ans We denote
L (h ::/ Wty t)dWs, - - - dW, .
n( n) ([O,T])" ( 1 n) t t

It is easy to see that [E[Iy(hg)] = ho and E[I,,(h,)] = 0, for n > 1. Moreover, this integral
has the usual properties (see Section 1.1 of Di Nunno et al. [20]):

Proposition 2.1.1 1. Forn > 1,f € L%/Ml, we obtain, I,(f) = I,(f), where f is the
symmetrization of f :

- 1
f(tll' t /tn) - E Z f(tﬂ’(l)/' o ’tﬂ’(l/l))’

neDy,
where, Dy, is the set of permutations of {1,2,--- ,n}.
2. Forn>1,a,b€R,f,g € L%, ,weget: Iy(af +bg) = al,(f)+bL(g).
3. Form,n>1,f € LZTA w8 € LZTA o are symmetric in the n pairs t;,1 < i < n, that is
f = fand g = g, then, we have

EL (f)In ()] = n' V) (f, &) 12

T,An
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In this setting, we introduce the following chaos expansion (see Theorem 1.10 in Di
Nunno et al. [20]).

Theorem 2.1.2 Any F-measurable square integrable random variable F on the canonical space
has a unique representation

(o]

F=Y I.(h,)P—-as.

n=0

with functions hy € L%, that are symmetric in the n pairs t;,1 < i < n and we have the
isometry

(o]

BIF) = )t
n=0 o

By using the chaos expansion, we can define the following:

Definition 2.1.3 (1) Let ]D%,(,2 denote the set of F -measurable random variables F € L*(IP) with
the representation F =Y 5> I, (hy) satisfying

[ee]
) nn!thHiz < oo,
n—1 T,An

(2) Let F € ]D%,(,Z. Then the Malliavin derivative DF : Q) x [0, T] — R of a random variable
F e ID%,V’2 is a stochastic process defined by

DiF := Y nly_1(hy(t,-)), validfor A—a.e.t € [0,T],P —as.

n=1

We next establish the following fundamental result (see, Theorem 3.3 in Di Nunno et al.
[20]).
Proposition 2.1.4 (The closability of operator D) Let F € L*(IP) and F, € ]D%,(,Z,k € N
such that

1. limy_ Fx = Fin L?(IP),

2. {DtF}$>, converges in L?(A x ).
Then, F € Dy and limy_o, D¢F; = DiF in L>(A x P).

We next introduce chain rules for the Malliavin derivative (see Theorem 3.5 in Di Nunno
et al. [20], Proposition 1.2.4 in Nualart [33] and Lemma A.1 in Ocone and Karatzas [35]
respectively).

Proposition 2.1.5 1. Let ¢ : R — R be a C'-function with bounded derivative. If F €
]D%,(,z, then, ¢(F) € ]D%\’,2 and

Dig(F) = ¢'(F)DF for A—ae.t € [0,T], P—as.
holds.
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2. Let ¢ : R — R be a Lipschitz function with Lipschitz constant K and F & ]D%,\’,z. Then,
¢(F) € ]D%v’z. Moreover, there exists a random variable G bounded by K such that

Di¢(F) = GD\F for A—a.e.t € [0,T|, P—a.s.

3. Let ¢ : R — R be a C'-function and assume that ¢(F) € L*(P), F € Dy? and
¢/ (F)D¢F € L*(A x P). Then, ¢(F) € Dy and

Dig(F) = ¢'(F)D¢F for A—ae.t € [0,T], P—as.
holds.

Next proposition shows that the derivative operator D; has the local property on the
space ID%,(,Z (see e.g., Proposition 1.3.16 in Nualart [33]).

Proposition 2.1.6 Forany F € ]D%,(,z, we have 1;p_qyDtF =0, (t,w)-a.e

By using Theorems 2.1.5, 2.1.4 and Proposition 2.1.6, we can derive the following;:

Theorem 2.1.7 Forany F € ID%A,Z, K € Rand A-a.e. t € [0,T], we have (F —K)* € ID%/;,2 and
Di(F = K)" = 1p. gy DiF

where x™ = max(x,0).

Proof. We take a mollifier function ¢ which is a C*-function from R to [0, c0) with
supp(¢) C [-1,1] and [*_ ¢(x)dx = 1. We denote ¢,(x) := np(nx) and fu(x) :=
2 (v — K)T@u(x — y)dy for any n > 1. Noting that

fu(x) = /_O:O (x- % - K)+ o(y)dy = /_noix_K) (x- % —K) g(y)dy,

we have f;(x) = ff(fo) @(y)dy, so that f, € C! and |f!| < 1, that is, f, is Lipschitz

[e0]

continuous with constant 1. Thus, Proposition 2.1.5 implies that, for any n > 1, f,,(F) €
ID%A’,2 and
Difu(F) = f;(F)DsF (2.1.1)

In addition, noting that
|fn<x>—<x—r<>ﬂ=1/ {(r=2-8)" - =00} oy

1
< L[ sloty)ay < © 212)

for any x € R, we have lim,_,« E[|f4(F) — (F — K)T|?] = 0. Thus, from the view of
Proposition 2.1.4, all we have to do is to make sure that D; f,,(F) converges to

1{F>K} Dt,OF =. Ioo
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in L2(A x IP) as n tends to co.
First of all, we have

f_ooo o(y)dy ifx=K,
1 if x > K,
if x <K,

n—oo

e}

lim f}(x) = {

from which we obtain lim,—.« f; (F) = 1psxy + Ly ff’m ¢(y)dy. By (2.1.1), (2.1.2)
and Proposition 2.1.6, we have limy,_,o D¢ f(F) = I in A x P-a.e., and

Dt fu(F) — Lol
< |fu(F)DtF — 1p~x; DiF|

< 2|DyF| € L*(A x PP).

Thus, the dominated convergence theorem provides that D; f,(F) — I in L?(A x P).
O

2.2 The Skorohod integral and the Malliavin derivative

In this section, we consider the Skorohod integral and commutation of integration and
the Malliavin differentiability. First we introduce the following classes.

Definition 2.2.1 (1) ILi? denotes the space of G : [0, T] x Q — R satisfying

1. Gs € ID%\',Zfor ae s €10,T],
2. E [ [ 1GoPds| < oo,

3. E [ fozum Jo DG [Pdsat] < .

(2) Recall that any function u € L2(A x P) has a chaotic representation
Uy = Z Iﬂ(hi’l(/ t))/
n=0

where h, € LZT, Ani1 IS symmetric in the first n pairs of variables. Denoting by Iy the sym-
metrization of h, with respect to all n 4 1 pairs of variables, we define

Dom}’ := {uELZ(/\x]P)‘ Y (n 4+ D)|F|2, <oo}.
n=0 TAn+1

(3) Let u € Dom}’. Then the Skorohod integral 5" with respect to the W of a process u :
Q x [0, T] — R is defined as

oW(u) = Y. Liy1(hy), P—as.
n=0
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The Skorohod integral " has the following properties:

Proposition 2.2.2 (1) Duality formula (Theorem 3.14 in Di Nunno et al. [20])
A process u € L?(A x IP) belongs to Dom)" if and only if there exists a constant C such

that for all F € D2,
’113 { / ustFds]
[0,T]

Ifu € Dom)', then 6™ (u) is the element of L?(IP) characterized by

< C(E[F?])"/2.

E[5(u)F] = E Uo

uSDSFdsl
[0,T]

forany F € ID%\'IZ.
(2) Differentiability of 6"V (Theorem 3.18 in Di Nunno et al. [20])
Let u ¢ ]L%,(,Z such that Dju € Dom}' for all t € [0,T)], A-a.e. and assume that

§W(Dsu) € L2(A x P). Then 6" (u) € Dy? and
Dt(SW(u) = U + 5(Dt1/l)
forall t € [0, T], A-a.e.

(3) (Theorem 2.9 in Di Nunno et al. [20])
Let u € L2(A x IP) be predictable. Then, u € Dom)’ and

W) = /[0 . usdWs.

Hence, we can see that the Skorohod integral is an extension of the It0 integral.

We next discuss the commutation relation of the stochastic integral with the Malliavin
derivative.

Proposition 2.2.3 (Corollary 3.19 of Di Nunno et al. [20]) Let G : Q x [0, T] be a pre-

dictable process with
E U |GS|2ds] < oo,
0,T]

G € L'2 ifand only if /{0 [, GodWs € DI

Then

Furthermore, i GsdW, € ]Dl’z, then, for A -a.e. t € |0, T|, we have
[0,T] W
D / GedWs = G + / D:GsdW,, P—ass.,
[0,T] [0,T]

and f 0,7] D¢ GsdW; is a stochastic integral in It0 sense.



10 Chapter 2 A short review of classical Malliavin calculus

By using the Malliavin derivative and the Skorohod integral, we can derive the following
(see e.g., Proposition 2.2 in Nualart [34]):

Proposition 2.2.4 (Existence of density) Let F be a random variable such that F € lDé(,z.
bE ¢ Dom}" . Then the law of F has a continuous and bounded density

|‘D~FH%2(A)
D;F
1oV [ ——5— ||, xeR.
e (HDPH@W)]

function given by
2.3  The Clark-Ocone formula and the Girsanov theorem

Assume that

f(x) =E

2.3.1 The Clark-Ocone type formula

We next present an explicit form of the martingale representation formula by using Malli-
avin calculus (see e.g., Theorem 4.1 in Di Nunno et al. [20]).

Proposition 2.3.1 (The Clark-Ocone type formula) Let F ¢ ID%\’;‘. Then, we have

T
F=E[F] + / E[D;F| Fi]dW;.
0
By using the Clark-Ocone formula, we can derive the following (see Capitaine et al. [11]):

Proposition 2.3.2 1. Poincare’s inequality
Let F € ]D%,;,Z. Then, we have

T
E[(F — E[F])?] g/o E[|D:F|?]dt.

2. Logarithmic Sobolev inequality
Let F € ]D%,(,z and F > ¢ for some ¢ > 0. Then, we obtain

T
E[Flog F?] — E[F?]log E[F?] <2 | E[|DiFdt.
0

2.3.2 Girsanov theorem

We recall the Girsanov theorem for Brownian motions (see, e.g., Section 4.1 of Di Nunno
et al. [20]).

Theorem 2.3.3 Let us,s € [0, T], be predictable processes such that fOT u2ds < oo, a.s. More-
over we denote

t 1t
Z; = exp (—/0 usdWs — 5/0 u‘gds) ,t€10,T].
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Define a measure P* on Fr by
dP* (w) = Z7(w)dP(w),

and we assume that Z(T) satisfies the Novikov condition, that is,

1 /T,
E [exp (E /o usds)] < oo.
Then E[Z7] = 1 and hence P* is a probability measure on Fr. Furthermore if we denote
AWE" = wdt + dW,,

then W¥" (.) is a standard Brownian motion under IP*.

2.4 Clark-Ocone formula under change of measure

In this section, we introduce a Clark-Ocone formula under change of measure. Through-
out this section, under the same setting as Theorem 2.3.3, we assume the following.

Assumption 2.4.1 1. uu® e IL%/(,Z; and 2usDius € L?(A x IP) fora.e. s € [0, T].
2. Zt € L2(P); and ZtDylog Zt € L?(A x IP).
3. F € D with FZy € L*(P); and ZyDiF 4+ FDyZy € L*(A x P).

We next introduce a Clark-Ocone type formula under change of measure (see e.g., Theo-
rem 4.5 in Di Nunno et al. [20]).

Theorem 2.4.2
T T N X
F = Ep-[F] + / Ep- [DtF—P / DiusdWY ’J—}} dWE", as.
0 0

holds.
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Chapter 3

Basic concepts of mathematical finance

and LRM

3.1 Basic notions of mathematical finance

3.1.1 Basic notions of mathematical finance

In this section, we give an overview of basic concepts in mathematical finance theory (see
also e.g., Klebaner [27], Lamberton and Lapeyre [29] and Miyahara [32]). In mathemati-
cal finance theory, pricing and hedging of a contingent claim is central problem, where a
contingent claim on an asset is a contract that allows purchase or sale of this asset in the
future on terms that are specified in the contract. We consider a financial market being
composed of one risk-free asset (e.g. money market, cash or bond) and one risky asset
(e.g. stock) with finite time horizon T. We now introduce a filtered probability space
(Q, F, P, {Fit}iefo,1)), where the filtration is supposed to be right-continuous, complete
and Fy is trivial. The fluctuation of the risky asset is assumed to be given by a semi-
martingale S = (S);c[,7- This process is adapted and has cadldg paths. The risk-less
asset price process is given by B = (Bt);c(o,1), Bo = 1. We assume that B; is continuous
and of finite variation. Let ¢; and #; denote the amount of units of the risky asset and the
risk-free asset an investor holds at time t. The market value of the portfolio at time ¢ is
given by V; = ;S + 1:Bt.

Definition 3.1.1 A portfolio (¢, 1¢) is called self-financing if
dVy = GedSt + 11dBy,
ie. , ,
Vi = Vo + /O EudS, + /O HudBy.
We can see the following:

Theorem 3.1.2 (Theorem 11.11 in Klebaner [27]) A portfolio (G, 1) is self-financing if and

only if, the discounted value process BKi is a stochastic integral with respect to the discounted price
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process

Vi t -
L - VO +/ éudsu/
B; 0

where S = %.
t

We next define arbitrage opportunity.

Definition 3.1.3 A self-financing portfolio (i, nt) is called an arbitrage opportunity if V; satis-
fies the following conditions: Vo = 0, P(Vr > 0) = 1and P(Vr > 0) > 0.

If there exists an equivalent martingale measure, i.e. a probability measure IP* equiva-
lent to the original probability measure IP such that the discounted price process S is a
(local) martingale under IP*, then the market model contains no arbitrage opportunities.

Absence of arbitrage is basis for mathematical finance theory. We next consider pricing
of claims.

Definition 3.1.4 1. A predictable and self-financing strategy (&t, 1) is called admissible if
\/ fot &2d[S,S], is finite and locally integrable for t € [0, T]. Moreover, V;/ By is non-

negative P*-martingale.

2. Let F > 0 be a contingent claim. It is attainable (or redundant) if it is integrable and there
exists an admissible trading strategy such that Vp = F.

We can derive the following (see e.g., Theorem 11.13 in Klebaner [27]):

Theorem 3.1.5 The price P; at time t of an attainable claim F is given by the value of an admis-
sible replicating portfolio V, and

B
P; = Ep- {B—;FU—}} :

Theorem 3.1.6 Let F be a integrable contingent claim and let Ny = Ep- [B—FT |.7-"t] fort €0, T].
Then F is attainable if and only if N; can be represented in the form

f ~ ~

for some predictable process &. Moreover, Vi /By = Ny is the same for any admissible portfolio
that replicates F.

We next consider completeness of a market model.

Definition 3.1.7 A market model is complete if any integrable claim is attainable, in other words,
can be replicated by a self-financing portfolio.

Next theorem is called second fundamental theorem of mathematical finance (see e.g.,
Theorem 11.15 in Klebaner [27]).
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Theorem 3.1.8 The following are equivalent:

1. The market model is complete
2. The equivalent martingale measure IP* that makes Sy = g—i into a martingale is unique.

If our market is complete, then, we can get price of claim uniquely. Moreover, Theorem
3.1.6 implies that

t~ ~
Vi/Br =V +/0 CudSuy

and .
F=1V —|—/0 gtdgt.

Therefore, we can see that the claim can be replicated at time T with initial investment
Vo and the following strategy at time ¢ :

~ t ~ ~ ~ ~
(G Vo+ [ EudSu—E5.).
We next deal the Black-Scholes-Merton model as typical model of complete market.

3.1.2 Black-Scholes-Merton model

The Black-Scholes-Merton model (BSM model, in short) is the most popular and
fundamental model in mathematical finance. Let T > 0 be a finite time horizon,
(Q, F,P;{Fi}iejo,r) a one-dimensional Wiener space on [0, T]; and W its coordinate
mapping process, that is, a one-dimensional standard Brownian motion with Wy = 0.
Let F = {F}}c(o,) be the canonical filtration completed for IP. In the Black-Scholes-
Merton model, we assume that the market consists of one risky asset and one risk-less
asset. The fluctuation of the risky asset is assumed to be given by the following stochastic
differential equation (SDE):

dS; = yStdt 4+ 0SidWy, Sp >0,

where y is a real number (called mean rate of return), ¢ is a positive real number (called
volatility). The solution of the SDE is given by

St = Soexp |:(“I/l — %0’2) t+0'Wt:| .
The risk-less asset price process (Bt);c[o 1 is given by

Bi=¢tr>0,

where r is risk-less interest rate. The discounted stock process is given by

~ 1
St = ﬂ = Spexp {(y—r— —(72) t—l—(TWt]
B; 2
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or
dgt = gt[(l/l — T’)dt + O'th]
— 0Sd [Wt n ?t} . Sp > 0.

u—r

We now let u := = and

1
Zy = exp (—MWt — §u2t> ,t € [O, T]

Then, Theorem 2.3.3 implies that E[Z7] = 1 and W™ = W; + ut is a Brownian motion
under IP* with dIP* = Z1dIP. Moreover, Theorem 11.16 in Klebaner [27] shows that P*
is unique equivalent martingale measure that makes S; = % into a martingale. Hence,
BSM model is complete market with non-arbitrage by Theorem 3.1.8. Theorem 3.1.5
implies that the price of a claim F is given by

Pt = E_Y(T_t)IE.]P* [F’ft] .

Let ¢; and 77; denote the amount of units of the risky asset and the risk-free asset an
investor holds at time t and assume that ¢; and #; are adapted processes satisfying

fOT &2dt, fOT [7¢|dt < oo a.s. The market value of the discounted self-financing replica-
tion portfolio at time ¢ is given by

Vi = &St + 1t
t ~
= CoSo + 170 + /o CudSy

t ~ *
— Vo + / EuSucd WP
0

and .
e 'TF = e_rTVT =W +/ gtgtU'deP*.
0

We next derive the Black-Scholes-Merton formula, that is, theoretical price of the Eu-
ropean call option (St — K)*, where K > 0 is a strike price at T. European call option
is a contract that gives its holder the right (but not the obligation) to buy the risky asset
with value St at the maturity time T at a fixed price K. By Theorem 3.1.5, we can get the
initial price of the European call option

Po=e "TEp: [(St —K)"] = SoN(d1) — e "TKN(d,)

where N(x) = \/szn [ e_%yzdy,

_ log(So/K) + (r + 302)T

d ,
! oT
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and -
log(So/K) + (r — 50°)T
2 o/T 1

We also get the price P; at time t of the European call option

P = e T DEp. [(Sy — K)T|F] = SiN(di(t) — e " T-DKN(da (1))

where
log(St/K) + (r + 26?)(T — t)
) = VT
and

dy(t) = log(S¢/K) :\/(;;_%tcfz)(T -t _ 4 — oV T—L

We next derive hedging strategy of the European call option by using classical Malliavin
calculus. We first check conditions of Assumption 2.4.1.

1. Since u is constant, hence D;u = 0. Therefore, we can see that u, u? € 1L1’2; and
2uDsu € L?(A x IP) hold.

2. Tt is easy to see that Zr € L?(IP). Moreover, we have D;log Zr = —u. Therefore
ZrDtlog Zt € L%(A x IP) holds. Moreover, Proposition 2.1.5 implies that D;Zr =
—uZT.

3. Since St € L?(P) and D;logSt = o, we can see that StD;log St € L?(A x PP)
holds. Hence, Proposition 2.1.5 implies that St € ID%/;,Z and D;St = ¢St. Moreover,
Theorem 2.1.7 shows that (St — K)* € Dy and

Dt(ST — K)+ = 1{ST>K}DfST = 1{5T>K}UST'

Since |Dt(ST — K)+| < oSt and ’(ST — K)+| < St + K, we can see that ZTDt(ST —
K)* + (St — K)™DiZt € L?>(A x P).

Hence, we can apply Theorem 2.4.2 to e T (St — K) . Theorem 2.4.2 implies that

e*i’TVT
T _ .
—Vp+ / &:510dWP
0
— efrT(ST _ K)+

T
= e "TEp.[(Sy — K) ] + e*TT/

T *
0 IE]p* |:Dt(ST - K)Jr — (ST — K)+/() DtudeP

]—“t] AWF

T *
= e_rTIEIp* [(ST — K)+] + E_TT/O [Ep- |:1{ST>K}UST ft:| dW}P .

Hence, we obtain

&S = e "TEp- {1{ST>K}UST ft] :
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Therefore the portfolio is given by

e~ 1(T—t)
6 = St Ep- [1{ST>K}ST

ft} = N (8)).

In this subsection, we saw that the BSM model is a complete market model. However,
it is said that the real market is incomplete in general. In the incomplete case, there are
many equivalent martingale measure and there exists some claims that is impossible to
replicate. Therefore, we can not determine price and hedging strategy of claim uniquely.
Hence, we have to choose a suitable hedging method for incomplete market model. We
present in this thesis (locally) risk-minimizing that is a very well-known hedging method
for contingent claims in a quadratic way for incomplete financial markets.

3.2 Risk minimization

In this section, we review basic notions of risk minimization. Follmer and Sonder-
mann [21] introduced the risk-minimizing (RM, for short) hedging strategies for
non-redundant contingent claims, written on a one-dimensional, square-integrable
discounted risky asset S which is a martingale under the original measure P. We
now introduce a filtered probability space (Q), F, P, {F}}ico,r]), where the filtration
is supposed to be right-continuous, complete and Fj is trivial. The goal of RM is to
minimize the variance of future costs: R; = E[(Ct — C;)?|F;], where C; means cost
process which will defined later.

Definition 3.2.1 1. ®g denotes the space of all R-valued predictable processes ¢ satisfying
T
E[ " fa(s)] <o

2. An L%-strategy is given by a pair ¢ = (&,17), where ¢ € @g and 1 is an adapted process
such that V(@) := &S + 1 is a right continuous process with E[V? ()] < oo for every
t € [0, T]. Note that &; (resp. 1) represents the amount of units of the risky asset (resp.
the risk-free asset) an investor holds at time t.

3. For F € L*(IP), the process C*(¢) defined by Cf (¢) := Fly_ry + Vi(g) — [ &dSs is
called the cost process of ¢ = (&, 1) for F.
4. For contingent claim F € L?(IP; Fr), we call F-admissible if Vi = 0.

We know that the following: if S is a martingale, the claim F € L?(IP) has the following
decomposition:

T
F = E[F] +/ &ds, + LE,
0

where &* € @g and L' is a square-integrable martingale orthogonal to S with L = 0. We
call this decomposition the Galtchouk-Kunita-Watanabe decomposition (see Kunita and
Watanabe [28]). Moreover, the unique F-admissible risk-minimizing strategy ¢™ is given
by

¢" = (& E[F|Fi] — &i'St)
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forall t € [0, T] (see e.g., section 2 of Vandaele and Vanmaele [52]).

In the case S is a semi-martingale under IP, we could still look for risk-minimizing
strategies ¢ with Vr(¢) = 0. Unfortunately, there is bad news (see Proposition 3.1 of
Schweizer [45]):

Proposition 3.2.2 If S is not a (local) P-martingale, a contingent claim F admits in general no
risk-minimizing strategy ¢ with Vr(¢) = 0. P-a.s.

Hence, we consider the concept of locally risk-minimizing hedging strategies to hedge
claims in next section.

3.3 Local risk minimization

In this section, we review basic notions of local risk minimization. Schweizer [43] proved
that RM dose not always exist in the semi-martingale case. Therefore, Schweizer [44] in-
troduced the concept of locally risk-minimizing hedging strategies to hedge claims for
the case that the discounted risky asset is a semi-martingale. We can see streams of
research of the LRM by survey papers (see, e.g., Pham, Schweizer and Vandaele and
Vanmaele [39, 45, 53]) and we can also see that theoretical aspects of LRM has been de-
veloped to a high degree.

We now consider a incomplete financial market being composed of one risk-free asset
and one risky asset with finite time horizon T. For simplicity, we assume that the interest
rate of the market is given by 0, that is, the price of the risk-free asset is 1 at all times.
The fluctuation of the risky asset is assumed to be given by a semi-martingale S on a
filtered probability space (), F,IP, {Fi}c|o,r)), where the filtration is supposed to be
right-continuous, complete and Fj is trivial. The semi-martingale S has the following
decomposition

S=5+M+ A,

where M a square-integrable martingale for which My = 0, and with A a predictable
process of finite variation |A|. We also assume the following assumption.

Assumption 3.3.1 S satisfying the so-called structure condition (SC, for short). That is S satis-
fies
< 0o, (3.3.1)

T
|2+ [ aas
0 L2(P)

A is absolutely continuous with respect to (M) with a density A satisfies E[( [ AdM)] < oo, we
can rewrite the canonical decomposition as S = So + M + [ Ad(M). Thirdly, the mean-variance

trade-off process K; := fot A2d{M)s is finite, that is, Kt is finite P-a.s.

We define locally risk-minimizing (LRM, for short) for a contingent claim F € L?(IP). We
first define L2-strategy and cost process.

Definition 3.3.2 1. ©g denotes the space of all R-valued predictable processes & satisfying

Bl [ ham)s + ([ [6da?] < o
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2. An L2-strategy is given by a pair ¢ = (¢, 1), where & € @g and 1 is an adapted process
such that V(@) := ¢S + 1 is a right continuous process with E[V?(¢)] < oo for every
t € [0, T]. Note that {; (resp. 1) represents the amount of units of the risky asset (resp.
the risk-free asset) an investor holds at time t.

3. For F € L?(IP), the process CF (@) defined by Cf (@) := Fly—m + Vi(e) — fot CsdSs is
called the cost process of ¢ = (¢, 1) for F.

We next introduce the definition of a small perturbation.

Definition 3.3.3 (Small Perturbation) A trading strateqy A = (6, €) is called a small pertur-
bation if it satisfies the following:
1. ¢ is bounded,

2. fOT |6:d At | is bounded,
3. 5T = €T = 0.

For any subinterval (s, ] of [0, T|, we define the small perturbation

Al s = (61 (5,15 p))-

We also define partitions T = (t;)o<j<n of the interval [0, T]. A partition of [0, T] is a finite
set T = {to,t1, -+ ,tx} of times with 0 =ty < t; < --- <ty = T and the mesh size of T is
|T| := maxy, ¢, er(tit1 —t;). A sequence (Ty),en is called increasing if 7, C 7,41 forall n
and it tends to the identity if lim, .« | T,| = 0. We next define the locally risk-minimizing.

Definition 3.3.4 (Locally Risk-minimizing) For a trading strategy ¢, a small perturbation
A and a partition T of [0, T] the risk quotient r*[@, A] is defined as follows:

Re, (@ + Bl 1) — Rei (@) )
E[(M), , — (M),| Ft.] (titivr]’

r (@A) = Z

ti,ti+1€T i+1

where Ry, = E[(Cr — C,)?|F1,]. A trading strateqy ¢ is called locally risk-minimizing if

Liminfr™(p,A) >0
n—oo
P ® (M)-a.e. on Q x [0,T| for every small perturbation A and every increasing sequence
(Tn)neN of partitions of [0, T] tending to the identity.

The definition of LRM is very complicated to use. However, under Assumption 3.3.1,
Theorem 1.6 of Schweizer [46] implies that the following definition of LRM is equivalent
to original one:

Definition 3.3.5 An L?-strategy ¢ is said locally risk-minimizing for F if V(@) = 0 and
CF(¢) is a martingale orthogonal to M, that is, CF (¢) M is a martingale.
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Remark 3.3.6 Note that ¢ is not self-financing. In fact, if ¢ is self-financing, then C(¢) is a

constant. If there exists a self-financing ¢ s.t. Vr(¢) = 0, we have F = V() + fOT CsdSs. This
is a contradiction.

We next define Follmer-Schweizer decomposition (FS decomposition, for short).

Definition 3.3.7 An F € L?(IP) admits a Follmer-Schweizer decomposition if it can be described
by
T
F=F+ / &Fds, + L, (33.2)
0

where Fy € R, &F € @g and LT is a square-integrable martingale orthogonal to M with L5 = 0.

Proposition 5.2 of Schweizer [46] shows the following:

Proposition 3.3.8 (Proposition 5.2 of Schweizer [46]) Under Assumption 3.3.1, an LRM
¢ = (&, n) for F exists if and only if F admits an FS decomposition, and its relationship is given

by
t
& =2, m=F +/0 GedSs+Lf — Fly_ry — G St

We next define the minimal martingale measure.

Definition 3.3.9 (Minimal Martingale Measure) A martingale measure IP*, equivalent with
the original measure IP, will be called minimal if P* = P on F and if any square-integrable
P-martingale which is orthogonal to the martingale part M of the semi-martingale X under P
remains a martingale under IP*.

In the case S is continuous, we can get the FS decomposition by using the Galtchouk-
Kunita-Watanabe decomposition under the minimal martingale measure.

Proposition 3.3.10 (Proposition of Vandaele and Vanmaele [52]) If S is continuous, the
locally risk-minimizing strategy is determined by the Galtchouk-Kunita-Watanabe decomposition
under the minimal martingale measure.

Unfortunately, in the case S is discontinuous, Vadaele and Vanmaele [52] showed that the
locally risk-minimizing strategy is not determined by the Galtchouk-Kunita-Watanabe
decomposition under the minimal martingale measure. Hence, there was no easy way to
find the FS decomposition. In this thesis, we propose a useful way to find it by using the
Malliavin calculus for canonical Lévy processes. To the end, in next chapter, we consider
Malliavin calculus for Lévy processes and a Clark-Ocone type formula under change of
measure for canonical Lévy processes.
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Chapter 4

Malliavin calculus for Lévy processes
and a Clark-Ocone type formula under
change of measure for canonical Lévy
processes

The Clark-Ocone formula is an explicit stochastic integral representation for
random variables in terms of Malliavin derivatives. In this chapter, we prove
a Clark-Ocone type formula under change of measure (COCM) for canonical
Lévy processes with L2-Lévy measure.

To show the COCM for L2-Lévy processes, we develop Malliavin calculus
for canonical Lévy processes, based on Solé et al. [49]. By using o-finiteness of
Lévy measure, we obtain a commutation formula for the Lebesgue integration
and the Malliavin derivative and a chain rule for Malliavin derivative. These
formulas derive the COCM. Finally, we obtain a log-Sobolev type formula for
Lévy functionals.

The content of this chapter is based on Suzuki [50, 51].

4.1 Introduction

In this chapter, we develop Malliavin calculus for Lévy processes and derive a Clark-
Ocone type formula under change of measure (COCM) for canonical Lévy processes.
The representations of functionals of Brownian motions (or Lévy processes) by
stochastic integrals are important results in Probability theory. They have been widely
studied (see, e.g., survey paper by Davis [16]). In particular, the Clark-Ocone (CO)
formula is an explicit martingale representation of functionals of Brownian motions in
terms of Malliavin derivatives. If an L?-random variable F has certain regularity in the
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Malliavin sense, we have
T
F = E[F] -|—/ E[D;F|Ft|dW;
0

where W is a Brownian motion, D;F is the classical Malliavin derivative. This formula
was shown by Clark, Ocone and Haussmann [13, 14, 23, 36]. A white noise version of the
CO formula was proved by Aase et al. [1]. This formula has various applications. For
example, the log-Sobolev and Poincare inequalities are obtained in Capitaine et al. [11].
In the application to mathematical finance, its representation of an optimal portfolio is
given by this formula (see e.g., Ocone and Karatzas [35]).

The CO formula for Lévy processes has been also studied. Lekka [30] proved CO
formula for functionals of pure jump Lévy processes. A white noise version of the CO
formula for functionals of pure jump Lévy was derived by Di Nunno et al. [19]. Further-
more, we can also see that one for general L2-Lévy functionals also holds (see Benth et
al. [9]).

Since many applications in mathematical finance require representation of random
variables with respect to risk neutral martingale measure, Girsanov transformations ver-
sions of this theorem were studied by many people. First, a Clark-Ocone type formula
under change of measure (COCM) for Brownian motions was proved by Ocone and
Karatzas [35]:

T T N N
F = Ep[F] + / Ep- [DtP—P / DyusdWF ‘ft] AwWF".
0 0

They also derived an optimal portfolio of Brownian market by using it. Okur [37] derive
a white noise version of it and derived an explicit representation of hedging strategy
of digital option for Brownian market. Huehne [24] derived a COCM for pure jump
Lévy processes and gave an optimal portfolio. Note that Di Nunno et al. [20] and Okur
[38] also introduced one for Lévy processes using white noise theory. However, their
results are different from our results. Our results have different settings and different
representation, for more detail, see Remark 4.5.6 and Theorem 4.5.3 in this chapter.

In this chapter, we derive a COCM for Lévy processes with L?-Lévy measure in section
4.3:

T
F=Ep-[F] +0 / Ep- {DtloP _FK,
0

]—“t_] dWF"
T ~P*
+ /0 [ Ep[F(H;. — 1) + 2Hj.DyF| 7o N7 (d, d2)
0

We precisely define K; and H;', and see sufficient conditions for this formula in section
4.5. Using this result, we obtain log-Sobolev and Poincare type inequalities for Lévy
functionals. For that purpose, we adapted Malliavin calculus for Lévy processes based
on Geiss and Laukkarinen [22] and Solé et al. [49]. Moreover, we show some formulas
to show the main theorem, such as chain rule for Malliavin derivative and commuta-
tion formulas for integrals and the Malliavin derivative. By using o-finiteness of Lévy
measure (see e.g., Applebaum [3]), we prove it.
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This chapter is organized as follows: In Section 4.2, we review Malliavin calculus for
Lévy processes and we also give a chain rule. In Section 4.3, we first review commuta-
tion formulas like Delong and Imkeller [18] and we also review the Skorohod integral.
Second, we give some comments about commutation formulas as a remark. Finally, we
show another commutation formula. In Section 4.4, we review a Clark-Ocone type for-
mula for canonical Lévy processes and Girsanov type theorem. In Section 4.5, by using
results of Section 4.2, Section 4.3 and Section 4.4, we show a COCM for Lévy processes
with L2 — Lévy measure. Using it, we obtain log-Sobolev and Poincare type inequalities
for Lévy functionals.

4.2  Malliavin Calculus for canonical Lévy processes

421 Setting

We begin with preparation of the probabilistic framework and the underlying Lévy pro-
cess X under which we discuss Malliavin calculus in the sequel. Let T > 0 be a finite
time horizon, (Qw, Fw, Pw) a one-dimensional Wiener space on [0, T]; and W its co-
ordinate mapping process, that is, a one-dimensional standard Brownian motion with
Wo = 0. Let (Q)j, F},IPj) be the canonical Lévy space (see Solé et al. [49] and Delong
and Imkeller [18]) for a pure jump Lévy process | on [0, T] with Lévy measure v, that is,
Q= U ([0, T] x Rg)", where Rg := R\ {0}; and

Ji(wy) = ) zilg,<py
i=1

fort € [0,T) and wj = ((t1,21), ..., (tn,zn)) € ([0, T] x Rp)". Note that ([0, T] x Rp)°
represents an empty sequence. Now, we assume that f]Ro z?v(dz) < oo; and denote
(Q,F,P) = (Qw x Qp, Fw x Fj, Py x P;) and we call it canonical space. Let F =
{ft}te[o,T] be the canonical filtration completed for IP. Let X be a square integrable cen-
tered Lévy process on (Q), F,IP) represented as

X; = oW+ Js — t / 2v(dz), (4.2.1)
Ro
where ¢ > 0. Denoting by N the Poisson random measure defined as
N(t,A) =) 14(AXs),
s<t

A € B(Rp) and t € [0, T|, where AX; := X; — X;—, we have J; = fot Jr, zN(ds,dz). In

addition, we define its compensated measure as N (dt, dz) := N(dt,dz) — v(dz)dt. Thus,
we can rewrite (4.2.1) as

t ~
X = oW + / / 2N (ds, dz). 42.2)
0 JR,
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We consider the finite measure g defined on [0, T] x R by
4(E) = 0 / o H0(d2) + 2dtv(dz), E e B([0,T] x R),
E(0 E/

where E(0) = {(t,0) € [0,T] x R;(t,0) € E} and E' = E — E(0), and the random
measure Q on [0, T] x R by

Q(E) = o /E oy Widoldz) + /E 2N(dt,dz), E € B(0,T] x R).

2
Let LT, g

R)" — R satisfying

denote the set of product measurable, deterministic functions & : ([0, T] x

h 2
Iz,

= o rpeny P20, (b)) Paats, den) gt dan) < oo

Forn € N and h, € LZT g We denote

I (Jta) = /([O/T]X]R)n B((kz1), - o (bno2n))QUdty, dzy) - - Q(dby, d2y).

It is easy to see that [E[Iy(hg)] = ho and E[I,(h,)] = 0, for n > 1. Moreover, this integral
has the usual properties (see It6 [26]):

Proposition4.2.1 1. Forn > 1,f € L}, we obtain, Ly(f) = I.(f), where f is the
symmetrization of f :

F(t,z1),- -, (tnyza)) = % Y )y Zry)r s (bny Ze(n)s

eDy

where, Dy, is the set of permutations of {1,2,--- ,n}.

2. Forn>1,ab€R,f,ge€Lly,  weget I(af +bg) = aly(f) +blu(g).

3. Formn>1,fe€ L:‘}qn,g € L%qm, are symmetric in the n pairs (t;,z;),1 < i < n, that

is f = fand g = g, then, we have

Bl () n(9)] = n1m){F.8)13
In this setting, we introduce the following chaos expansion (see Theorem 2 in It5[26],
Section 2 of Solé[49] and Section 3 of Delong and Imkeller [18]).

Theorem 4.2.2 Any F-measurable square integrable random variable F on the canonical space
has a unique representation

(0]

F=Y Ii(h,)P—-as.

n=0
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with functions h, € LZT,q,n that are symmetric in the n pairs (t;,z;),1 < i < n and we have the
isometry

E[F?) =} n!llhl|2,
n=0
By using the chaos expansion, we can define the following:

Definition 4.2.3 (1) Let D2 denote the set of F -measurable random variables F € L?(IP) with
the representation F =Y 7> I, (hy,) satisfying

o]
) nn!thHiz < oo,
1 Tqn

(2) Let F € IDV2. Then the Malliavin derivative DF : Q) x [0, T] x R — R of a random variable
F € D2 is a stochastic process defined by

Dy F =Y _ nl,_1(ha((t,2),-)), valid for g—a.e. (t,z) € [0,T] x R, P —a.s.

n=1

(3) For o # 0, let ]D(l)’2 denote the set of F -measurable random variables F € L?(IP) with the
representation F =Y o> I, (f,) satisfying

Lot [CIR GO o< e
A=

Then, for F € lD(l)'z, we can define

o0

DioF = Y nl,_1(fa((£,0),-)), valid for g—a.e. (£,0) € [0,T] x {0}, P — a.s.

n=1

(4) For v # 0, let lDi'2 denote the set of F -measurable random variables F € L?(IP) with the
representation F = Y > o I,(fn) satisfying

0 T
nn!/ / St 2))? 22v(dz)dt < oo.
Yot [ W G Pvide)

Then, for F € D12, we can define

Di.F =Y nl,_1(fa((t,2),-)), valid for g—a.e. (t,z) € [0, T] x Ry, P — a.s.

n=1

(5) Let DV be the classical Malliavin derivative with respect to the Brownian motion W and
Dom DW be the domain of D" (for more details see Nualart [33] and Chapter 2). We define

DV .= {F € L*(P); F(-,wy) € Dom D" for PN —a.e. wy € QN}
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(6) Let F be a random variable on Qyy x Q. Then we define the increment quotient operator

F(ww, wi?) — F(ww,
Tt,ZF = (ww wN) - (ww wN)/Z # O/

where wkfz transforms a family wyn = ((t1,21), (t2,22),- -+ ) € Qn into a new family
t,z

wy = ((t,2),(t1,21), (t2,22), - - - ) € Qn, by adding a jump of size z at time t into the trajec-
tory. Moreover, we denote

D = {F € L2(P); E UOT /]RO |‘I’t,zP|222v(dz)dt] < oo}.

By Propositions 2.6.1, 2.6.2 in Delong [17] and result of Al6s et al. [2] (see section 3.3), we
can derive the following:

Proposition 4.2.4

1. FF € DV, then F € ]D(l)’2 and D;oF = 1{U>0}(7*1D}NF(-,wN)(wW)for q-ae. (t,z) €
[0,T] x {0},IP -a.s.

2. IfF € D/, then F € D}? and Dy, F = ¥, .F for q-ae. (t,z) € [0,T] x Ry, P -a.s.

3. D2 = DV NID/ holds.

Lemma 4.2.5 (Lemma 3.1 of Delong and Imkeller [18]) Let F € D2, Then, for0 <t <
T, E[F|F;] € DY? and

D xE[F|Fi] = E[DsxF|Fi]15<py, forg—ae. (s,x) € [0,T] xR, P—as.
We next establish the following fundamental result.

Proposition 4.2.6 (The closability of operator D) Let F € L?(P) and F, € D2,k € N
such that

1. limy_,o Fr = Fin L?>(IP),
2. {Dy.F}> | converges in L2(q x P).

Then, F € IDV2 and limy_,, Dy, Fx = Dy, F in L?>(q x IP).

Proof. We can show this proposition by the same sort argument as Theorem 12.6 of
Di Nunnoetal. [20]. Let F = Y L,(fa), fu € L3, and Fe = Y L(f¥), fy € L%, - Then
n=0 n=0

by assumption (1), we have

(o]

li 1A A —)
kl—I:?o Z n ”fn anLZT,q,n 0

n=0
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This implies that limy_,, fk = f, in LZT, gn for all n. From assumption (2), we deduce that

li Ak — fm2, = 1 IE/ D;,F. — D;,Fy,)%a(dt,dz)| = 0.
Jm g iy = tim B[ (D Dyl

k,m—oo0

Hence, we obtain
00 r 2 & k 2
li nn!|| fx — <21 liminf nn!|| 5 — "
Ji 3t lf = fullip <2 i 3 i infntl fo = 7

o0
< 2 lim liminf =2, =o,
S 2 im imin ;nn ||fn fa H[}T’q’n

k—o00 m—00

because nn!||fi — fi'[|?, > 0forall n,m,k.
T.gn

Therefore, we can see that F € ID'? and limy_,o, Dy, Fx = D;,F in L?(q x IP). O

We next introduce a chain rule for the Malliavin derivatives. First we define the fol-
lowing.

Definition 4.2.7 1. Let C3°(IR") denote the space of smooth functions f : R" — R with
compact support.

2. A random variable of the form F = f(Xy,,---,Xy,), where f € CF(R"), n € IN, and
t,--+ ,tn > 0, is said to be a smooth random variable. The set of all smooth random
variables is denoted by S.

3. For F € S, we define the Malliavin derivative operator D as a map from S into L(q x IP)

"9
Df,ZF = Z a_.;f'(th, e /th)l[olti]X{O}(t’z)
i=1 9%

+f(Xt1 + 21y, (1), Kb, + 2110, (1) — (X, X))
Z

1IRO (Z)

for (t,z) € [0,T] x R.

By Lemma 3.1 and Theorem 4.1 in Geiss and Laukkarinen [22], we can see that the closure
of the domain of D with respect to the norm

|Fllp := {E[|FP] + E[|DF|7]} 2
is the space D2 and D¢,F = Dy Fforall F € S C D2, Moreover, by Corollary 4.1
in Geiss and Laukkarinen [22], the set S of smooth random variables is dense in L?(IP),

D'?2, Dy* and D}

Proposition 4.2.8 Let ¢ : R" — R,n > 1 be a C'-function with bounded derivative.
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1. IfF = (F,-- ,F,) € (IDg*)", then, ¢(F) € Dy and

n
d
DW¢G):§:§%UﬂDwﬁimﬂﬂfmq—ae@g)emﬂﬂx{myP—a&
k=1

(4.2.3)
holds.
2. IfF = (F,--- ,F,) € (ID7*)", then ¢(F) € Dy and
F Dt Fi, -, F D:.F,) —o(F, -, F
Dygp(p) = PO ZDzRL ”+ZZ tebn) = 9B Fo) (4.2.4)
for g-a.e. (t,z) € [0, T] x Ry, P-a.s. holds.
Proof. (1) We can show this proposition by the same sort argument as Proposition 1.30

of Nualart [34]. We will only prove the case n = 1. The case n > 1 can be proved in the
same way. Let ¢y (x) = [ ¢(x — y)¥um (y)dy, where, P, (x) = mp(mx), m € N,x € R,
where, ¢ is a C® positive function with support [—1,1] and [ ¢(x)dx = 1. We can

see that ¢, € C* is bounded with bounded derivative. Since, F € ]D(l)’z, there exists a
sequence {F}i2, Fx € S, Fe = fi(Xey, -+, Xt ), fe € CF°(R") with F, — F in L%(IP)
and D; gF; — D;oF in L2(A x IP). Then, we have

05

Dio@m(Fc) = ) 9i(@m o fi)(Xey, -+, X1, ) = @ (Fe) DioF.
i=1

By using the triangle inequality,

|9 (Fx) DeoFe — @' (F)DioFll 2(axpy < 190 (Fe) (DeoFx — DeoF) [l 1201 xp)

(@ (Fe) = @' (F)) DioFll2(axpy + 109" (Fe) — @' (F))DioFll 1201 <)
=: I+ I+ 1II.

We can see that for any m,k > 1, ¢}, (F) is bounded not depending on m and k, hence
I — 0 as k — oo. Moreover the dominated convergence theorem implies that for any
k> 1,1l — 0as m — co. In the same way, we obtain II] — 0 as k — oo. Thus,

lim {|@7, (Fx) Do Fx — ¢'(F)DioF 1200 xp) = O-

k,m—o0
Since limy—c0 ¢m(x) = ¢(x) uniformly and ¢, is a Lipschitz continuous function
with Lipschitz constant not depending on m, we obtain limy ,, . ¢m(F) = ¢(F)

in L?(IP). Therefore, by the closability of Dy, we can see that ¢(F) € Dy* and

Diop(F) = ¢'(F)DyoF.
(2) Equation (4.2.4) follows from the definition of the operator ¥ and Proposition 4.2.4.
O
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Proposition 4.2.9 (Chain rule)
Let ¢ € CY(R";R) and F = (F,,--- ,F,), where Fy,--- ,F, € D2, Suppose that ¢(F) €
L%(IP) and

"9
kzla—xk@ )DtoFil0y(2)

_l_QO( ZDt,zFlr"'/Pn+ZDt,an)_(P(F1/“'/Fn)
Z

1Rr,(z) € Lz(q x IP).

Then, we obtain ¢(F) € D2 and

n

Dt Zgo Z Dt,OFkl{O} (Z)
k= 1
F Di.Fy, -, F D;.F,) — @(F1,--- , F
4 §0( 1 +zD¢z1, ’ n‘|’ZZ tz n) (P( 1/ ’ n)llRo(Z)-
Proof. We can show this proposition by the same sort argument as Lemma A.1 of

Ocone-Karatzas [35]. Let ¥ € Cy°(R) satisfy ¥Y(y) = yif [y| < 1, [¥(y)| < |y| for all
y € R. Forany ! € N, let ¢;(x) = Z‘I’(@), x € R". For each [, ¢; € C}(R";R) and thus
¢,(F) € D2 and
/ = Jdg
Dizi(F) =¥ (9(F)/1) }_ axg D)PuoFil iy (2)
k=1

+§01(Fl + ZDt,zFlr' -+, F, —|—ZZDt,an) — q)l(Fl, R ,Fn) 1R0(Z)

by Proposition 4.2.8. Note that |¢;(F)| < |¢(F)| for all [, lim; ., ¢;(F) = ¢(F) a.s. and

n
2
hm thqol 2 a— Dt,OFkl{O} (Z)

(Pl +ZDt,zF1/"' /Fn+ZDt,an) - GD(Flz' T an)
Z

l]RO (Z)

g x IP-a.e. Moreover note that

|Dtz¢1(F )_100‘
< [¥'(p(F)/1) 2 5 (F)DioFil ) (2 Za—(” )DroFil(g) (2)]

+|(PZ(P1 +ZDt,zF1/"';Fn+ZDt,an)_(Pl(F1/ /Fn)
Z

_@(Fl +ZDt,zP1/‘ -, Fy +ZDt,an) _QD(PL"‘ /Fn)

z

" 9
< (sup [¥' ()| + D] Y- 55 (F)Dyoil 10} (2)
yeR k=1 9k

1R, (2)

1R, (2)]
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n

+sup [ (y)]1/ ) (Dr-Fe)?1g, (2)
yeR k=1

@(Fl +ZDt,ZP1/“ : /Fn+ZDt,an) _¢(F1/ /FI’Z)
Z

+

1R, (z) € Lz(q x IP)

Therefore dominated convergence theorem implies that lim;_,., ¢;(F) = ¢(F) in L?(IP)
and lim;_,, D; . ¢;(F) = I in L?(g x IP). Hence, Proposition 4.2.6 implies that ¢(F) €
D2 and

n

0
Di.¢(F)=)_ %(F)Dt,oFkl{o}(Z)
k=1 9k

n @(Fy +zDy.Fy, -+ ,Fy +zDt.F,) — @(F1,- -+ , Fy)
z

1]R0 (Z)

If we take ¢(x,y) = xy, then, we can derive the following product rule.

Corollary 4.2.10 Let F|,F, € D2 and FF, € L2(IP). Moreover, assume that F{D;.F, +
FyDyzFy + 2Dt 2 Fy - Dy Fy € L2(q X P). Then FyF, € D' and

Dt,zFlFZ = FlDt,zFZ + F2Dt,zF1 + ZDt,ZP‘l . Dt,zFZ g—a.e. (f,Z) € [O, T] X ]R,]P — a.s.
(4.2.5)

4.3 The Skorohod integral and commutation of integration and
the Malliavin differentiability

In this section, we consider the Skorohod integral and commutation of integration and
the Malliavin differentiability, which has an interest of its own and could be applied for
other purposes than the one of this chapter. First we introduce the following classes.

Definition 4.3.1 (1) Let IL'? denote the space of product measurable and T -adapted processes
G:Qx[0,T] x R — R satisfying

E G 2 d ,d ’
|:/[0,T]><]R’ S'x‘ q( 5 x):| < 0
GS,x € ]Dl,Z,q—a.e. (S, x) c [O/ T] < R and
2
E {/([O,T]xm)z |Dt,2Gs x| q(ds, dx)q(dt, (;lz)} < oo,

(2) ]Lé’2 denotes the space of G : [0, T] x QO — R satisfying
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1. Gs € D2 fora.e. s € [0, T],

3. E [ St Jy 1De=Gs Pdsq(at, dz)] < .
(3) ]L%’2 is defined as the space of G : [0, T] x Ry x Q) — R such that

1. Gsx € ]Dl’zfor gae. (s,x) €[0,T] xR,
2. E [f[O,T]x]RO |Gs,x|21/(dX)dS} < 00,

3. E [ Jorxr Joirg |Dt,ZGS,x|2v(dx)dsq(dt,dz)] < .
(4) 1L} is defined as the space of G € L2 such that
2
1. E [( Jior iy |Gl (dx)ds) } <,
2
2. E [f[O,T]x]R (f[o,T]leo |Dt,ZGs,x|v(dx)ds> q(dt,dz)] < 0.

(5) Recall that any function u € L?(q x P) has a chaotic representation
Utz = Z I?’l (hn('/ (tl Z)))/
n=0

where h;, € LZT,WZ 11 Is symmetric in the first n pairs of variables. Denoting by I, the sym-
metrization of hy, with respect to all n + 1 pairs of variables, we define

Dom; := {uELZ(qX]P)’ Z(n+1)!HflnHi2 <oo}.
n=0 T,qn+1

(6) Let u € Domyg. Then the Skorohod integral & with respect to the random measure Q of a
process u : (3 x [0, T] x R — R is defined as

6(u) =Y Liy1(hy), P—as.
n=0

The Skorohod integral § has the following properties (see section 6 of Solé et al. [49]):

Proposition 4.3.2 (1) Duality formula
A process u € L?(g x IP) belongs to Domy if and only if there exists a constant C such
that for all F € D2,

E|f D Fq(ds,dx) | | < C(E[F3])1/2.
| [ wmaDsaqds || < el
If u € Domyg, then 5(u) is the element of L?(IP) characterized by

E[6(u)F] = E {/[0 u(s,x)Ds,xFq(ds,dx)}

, T] xR
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for any F € D2,
(2) Covariance of Skolohod integrals
A process u € L?(q x IP) belongs to 1LY if and only if

w ~
Zn-n!”hnHiz < o0
n—1 Tqn+1

holds, and, in particular, this implies I.'* C Domg . For u,v € 112,

E[6(u)é(v)] =E [/[O,TMR u(s,x)o(s,x)q(ds,dx)

+E [/([O,T]XIR)Z Dt,zu(S, x)Dt,Zv(s, x)q(dt, dZ)Q(dS, dx) .

(3) Differentiability of 6
Let u € ILY? such that D; ,u € Domy forall (t,z) € [0,T] x R, g-a.e. Then 6(u) € D'?
and
Dt,Z(S(M) = Utz + (S(Dt,zu)

forall (t,z) € [0,T] X R, g-a.e.

(4) Skorohod integral is an extension of the Itd integral
Let u € L?(q x IP) be predictable. Then, u € Domg and

o(u) = /[O,T]X]R us,Q(ds, dx).

We next discuss the commutation relation of the stochastic integral with the Malliavin
derivative.

Proposition 4.3.3 (Lemma 3.3 of Delong and Imkeller [18])
Let G: Q) x [0, T] x R — R be a predictable process with

E Gs |?q(ds,d .
Um]xm’ <Palds x>}<oo

Then
G € IL'? ifand only if / G +Q(ds, dx) € D'2.
[0,T] xR

Furthermore, iff[o TIxR Gs,xQ(ds,dx) € D2, then, for q -a.e. (t,z) € [0, T] x R, we have

D / GexQ(ds, dx) = Grs + / Dy .Gs xQ(ds, dx), P—as.,
[0,T]xR [0,T]xR

and f 0,7] xR D;.Gs xQ(ds, dx) is a stochastic integral in It0 sense.

Next proposition provides commutation of the Lebesgue integration and the Malliavin
differentiability.
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Proposition 4.3.4 (Lemma 3.2 of Delong and Imkeller [18])
Assume that G : Q x [0,T| x R — R is a product measurable and F -adapted process, 11 on
[0, T] x R a finite measure, so that conditions

E / Gs %1 (ds, d ] < oo,
_ [0,T}><IR| s,x|“17(ds, dx) oo
Gsx € D2, forn—ae. (s,x) € [0,T] xR,

- 2
. _/([O,T]le)2 IDtzGox| W(dsfdx)Q(df,dz)} <

are satisfied. Then we have
Gsx11(ds, dx) € D'?
/[O,T]le s.cf (ds, dx)

and the differentiation rule

" [O,T]X R X ( x) [ ) ]X t,z s,xi’]( S dX)
h|)ldsf0r 7 -a.e. (t,Z) E [' ,, 1 ] X R, I) a.s.

Remark 4.3.5 We already know the following:

1. If G(s,x) € LYy) is a deterministic function, and n([0,T] x R) < oo or
7([0,T] x R) = oo, then we can see f[OT}XlRG(s,x)iy(ds,dx) € DY and
D, f[O,T]x]R G(s,x)n(ds,dx) =0 = f[O,T]xIR D:.G(s, x)n(ds,dx).

2. Let n(dx,ds) = oR,(x)v(dx)ds with v(Ry) < oo. Then, Proposition 4.3.4 implies that
f[o TIxR, G(s, x)v(dx)ds € IDV2 and the differentiation rule holds.

3. We assume v satisfies v(Rg) < oo or v(Rg) = oo. Moreover if G(s,x) = g1(x)g2(s),
where, ¢1(x) € LY(v) is a deterministic function and ¢»(s) € ]L(l)’2 is a stochastic
process, then, we have f[o,T}leO G(s,x)v(dx)ds = fRo ¢1(x)v(dx) f[O,T] 9 (s)ds =
C f[O,T} Q2(s)ds, where C := fIRO ¢1(x)v(dx) is a constant number. Therefore, by
Proposition 4.3.4, we can see C |, 0,7] 82 (s)ds € D2 and the differentiation rule holds.

By using o-finiteness of v and Proposition 4.3.4, we can show the following proposi-
tion.

Proposition 4.3.6 Let G € L. Then,

/ Gs xv(dx)ds € D2
[0,T] xRy

and the differentiation rule

Dt,Z/ GS,xV(dx)dS :/ Dtlst’xV(dx)dS
[0,T]xRg [0,T]xRg

holds for q -a.e. (t,z) € [0, T] x R, P -a.s.
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Proof. Since v is o-finite measure, we can find a sequence (A,,n € IN) in B(IRg) such
that Rg = ;1 An and v(A,) < oo. Hence, Proposition 4.3.4 implies

/ G(s,x)v(dx)ds € D%,k € N
[0,T)x Uy An

' 0/’1 Xl 1 ATL ( )V( ) O,T X k q 2 ( 7 )1/( ) S.

Next, note the following;

lim G(s,x)luki1 A, (x) = G(s,x),v@A®@P-ae.,

k—oo
hence,
kh_}nc}O G(s,x)lm;;=1 AS(x) =0,r®A®P-ae,
|G(s,x)1U;:l=1 a, (%) = G(s,x)[ = |G(s,x)1m;12=1 AS(x)| <|G(s,x)| € LY (v x A)
and
2
‘/[O,T]X]RO G(s, x)v(dx)ds — /[O,T]xu’,;zl A G(s, x)v(dx)ds

< ( /[O,T]XRO |G(s,x)|v(dx)ds)2 e L(P).

Then, by Lebesgue’s dominated convergence theorem, we can see

2
lim [E / Gs,xvdxds—/ G(s,x)v(dx)ds =0.
Jm B[ Gl [ Gl ) ]
Moreover,
klirn Dt,ZG(s,x)luk_1 A, (%) =DizG(s,x),v@A QP ®q-ae,
hence,
klim D:.G(s, x)lnki1 AC (x) =0, v®A®P®g—ae.,

|Dt’ZG(S’x)1UIf,:1 An(x) — Dt,ZG(S,x)| = |Dt,ZG(S,X)1ﬂ1’;:1 A%(x)|
< |Dt.G(s,x)| € Ll(v X A),
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and

2

D,.G(s, x)v(dx)d —/ Dy.G(s, x)v(dx)d
/[O,T]XIRO t2G(s, x)v(dx)ds OTx Ut A, t2G(s, x)v(dx)ds

2
< (/[O,T]X]RO |Dt,ZG(s,x)|v(dx)ds) € LY(g x P).

Then, Lebesgue’s dominated convergence theorem shows

/[O,T] xR E

xq(dt,dz) — 0 as k — oo. Therefore, by Proposition 4.2.6, we can conclude

D;.G(s, x)v(dx)d —/ D;.G(s, x)v(dx)d
‘/[O,T]X]RO t2G(s, x)v(dx)ds [O/T]XU,’;:lAn t2G(s, x)v(dx)ds

2]
G(s, x)v(dx)ds € D2
/[O,T}leo (s, x)v(dx)ds
and the differentiation rule

P Gls,xv(d)ds = [ DyGls, x)u(dx)d
v /[O,T]leo (5, x)v(dx)ds 0T)xRo (s, x)v(dx)ds

holds for g -a.e. (t,z) € [0,T] x R, [P -a.s. O

4.4  Clark-Ocone type formula for canonical Lévy functionals and
Girsanov type theorem

4.4.1 Clark-Ocone type formula for canonical Lévy functionals

We next present an explicit form of the martingale representation formula by using Malli-
avin calculus (see e.g., Theorem 3.5.2 in Delong [17]).

Proposition 4.4.1 (Clark-Ocone type formula for canonical Lévy functionals)
Let F € DY2, Then, we have

F = E[F E[D,,F|Fi_]Q(dt,d
Fl+ [ o EDIFI QG 2
T T )
—E[F] +0 /0 E[D; oF| Fr_ |dW; + /O /]R E[DyF| 7 JzN(dt, dz). (4.4.6)

Proof. We introduce two proofs.
(1) First proof is equal to the one for the Brownian motion case (see, Theorem 4.1 in Di
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Nunno et al. [20]) and pure jump Lévy case (see, Theorem 12.16 in Di Nunno et al. [20]).
We denote F = Z Li(fun), fn € Lan nd

G = [ foo [ [ Atz b ) Qi dzn) - Qi ) = 1)

where 0 < t; < ---t, < T. From E[F] = Iy(fo), Di-F = Y nl,_1(fu((t,2),-)), We
n=1
obtain

E[F] + /OT | EIDyFIFi-1Q(dt, d2)

T 0
= lo(fo) + E[)_ nlu-1(fu((t,2),"))| Fe-]Q(dt, dz)
0 JR 33

= Io(fo) + /T/ E[i n(n—1)T,-1(fu((t,2),-))| Fe=]Q(dt, dz)

=i+ o LB o [ ot )

xQ(dty,dzy) - - - Q(dt,—1,dz,—1)| Ft-]Q(dt, dz)

= Ip(fo) +Zn'/ // / /tz/fn (t1,z1,  tu—1,2Zn-1,12)

xQ(dtl,dzl) Q dt,_1,dz,_ 1)Q dt dZ)

= Io(fo) +Zn|/ //tn / /tz_/fn (t1,21,* s tn1,2Zn-1,tn,2n)

xQ(dty, dzy) - Q(dty—1,dz,—1)Q(dtn, dzy)
— (o) + 3 nTu(f)
n=1

= Io(fo) + Z In(fu) = Z In(fu) = F.
n=1 n=0
(2) The martingale representation theorem (see, e.g. Proposition 9.4 of Cont and Tankov

[15]) provides that
T T _
F] +/ (pgl_)dWS +/ / (ps(z_)xN(ds,dx)

@)
E[F] + / ¢ b= caw, + / Ps- N (ds, d)

(2 )

E[F] + / / (4’5 10 (x) + 7= leO(x)) Q(ds, dx),
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where ¢(1) and @) are L2(g x IP)-predictable processes. Since F € ID'?, Proposition
4.3.4 implies that

o) oV @
_ S— (pS X
Dy F = "%1{0}( )+ 11RO +/ / Di. ( 100 (x) + L1 (v )) Q(ds, dx).

Hence, we have

(1) (2)

_ @
E[D;,F| Fi_] = %1 (0 (2) + TE 1R, (2).
Therefore, we can see that gogl_) = 0E[D;oF|F;—] and %@,z = zE[D; . F|Fi-]. O

4.4.2 Girsanov theorem for Lévy processes

We recall the Girsanov theorem for Lévy processes (see, e.g., Theorem 12.21 of Di Nunno
et al. [20]).

Theorem 4.4.2 Let 05 < 1,5 € [0, T],x € Ry and us,s € [0, T|, be predictable processes such
that

T
/0 /]R {|log(1 — 0sx)|* + 62, }v(dx)ds < o, as.,
0

T
/ ugds < 00, a.s.
0

Moreover we denote

0

t
+/O /IR (log(1 — 6) -I-GS,x)v(dx)ds) te 0, T].
0
Define a measure P* on Fr by
dP* (w) = Z7(w)dP(w),

and we assume that Z(T) satisfies the Novikov condition, that is,

E [exp (%/ uds -|—/ i {(1—6s,x)log(1 — 0s,x) +95x}v(dx)ds>1 < oo,
0 0
Then E[Z1] = 1 and hence IP* is a probability measure on Fr. Furthermore if we denote
NP (dt,dx) := 6 ,v(dx)dt + N(dt, dx)

and .
AWE™ := wdt + dW;,

then N (-,-) and W¥" (-) are the compensated Poisson random measure of N(-,-) and a stan-
dard Brownian motion under IP*, respectively.
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4.5 A Clark-Ocone type formula under change of measure for

canonical Lévy processes

4.5.1 A Clark-Ocone type formula under change of measure for canonical Lévy
processes

In this section, we introduce a Clark-Ocone type formula under change of measure for
canonical Lévy processes. Throughout this section, under the same setting as Theorem
4.4.2, we assume the following.

Assumption 4.5.1

(1) u,u? € lL(l)'z; and 2usDy zus + z(Dy zus)? € L?(q x IP) for a.e. s € [0, T].

(2) 0 +1log(1—6) € 1%, and log(1 —6) € L1

(3) For g-a.e. (s,x) € [0, T] x Ry, thereisan esy € (0,1) such that 65, < 1 — € x.

(4) Zp € LA(P); and Zg{Dyolog Zrl gy (z) + it Ty (2)} € L2(g X P).

(5) F € DY2 with FZt € L>(P); and ZyDy . F + FDy,Z1 + zDy . F - Dy, Z1 € L?(q x P).
(6) FH},, H; Dy . F € L(P*), (t,z) -a.e. where Hf, = exp(zDy;log Zr —log(1 — 6;))

t,z’

To show the main theorem, we need the following;:

Lemma 4.5.2 We have

T Dy ofs v -
DioZr = Zr [—U‘lut . / Dy outsdWP” / / ORI (ds, dx) (4.5.7)
0 ]Ro

S X
for g-a.e. (t,z) € [0, T] x {0}, P-a.s. and
Di.Z1 = z ' Zr[exp(zDt . log Z7) — 1] for g—a.e. (t,z) € [0, T] x Ry, P—a.s., (4.5.8)

where

1

T
—5 (Dt,zus)zds

+ / /I; ((1 - es,x)Dt,Z log(]. - es,x) + Dtlzes/x) V(dX)dS
0
+ / D, log(1 — 05 )NT" (ds,dx) + z ' log(1 — 6; ;) (4.5.9)
Ry

for g-a.e. (t,z) € [0, T] x Ry, PP-as.

Proof. By conditions (1), (2) and (3) in Assumption 4.5.1, Propositions 4.3.3, 4.3.4 and
4.3.6 imply log Z1 € D2, Moreover, from (4) in Assumption 4.5.1, Proposition 4.2.9
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leads to Z1 € D2,
T 1 T
DtozT_ZT[ Dto/ e dW, — EDto/ 12ds
0
+ DtO/ log(1 N(ds, dx)
Ry

4 Dig / /]R (log(1 — Bs2) + 6s2)v (dx)ds}. (4.5.10)

and

exp(log Zt +zDy, log Z7) — Z1

D, Zt = - =z 1 Zr[exp(zDy log Z7) — 1].

We next calculate right side of (4.5.10). From assumption (1) in Assumption 4.5.1, Propo-
sition 4.3.4 implies

T T
Dig / W2ds = [ Dyoulds (4.5.11)
0 0
and by Proposition 4.3.6,

T T
Dio /O /]R (1og(1 — 8 x) + s x v (dx)ds = /0 /}R (Diolog(1 — fs,4) + Dyofs,)v(dx)ds. (4.5.12)
. 0 . 0
Since condition (1) in Assumption 4.5.1 holds, by Corollary 4.2.10, we have
Djou? = 2usDj gus. (4.5.13)

We calculate D;glog(1 — 6s ). From (3) in Assumption 4.5.1, we have 05 y < 1 — €5,. We
fix (s, x) € [0, T] x Ry. We denote

lsx(y) = —s;,%y + e;,% —1+logesx
and

[ log(1—y), y<1—eg5x
81 (]/) - { ls,x (y), y = 1—é&5y

Then, g5 € C'(R) and
log(1 — 6sx) = gs,x(0sx)-

Dy o6,
Moreover, we have ‘ T
$,X

< &51|Dyobs x| € L2(A x P) by =g < &y and 65, € D2
Hence, Proposition 4.2.9 implies that log(1 — 6;) € D> and

D t,0 95,x

Diolog(1 — 0s,x) = Di08sx(0s,x) = &6 (05,x) D obsx = — 1—6sx
s,
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From condition (1), (2) in Assumption 4.5.1, Proposition 4.3.3 implies
T T
Dio / usdWs = o Yus + [ Dy gusdW (4.5.14)
0 0
and

Dto/ / log(1 — 0s,x)N(ds,dx) / / D;glog(1 — 05 ) N(ds, dx). (4.5.15)

Hence, by (4.5.10) - (4.5.15), we obtain

T
DtozT_zT[ oLy, — /Dtoudes /usDtousds

/ / Dto@sx N(ds,dx) —i—/ / (_Dt,095,x +Dt095,x) V(dx)ds}
IRO Rg 1—0sx ’

D :
— 7, [—alut— / D gusdWF” / / L00s.x P (4 dx)]
0 Ry 1 — 0sx

We next calculate D; ; log Z.
By conditions (1) and (2) in Assumption 4.5.1, Proposition 4.3.3, Proposition 4.3.4 and

Proposition 4.3.6 show that

T 1 T 5
Di,logZt = —Dt,z/ usdWs — EDt,Z/ ugds
0 0
T
+ Dy, / x Hog(1 — 05)xN(ds, dx)
Ry
+th/ /]R 10g sx +95x) (dX)dS
0
_/ DtlzudeS - _/ Dt,z(us)zds
0 2 Jo
T
—i—/ / Dy, log(1 — 65 x)N(ds, dx)
0 JRy
Gtz)

! -0 0 dx\d l(wg(l; 4.5.1
Tk (Dtzlog(1 — 0s,x) + Di,205 1) v(dx)ds + - . (45.16)
0

Now we calculate Dy . (us)?. Corollary 4.2.10 implies

Dy (us)? = 2usDy zus + z(Dyz1s)?, (4.5.17)
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because, u € ID'? and condition (1) in Assumption 4.5.1 hold. From equations (4.5.16)
and (4.5.17), we have

1 T
D log Zr = / DyusdWP' = = [ 2(Dyzu)ds
+/ /IR sx thlog( sx) "’thesx) (dX)dS
0

+ / / D: - log(1 — 65,,) N (ds, dx) +z~ ' log(1 — 6 -).
0 JRr,
0

We next introduce a Clark-Ocone type formula under change of measure for canonical
Lévy processes.

Theorem 4.5.3

T
F = Ep:[F]+0 / Ep- [Dt,OF _TK,
0

T _ D%
+ / Ep: [F(H;, — 1) + zH}, Dy .F|F_|NY" (dt, dz), a5
0 JRo ’

holds, where

D :
K = / Dy ousdWP" + / / Drosix g (45, ).
]Rol_esx

Proof. First we denote A; := Z; L= plogZt 4 ¢ [0, T]. Then by the It6 formula (see,
e.g., Theorem 9.4 of Di Nunno et al. [20]), we have

1
ANy = Ai— (Eu% - /]R (log(1—6:,) + thz)v(dz)> dt
0

1 1 3
A dWi + = Ap_u?dt A —1) N(dt,d
+ AUy t+2 t—Ut +IR0 t (1_9t,z ) (dt, dz)

1
+ / |:At . — AN+ A log(l — 9t,z):| v(dz)dt
]RO 1 - Gt,Z

92
= Ar_ | uPdt + wdWy + L2 y(dz)dt + N(dt, dz
e T TR 1— 612 (d2) R01—9tz N( )
= Atf [utdWF* + LNP* (dt, dz)} .
]RQ — Utz

Denoting Y; := Ep«[F|F;],t € [0,T], we have Yy = A{E[Z7F|F}] by condition (5) in
Assumption 4.5.1 and the Beyes rule (see, e.g., Lemma 4.7 of Di Nunno et al. [20]). From
(5) in Assumption 4.5.1, Corollary 4.2.10 implies that ZrF € ID'2. Hence, Lemma 4.2.5
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implies that E[Z7F|F;] € D2 holds. We apply Proposition 4.4.1 to [E[Z7F|F}], then, by
Lemma 4.2.5, we have

E[ZrF|F] = B[ZrF] + /0 t | EIDsz(Z0F)|Fi-]Q(ds, d2)
Denoting V; := E[Z7F|F;], we have Y; = A4 V;. 1t6’s product rule implies that
dY, = Ar_dV, + Vi_dA; + d[A, V],
— Ar_[0E[Dyo(Z1F)|Fr]dW; + /]R (D (Z1F)| Fy-J2N(dr )]

9t,z
]Ro — Utz

+ Vi_ A {utdwgl’* + NP (dt, dz)}

Qtz
1 9[‘2

+ Ar_[owE[Dyo(ZrF)| Fi] + / E[Dy,(Z7F)|Fi_|zv(dz)]dt

6 -
AL / E[D: . (Z1F)|Fi_]zN(ds, dz)
]RQ 1 - QtZ

= A _E[0Dyo(Z7F)| Fi_JdAWE" + A¢_E[ZrFuy| Fi | dWE
E[D; . (ZrF)|Fi_]

+ Ap zN™" (dt, dz)
]RO 1 - 91’,2

+ At / E [ZTF dE: }"t_] N™" (dt, dz). (4.5.18)
]RO 1 - Gt,Z

Now we shall calculate D; g(Z71F) and Dy, (Z7F). As for D;o(Z1F), by (5) in Assumption
4.5.1, Corollary 4.2.10 yields that

Dt,O(ZTP) = FDt,()ZT + ZTDt’QF. (4.5.19)
Therefore combining (4.5.19) with (4.5.7), we can conclude

Dio(ZrF) = FDroZr + ZrDyoF

T Dy o0
= FZT |:—0'_11/lt —/ Dt,OuSdWS / / L0 SxNH) d dX) +ZTDt,()F
0 Ro 1-— 95 X

—7r [Dt,op _F (a*lut n Kt>] : (4.5.20)
Next we calculate D;(Z7F). From condition (5), Corollary 4.2.10 implies that
Dy.(Z7F) = FD;,Z7 + ZyDi,F + 2Dy . Z7 - Dy . F. (4.5.21)

From (4.5.8), )
Dt,ZZT =7z ZT[(l — et,Z)sz — 1] (4522)

Therefore, combining (4.5.21) and (4.5.22), we obtain
Dy (Z7F) = 2 ' Z7[(1 — 6;2)Hf, — 1JF + Z7Di2F + Z1[(1 — 612) Hy, — 1]Dy . F
— Zp [z*l((l —6:.)H;, — 1)F + (1 — Ot,Z)Ht*,ZDt,ZF} : (4.5.23)
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From (4.5.18), (4.5.20), (4.5.23), we arrive at:
dYy = A E |:ZT [UDt,OF —F (Mt + O'Kt)] ‘ft_} th '

1 -
+ A / E lZT [P (Ht*Z — —) + szth,zF} ‘]—}] NP (dt, dz)
]RO ¢ 1 - Qt,Z i’

Qt,z
]. - et,z

4 Ar_E[ZrFug| Fr_|dWP + A, /IR E {ZTP
0

}"t_} NP (dt, dz)

= O'Atf]E |:ZT [Dt,OF — FKt]

ft] dWF"

+At_/ E [ZT{F (Ht*,z — 1) +ZszDt,zF}':Ft—:| NP* (dt,dz).
Ry

From (1) and (2) in Assumption 4.5.1, we have K; € L?(IP) t-a.e. Hence, by (5) in As-
sumption 4.5.1,

IE]P*HFKtH = IEHFKf’ZT] < (]EHKt’2])1/2(IEHPZT|2])1/2 < oo,
Moreover, from (5) in Assumption 4.5.1, we have D;oF € L?(IP) t-a.e. and
Ep:[|DeoF|] = B[|DyoF|Zr] < (E[|DyoF )/ (E[Z3))'/2 < oo.

Then, by (6) in Assumption 4.5.1 and F, D; oF, FK; € L!(IP*) t-a.e., the Beyes rule implies

dY; = cEp- [le—" — FK; ]-"t} AWE" + /m Ep: [F(Hf, — 1) + zH}, Dy .F| F1_|NT" (dt, dz).
0

(4.5.24)

Since Y; = Ep+[F|Fr| = F,Y(0) = Ep+[F|Fy] = Ep-[F|, Integrating equation (4.5.24)
gives

T
F — ]EIP* [F] = 0'/ ]E]p* |:Dt,0F — FK;
0

J—"t_} AWl
T -
n /O [ Ep [F(Hj. — 1) + 2H.DyFI F JN¥" (d, d2),
0

The proof is concluded. 0

Remark 4.5.4 1. Ifc =0, u =0andv # 0, then, zD; ,F = D(tlz)P, we obtain a COCM
for pure jump Lévy processes:

T _ Dk
F = Ep:[F] + /0 /]R Ep- [F(H*(t,2) — 1) + H{. Dy . F| Fi- | NP (dt, dz),
0
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where

, r D(tz)05x
Hf,z = exp //]R D(t/Z)GS,x) + IOg 1— m (1 — Gs,x) V(d.X')dS
0 4

+ [ o (1 D) N )

and D, ) F is a Malliavin dzﬁference operator for pure jump Lévy functionals defined in
Definition 12.2 in Di Nunno et al. [20] (see Definition 4.5.5).

2.Ifc #0,0 = 0,and v = 0, then, D;oF = o 1D,F and we can derive a COCM for
Brownian motions:

T T N y
F = Ep:[F] + / Ep- [DtP—P / Dyusd WP ‘]—"t} AW,
0 0

where DyF is a classical Malliavin derivative (see Definition 2.1.3). See also Definition 3.1
in Di Nunno et al. [20].

Definition 4.5.5 (Malliavin difference operator for pure jump Lévy functionals) For
n € N and for

hn E LT)\XV?’I = {hn . ([0, T] X ]RO)TZ — R .
[ /([O ey (B2, (b ) Pativ(az) - dv(an) < o),
1| X1kg

T)\><vn

we denote

L (hy) = /([O o021 (b2 N Ghy21) o N 20),

For F € IDl'2 = {F = )_IL(fx) € L*(P Znn ||fn|| < oo}, the Malliavin
n=0 v
difference operator for pure jump Lévy functionals is deﬁned by
Dt F = ) nlya(fu((t,2),))
n=1

,Axv—ae. (tz) €[0,T] x Ry, P-as.

Remark 4.5.6 To see different points, we review a result of Okur [38]. Let us denote PV the
Gaussian white noise probability measure on (Qw, F}' ), where the sample space is the Schwartz
space 8'(R) and Fy = o{W(s),s < t} VN, Vt € [0, T]. We denote P the pure jump Levy
white noise probability measure on (0,7,]: ), where the sample space is the Schwartz space
S'(R) and Fy = o{n(s) = [; IR, xN(du,dx),s < t} VN, ¥Vt € [0,T). Here N7 and

N denote PW-null and P1-null sets respectively. Let QO = S'(R) x S'(R), F¥ @ FL. Then,
we have a unique measure on the product o-algebra such that P = P" x P" and

P(A) = PY(AMYP1(AT), AV e FYY, ATe Fl, A= AW x AT,
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The orthogonal basis for L?(IP) is the family of K, with K[ 2p) = ol = aM1a@1 and
Ky := H o) («') - K ) (w"), where (W, ") e, u= (oc(l),oc(z))

and {a(i)}i:u € I are multi-indexes defined in section 2 of Okur [38], Hy and K, are the
orthogonal basis for L>(IP")) and L?(IP") respectively. Moreover, for all F € L?(IP), there exist
unique constants c, such that

Flw) =) cK(w)

x€l?

and we have
”F”%z(]p) = Z caocl.

a€el?

For F € L?(IP) with some condition, Hida Malliavin derivatives are defined as

1
DtP = Z ZC"‘“Z'( )]K“(l)_eie,-(t),

acl?i>1

and

DixF= ) ana,(jg,j)ei(t)pj(x),

acl2i>1

where ek = (0,---,0,1,0,---,0) with 1 in the k th position, k(i,j) = j+ w,

{ei(t) }i=o C S(R) are Hermite functions on R and p;(x) = [|l;_4 HL_Zl(xZV li_1(x), where

(dx))*
lo,11,1p, - - - Y with Iy = 1 is the orthogonalization of {1, x, x2,- - - } with respect to inner prod-
8 P P
uct of L?(x*v(dx)).
In this setting, Okur derived the following equation:

T T N "
F = ]E]p* [P] —|—/ IE,]p* [DtF — F/ Dtusdwgp ’ft} th
0 t
T ~ T
+/0 [ Ep[F(H" 1)+ H'Dy.F| AN (dt, d),
0

for any F € L2(Fr;P), where

* T Dt xesz
H = eXp / / Dt’xes,z + log 1 - : z (1 - 65,2) V(dZ)dS
t Ry 1—- 95,2
T Dt xesz) P * )
1 1———>= )N (ds,d .
+/t /IRO 8 ( 1-— GS/Z ( ’ Z)

Of course, to show this equation, we need more conditions, for more detail, see Okur [38].

Corollary 4.5.7 Assume in addition to all assumptions of Theorem 4.5.3, that u and 6 are deter-
ministic functions, then we have

T * T ~ Tk
F=Ep[F] +0 / Ep- [Dy oF| Fi_|dWF" + / /IR Ep- Dy F| Fr_|zN®" (dt, dz).
0 0 0
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Proof. If u and 6 are deterministic functions, then we have D ;u(s) = 0 = D;.0(s, x)
and H*(t,z) = 1. Therefore, thanks to Theorem 4.5.3, we can get the claimed equation.
O

Remark 4.5.8 If F € D2, u = 0 and 0 = 0, then, we can see that assumptions of Theorem
4.4.2 and Assumption 4.5.1 hold and we obtain equation (4.4.6).

4.5.2 Poincare type inequalities and log-Sobolev type inequalities

We next consider Poincare type inequalities and log-Sobolev type inequalities as Corol-
lary of Theorem 4.5.3.

Corollary 4.5.9 Weassume that 0;, € [—1,1) for (t,z) € [0, T] x R is a nonrandom function.

1. Under all assumptions of Theorem 4.4.2 and Assumption 4.5.1, we have
T
Ep:[(F — Ep: [F])?] <0 [ Ep: [|DyoF — K] at
0
T *
n /O /IR Ep- [|F(H;, — 1) + zH;, Dy FPv® (dz, dt),
0
where V¥ (dz,dt) = (1+ 6, ,)v(dz)dt.

2. Let F € DY with F > 5 for some 1 > 0 and we assume that Fi— = F; for all
t > 0. Moreover, we denote Uy = Ep-[F|F;] and we assume that U; > 0 and Uy +
Ep+[F(Hf, — 1) + zH},D; . F|Fi] > 0. Then, under all assumptions of Theorem 4.4.2
and Assumption 4.5.1, we have

1, (T —1 2
Ex:[Flog F] — Ep+ [F] log Ep: [F] < 50 / Ep- [ut Dy oF — FK;| ]dt
0
T *
+/ / Ep: [U; | E(Hf, — 1) + zH} Dy - F2JVP" (dz, dt).
0 JRg / /

Proof.
1. Theorem 4.5.3 implies that

Ep-[(F — Ep+[F])?] = Ep- [(a /0 "Ep. {DWP _ FK;

T . 2
+ /0 | Ep: [F(Hj, 1) +zHj. Dy .F| 7 |N” (dt,dz)) ]
0

T 2
— 0'2 / Ep+ ft_}
0

T *
+ /0 [ Ep [Ep [F(Hj. = 1) + 2H}.DyF|Fo 0" (dz, 1
0

Ep- {Dt,OF — FK; dt
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T
< (72/ Ep- [|Df,OP—F1<f|2} dt
0
T *
+ / / Ep-[|F(H, — 1) + zH, Dy . F 2™ (dz, dt),
0 JRr, ' '

where we use the Jensen’s inequality and It6 isometry.

2. First we denote {; = [Ep+[DioF — FK¢|F;] and &1 = Ep«[F(Hf, — 1) +
zH{,Dy.F | Ft]. The Itd formula (see, e.g., Theorem 9.4 of Di Nunno et al. [20])
implies that

F IOg F — IE,]p* [F] IOg IE.]p* [F]
T N 1 T
—0 / (log Us + 1)ZidWF” + S0 / u; g2t
0 0
T
-I-/O /]R {(U; + &2) (log (U + &t2) — U log Uy
0
— (log Us + 1)& ., }W¥ (dz, dt)
T ~ TP*
[0 U+ &) Gog(Us +812) — Us log Uy} N (at, )
0
Then, we obtain
Ep- [Flog F] — Ep+ [F] log Ep-[F]
1 r T
= 50%Ep (| U7 + B[ [ {(Us+ &) Qog(Us + 1)
0

— Ulog Uy — (log Uy + 1)@,2}1/]1)* (dz,dt)]

1 T T _ .

giazﬂzp[ / U, 1¢2dt] + Ep-| / / u, e " (dz,dt))
0 0 JRy

<L /T]E]p* [U‘1|Dt0F — FKtH dt

) 0 t ,

T *
+ /0 [ B (U F(H, — 1)+ 2HL Dy P (dz,de),
0

where we use the Jensen’s inequality and the following inequality:

2
(x +y)log(x+vy) —xlogx —y(1+logx) < %,x >0,x+y>0.

Remark 4.5.10 1. Assume in addition to all assumptions of Corollary 4.5.9, that u and 0

are deterministic functions, then, we obtain a Poincare’s inequality for Lévy functionals on
P*:
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T T .
Ep-[(F—Ep[F)?) <0 [ Ep. [IDyoFP]dt+ [ [ Ep[zDy PPV (dz,at)
0

2.IfF € DY2, u = 0and 6 = 0, then, we can see that all assumptions of Theorem 4.4.2
and Assumption 4.5.1 hold and we obtain a Poincare’s inequality for Lévy functionals:

T
EI(F-E[F)? < [ [ E(D-Fq(dt,d2)
3. Assume in addition to all assumptions of Corollary 4.5.9, that u and 6 are deterministic
functions, then, we obtain a logarithmic Sobolev inequality for Lévy functionals on IP*

1, (T B
Ey:[Flog F] — Ep: [F] log Ep: [F] < 502 /O Ep- [ut 1|Dt,0P|2} dt
T *
+ / / Ep: [U; 2D . FP0™ (dz, dt).
0 JRr,

4. Assume in addition to all assumptions of Corollary 4.5.9, that u = 0 and 6 = 0, then, we
obtain a logarithmic Sobolev inequality for Lévy functionals:

T
E([Flog F] — E[F] log E[F] < %02/ E [u;lyDt,oFF] dt
0

T
+ / / [U; Y |2Dy . F2Ju(dz, dt).
0 JRg
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Chapter 5

Local risk minimization for Lévy
markets

In this chapter, we obtain explicit representations of locally risk-minimizing
by using the results of previous chapter. For incomplete market models
whose asset price is described by a solution to a stochastic differential
equation driven by a Lévy process, we derive general formulas of locally
risk-minimizing including Malliavin derivatives; and calculate its concrete
expressions for call options, Asian options and lookback options.

The content of this chapter is based on Arai and Suzuki [5].

5.1 Introduction

In this chapter, we obtain explicit representations of locally risk-minimizing by using
Malliavin calculus for Lévy processes given by previous chapter.

Locally risk-minimizing (LRM, for short) is a well-known hedging method for contin-
gent claims in a quadratic way. Theoretical aspects of LRM have been developed to a
high degree. On the other hand, the necessity of researches on its explicit representations
has been increasing. From this insight, we aim to obtain explicit representations of LRM
for incomplete market models whose asset price process is described by a solution to a
stochastic differential equation (SDE, for short) driven by a Lévy process, as a typical
framework of incomplete market models. In particular, we use Malliavin calculus for
Lévy processes to achieve our purpose.

LRM has more than two decades history. There is so much literature on this topic.
Among other things, Schweizer [45] and [46] are useful to understand an outline. LRM
has an intimate relationship with Follmer-Schweizer decomposition (FS decomposition,
for short), which is a kind of orthogonal decomposition of a random variable into a
stochastic integration and an orthogonal martingale. As the first step, we focus on de-
riving a representation of FS decomposition under some mild conditions by using the
martingale representation theorem. In order to compute its explicit expressions, we use
Malliavin calculus. Note that we adopt the approach, undertaken by Solé, Utzet and
Vives [49], of Malliavin calculus for Lévy processes on canonical Lévy space. As a result,



52 Chapter 5 Local risk minimization for Lévy markets

using the Clark-Ocone type formula under change of measure shown by Suzuki [50],
[51] (see previous chapter), we will formulate general representations of LRM including
Malliavin derivatives of the claim to be hedged.

In the second half of this chapter, we derive formulas on representations of LRM for
three typical options. Firstly, we shall study call options, whose payoff is not smooth as
a function of the asset price at the maturity. Thus, the chain rule is not available to calcu-
late Malliavin derivatives for call options. Instead, we use the mollifier approximation.
Moreover, we illustrate a concrete expression of LRM for the models whose asset price
process is a solution to an SDE with deterministic coefficients. Next, Asian options will
be discussed. Thirdly, we shall deal with lookback options, whose payoff is depending
on the running maximum of the asset price process. Actually, we need complicated cal-
culations to get Malliavin derivatives of the running maximum. For lookback options,
we shall focus only on the exponential Lévy case; and derive Malliavin derivatives by
using an approximation method.

Summarizing the above, our main contribution is threefold as follows:

1. formulating representations of LRM with Malliavin derivatives for Lévy markets,

2. illustrating how to calculate Malliavin derivatives for non-smooth functions of a
random variable, and the running maximum of processes by using approximation
methods.

3. introducing concrete representations of LRM of call options, Asian options and
lookback options for Lévy markets.

This chapter is structured as follows: In Section 5.2, we prepare some terminologies;
and give model descriptions, mathematical preliminaries and standing assumptions. We
also introduce in Section 5.2 examples satisfying our standing assumptions. General rep-
resentations of LRM are introduced in Section 5.3. Call options, Asian options and look-
back options are studied in Sections 5.4, 5.5 and 5.6, respectively. Section 5.7 is devoted
to concluding remarks.

5.2 Preliminaries

5.2.1 Model description

We consider, throughout this chapter, a financial market being composed of one risk-free
asset and one risky asset with finite time horizon T. For simplicity, we assume that the in-
terest rate of the market is given by 0, that is, the price of the risk-free asset is 1 at all times.
The fluctuation of the risky asset is assumed to be given by a solution to the following
stochastic differential equation (SDE, for short) on canonical space (Q, 7, P; { Fi }e(o,1)):

dS; = Ss_ [octdt + ﬁtth + /IR ’)’tlzﬁ(dt, dz)} , S90>0, (5.2.1)
0

where «, B and -y are predictable processes. Recall that <y is a stochastic process measur-
able with respect to the o-algebra generated by A x (s,u] x B,A € F;,0<s <u < T,
B € B(Rp). Now, we assume the following:
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Assumption 5.2.1 1. (56.2.1) has a solution S satisfying the so-called structure condition

(SC, for short). That is, S is a special semimartingale with the canonical decomposition
S =Sy+ M + A such that

o

where dAM; = S;— (BrdW; + f]R ’nZN(dt dz)) and dA; = S octdt Moreover, defining

a process Ay 1= S+ f]RO %/Z V(@2 we have A = [ Ad(M). Thirdly, the mean-

variance trade-off process Ky 1= fot A2d{M)s is finite, that is, Kt is finite P-a.s.
2.y, > —1, (t,z,w)-a.e., that is, E UOT f]Ro l{wzg_l}v(dz)dt} =0.

< oo, (5.2.2)
L2(P)

Remark 5.2.2 1. The SC is closely related to the no-arbitrage condition. For more details on
the SC, see Schweizer [45] and [46].
2. The process K as well as A is continuous.
3. (5.2.2) implies that sup, (o 1) |St| € L?(IP) by Theorem V.2 of Protter [40].
4. Condition 2 ensures that Sy > 0 forany t € [0, T].

5.2.2 Locally risk-minimizing

We define locally risk-minimizing (LRM, for short) for a contingent claim F € L?(P).
The following definition is based on Theorem 1.6 of Schweizer [46].

Definition 5.2.3 1. ©g denotes the space of all R-valued predictable processes & satisfying

E [/OT¢%d<M>t+</OT|¢tdAt|>Z] < oo

2. An L2-strategy is given by a pair ¢ = (¢,7), where & € @g and 1 is an adapted process

such that V(@) := ¢S + 1 is a right continuous process with E[V?(¢)] < oo for every
€ [0, T]. Note that &; (resp. 1) represents the amount of units of the risky asset (resp.

the risk-free asset) an investor holds at time t.

3. For F € L2(IP), the process CF () defined by Cf (¢) := Fly—m + Vi(e) — f(f CsdSs is
called the cost process of ¢ = (¢, 1) for F.

4. An L%-strategy ¢ is said locally risk-minimizing for F if Vp(@) = 0 and CF(g) is a
martingale orthogonal to M, that is, [CF (¢), M] is a uniformly integrable martingale.

The above definition of LRM is a simplified version, since the original one, introduced in
Schweizer [45] and [46], is rather complicated

Now, we focus on a representation of LRM. To this end, we define Follmer-Schweizer
decomposition (FS decomposition, for short).
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Definition 5.2.4 An F € L?(IP) admits a Follmer-Schweizer decomposition if it can be described
by
T
F=F+ / &Fds; + LE, (5.2.3)
0

where Fy € R, ¢F € @g and LF is a square-integrable martingale orthogonal to M with L5 = 0.

Proposition 5.2 of Schweizer [46] shows the following:

Proposition 5.2.5 (Proposition 5.2 of Schweizer [46]) Under Assumption 5.2.1, an LRM
¢ = (&, n) for F exists if and only if F admits an FS decomposition; and its relationship is given
by
t
& =28, m=F +/0 §ydSs+ Ly — Fly_ry — & St.

As a result, it suffices to obtain a representation of & in (5.2.3) in order to obtain
LRM. Henceforth, we identify CF with LRM. To this end, we consider the process
Z := &(— [ AdM), where £(Y) represents the stochastic exponential of Y, that is, Z is a
solution to the SDE dZ; = —A;Z;_dM;. In addition to Assumption 5.2.1, we suppose the
following;:

Assumption 5.2.6 Z is a positive square integrable martingale; and ZtF € L?(IP).

A martingale measure P* ~ [P is called minimal if any square-integrable IP-martingale
orthogonal to M remains a martingale under IP*. We can see the following;:

Lemma 5.2.7 Under Assumption 5.2.1, if Z is a positive square integrable martingale, then a
minimal martingale measure IP* exists with dIP* = ZrdP.

Proof.  Since d(ZS) = S_dZ +Z_dM + Z_Ad{M) — Z_Ad[M], the product process
ZS is a IP-local martingale. So that, defining a probability measure IP* as dIP* = Z1dD,
we have that S is a P*-martingale, since sup;c(, 7y [St| and Zr are in L?(IP). Next, for

any L a square-integrable IP-martingale with null at 0 orthogonal to M, LZ is a IP-local
martingale. By the square integrability of L, L remains a martingale under IP*. Thus, IP*
is a minimal martingale measure. 0

Example 5.2.8 We introduce a model framework under which Assumption 5.2.1 is satisfied, and
Z is a positive square integrable martingale. We consider the following three conditions:
1. vtz > =1, (t,z,w)-ae.
2. supyepo 7y (lael + BF + Jg, 172v(d2)) < C for some C > 0.
3. There exists an € > 0 such that
XYtz
Bt + Jr, 752v(d2)

<1l—¢ and B? +/ Y2 u(dz) > ¢, (t,z,w)-ae.
Ry
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The above condition 2 ensures the existence of a unique solution S to (5.2.1) satisfying

sup |S¢| € L*(IP)
te[0,T)

by Theorem 117 of Situ [48]. The first condition of Assumption 5.2.1 is seen as follows: Firstly, we
have H fOT |dAs| ) < C*TZE[sup;c (g 11 [St[*] < co. Next, by the Burkholder-Davis-Gundy
inequality, there exists a C > 0 such that

E[[M]7] < CE | sup |Mt|2]
te[0,T]
gC{lE sup [Si|*| 4 [So|* +E | sup |As|? }<00
te[0,T) te[0,T]

Thus, all conditions of Assumption 5.2.1 are satisfied.
On the other hand, the above condition 3 guarantees the positivity of Z. Noting that Z is
a solution to dZy = —A;Zi_dM;, we have SUP;co,7] |Z| € L?(IP) by using Theorem 117 of

Situ [48] again. In addition, since | fOT A?d[M];] < oo by conditions 2 and 3, the process
— Jo AsdM is a square integrable martingale by Lemma on p.171 of Protter [40]. Thus, the

process — [y AsZs—dMs is a local martingale, that is, so is Z. Theorem 1.51 of Protter [40]
implies that Z is a square integrable martingale. Hence, a minimal martingale measure exists by
Lemma 5.2.7.

5.2.3 Barndorff-Nielsen and Shephard model

We introduce what we call Barndorff-Nielsen and Shephard model as one more example
which satisfies Assumption 5.2.1 and the square integrable martingale property of Z.
This is an Ornstein-Uhlenbeck type stochastic volatility model, undertaken by Barndorff-
Nielsen and Shephard [7], [8]. Let H be a subordinator without drift, that is, a non-
decreasing, pure jump and no diffusion component Lévy process with Hy = 0. Note that
its Lévy measure v satisfies v((—c0,0)) = 0and [, (z A 1)v(dz) < oo by Proposition 3.10
of Cont and Tankov [15]. In addition, we assume that fooo z2v(dz) < oo, that is, the square
integrability of H. Suppose that the underlying Lévy process X is given as X = W + H,

where H is the compensated process of H. Now, we define a process X2 as a solution to
the following SDE:

t
z%:zg—R/o >2ds + H;,

where £§ > 0and R > 0. By simple calculations, we have £7 = e RIZZ + [Fe fomR(=9)dH.
In addltlon we define

1 ot t
L= yt—i/ 23ds+/ 5, dW, + oH:,
0 0
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where p € R and p < 0. Note that we restrict the coefficient of the second term to
— 7 for the sake of simplicity. Now, the asset price process S is assumed to be given by
St = Spexp(L¢) with Sy > 0, that is, a solution to the following SDE:

dS; = S;_ {adt + S dWi 4 | (eP* —1)N(dt, dz)}, (5.2.4)

Ro
where a := y + f]Ro (eP* — 1)v(dz). Note that the SDE (5.2.4) does not satisfy condition
2 of Example 5.2.8. The goal of this subsection is to confirm that the above model sat-

isfies Assumption 5.2.1 and that Z is a positive square integrable martingale under the
following additional assumptions:

Assumption 529 1. [“exp { 1"’_RTZ} v(dz) < o
2. a>00re Rog + [i (e —1)%v(dz) > [a].
Remark 5.2.10 There are two typical examples of the Barndorff-Nielsen and Shephard models.

One is the case where ¥ follows an inverse Gaussian distribution, that is, the process ¥.2 is given
as an IG-OU process. The corresponding Lévy measure is given as

3
2

a 1
v(dz) = z72(1+ b%z) ex {——bzz} 1 dz,
( ) 2\/7_( ( ) p 2 {z>0}
where a and b are positive constants. Whenever %bz > 2
5.2.9 is satisfied as well as [, z*v(dz) < oo,
The other is the Gamma-OU case. In this case, £? follows a Gamma distribution; and v(dz)
is given as v(dz) = abe_bzl{z>0}dzfor a>0andb > 0. Ifb > 21*‘};1“, then condition 1 of

Assumption 5.2.9 is satisfied. For more details, see Schoutens [42].

=0 L, Condition 1 of Assumption

As for Assumption 5.2.1, it suffices to see [E [supt co1] 15t \2} < o0 by the same manner
as Example 5.2.8. On the other hand, the second condition of Assumption 5.2.9 ensures

the positivity of Z. Since E| fOT A?d[M];] < oo, the square integrable martingale property
of Z is shown by the same way as Example 5.2.8.

Lemma 5.2.11 E [supte[O/T] |5t|2] < 0.

Proof.  Step 1. Denoting, for t € [0, T]
My = /tz AW —1/tzzds+ H +t/ [—ef* + 1)v(dz)
t = 0 5 sT 5 ) 7 Pt R,
t 1 rt 5 t ~
:/0 ZSdWS—E/O sts+p/0 /IRO zN(ds,dz) +t Ro[pz—epz+1]v(dz),

we see that eM is a martingale. From the view of Theorem 1.4 of Ishikawa [25], we have
only to make sure the following three conditions:
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(1) (1 — e#%)2u(dz) < oo,

2) [y (pzef* +1 — eF*)v(dz) < oo

3)E [exp (% fOT ngsﬂ < 0.

Since 1 — e”* < |p|z for any z > 0, we have [°(1— e?)2u(dz) < [ p?22v(dz) +
[7 v(dz) < oo;and [; pzePZ+1 —ePZ) (dz) <[5 (1 —eP*)v(dz) <[5 |plzv(dz) < oo.
As for (3), setting B(t) := % (1 — e ®t) for t € [0, T], we have

E [exp (% /()ngdsﬂ =E [exp < ¥3B(T 2/ T—s dHSH
< exp (1226( >) [exp (@)} .

By Proposition 3.14 of Cont and Tankov [15], Assumption 5.2.9 ensures E [exp (B(TZ)HT ) ] <
Q. =N
Step 2. Next, we see E[e?M7] < co. We have

~ T T T
oMy = 2/ = dW, —/ 2245 —|—2p/ / 2N(ds,dz) +2T [ [0z — e + 1)v(dz)
0 0 R, R,
= Yr+ B(T)Z3 + / / [e8(5)2 — 2eP7 4+ 1]v/(dz)ds

where g(s) := B(T —s) +2p and

— 2 — o8(s
Y = 2/ Y dW, — 2/ by ds—i—/ /lRo ZN (ds,dz) +/ /lRo s)z—e + 1]v(dz)ds.
Because 2p < g(s) < B(T) +2p forany s € [0, T],

( 8) — 1), ifg(s) >0,z € (0,1),
11— e80)7 < { e8(5)2 ifg(s) >0,z>1,
—g(s ) if g(s) <0,z >0,

and Assumption 5.2.9, we have fOT f]Ro e8()2 — 1|y(dz)ds < oo. Moreover, we have
Jo (1 —ef*)v(dz) < co. We have then E[e2Mr] < o0 if E[e?T] = 1.

Step 3. We show E[e'T] = 1. By Theorem 1.4 of Ishikawa [25], it suffices to see the
following
@) S f57 {1 8622 4 g(s)222 4 |g(s)zes % 41— e8| L u(dz)ds < o,
5)E [exp (2 fo ngsﬂ < oo,
(4) is reduced by the same sort argument as Step 2 and

g(s)ze8©), if g(s) >0,z € (0,1),

8(s)ze80)%| < { e%8s)z7, ifg(s) >0,z >1,
—g(s)z,  ifg(s) <0,z >0.
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As for (5), Assumption 5.2.9 and the same argument as Step 1 yield

E [exp (2 /OT ngs)} < exp(2Z3B(T))E [exp(2B(T)Hr)] < co.

Step 4. Since we have 2Ly = 2ut + 2M; + 2t [ (eP* — 1)v(dz) < 2(uV 0)T + 2M;, the
Doob inequality yields

sup ]St]2] = SZE | sup eZLt] < 822VOTE | sup esz]
t€[0,T] t€[0,T] t€[0,T]
< 4S32IVOTE [2M1] < oo
by Steps 1-3. O

5.3 Representation results for LRM

In this section, we focus on representations of LRM (’,‘F for claim F. First of all, we study
it through the martingale representation theorem.

5.3.1 Approach based on the martingale representation theorem

Throughout this subsection, we assume Assumptions 5.2.1 and 5.2.6. Let IP* be a minimal
martingale measure, that is, dIP* = Z7dIP holds. The martingale representation theorem
(see, e.g. Proposition 9.4 of Cont and Tankov [15]) provides

T T -
ZoF = Ep [F] + /0 AW, + /0 /IR gL N(dt, dz)
0

for some predictable processes g and g},z. By the same sort of calculations as the proof

of Theorem 4.5.3, we have

81 + E[ZrF| Py Juy
Zi—

+/ 8tz+IE [Z7F|Ft-]0t,.
Ry 1_9tz)

T *
F = Ep-[F] +/ dW;

NP (dt, dz)

=: Ep- P]+/ hOth +/ / hi NT"(dt,dz)

where us = /\tSt_,Bt, Bt,z = AtSt_'yt,Z, th = th + Mtdt and f\vfﬂj* (dt,dz) =
N(dt,dz) + 0; ,v(dz)dt. Girsanov’s theorem implies that W™ and N are a Brownian
motion and the compensated Poisson random measure of N under IP*, respectively.
Additionally, we assume that

IE[/O {ho + / (h, }dt} (5.3.1)
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Denoting i := hf — ;S By, it , := b} , — &S~ 1,2, and

= 200 + . emaviaz), (5:32)

we can see

ﬁﬁr+/“i;vmvwzw=o
Ry

for any t € [0, T], which implies {%u; + fIRo it ,0¢2v(dz) = 0. We have then
T T . T .
F — Ep-[F] / FdS; — / 0aWP + / / iL_NP" (dt, dz)
0 0 0 Jry 7

T T -
- / 04w, + / / iL_N(dt, dz).
0 0 JRy

The following lemma implies that L := ]E[F Ep+[F] — fo CsdSs|Ft] is a square inte-
grable martingale orthogonal to M with Lf = 0.

Lemma 5.3.1 Under Assumptions 5.2.1 and 5.2.6, and (5.3.1), we have

[/ i0 2dt+/ /IRO dzdt}

) 2
) :Bt ‘[]RO ’yt/xl/(dx)
Proof. Noting that and BT+ Jig 77V ()

BT+ Jry Vv (dx) are less than 1, we have

/ B0 + 7 (Ui, Mamav(an))”

O (Bt gy ()
/a~ﬁ%a£>2+-ﬁ21ﬁ )PV (d) fy ()
° (52+f]R 12 dx)>

gzlE:/O {ho +/ (hi. }dt]

By the same way as the above, we can see [E [ fo f]Ro &2s2. ’yt . (dz)dt] Together with
(5.3.1), Lemma 5.3.1 follows. [

T
E [ / gfs%_ﬁ%dt} < 2E
0

dt

Consequently, we can conclude the following:

Theorem 5.3.2 Assume that Assumptions 5.2.1, 5.2.6, and (5.3.1). We have then & = & de-
fined in (5.3.2).
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In the above theorem, a representation of LRM ¢' is obtained under a mild setting. Since
the processes h” and h! appeared in (5.3.2) are induced by the martingale representation
theorem, it is almost impossible to calculate them explicitly, and confirm if (5.3.1) holds.
In the rest of this section, we aim to get concrete expressions for h° and h! by using
Malliavin calculus.

5.3.2  Main results

We now calculate ° and h! by using Theorem 4.5.3. Together with Theorem 5.3.2, we
obtain the following:

Theorem 5.3.3 Under Assumptions 5.2.1,5.2.6 and 4.5.1, h° and h' are described as

W0 = ¢Ep+ |D;oF — F ' D, audWP” T Di0s,x ~p+
i = 0Ep+ | Do tousdWg  + N (ds,dx)| |Fi—|, (5.3.3)
I 0 ’ 0 JRy1—6sx

hi, = Ep-[F(H}, — 1) +zH{, Dy .F| F;_]. (5.3.4)

Moreover, LRM ¢&F is given by substituting (5.3.3) and (5.3.4) for h° and h' in (5.3.2) respec-
tively, if (5.3.1) holds.

Remark 5.3.4 1. LRM for Lévy markets has been also discussed in Vandaele and Vanmaele
[52] without Malliavin calculus. They considered the case where all coefficients in (5.2.1)
are deterministic; and studied LRM for unit-linked life insurance contracts.

2. Benth et al [9] also concerned a similar issue by using Malliavin calculus. They however
studied minimal variance portfolio which is different from LRM, and considered only the
case where the underlying asset price process is a martingale.

3. Yang et al. [54] derived an explicit representation of LRM for a European call option in the
Hull and White model by using the Malliavin calculus in Wiener space. They also give a
numerical result of it.

In order to calculate LRM concretely through Theorem 5.3.3, we need to confirm if all
the assumptions in Theorem 5.3.3 are satisfied for a given model. But, it seems to be a
hard work. So that, we introduce a simple framework satisfying all the assumptions.

Example 5.3.5 We consider the case where a, B and <y in (5.2.1) are deterministic functions
satisfying the three conditions in Example 5.2.8. Additionally, we assume that

Z7F € L?(IP), and condition 5 in Assumption 4.5.1. (5.3.5)

Now, we confirm if this model satisfies all the conditions in Theorem 5.3.3. Remark that we
discuss this framework in sections 5.4 and 5.5 again for the case where F is a call option or an
Asian option.

As seen in Example 5.2.8, Assumption 5.2.1 is satisfied; and Z is a positive square integrable
martingale. Thus, together with the above additional condition, Assumption 5.2.6 is satisfied.
Since u is bounded and deterministic, condition 1 of Assumption 4.5.1 is satisfied. Since 6 is
deterministic, the third condition in Example 5.2.8 ensures that condition 3 holds with e € (0,1)
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independent of (t,z) € [0, T] x Ro. Note that |x +log(1 — x)| < 5|x|?, and |log(1 — x)| <
— %82\ x| hold for any x < 1 —e. Then, fOT Jig 101z?v(dz)dt < oo implies condition 2. As
for condition 4, noting that Propositions 4.3.4 and 4.3.3; and Proposition 4.3.6, we can see that
log Zr € D2, and Dz log Zr = —0 tuslygy (2) + 27 Hog(1 — 0:.2) 1R, (2). In addition, we
have

z

T T
2 2
= udt+//91/dzdt<oo,
/0 ! 0 JR tzv( )

from which condition 4 follows. Since H* = 1 identically, F € D2 and Z1 € L*(IP), we have
condition 6. It remains to make sure of (5.3.1). Note that h° = ¢Ep+[DyoF|F;_], and hi, =
Ep+[zD;.F|Fi—]. Since Kr € L*®, we can see that Z satisfies the reverse Holder inequality by
Proposition 3.7 of Choulli, Krawczyk and Stricker [12]. We have then (Ep«[D;oF|Fi-])? <
CE[(D;oF)?|F:_] for some C > 0. By Fubini’s theorem, (5.3.1) is satisfied.

Consequently, all the conditions in Theorem 5.3.3 are satisfied; and &F is given by

T eZDizlogZr _ q 2
/0 /IR Diplog Z11gy (z) + 1Rr,(z) p q(dt,dz)

F 0B Ep+ [DioF|Fi-] + fRO Ep«[zDt . F|Ft—]vtzv(dz)
t g
Si— (ﬁ% + f]RO ’)’%’ZV(dZ)>

(5.3.6)

5.4 Call options

In this section, we deal with call options as a common example of contingent claims. The
payoff of the call option with strike price K > 0 is expressed by (Sp — K)* where x* =
x V 0. First of all, we calculate the Malliavin derivatives of (F — K)* for F € ID'? and
K € R. After that, we shall give an explicit representation of LRM for the deterministic
coefficients case discussed in Example 5.3.5.

Regarding (F — K)™ as a functional of F, it is continuous, but not smooth. Thus, we
cannot use the chain rule (Propositions 4.2.8 and 4.2.9). Instead, the mollifier approxima-
tion is very useful.

Theorem 5.4.1 Forany F € D', K € R and g-ae. (t,z) € [0, T] x R, we have (F — K)* €
D2 and

(F+zD;,F — K)* — (F— K)*

Dt,Z(F — K)+ = 1{F>K}Dt,0P . 1{0} (Z) + ~

1]R0 (Z)

Proof. We take a mollifier function ¢ which is a C*-function from R to [0, c0) with
supp(¢) C [-1,1] and [*_¢@(x)dx = 1. We denote ¢,(x) := ne(nx) and f,(x) :=
2 (v — K)T@u(x — y)dy for any n > 1. Noting that

) = [ (=L -K) gy = |

—00

n(x—K) (x- % ~K) g(y)dy,
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we have f (x f_ *=K) y)dy, so that f, € C! and |f}| < 1, that is, f, is Lipschitz
continuous w1th constant 1 Thus, Proposition 4.2.8 implies that, for any n > 1, f,,(F) €
D2 and

fu(F + 2Dy F) — fu(F)

Dtz fn(F) = fu(F)DioF - 140y (2) + 1R,y (2)- (5.4.1)

In addition, noting that
|fn<x>—<x—f<>+r=1/ {(r-4-8)" =50 oty

<2 [ Wlgtay < - 542)

for any x € R, we have lim,_,« E[|f4(F) — (F — K)T|?] = 0. Thus, from the view of
Proposition 4.2.6, all we have to do is to make sure that D; ; f,,(F) converges to

(F+zDy . F —K)* — (F— K)*
Z

Lr>xy DroF - 140y (2) + 1R, (z) =: e
in L?(g x IP) as n tends to co.
First of all, we have

lim f;(x) =

n—oo

if x > K,
if x <K,

{ Pueydy ifx =K,

O =

from which we obtain lim,—.« f; (F) = 1psgy + Lp—gy f_ooo ¢(y)dy. By (5.4.1), (5.4.2)
and Lemma 5.4.2 below, we have limy,—,co Dt fn(F) = I in g x P-a.e., and

|Dtzfn(F) — Lol
< |fu(F)DtoF — 1p~ky DroF 140y (2)
o | falF+2DisF) — fu(F)  (F+2DyF—K)* = (F—K)*
Z z

1]RO(Z)
< 2|Dy.F| € L?(g x IP).

Thus, the dominated convergence theorem provides that D; , f,(F) — Is in L?(g x IP).
O

Lemma 5.4.2 For any F € D'?, we have 1;p_q Dy oF = 0, (t,w)-a.e.

Proof. Step 1. We take the same mollifier function ¢ as Theorem 5.4.1. Additionally,
we assume that ¢(0) = 1. We denote, for any n > 1, ¢,(x) := ¢(nx) and ®,(x) :=
[ ¢n(y)dy. Remark that ®, € C!; and ®/,(x) = ¢,(x) is bounded. Proposition 4.2.8
implies

Dy0®,(F) = @u(F)DyoF. (5.4.3)
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Since @ (x) — 14y (x)@(0) = 149y (x) for any x € R, we have

lim Dy,o®y(F) = 1¢_g) Dy,oF. (5.4.4)

n—oo

Step 2. Recall that any function u € L?(g x IP) has a chaotic representation

u(tz) = Y Lol (1,2))),

n=0

where h, € L% gn+1 18 symmetric in the first # pairs of variables. Denoting by hy the
symmetrization of h;, with respect to all n 4 1 pairs of variables, we define

(o]
Dom; := {uELz(qx]P)’ Y (4 D) f2, <00}.
=0 Tgn+1

We shall show that Domy; is dense in L?(g x IP). Now, we prepare a subclass of Dom; as
Domy —{uELZ(qXIP ‘ ZI” )forsomeN>1}

Taking a u € L%(q x P) with u(t,z) = Y2 In(hu(-, (t,2))) arbitrarily; and denoting
un(t,z) == YN o Li(ha(+, (t,2))) € Domy for any N > 1, we have uy — u in L%(qg x P).
Thus, Dom¢ is dense in L%(g x IP). So is Dom;.

Step 3. By the dense property of Domg, we have only to see

E [/[O,T]xIR Lip—oy DroF - 1yoy (z)u(t, z)q(dt, dz)] =0 (5.4.5)

for any u € Domy. Fix u € Dom; arbitrarily. By (5.4.4), we have

T T
E |:/0 1{F:0}Dt,OF . Ll(t, 0)dt:| =E |: lim Dt,Och(F) -u(t, O)dt} . (546)

0 n—oo
Since we can find a Cy > 0 such that ¢ < C,, (5.4.3) implies
|Dto®@n (F)| < |@n(F)|[DioF| < Cy|DyoFl.

In addition, we have

E {/()T|Dtlol-"-u(t,0)|dt1 < \/]E {/()T|Dt,01-“|2dt} \/115 {/0T|u(t,0)|2dt] < oo,

Thus, the dominated convergence theorem yields

E [ /O lim DtOCIDn(F)~u(t,O)dt] — lim E [ /0 " Dy (F) -u(t,O)dt}. (5.4.7)

n—oo n—oo
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Next, by the duality formula (Proposition 4.3.2), there exists a constant C > 0 such that

1
‘]E U[o,m Dy @, (F) - u(t,z)q(dt,dz)] ‘ < Cll@u(F) 2y < Co

which means .
E { / D 0@y (F) -u(t,())dt} 0 (5.4.8)
0

as n — oo. Consequently, (5.4.6), (5.4.7) and (5.4.8) imply (5.4.5). U

5.4.1 The deterministic coefficients case

Throughout this subsection, we consider the case where «, f and 7 in (5.2.1) are de-
terministic functions satisfying the three conditions in Example 5.2.8. Additionally, we
assume the following condition:

/]R {7, +|1log(1+7:z)[*}v(dz) < C for some C > 0. (5.4.9)
0

We aim to obtain a concrete representation of LRM for the call option (St — K)™*. As
seen in Example 5.3.5, this model satisfies all the conditions in Theorem 5.3.3, if (5.3.5) is
satisfied. First of all, we calculate the Malliavin derivatives of Srt.

Proposition 5.4.3 We have St € D'?; and

StpBt
o

STz gy () (5.4.10)

Dt,zST - -

1{0} (Z) +

for g-ae. (t,z) € [0,T] X R.
Proof. Noting that

T
log(St/S0) :/0 [m—#%%—i—/ﬂQ {log(1+ vtz) — Yez}v(dz) | dt
0
T T ~
+ / BidW; + / / log(1+ 7:.2)N(dt, dz),
0 0 JRr,

we have log(St/Sy) € D2 and Dy, log(St/So) = %1{0}(2) + wlﬂ%(z) for any
(t,z) € [0,T] x R by (5.4.9) and Proposition 4.3.3. Setting F := log(S7/Sp) and f(x) :=
Soe*, we have St = f(F). Thus, we have f/(F)D;oF = ST% for any t € [0, T]; and

f(F +zDy.F) — f(F) _ STexp{th,ZF} —1_ Sty
z z z

for any (t,z) € [0, T] x Ro. Hence, Proposition 4.2.9 implies St € D2 and (5.4.10). [
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Remark 5.4.4 A similar argument with Proposition 5.4.3, together with Example 5.3.5, yields

u 6
Di,Z1 = —Zt (;tl{o}( ) + ﬂl]RO( ))
Now, we confirm condition (5.3.5).

Lemma 5.4.5 Condition (5.3.5) in Example 5.3.5 is satisfied.

Proof. By simple calculations, we have

d(ZiSt) = Se—Zs— {(,Bt — up)dWr + /IR (Ytz — Btz — Yi,2012)N(dt, dZ)} ,
0

which implies ZrSt € L?(IP) by Theorem 117 of Situ [48]. Therefore, Zr(St — K)* €
L?(IP) holds.
Since Theorem 5.4.1 and Proposition 5.4.3 imply that (St — K)* € D!, and

StPBt (St(1+m1z) —K)" = (ST = K)*

Diz(ST—K)" = = Lisoky—, .

“1y0}(2) + 1R, (2),

(5.4.11)
we have

|Zr D2 (ST — +||L2q><]P 7757) (/ 5?dt+/ / Vi .v(dz)d ) 00,

T T
(51— K)*Dyzzr |2,y < EISHZE) ( [ e [ egzu(dz)dt> < oo.
0 0 JRy

In addition, there is a C > 0 such that

T
]E{/ /yth,Z(sT—K)*Dt,zzTFq(dt,dz)}

< E[Z3S (/ / v2.07,v(dz) dt) < CE[Z352)] (/OT /]Ro ’)/f/zv(dz)dt> ,

from which condition 5 in Example 4.5.1 follows by (5.4.9). This completes the proof. [

and

Next, by using the above proposition and lemma, we can calculate an explicit repre-
sentation of LRM for call options as follows:

Proposition 5.4.6 Forany K > 0and t € [0, T], we have

ST 1

2
; BtEp+1(s, >k} ST|Ft-]
S (ﬁ% + fIRO 'yf,zv(dz)> { T

+ /RO Ep:[(ST(1+7tz) —K)* = (S1— K)+|ft]%,zv(d2)}-

(5.4.12)
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Proof. From the view of Lemma 5.4.5, (5.4.12) is given by (5.3.6) and (5.4.11). U

Remark 5.4.7 By using this result, we also study numerical analysis of LRM for exponential
Lévy models in Arai, Imai and Suzuki [4].

5.5 Asian Options

In this section, we study Asian options, whose payoff is depending on % fOT Ssds. First of
all, Proposition 4.3.4 implies the following proposition:

Proposition 5.5.1 Besides Assumption 5.2.1, we assume the following two conditions:
1. S € DY2 forae. s € [0, T).
2. iy 1yxm Jiom |DiSslPdsq(dt, dz)| < .

We have then fOT Ssds € D2 and Dy, + fOT Ssds = 7 fOT Dy .Ssds for g-a.e. (t,z) € [0, T] x
R.

Next, we calculate Malliavin derivatives and LRM of Asian options for the same setting
as subsection 5.4.1.

Proposition 5.5.2 When «,  and -y are deterministic functions satisfying the three conditions
in Example 5.2.8 and (5.4.9), we have % fOT S.ds € D2 and

Dism /Sds { "0y (2) + L2, (2) }/ Syds

for g-a.e. (t,z) € [0,T] X R.

Proof. By the same way as Proposition 5.4.3, we can see that condition 1 in Proposition
5.5.1 and

Dy.Ss = Ssl[o,s](t) {%1{0} (z) + ’Y;Z 1R, (Z)}

for g-a.e. (t,z) € [0, T] x Rand any s € [0, T]. As for condition 2, we have the following;:

E { / o / " IDuLs.[2dsq(dt, dz)}
([ g+ [ (i) <o

< TE | sup S?

s€[0,T]

We illustrate LRM for Asian options with payoff (+ fOT Ssds — K) ™.
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Proposition 5.5.3 Under the same setting as Proposition 5.5.2, we have, for any K > 0 and
te[0,T],

(Vo-K)* _ 1
i N 2 2
St- (ﬁt + fIRO i,z (dz)

> {ﬁ%lE]p* Lvy>xy Vel Fi]

+ /s Ep+ [(Vo+ 7tV —K)™ — (Vo — K) 7| Fi—] %,zv(dZ)},
0

where V; = % ftT Ssds fort € [0, T).

Proof. Theorem 5.4.1 and Propositions 5.5.2 imply that

Vi Vo+ Ve —K)T — (Vo —K)*
Dtz (Vo — K)© = 1{v0>1<}571{0}(2) 1 2 Z) ( ) 1R, (2)-
Thus, this proposition is concluded by (5.3.6). O

5.6 Lookback Options

We focus on lookback options, that is, options whose payoff depends on the running
maximum of the asset price process M° := sup;c(o, St- We treat only the exponential
Lévy case in this section.

5.6.1 Malliavin derivatives of running maximum

First of all, we calculate Malliavin derivatives of the running maximum over [0, T] of the
following Lévy process: L; = ut + X;, where X is the underlying Lévy process defined
in (4.2.2), and p € R. Note that L; € D2 for any t € [0, T]. Before stating the main
theorem, we need some preparations.

Lemma 5.6.1 Let Fy, F,, - - - € DY2. We have then, for any n > 1, M, := maxj<y<, Fx € D2
and

maxy<k<y (Fx + 2Dy F) — My,
z

n
DizMy =) 14, DioFy - 1401(2) + 1g,(z), (5.6.1)
1

k=
where Ay = {My =F}and Ay = {My #F,--- ,My # F_1,My = F} for2 <k <n.

Proof. Remark that My = F{ VF = (F, — F;)* + F; € D'? by Theorem 5.4.1; and
M,, = F, V M,,_1. We have then M,, € D2 for any n > 1.
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Next, we calculate D; gM,,. Theorem 5.4.1 implies

Dy oMy = Dyo(Fy V My—1) = Dyo(Fy — My—1) " 4+ Di oMy 1
=Ly, oM, 1y Pro(Fn — My—1) + DioMy 1
= Lyr,>m, 1 DroFn +1gr,<m, ;3 DroMy—1
=14,,Drobn + 1p,=m, 1 ProMu—1.

Iterating this calculation shows
DioMyu =14,,DioFx

+1m,=Mm, 1) {1An,1ln,1Dt,OFn71 + 1{Mn,1:Mn_2}Dt,oMn—2}
=14,,DtoFn +14,, DroFn—1+1p,=m, ) DroMu—2

n

14,, Dt oF. (5.6.2)
k=1

For the case where z # 0, we have

Dt,zMn - Dt,z(Fn - Mn—1)+ + Dt,zMn—l

_ (Fn — My_q + ZDt,z(Fn _i\/ln—l))Jr —(F, — Mn—1)+ + DM,
1
= E |:(F7/l - Mn—l + ZDt,Z(Pn - Mn—l))+ + Ml’l—l + ZDt,ZMn—l

_{(Fn - Mn71)+ + Mnfl}}

(Fn + ZDt,an) Vv (Mn—l + ZDt,zMn—l) —F, VM,
Z 7

thatis, My, +zD;.M,, = (F, + zD:2Fy) V (M;;_1 + zD¢ 2M,,_1). Thus, we have

My +zDi My, = (Fn + ZDt,an) Vv (Mn—l + ZDt,zMn—l)
= (Fu+2zDyFy) V (Fy—1 + 2Dy Fy—1) V (My—2 + 2D, My, —2)

— .= E, +2zD;,F),
1ré1ka§xn(k+z t2Fy)

which means
maxq<k<p(Fx + 2Dt Fr) — My

z

By (5.6.2) and (5.6.3), we obtain (5.6.1). U

Dt,zMn = (563)

We need to show more two lemmas. We take a countable dense subset U :=
{ug,up,---} C [0, T) with T € U.

Lemma 5.6.2 Let {Y;}c(o 1] be an RCLL process. Denoting MY := maxj<<, Yy, for any
n>1;and MY := SUPye(o,7] Yt, We have MY — MY asn — oo.
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Proof. Since M}{ < MY for any n > 1, it suffices to show that IP(lim;, 0 M}f < MY) =
0. Now, suppose that IP (limn_>Oo M}{ < MY) > 0. Denoting Ay := {MY —lim,,— oo M}{ >
1/k} for k > 1, we have 0 < P(limy—oo M} < MY) = P (U2 Ay) = limy_o P(Ay).
Thus, IP(A) > 0 holds for any sufficiently large k. Now, fix such a k arbitrarily. Note

that there exists a [0, T)-valued random time { such that YC > MY — ﬁ on Ay, since we
can find a [0, T]-valued random time £ such that Yp 2 MY — L as,butYr < MY —}on

Ay because T € U. By the dense property of U and the RCLL property of Y, we can find

a U-valued random time 7 such that Y, > MY — L on Ay. This is a contradiction to the
definition of Ay. O

To see Lemma 5.6.3 below, we denote ML := maxj<r<, Ly, for any n > 1, ML =
supye(o,r) Lt, and 7 := inf{t € [0, T]|L; V L = ML}, Note that MF = supyeo,r) (Lt V

Li—) = Ly V Ly—; and 7 is a unique random time satisfying M- = L; V L;_ by Lemma
49 4 of Sato [41].

Lemma 5.6.3 P(t =t) =0foranyt € [0, T).

Proof.  Takingat € [0, T) arbitrarily, we have

Liys — L
P limsupL:+oo =1
s|0 5

by Theorem 47.1 and Proposition 10.7 of Sato [41]. Thus, P(Ls4+s < L; foranys € (0, T —
t]) = 0 holds, from which IP(L; = M") = 0 follows. On the other hand, P(L;_ = L;) = 1
by Proposition 1.7 of Bertoin [10]. As a result, we obtain P(t = t) = 0forany ¢t € [0, T).
As for the case of t = T, Theorem 47.1 of Sato [41] together with Lemma II.2 of Bertoin
[10] provides

Lir_g_ —L

P | limsup i ) +oo | =P (liminfE = —oo> =1,
s|0 S 5|0 S

which implies P(Ls; < Ly foranys € [0,T)) = 0. By the same argument as the above,

P(t =T) = 0 follows. O

At last, we introduce the main theorem of this subsection.

Theorem 5.6.4 ML € D2 and

sup,cpo7) (Ls +21j1<5y) — MF

Z

Di-M" = 151110y (2) + 1R, (2). (5.6.4)
Proof.  Noting that M € L2(IP) by the square integrability of X, ML € D' for any
n > 1 by Lemma 5.6.1; and ML — ML in Lz(]P) by Lemma 5.6.2 (because, for any n,
|IML| < MF, hence, the sequence (ML) is uniformly integrable), we have only to see that
D; ML converges to the RHS of (5.6.4) in L?(q x IP) in view of Proposition 4.2.6.
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Step 1. Firstly, we consider the case of z # 0. Lemma 5.6.1 implies

maX1gk§n(Luk + 2Dy Ly, ) — M,I;
. )

Dt,zM% -

Remark that Dy ;Ls =1 (s>t} which is RCLL on s. Thus, Lemma 5.6.2 yields

su Ls +zD;,Ls) — ME
lim D;. My, = pSG[O’T]( ’ L) .

n—oo zZ

(5.6.5)

Moreover, noting that |maxj<p<,(a + bx) — maxj<x<, ax] < maxj<k<, |bx| for any
{ak}1<k<n, {bx}1<k<n C R, we obtain

L
355, (o + Drali) = M

< max |zDy;Ly,|.
1<k<n

Thus, for any z € Ry,

2
. Sup,cior(Lu+2zDtzLy) — M-
Df,ZMn - .
| SUPsco,T (Ls + ZDt,st) - ]\/IL|2

Sz{IDtrzM%|2+ =t |z|?

2 2 2
< -2 maxX (L”k +ZDt,zLuk) — M,l{ —+ sup (Ls +ZDt,st) _ ML

2% | Trsksn s€[0,T]

IA

24 max |DyzLy |+ sup |Dy:Ls|* p <4 sup |Di:Ls|* =4
1<k<n s€[0,T] s€(0,T]

The dominated convergence theorem implies that the convergence in (5.6.5) also holds
in L2(g x P).

Step 2. Next, we see that Dy oM} - 1y (z) converges to 151y (2) in L?(q x PP).
Similarly with Lemma 5.6.1, we denote A,l;,l = {ML = L, }, and Aﬁ/k = {ML #
Ly, - , ML £ Lukfl,M,I; = Ly, } for 2 < k < n. In addition, defining 7, := ¥ }_, ”klAﬁk

for any n > 1, we have

n n
DioMy = ) 1t Drolue = Y Lat Tty = Lm2n)
k=1 ’ k=1 ’

by Lemma 5.6.1. Recall that sup, |, (Ls V Ls—) < Lt V L— on {7 < t} by Lemma 49.4
of Sato [41]. Then, on {7 < t}, we can find a k € IN such that L, > SUPges 7] (Ls V Ls—).
Note that k depends on w. As a result, 7, < t holds for any n > k. Similarly, we can
see that, on {7 > t}, we have 7, > t for any sufficiently large n. Since IP(t = t) = 0 by

Lemma 5.6.3, we can conclude that lim, o 17, >4} = 1{¢>4 a.s., from which Theorem
5.6.4 follows. O
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5.6.2 LRM for lookback options
We consider the case where S; is given as an exponential Lévy process Sy = Sgexp{L:},
where Sy > 0; and denote M° := SUpP;co,7] S;. In this subsection, we calculate Malliavin

derivatives and LRM of lookback options whose payoffs are given as M® — St and (M®° —
K)* for K > 0. Here we assume that [ {22+ (¢* — 1)*} v(dz) < oo; and there exists an

e € (0,1) such that

{4 G+ gy (x— e+ (x| (F = 1)
02+ g, (€ —1)?v(dx)

<1-—c¢

for v-a.e. z € Rg. These conditions are corresponding to (5.4.9) and condition 3 in Ex-
ample 5.2.8, respectively. Note that the other two conditions in Example 5.2.8 are also
satisfied. In addition, fIRO(Z — ¢* 4+ 1)v(dz) is well-defined since ¢ — 1 —z < (e — 1)z?
for any z € [—1,1]. The following lemma is also given in a similar way with subsection
54.1.

Lemma 5.6.5 (1) We have M®° € DY2: and

SUPse(o,T] (55621“55}) — M®

zZ

Dt,zMS — Msl{th}l{O} (Z) + 1R, (Z)

(2) Condition (5.3.5) holds for both M® — St and (M® — K)*.

Proof. (1) Proposition 4.2.9, together with Theorem 5.6.4 and [;~ (¢ — 1)*v(dz) < oo,
implies that M° € D72, Dt,OMS = SODtloeML = SOeMLDtIOML = Msl{rzt}; and, for
z € IRy,

S exp{ML + zD; ML} — eM"
0
z

Dy M5 = SoD; .eM" =

S exp {Supse[O,T] (LS + zl{t§5}> } _ Mt
=20
z

_ SUPsefo7] <5s321{t§5}> a

z

(2) We can see this assertion by Lemma 5.4.5. O

Now, we calculate Malliavin derivatives and LRM for lookback options by using Lemma
5.6.5, Theorem 5.4.1 and (5.3.6).
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Proposition 5.6.6 (1)

Dz (M® = S1) = (M®1 54 — S7) 10y (2)

sup Ssetisst) — MS z_q
: ( - ( > ~ 5% 1R, (2)-

z 4

(2) For any K > 0, we have
Dyz(M® — K)* = MP1 312 10g(k /5003 Lot 10y (2

sup,c o7 (Sse”= ) — K +—(MS—K)+
(o (7)1
z

1]R0 (Z)

Corollary 5.6.7 For any K > 0and t € [0, T], we have

S_ 1

* R Ep- Sl[lp} (Sueﬂ{tg“}> - M - ST’Yz\ft_] VZV(dZ)},
0 uelo, T
and
A Y 1 F
St - CS;_ o Ep:| {M!>log(K/Sp)} {TZt}’ -]

_|_
Ro u€(0,T]

V2v(dz) }/

where 7y, 1= e — 1and C := (02 + [R, 7%1/(512)).

Remark 5.6.8 There are lookback options whose payoff is described by the running minimum of
the asset price process, instead of the running maximum. Thus, we should mention about how to
calculate Malliavin derivatives for the running minimum of exponential Lévy processes S.

We denote mY := infyc(o,1) Yt for any stochastic process Y; and Sy := 1/5; = Sale_Lf. Since
S’ is also an exponential Lévy process, we can calculate MS through Theorem 5.6.4. Noting that
MS > Sg! > 0, we take a Cl-function f on R such that f(x) = 1/xif x > Sy'. Then, by
mS = 1/M5" and Proposition 4.2.9, we have

1 ]_ S/

S _ _
Dt,zm = Dt,zW = —WDLZ

Remark that we can calculate Dy (St — m®) and Dy ,(m® — K)* by the same way as Proposition

5.6.6.
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5.7 Concluding remarks

Throughout this thesis, we consider an incomplete financial market model whose asset
price process is given as a solution to the SDE (5.2.1). Under some assumptions, we ob-
tain representation results (Theorem 5.3.3 and Example 5.3.5) of LRM by using Malliavin
calculus for Lévy processes based on the canonical Lévy space framework. So that, rep-
resentations of LRM given in this thesis include Malliavin derivatives of the claim to be
hedged.

As typical examples of claims, we treat call options, Asian options and lookback op-
tions. As for call options, we formulate their Malliavin derivatives in a general form; and
calculate their LRM explicitly for the case where the coefficients of the SDE are determin-
istic. Next, we illustrate how to calculate Malliavin derivatives of Asian options; and
give expressions of their LRM for the deterministic coefficients case. Thirdly, we study
lookback options for the exponential Lévy case.

As said above, we calculate LRM for only the deterministic coefficients case. It is be-
cause Malliavin derivatives of deterministic functions are given by 0, thereby we can
comparatively easily make sure of Assumption 4.5.1 under some mild conditions as seen
in subsection 5.4.1. Besides, LRM is expressed simply from the view of Example 5.3.5.
On the other hand, in the random coefficients case, we need very complicated calcula-
tions to confirm if Assumption 4.5.1 holds. Furthermore, we need to calculate exactly H*
and Malliavin derivatives of u and 6. That’s why, although we introduce the Barndorff-
Nielsen and Shephard model as an typical example of models with random coefficients,
we do not discuss its LRM in this thesis. As a continuation of this thesis, we consider
LRM for the Barndorff-Nielsen and Shephard model in Arai and Suzuki [6].
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