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Preface

Locally risk-minimizing (LRM, for short) is a well-known hedging method for contin-
gent claims in a quadratic way for incomplete financial markets. Theoretical aspects of
LRM have been developed to a high degree (see e.g., Schweizer [45] and [46]). LRM has
an intimate relationship with Föllmer-Schweizer decomposition (FS decomposition, for
short), which is a kind of orthogonal decomposition of a random variable into a stochas-
tic integration and an orthogonal martingale. The necessity of researches on its explicit
representations has been increasing. However, it is generally very difficult to derive an
explicit expression for the locally risk-minimizing hedge. In this thesis, we obtain ex-
plicit representations of LRM for incomplete market models whose asset price process
is described by a solution to a stochastic differential equation (SDE, for short) driven by
a Lévy process, as a typical framework of incomplete market models. In particular, we
use Malliavin calculus for canonical Lévy processes to achieve our purpose. Especially,
we adopt a Clark-Ocone type formula under change of measure (COCM) for canonical
Lévy processes. The Clark-Ocone (CO) formula is an explicit martingale representation
of functionals of Brownian motions (Lévy processes) in terms of Malliavin derivatives.
Girsanov transformations versions of this theorem are Clark-Ocone type formulas under
change of measure. Since many applications in mathematical finance require representa-
tions of random variables with respect to risk neutral martingale measure, the theorem
was studied by many people (see introduction of Chapter 3).

For our purpose, we develop and review Malliavin calculus for canonical Lévy pro-
cesses. We review related topics of Malliavin calculus for canonical Lévy processes and
we show some formulas to show the COCM for canonical Lévy processes, such as clos-
ability of Malliavin derivatives, chain rules for Malliavin derivative and commutation
formulas for integrals and the Malliavin derivative. By using these results, we derive a
COCM for canonical Lévy processes.

We next derive an LRM for Lévy markets by using these results. We first focus on
deriving a representation of FS decomposition under some mild conditions by using
the martingale representation theorem. In order to compute its explicit expressions, we
use Malliavin calculus. Especially, we will formulate representations of LRM including
Malliavin derivatives of the claim to hedge. We also derive formulas on representations
of LRM for three typical options such as call options, Asian options and lookback options.

In summary, main contribution of this thesis is sixfold as follows:

1. deriving some calculation tools such as commutation formula for the Lebesgue
integral and the Malliavin derivative and chain rules for Malliavin derivative.

2. formulating a Clark-Ocone type formula under change of measure for canonical
Lévy processes.
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3. deriving versions of the Poincaré inequality for Lévy functionals (with respect to
P∗) and the logarithmic Sobolev inequality (with respect to both P∗ and P).

4. formulating representations of LRM with Malliavin derivatives for Lévy markets.
5. illustrating how to calculate Malliavin derivatives for non-smooth functions of a

random variable, and the running maximum of processes by using approximation
methods.

6. introducing concrete representations of LRM of call options, Asian options and
lookback options for Lévy markets.

This thesis is organized as follows. Chapter 2 deals with a short review of Classical
Malliavin calculus. In Chapter 3, basic notions and some preliminaries of mathemat-
ical finance and (L)RM are given. Chapter 4 deals with a Malliavin calculus for Lévy
processes and a Clark-Ocone type formula under change of measure for canonical Lévy
processes. In Chapter 5, we obtain explicit representations of LRM for Lévy markets.
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4.5 A COCM for canonical Lévy processes . . . . . . . . . . . . . . . . . . . . 40

5 Local risk minimization for Lévy markets 51
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Chapter 1

Introduction

In this thesis, we consider the local risk minimization problem which is a very well-
known problem in mathematical finance. Especially, we obtain explicit representations
of LRM for Lévy markets by using Malliavin calculus for Lévy processes.

The Malliavin calculus (stochastic calculus of variations) is an infinite-dimensional dif-
ferential calculus on the Wiener space, which was first introduced by Paul Malliavin in
the 70’s (see Malliavin [31]). The purpose of this calculus was to prove the results on exis-
tence and smoothness of densities of solutions to stochastic differential equations driven
by a Brownian motion. This theory was developed by Bismut, Kusuoka, Shigekawa,
Stroock, Watanabe and others (see, e.g., Shigekawa [47] and references therein). At the
beginning, Malliavin calculus was not very popular due to its technical difficulties. How-
ever, in modern times, it is one of the most famous theories in probability. There are
many applications of Malliavin calculus in many fields (see e.g., Nualart [33] and Di
Nunno [20]). In Chapter 2, we give a short review of classical Malliavin calculus.

The representations of functionals of Brownian motions (or Lévy processes) by
stochastic integrals are important results in Probability theory. They has been widely
studied (see, e.g., survey paper by Davis [16]). In particular, the Clark-Ocone (CO)
formula is an explicit martingale representation of functionals of Brownian motions in
terms of Malliavin derivatives. If an L2-random variable F has certain regularity in the
Malliavin sense, we have

F = E[F] +
∫ T

0
E[DtF|Ft]dWt,

where W is a Brownian motion and DtF is the classical Malliavin derivative. This for-
mula was shown by Clark, Ocone and Haussmann [13, 14, 23, 36]. A white noise version
of the CO formula was proved by Aase et al. [1]. This formula has various applications.
For example, the log-Sobolev and Poincare inequalities are obtained in Capitaine et al.
[11]. In the application to mathematical finance, its representation of an optimal portfolio
is given by this formula (see e.g., Ocone and Karatzas [35]).

Malliavin calculus for Lévy processes has been also widely studied (see, e.g., Di Nunno
[20], Delong [17], Ishikawa [25] and their references). This theory was at first motivated
by study about existence and smoothness of densities of solutions to stochastic differen-
tial equations driven by Lévy processes as classical Malliavin calculus. Later, Malliavin
calculus for Lévy processes has been also applied to mathematical finance theory in in-
complete markets. In incomplete markets, the CO formula for Lévy processes is one of
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the most useful formula to get representation of an optimal portfolio just as the cases
complete markets. The CO formula for Lévy processes has been also studied. Løkka [30]
got a CO formula for functionals of pure jump Lévy processes. A white noise version
of the CO formula for functionals of pure jump Lévy was proved by Di Nunno et al.
[19]. We know that one for general L2-Lévy functionals also holds (see Benth et al. [9],
Delong[17] and Chapter 4 of this thesis).

Because many applications in mathematical finance require representation formula
with respect to risk neutral martingale measure, CO formulas under Girsanov transfor-
mations were studied by many people. First, Ocone and Karatzas [35] showed a Clark-
Ocone type formula under change of measure (COCM) for Brownian motions:

F = EP∗ [F] +
∫ T

0
EP∗

[
DtF − F

∫ T

0
DtusdWP∗

s

∣∣∣∣Ft

]
dWP∗

t .

They also applied it to get an optimal portfolio of Brownian market. A white noise ver-
sion of it was proved by Okur [37] and she also derived an explicit representation of
hedging strategy of digital option for Brownian market. Huehne [24] got a COCM for
pure jump Lévy processes and derived an optimal portfolio. Later, Di Nunno et al. [20]
and Okur [38] also introduced a white noise version of COCM for Lévy processes by
using white noise theory. In this thesis, we also derive a COCM for Lévy processes:

F = EP∗ [F] + σ
∫ T

0
EP∗

[
Dt,0F − FKt

∣∣∣∣Ft−

]
dWP∗

t

+
∫ T

0

∫
R0

EP∗ [F(H∗
t,z − 1) + zH∗

t,zDt,zF|Ft−]ÑP∗
(dt, dz).

We precisely define Kt and H∗
t,z, and give sufficient conditions for this formula in section

4.5. However, note that their results are different from our results. In our results, we
use different settings and derive different representation. By using this result, we obtain
log-Sobolev and Poincare type inequalities for Lévy functionals. For that purpose, we
adapted Malliavin calculus for Lévy processes based on Geiss and Laukkarinen [22] and
Solé et al. [49]. Moreover, we show some formulas to show the main theorem, such
as chain rule for Malliavin derivative and commutation formulas for integrals and the
Malliavin derivative. By using σ-finiteness of Lévy measure (see e.g., Applebaum [3]),
we prove it. Moreover, we applied it to LRM in Chapter 5.

The quadratic criterion of local risk-minimization is one of the most famous concepts
of hedging in incomplete markets. At the beginning, Föllmer and Sondermann [21] in-
troduced the risk-minimizing (RM, for short) hedging strategies for contingent claims,
written on a one-dimensional, square-integrable discounted risky asset S which is a mar-
tingale under the original probability measure P. Later, Schweizer [43] showed that RM
dose not always exist in the semi-martingale case. Therefore, Schweizer [44] introduced
the concept of locally risk-minimizing hedging strategies to hedge claims for the case
that the discounted risky asset is a semi-martingale. See survey papers Pham, Schweizer
and, Vandaele and Vanmaele [39, 45, 53]. In Chapter 3, we review a basic notions and
some preliminaries of mathematical finance and (L)RM.

However, the theory does not give a method of obtaining a concrete representation.
Hence, the necessity of researches on its explicit representations has been increasing.
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From this insight, we obtain explicit representations of LRM for incomplete market mod-
els whose asset price process is described by a solution to a stochastic differential equa-
tion driven by a Lévy process. To achieve our purpose, we use Malliavin calculus for
Lévy processes. In Chapter 5, we deal with explicit representations of LRM by using
Malliavin calculus for Lévy processes.
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Chapter 2

A short review of classical Malliavin

calculus

2.1 Classical Malliavin derivative
In this chapter, we review classical Malliavin calculus, based on Di Nunno et al. [20]. Let
T > 0 be a finite time horizon, (Ω,F , P; {Ft}t∈[0,T]) a one-dimensional Wiener space on
[0, T]; and W its coordinate mapping process, that is, a one-dimensional standard Brow-
nian motion with W0 = 0. Let F = {Ft}t∈[0,T] be the canonical filtration completed for P.
Let L2

T,λ,n denote the set of product measurable, deterministic functions h : ([0, T])n → R

satisfying

‖h‖2
L2

T,λ,n
:=
∫
([0,T])n

|h(t1, · · · , tn)|2dt1 · · · dtn < ∞,

where λ is Lebesgue measure on [0, T]. For n ∈ N and hn ∈ L2
T,λ,n, we denote

In(hn) :=
∫
([0,T])n

h(t1, · · · , tn)dWt1 · · · dWtn .

It is easy to see that E[I0(h0)] = h0 and E[In(hn)] = 0, for n ≥ 1. Moreover, this integral
has the usual properties (see Section 1.1 of Di Nunno et al. [20]):

Proposition 2.1.1 1. For n ≥ 1, f ∈ L2
T,λ,n, we obtain, In( f ) = In( f̃ ), where f̃ is the

symmetrization of f :

f̃ (t1, · · · , tn) =
1
n! ∑

π∈Dn

f (tπ(1), · · · , tπ(n)),

where, Dn is the set of permutations of {1, 2, · · · , n}.
2. For n ≥ 1, a, b ∈ R, f , g ∈ L2

T,λ,n, we get: In(a f + bg) = aIn( f ) + bIn(g).
3. For m, n ≥ 1, f ∈ L2

T,λ,n, g ∈ L2
T,λ,m, are symmetric in the n pairs ti, 1 ≤ i ≤ n, that is

f = f̃ and g = g̃, then, we have

E[In( f )Im(g)] = n!1(n=m)〈 f , g〉L2
T,λ,n

.
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In this setting, we introduce the following chaos expansion (see Theorem 1.10 in Di
Nunno et al. [20]).

Theorem 2.1.2 Any F -measurable square integrable random variable F on the canonical space
has a unique representation

F =
∞

∑
n=0

In(hn), P−a.s.

with functions hn ∈ L2
T,λ,n that are symmetric in the n pairs ti, 1 ≤ i ≤ n and we have the

isometry

E[F2] =
∞

∑
n=0

n!‖hn‖2
L2

T,λ,n
.

By using the chaos expansion, we can define the following:

Definition 2.1.3 (1) Let D
1,2
W denote the set of F -measurable random variables F ∈ L2(P) with

the representation F = ∑∞
n=0 In(hn) satisfying

∞

∑
n=1

nn!‖hn‖2
L2

T,λ,n
< ∞.

(2) Let F ∈ D
1,2
W . Then the Malliavin derivative DF : Ω × [0, T] → R of a random variable

F ∈ D
1,2
W is a stochastic process defined by

DtF :=
∞

∑
n=1

nIn−1(hn(t, ·)), valid for λ−a.e. t ∈ [0, T], P − a.s.

We next establish the following fundamental result (see, Theorem 3.3 in Di Nunno et al.
[20]).

Proposition 2.1.4 (The closability of operator D) Let F ∈ L2(P) and Fk ∈ D
1,2
W , k ∈ N

such that

1. limk→∞ Fk = F in L2(P),
2. {DtFk}∞

k=1 converges in L2(λ × P).

Then, F ∈ D
1,2
W and limk→∞ DtFk = DtF in L2(λ × P).

We next introduce chain rules for the Malliavin derivative (see Theorem 3.5 in Di Nunno
et al. [20], Proposition 1.2.4 in Nualart [33] and Lemma A.1 in Ocone and Karatzas [35]
respectively).

Proposition 2.1.5 1. Let ϕ : R → R be a C1-function with bounded derivative. If F ∈
D

1,2
W , then, ϕ(F) ∈ D

1,2
W and

Dt ϕ(F) = ϕ′(F)DtF for λ−a.e. t ∈ [0, T], P−a.s.

holds.
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2. Let ϕ : R → R be a Lipschitz function with Lipschitz constant K and F ∈ D
1,2
W . Then,

ϕ(F) ∈ D
1,2
W . Moreover, there exists a random variable G bounded by K such that

Dt ϕ(F) = GDtF for λ−a.e. t ∈ [0, T], P−a.s.

3. Let ϕ : R → R be a C1-function and assume that ϕ(F) ∈ L2(P), F ∈ D
1,2
W and

ϕ′(F)DtF ∈ L2(λ × P). Then, ϕ(F) ∈ D
1,2
W and

Dt ϕ(F) = ϕ′(F)DtF for λ−a.e. t ∈ [0, T], P−a.s.

holds.

Next proposition shows that the derivative operator Dt has the local property on the
space D

1,2
W (see e.g., Proposition 1.3.16 in Nualart [33]).

Proposition 2.1.6 For any F ∈ D
1,2
W , we have 1{F=0}DtF = 0, (t, ω)-a.e.

By using Theorems 2.1.5, 2.1.4 and Proposition 2.1.6, we can derive the following:

Theorem 2.1.7 For any F ∈ D
1,2
W , K ∈ R and λ-a.e. t ∈ [0, T], we have (F − K)+ ∈ D

1,2
W and

Dt(F − K)+ = 1{F>K}DtF

where x+ = max(x, 0).

Proof. We take a mollifier function ϕ which is a C∞-function from R to [0, ∞) with
supp(ϕ) ⊂ [−1, 1] and

∫ ∞
−∞ ϕ(x)dx = 1. We denote ϕn(x) := nϕ(nx) and fn(x) :=∫ ∞

−∞(y − K)+ϕn(x − y)dy for any n ≥ 1. Noting that

fn(x) =
∫ ∞

−∞

(
x − y

n
− K

)+
ϕ(y)dy =

∫ n(x−K)

−∞

(
x − y

n
− K

)
ϕ(y)dy,

we have f ′n(x) =
∫ n(x−K)
−∞ ϕ(y)dy, so that fn ∈ C1 and | f ′n| ≤ 1, that is, fn is Lipschitz

continuous with constant 1. Thus, Proposition 2.1.5 implies that, for any n ≥ 1, fn(F) ∈
D

1,2
W and

Dt fn(F) = f ′n(F)DtF (2.1.1)

In addition, noting that

| fn(x) − (x − K)+| =
∣∣∣∣∫ 1

−1

{(
x − y

n
− K

)+
− (x − K)+

}
ϕ(y)dy

∣∣∣∣
≤ 1

n

∫ 1

−1
|y|ϕ(y)dy ≤ 1

n
(2.1.2)

for any x ∈ R, we have limn→∞ E[| fn(F) − (F − K)+|2] = 0. Thus, from the view of
Proposition 2.1.4, all we have to do is to make sure that Dt fn(F) converges to

1{F>K}Dt,0F =: I∞
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in L2(λ × P) as n tends to ∞.
First of all, we have

lim
n→∞

f ′n(x) =


∫ 0
−∞ ϕ(y)dy if x = K,

1 if x > K,
0 if x < K,

from which we obtain limn→∞ f ′n(F) = 1{F>K} + 1{F=K}
∫ 0
−∞ ϕ(y)dy. By (2.1.1), (2.1.2)

and Proposition 2.1.6, we have limn→∞ Dt fn(F) = I∞ in λ × P-a.e., and

|Dt fn(F) − I∞|
≤ | f ′n(F)DtF − 1{F>K}DtF|
≤ 2|DtF| ∈ L2(λ × P).

Thus, the dominated convergence theorem provides that Dt fn(F) → I∞ in L2(λ × P).
�

2.2 The Skorohod integral and the Malliavin derivative
In this section, we consider the Skorohod integral and commutation of integration and
the Malliavin differentiability. First we introduce the following classes.

Definition 2.2.1 (1) L
1,2
W denotes the space of G : [0, T] × Ω → R satisfying

1. Gs ∈ D
1,2
W for a.e. s ∈ [0, T],

2. E
[∫

[0,T] |Gs|2ds
]

< ∞,

3. E
[∫

[0,T]×R

∫ T
0 |DtGs|2dsdt

]
< ∞.

(2) Recall that any function u ∈ L2(λ × P) has a chaotic representation

ut =
∞

∑
n=0

In(hn(·, t)),

where hn ∈ L2
T,λ,n+1 is symmetric in the first n pairs of variables. Denoting by ĥn the sym-

metrization of hn with respect to all n + 1 pairs of variables, we define

DomW
δ :=

{
u ∈ L2(λ × P)

∣∣∣ ∞

∑
n=0

(n + 1)!‖ĥn‖2
L2

T,λ,n+1
< ∞

}
.

(3) Let u ∈ DomW
δ . Then the Skorohod integral δW with respect to the W of a process u :

Ω × [0, T] → R is defined as

δW(u) = ∑
n=0

In+1(ĥn), P−a.s.
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The Skorohod integral δW has the following properties:

Proposition 2.2.2 (1) Duality formula (Theorem 3.14 in Di Nunno et al. [20])

A process u ∈ L2(λ × P) belongs to DomW
δ if and only if there exists a constant C such

that for all F ∈ D
1,2
W , ∣∣∣∣E [∫[0,T]

usDsFds
]∣∣∣∣ ≤ C(E[F2])1/2.

If u ∈ DomW
δ , then δW(u) is the element of L2(P) characterized by

E[δ(u)F] = E

[∫
[0,T]

usDsFds
]

for any F ∈ D
1,2
W .

(2) Differentiability of δW (Theorem 3.18 in Di Nunno et al. [20])

Let u ∈ L
1,2
W such that Dtu ∈ DomW

δ for all t ∈ [0, T], λ-a.e. and assume that
δW(Dtu) ∈ L2(λ × P). Then δW(u) ∈ D

1,2
W and

Dtδ
W(u) = ut + δ(Dtu)

for all t ∈ [0, T], λ-a.e.
(3) (Theorem 2.9 in Di Nunno et al. [20])

Let u ∈ L2(λ × P) be predictable. Then, u ∈ DomW
δ and

δW(u) =
∫
[0,T]

usdWs.

Hence, we can see that the Skorohod integral is an extension of the Itô integral.

We next discuss the commutation relation of the stochastic integral with the Malliavin
derivative.

Proposition 2.2.3 (Corollary 3.19 of Di Nunno et al. [20]) Let G : Ω × [0, T] be a pre-
dictable process with

E

[∫
[0,T]

|Gs|2ds
]

< ∞.

Then
G ∈ L

1,2
W if and only if

∫
[0,T]

GsdWs ∈ D
1,2
W .

Furthermore, if
∫
[0,T] GsdWs ∈ D

1,2
W , then, for λ -a.e. t ∈ [0, T], we have

Dt

∫
[0,T]

GsdWs = Gt +
∫
[0,T]

DtGsdWs, P−a.s.,

and
∫
[0,T] DtGsdWs is a stochastic integral in Itô sense.
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By using the Malliavin derivative and the Skorohod integral, we can derive the following
(see e.g., Proposition 2.2 in Nualart [34]):

Proposition 2.2.4 (Existence of density) Let F be a random variable such that F ∈ D
1,2
W .

Assume that Dt F
‖D.F‖2

L2(λ)
∈ DomW

δ . Then the law of F has a continuous and bounded density

function given by

f (x) = E

[
1{F>x}δW

(
DtF

‖D.F‖2
L2(λ)

)]
, x ∈ R.

2.3 The Clark-Ocone formula and the Girsanov theorem

2.3.1 The Clark-Ocone type formula

We next present an explicit form of the martingale representation formula by using Malli-
avin calculus (see e.g., Theorem 4.1 in Di Nunno et al. [20]).

Proposition 2.3.1 (The Clark-Ocone type formula) Let F ∈ D
1,2
W . Then, we have

F = E[F] +
∫ T

0
E[DtF|Ft]dWt.

By using the Clark-Ocone formula, we can derive the following (see Capitaine et al. [11]):

Proposition 2.3.2 1. Poincare’s inequality

Let F ∈ D
1,2
W . Then, we have

E[(F − E[F])2] ≤
∫ T

0
E[|DtF|2]dt.

2. Logarithmic Sobolev inequality

Let F ∈ D
1,2
W and F ≥ ε for some ε > 0. Then, we obtain

E[F2 log F2] − E[F2] log E[F2] ≤ 2
∫ T

0
E[|DtF|2]dt.

2.3.2 Girsanov theorem

We recall the Girsanov theorem for Brownian motions (see, e.g., Section 4.1 of Di Nunno
et al. [20]).

Theorem 2.3.3 Let us, s ∈ [0, T], be predictable processes such that
∫ T

0 u2
s ds < ∞, a.s. More-

over we denote

Zt := exp
(
−
∫ t

0
usdWs −

1
2

∫ t

0
u2

s ds
)

, t ∈ [0, T].



2.4 Clark-Ocone formula under change of measure 11

Define a measure P∗ on FT by

dP∗(ω) = ZT(ω)dP(ω),

and we assume that Z(T) satisfies the Novikov condition, that is,

E

[
exp

(
1
2

∫ T

0
u2

s ds
)]

< ∞.

Then E[ZT ] = 1 and hence P∗ is a probability measure on FT . Furthermore if we denote

dWP∗
t := utdt + dWt,

then WP∗
(·) is a standard Brownian motion under P∗.

2.4 Clark-Ocone formula under change of measure
In this section, we introduce a Clark-Ocone formula under change of measure. Through-
out this section, under the same setting as Theorem 2.3.3, we assume the following.

Assumption 2.4.1 1. u, u2 ∈ L
1,2
W ; and 2usDtus ∈ L2(λ × P) for a.e. s ∈ [0, T].

2. ZT ∈ L2(P); and ZTDt log ZT ∈ L2(λ × P).
3. F ∈ D

1,2
W with FZT ∈ L2(P); and ZT DtF + FDtZT ∈ L2(λ × P).

We next introduce a Clark-Ocone type formula under change of measure (see e.g., Theo-
rem 4.5 in Di Nunno et al. [20]).

Theorem 2.4.2

F = EP∗ [F] +
∫ T

0
EP∗

[
DtF − F

∫ T

0
DtusdWP∗

s

∣∣∣∣Ft

]
dWP∗

t , a.s.

holds.
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Chapter 3

Basic concepts of mathematical finance

and LRM

3.1 Basic notions of mathematical finance

3.1.1 Basic notions of mathematical finance

In this section, we give an overview of basic concepts in mathematical finance theory (see
also e.g., Klebaner [27], Lamberton and Lapeyre [29] and Miyahara [32]). In mathemati-
cal finance theory, pricing and hedging of a contingent claim is central problem, where a
contingent claim on an asset is a contract that allows purchase or sale of this asset in the
future on terms that are specified in the contract. We consider a financial market being
composed of one risk-free asset (e.g. money market, cash or bond) and one risky asset
(e.g. stock) with finite time horizon T. We now introduce a filtered probability space
(Ω,F , P, {Ft}t∈[0,T]), where the filtration is supposed to be right-continuous, complete
and F0 is trivial. The fluctuation of the risky asset is assumed to be given by a semi-
martingale S = (S)t∈[0,T]. This process is adapted and has cádlág paths. The risk-less
asset price process is given by B = (Bt)t∈[0,T], B0 = 1. We assume that Bt is continuous
and of finite variation. Let ξt and ηt denote the amount of units of the risky asset and the
risk-free asset an investor holds at time t. The market value of the portfolio at time t is
given by Vt = ξtSt + ηtBt.

Definition 3.1.1 A portfolio (ξt, ηt) is called self-financing if

dVt = ξtdSt + ηtdBt,

i.e.

Vt = V0 +
∫ t

0
ξudSu +

∫ t

0
ηudBu.

We can see the following:

Theorem 3.1.2 (Theorem 11.11 in Klebaner [27]) A portfolio (ξt, ηt) is self-financing if and
only if, the discounted value process Vt

Bt
is a stochastic integral with respect to the discounted price
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process
Vt

Bt
= V0 +

∫ t

0
ξudS̃u,

where S̃ = St
Bt

.

We next define arbitrage opportunity.

Definition 3.1.3 A self-financing portfolio (ξt, ηt) is called an arbitrage opportunity if Vt satis-
fies the following conditions: V0 = 0, P(VT ≥ 0) = 1 and P(VT > 0) > 0.

If there exists an equivalent martingale measure, i.e. a probability measure P∗ equiva-
lent to the original probability measure P such that the discounted price process S̃ is a
(local) martingale under P∗, then the market model contains no arbitrage opportunities.
Absence of arbitrage is basis for mathematical finance theory. We next consider pricing
of claims.

Definition 3.1.4 1. A predictable and self-financing strategy (ξt, ηt) is called admissible if√∫ t
0 ξ2

ud[S̃, S̃]u is finite and locally integrable for t ∈ [0, T]. Moreover, Vt/Bt is non-
negative P∗-martingale.

2. Let F ≥ 0 be a contingent claim. It is attainable (or redundant) if it is integrable and there
exists an admissible trading strategy such that VT = F.

We can derive the following (see e.g., Theorem 11.13 in Klebaner [27]):

Theorem 3.1.5 The price Pt at time t of an attainable claim F is given by the value of an admis-
sible replicating portfolio Vt, and

Pt = EP∗

[
Bt

BT
F|Ft

]
.

Theorem 3.1.6 Let F be a integrable contingent claim and let Nt = EP∗

[
F

BT
|Ft

]
for t ∈ [0, T].

Then F is attainable if and only if Nt can be represented in the form

Nt = N0 +
∫ t

0
ξ̃udS̃u

for some predictable process ξ̃. Moreover, Vt/Bt = Nt is the same for any admissible portfolio
that replicates F.

We next consider completeness of a market model.

Definition 3.1.7 A market model is complete if any integrable claim is attainable, in other words,
can be replicated by a self-financing portfolio.

Next theorem is called second fundamental theorem of mathematical finance (see e.g.,
Theorem 11.15 in Klebaner [27]).
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Theorem 3.1.8 The following are equivalent:

1. The market model is complete
2. The equivalent martingale measure P∗ that makes S̃t = St

Bt
into a martingale is unique.

If our market is complete, then, we can get price of claim uniquely. Moreover, Theorem
3.1.6 implies that

Vt/Bt = V0 +
∫ t

0
ξ̃udS̃u

and

F = V0 +
∫ T

0
ξ̃tdS̃t.

Therefore, we can see that the claim can be replicated at time T with initial investment
V0 and the following strategy at time t :

(ξ̃t, V0 +
∫ t

0
ξ̃udS̃u − ξ̃S̃u).

We next deal the Black-Scholes-Merton model as typical model of complete market.

3.1.2 Black-Scholes-Merton model

The Black-Scholes-Merton model (BSM model, in short) is the most popular and
fundamental model in mathematical finance. Let T > 0 be a finite time horizon,
(Ω,F , P; {Ft}t∈[0,T]) a one-dimensional Wiener space on [0, T]; and W its coordinate
mapping process, that is, a one-dimensional standard Brownian motion with W0 = 0.
Let F = {Ft}t∈[0,T] be the canonical filtration completed for P. In the Black-Scholes-
Merton model, we assume that the market consists of one risky asset and one risk-less
asset. The fluctuation of the risky asset is assumed to be given by the following stochastic
differential equation (SDE):

dSt = µStdt + σStdWt, S0 > 0,

where µ is a real number (called mean rate of return), σ is a positive real number (called
volatility). The solution of the SDE is given by

St = S0 exp
[(

µ − 1
2

σ2
)

t + σWt

]
.

The risk-less asset price process (Bt)t∈[0,T] is given by

Bt = ert, r ≥ 0,

where r is risk-less interest rate. The discounted stock process is given by

S̃t =
St

Bt
= S0 exp

[(
µ − r − 1

2
σ2
)

t + σWt

]
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or

dS̃t = S̃t[(µ − r)dt + σdWt]

= σS̃td
[

Wt +
µ − r

σ
t
]

, S0 > 0.

We now let u := µ−r
σ and

Zt = exp
(
−uWt −

1
2

u2t
)

, t ∈ [0, T].

Then, Theorem 2.3.3 implies that E[ZT ] = 1 and WP∗
t = Wt + ut is a Brownian motion

under P∗ with dP∗ = ZTdP. Moreover, Theorem 11.16 in Klebaner [27] shows that P∗

is unique equivalent martingale measure that makes S̃t = St
Bt

into a martingale. Hence,
BSM model is complete market with non-arbitrage by Theorem 3.1.8. Theorem 3.1.5
implies that the price of a claim F is given by

Pt = e−r(T−t)EP∗ [F|Ft] .

Let ξt and ηt denote the amount of units of the risky asset and the risk-free asset an
investor holds at time t and assume that ξt and ηt are adapted processes satisfying∫ T

0 ξ2
t dt,

∫ T
0 |ηt|dt < ∞ a.s. The market value of the discounted self-financing replica-

tion portfolio at time t is given by

Ṽt = ξtS̃t + ηt

= ξ0S0 + η0 +
∫ t

0
ξudS̃u

= V0 +
∫ t

0
ξuS̃uσdWP∗

u

and

e−rT F = e−rTVT = V0 +
∫ T

0
ξtS̃tσdWP∗

t .

We next derive the Black-Scholes-Merton formula, that is, theoretical price of the Eu-
ropean call option (ST − K)+, where K > 0 is a strike price at T. European call option
is a contract that gives its holder the right (but not the obligation) to buy the risky asset
with value ST at the maturity time T at a fixed price K. By Theorem 3.1.5, we can get the
initial price of the European call option

P0 = e−rTEP∗
[
(ST − K)+] = S0N(d1) − e−rTKN(d2)

where N(x) = 1√
2π

∫ x
−∞ e−

1
2 y2

dy,

d1 =
log(S0/K) + (r + 1

2 σ2)T

σ
√

T
,
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and

d2 =
log(S0/K) + (r − 1

2 σ2)T

σ
√

T
= d1 − σ

√
T.

We also get the price Pt at time t of the European call option

Pt = e−r(T−t)EP∗
[
(ST − K)+|Ft

]
= StN(d1(t)) − e−r(T−t)KN(d2(t))

where

d1(t) =
log(St/K) + (r + 1

2 σ2)(T − t)
σ
√

T − t

and

d2(t) =
log(St/K) + (r − 1

2 σ2)(T − t)
σ
√

T − t
= d1 − σ

√
T − t.

We next derive hedging strategy of the European call option by using classical Malliavin
calculus. We first check conditions of Assumption 2.4.1.

1. Since u is constant, hence Dtu = 0. Therefore, we can see that u, u2 ∈ L
1,2
W ; and

2uDtu ∈ L2(λ × P) hold.
2. It is easy to see that ZT ∈ L2(P). Moreover, we have Dt log ZT = −u. Therefore

ZTDt log ZT ∈ L2(λ × P) holds. Moreover, Proposition 2.1.5 implies that DtZT =
−uZT .

3. Since ST ∈ L2(P) and Dt log ST = σ, we can see that STDt log ST ∈ L2(λ × P)
holds. Hence, Proposition 2.1.5 implies that ST ∈ D

1,2
W and DtST = σST . Moreover,

Theorem 2.1.7 shows that (ST − K)+ ∈ D
1,2
W and

Dt(ST − K)+ = 1{ST>K}DtST = 1{ST>K}σST .

Since |Dt(ST − K)+| ≤ σST and |(ST − K)+| ≤ ST + K, we can see that ZTDt(ST −
K)+ + (ST − K)+DtZT ∈ L2(λ × P).

Hence, we can apply Theorem 2.4.2 to e−rT(ST − K)+. Theorem 2.4.2 implies that

e−rTVT

= V0 +
∫ T

0
ξtS̃tσdWP∗

t

= e−rT(ST − K)+

= e−rTEP∗ [(ST − K)+] + e−rT
∫ T

0
EP∗

[
Dt(ST − K)+ − (ST − K)+

∫ T

0
DtudWP∗

s

∣∣∣∣Ft

]
dWP∗

t

= e−rTEP∗ [(ST − K)+] + e−rT
∫ T

0
EP∗

[
1{ST>K}σST

∣∣∣∣Ft

]
dWP∗

t .

Hence, we obtain

ξtS̃tσ = e−rTEP∗

[
1{ST>K}σST

∣∣∣∣Ft

]
.
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Therefore the portfolio is given by

ξt =
e−r(T−t)

St
EP∗

[
1{ST>K}ST

∣∣∣∣Ft

]
= N(d1(t)).

In this subsection, we saw that the BSM model is a complete market model. However,
it is said that the real market is incomplete in general. In the incomplete case, there are
many equivalent martingale measure and there exists some claims that is impossible to
replicate. Therefore, we can not determine price and hedging strategy of claim uniquely.
Hence, we have to choose a suitable hedging method for incomplete market model. We
present in this thesis (locally) risk-minimizing that is a very well-known hedging method
for contingent claims in a quadratic way for incomplete financial markets.

3.2 Risk minimization
In this section, we review basic notions of risk minimization. Föllmer and Sonder-
mann [21] introduced the risk-minimizing (RM, for short) hedging strategies for
non-redundant contingent claims, written on a one-dimensional, square-integrable
discounted risky asset S which is a martingale under the original measure P. We
now introduce a filtered probability space (Ω,F , P, {Ft}t∈[0,T]), where the filtration
is supposed to be right-continuous, complete and F0 is trivial. The goal of RM is to
minimize the variance of future costs: Rt = E[(CT − Ct)2|Ft], where Ct means cost
process which will defined later.

Definition 3.2.1 1. ΘS denotes the space of all R-valued predictable processes ξ satisfying

E[
∫ T

0
ξ2

t d〈S〉t] < ∞

.
2. An L2-strategy is given by a pair ϕ = (ξ, η), where ξ ∈ ΘS and η is an adapted process

such that V(ϕ) := ξS + η is a right continuous process with E[V2
t (ϕ)] < ∞ for every

t ∈ [0, T]. Note that ξt (resp. ηt) represents the amount of units of the risky asset (resp.
the risk-free asset) an investor holds at time t.

3. For F ∈ L2(P), the process CF(ϕ) defined by CF
t (ϕ) := F1{t=T} + Vt(ϕ) −

∫ t
0 ξsdSs is

called the cost process of ϕ = (ξ, η) for F.
4. For contingent claim F ∈ L2(P;FT), we call F-admissible if VT = 0.

We know that the following: if S is a martingale, the claim F ∈ L2(P) has the following
decomposition:

F = E[F] +
∫ T

0
ξ∗s dSs + LF

T ,

where ξ∗ ∈ ΘS and LF is a square-integrable martingale orthogonal to S with LF
0 = 0. We

call this decomposition the Galtchouk-Kunita-Watanabe decomposition (see Kunita and
Watanabe [28]). Moreover, the unique F-admissible risk-minimizing strategy ϕ∗ is given
by

ϕ∗ = (ξ∗, E[F|Ft] − ξ∗t St)
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for all t ∈ [0, T] (see e.g., section 2 of Vandaele and Vanmaele [52]).
In the case S is a semi-martingale under P, we could still look for risk-minimizing

strategies ϕ with VT(ϕ) = 0. Unfortunately, there is bad news (see Proposition 3.1 of
Schweizer [45]):

Proposition 3.2.2 If S is not a (local) P-martingale, a contingent claim F admits in general no
risk-minimizing strategy ϕ with VT(ϕ) = 0. P-a.s.

Hence, we consider the concept of locally risk-minimizing hedging strategies to hedge
claims in next section.

3.3 Local risk minimization
In this section, we review basic notions of local risk minimization. Schweizer [43] proved
that RM dose not always exist in the semi-martingale case. Therefore, Schweizer [44] in-
troduced the concept of locally risk-minimizing hedging strategies to hedge claims for
the case that the discounted risky asset is a semi-martingale. We can see streams of
research of the LRM by survey papers (see, e.g., Pham, Schweizer and Vandaele and
Vanmaele [39, 45, 53]) and we can also see that theoretical aspects of LRM has been de-
veloped to a high degree.

We now consider a incomplete financial market being composed of one risk-free asset
and one risky asset with finite time horizon T. For simplicity, we assume that the interest
rate of the market is given by 0, that is, the price of the risk-free asset is 1 at all times.
The fluctuation of the risky asset is assumed to be given by a semi-martingale S on a
filtered probability space (Ω,F , P, {Ft}t∈[0,T]), where the filtration is supposed to be
right-continuous, complete and F0 is trivial. The semi-martingale S has the following
decomposition

S = S0 + M + A,

where M a square-integrable martingale for which M0 = 0, and with A a predictable
process of finite variation |A|. We also assume the following assumption.

Assumption 3.3.1 S satisfying the so-called structure condition (SC, for short). That is S satis-
fies ∥∥∥∥[M]1/2

T +
∫ T

0
|dAs|

∥∥∥∥
L2(P)

< ∞, (3.3.1)

A is absolutely continuous with respect to 〈M〉 with a density λ satisfies E[〈
∫

λdM〉] < ∞, we
can rewrite the canonical decomposition as S = S0 + M +

∫
λd〈M〉. Thirdly, the mean-variance

trade-off process Kt :=
∫ t

0 λ2
s d〈M〉s is finite, that is, KT is finite P-a.s.

We define locally risk-minimizing (LRM, for short) for a contingent claim F ∈ L2(P). We
first define L2-strategy and cost process.

Definition 3.3.2 1. ΘS denotes the space of all R-valued predictable processes ξ satisfying

E[
∫ T

0
ξ2

t d〈M〉t + (
∫ T

0
|ξtdAt|)2] < ∞
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.
2. An L2-strategy is given by a pair ϕ = (ξ, η), where ξ ∈ ΘS and η is an adapted process

such that V(ϕ) := ξS + η is a right continuous process with E[V2
t (ϕ)] < ∞ for every

t ∈ [0, T]. Note that ξt (resp. ηt) represents the amount of units of the risky asset (resp.
the risk-free asset) an investor holds at time t.

3. For F ∈ L2(P), the process CF(ϕ) defined by CF
t (ϕ) := F1{t=T} + Vt(ϕ) −

∫ t
0 ξsdSs is

called the cost process of ϕ = (ξ, η) for F.

We next introduce the definition of a small perturbation.

Definition 3.3.3 (Small Perturbation) A trading strategy ∆ = (δ, ε) is called a small pertur-
bation if it satisfies the following:

1. δ is bounded,
2.
∫ T

0 |δtdAt| is bounded,
3. δT = εT = 0.

For any subinterval (s, t] of [0, T], we define the small perturbation

∆|(s,t] := (δ1(s,t], ε1[s,t)).

We also define partitions τ = (ti)0≤i≤N of the interval [0, T]. A partition of [0, T] is a finite
set τ = {t0, t1, · · · , tk} of times with 0 = t0 < t1 < · · · < tk = T and the mesh size of τ is
|τ| := maxti ,ti+1∈τ(ti+1 − ti). A sequence (τn)n∈N is called increasing if τn ⊆ τn+1 for all n
and it tends to the identity if limn→∞ |τn| = 0. We next define the locally risk-minimizing.

Definition 3.3.4 (Locally Risk-minimizing) For a trading strategy ϕ, a small perturbation
∆ and a partition τ of [0, T] the risk quotient rτ [ϕ, ∆] is defined as follows:

rτ(ϕ, ∆) := ∑
ti ,ti+1∈τ

Rti (ϕ + ∆|(ti ,ti+1]) − Rti (ϕ)
E[〈M〉ti+1 − 〈M〉ti |Fti ]

1(ti ,ti+1],

where Rti = E[(CT − Cti )
2|Fti ]. A trading strategy ϕ is called locally risk-minimizing if

lim inf
n→∞

rτn(ϕ, ∆) ≥ 0

P ⊗ 〈M〉-a.e. on Ω × [0, T] for every small perturbation ∆ and every increasing sequence
(τn)n∈N of partitions of [0, T] tending to the identity.

The definition of LRM is very complicated to use. However, under Assumption 3.3.1,
Theorem 1.6 of Schweizer [46] implies that the following definition of LRM is equivalent
to original one:

Definition 3.3.5 An L2-strategy ϕ is said locally risk-minimizing for F if VT(ϕ) = 0 and
CF(ϕ) is a martingale orthogonal to M, that is, CF(ϕ)M is a martingale.
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Remark 3.3.6 Note that ϕ is not self-financing. In fact, if ϕ is self-financing, then C(ϕ) is a
constant. If there exists a self-financing ϕ s.t. VT(ϕ) = 0, we have F = V0(ϕ) +

∫ T
0 ξsdSs. This

is a contradiction.

We next define Föllmer-Schweizer decomposition (FS decomposition, for short).

Definition 3.3.7 An F ∈ L2(P) admits a Föllmer-Schweizer decomposition if it can be described
by

F = F0 +
∫ T

0
ξF

t dSt + LF
T , (3.3.2)

where F0 ∈ R, ξF ∈ ΘS and LF is a square-integrable martingale orthogonal to M with LF
0 = 0.

Proposition 5.2 of Schweizer [46] shows the following:

Proposition 3.3.8 (Proposition 5.2 of Schweizer [46]) Under Assumption 3.3.1, an LRM
ϕ = (ξ, η) for F exists if and only if F admits an FS decomposition, and its relationship is given
by

ξt = ξF
t , ηt = F0 +

∫ t

0
ξF

s dSs + LF
t − F1{t=T} − ξF

t St.

We next define the minimal martingale measure.

Definition 3.3.9 (Minimal Martingale Measure) A martingale measure P∗, equivalent with
the original measure P, will be called minimal if P∗ = P on F and if any square-integrable
P-martingale which is orthogonal to the martingale part M of the semi-martingale X under P

remains a martingale under P∗.

In the case S is continuous, we can get the FS decomposition by using the Galtchouk-
Kunita-Watanabe decomposition under the minimal martingale measure.

Proposition 3.3.10 (Proposition of Vandaele and Vanmaele [52]) If S is continuous, the
locally risk-minimizing strategy is determined by the Galtchouk-Kunita-Watanabe decomposition
under the minimal martingale measure.

Unfortunately, in the case S is discontinuous, Vadaele and Vanmaele [52] showed that the
locally risk-minimizing strategy is not determined by the Galtchouk-Kunita-Watanabe
decomposition under the minimal martingale measure. Hence, there was no easy way to
find the FS decomposition. In this thesis, we propose a useful way to find it by using the
Malliavin calculus for canonical Lévy processes. To the end, in next chapter, we consider
Malliavin calculus for Lévy processes and a Clark-Ocone type formula under change of
measure for canonical Lévy processes.
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Chapter 4

Malliavin calculus for Lévy processes

and a Clark-Ocone type formula under

change of measure for canonical Lévy

processes

The Clark-Ocone formula is an explicit stochastic integral representation for
random variables in terms of Malliavin derivatives. In this chapter, we prove
a Clark-Ocone type formula under change of measure (COCM) for canonical
Lévy processes with L2-Lévy measure.

To show the COCM for L2-Lévy processes, we develop Malliavin calculus
for canonical Lévy processes, based on Solé et al. [49]. By using σ-finiteness of
Lévy measure, we obtain a commutation formula for the Lebesgue integration
and the Malliavin derivative and a chain rule for Malliavin derivative. These
formulas derive the COCM. Finally, we obtain a log-Sobolev type formula for
Lévy functionals.

The content of this chapter is based on Suzuki [50, 51].

4.1 Introduction
In this chapter, we develop Malliavin calculus for Lévy processes and derive a Clark-
Ocone type formula under change of measure (COCM) for canonical Lévy processes.

The representations of functionals of Brownian motions (or Lévy processes) by
stochastic integrals are important results in Probability theory. They have been widely
studied (see, e.g., survey paper by Davis [16]). In particular, the Clark-Ocone (CO)
formula is an explicit martingale representation of functionals of Brownian motions in
terms of Malliavin derivatives. If an L2-random variable F has certain regularity in the
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Malliavin sense, we have

F = E[F] +
∫ T

0
E[DtF|Ft]dWt

where W is a Brownian motion, DtF is the classical Malliavin derivative. This formula
was shown by Clark, Ocone and Haussmann [13, 14, 23, 36]. A white noise version of the
CO formula was proved by Aase et al. [1]. This formula has various applications. For
example, the log-Sobolev and Poincare inequalities are obtained in Capitaine et al. [11].
In the application to mathematical finance, its representation of an optimal portfolio is
given by this formula (see e.g., Ocone and Karatzas [35]).

The CO formula for Lévy processes has been also studied. Løkka [30] proved CO
formula for functionals of pure jump Lévy processes. A white noise version of the CO
formula for functionals of pure jump Lévy was derived by Di Nunno et al. [19]. Further-
more, we can also see that one for general L2-Lévy functionals also holds (see Benth et
al. [9]).

Since many applications in mathematical finance require representation of random
variables with respect to risk neutral martingale measure, Girsanov transformations ver-
sions of this theorem were studied by many people. First, a Clark-Ocone type formula
under change of measure (COCM) for Brownian motions was proved by Ocone and
Karatzas [35]:

F = EP∗ [F] +
∫ T

0
EP∗

[
DtF − F

∫ T

0
DtusdWP∗

s

∣∣∣∣Ft

]
dWP∗

t .

They also derived an optimal portfolio of Brownian market by using it. Okur [37] derive
a white noise version of it and derived an explicit representation of hedging strategy
of digital option for Brownian market. Huehne [24] derived a COCM for pure jump
Lévy processes and gave an optimal portfolio. Note that Di Nunno et al. [20] and Okur
[38] also introduced one for Lévy processes using white noise theory. However, their
results are different from our results. Our results have different settings and different
representation, for more detail, see Remark 4.5.6 and Theorem 4.5.3 in this chapter.

In this chapter, we derive a COCM for Lévy processes with L2-Lévy measure in section
4.3:

F = EP∗ [F] + σ
∫ T

0
EP∗

[
Dt,0F − FKt

∣∣∣∣Ft−

]
dWP∗

t

+
∫ T

0

∫
R0

EP∗ [F(H∗
t,z − 1) + zH∗

t,zDt,zF|Ft−]ÑP∗
(dt, dz).

We precisely define Kt and H∗
t,z and see sufficient conditions for this formula in section

4.5. Using this result, we obtain log-Sobolev and Poincare type inequalities for Lévy
functionals. For that purpose, we adapted Malliavin calculus for Lévy processes based
on Geiss and Laukkarinen [22] and Solé et al. [49]. Moreover, we show some formulas
to show the main theorem, such as chain rule for Malliavin derivative and commuta-
tion formulas for integrals and the Malliavin derivative. By using σ-finiteness of Lévy
measure (see e.g., Applebaum [3]), we prove it.
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This chapter is organized as follows: In Section 4.2, we review Malliavin calculus for
Lévy processes and we also give a chain rule. In Section 4.3, we first review commuta-
tion formulas like Delong and Imkeller [18] and we also review the Skorohod integral.
Second, we give some comments about commutation formulas as a remark. Finally, we
show another commutation formula. In Section 4.4, we review a Clark-Ocone type for-
mula for canonical Lévy processes and Girsanov type theorem. In Section 4.5, by using
results of Section 4.2, Section 4.3 and Section 4.4, we show a COCM for Lévy processes
with L2− Lévy measure. Using it, we obtain log-Sobolev and Poincare type inequalities
for Lévy functionals.

4.2 Malliavin Calculus for canonical Lévy processes

4.2.1 Setting

We begin with preparation of the probabilistic framework and the underlying Lévy pro-
cess X under which we discuss Malliavin calculus in the sequel. Let T > 0 be a finite
time horizon, (ΩW ,FW , PW) a one-dimensional Wiener space on [0, T]; and W its co-
ordinate mapping process, that is, a one-dimensional standard Brownian motion with
W0 = 0. Let (ΩJ ,FJ , PJ) be the canonical Lévy space (see Solé et al. [49] and Delong
and Imkeller [18]) for a pure jump Lévy process J on [0, T] with Lévy measure ν, that is,
ΩJ = ∪∞

n=0([0, T] × R0)n, where R0 := R \ {0}; and

Jt(ωJ) =
n

∑
i=1

zi1{ti≤t}

for t ∈ [0, T] and ωJ = ((t1, z1), . . . , (tn, zn)) ∈ ([0, T] × R0)n. Note that ([0, T] × R0)0

represents an empty sequence. Now, we assume that
∫

R0
z2ν(dz) < ∞; and denote

(Ω,F , P) = (ΩW × ΩJ ,FW × FJ , PW × PJ) and we call it canonical space. Let F =
{Ft}t∈[0,T] be the canonical filtration completed for P. Let X be a square integrable cen-
tered Lévy process on (Ω,F , P) represented as

Xt = σWt + Jt − t
∫

R0

zν(dz), (4.2.1)

where σ > 0. Denoting by N the Poisson random measure defined as

N(t, A) := ∑
s≤t

1A(∆Xs),

A ∈ B(R0) and t ∈ [0, T], where ∆Xs := Xs − Xs−, we have Jt =
∫ t

0

∫
R0

zN(ds, dz). In

addition, we define its compensated measure as Ñ(dt, dz) := N(dt, dz) − ν(dz)dt. Thus,
we can rewrite (4.2.1) as

Xt = σWt +
∫ t

0

∫
R0

zÑ(ds, dz). (4.2.2)
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We consider the finite measure q defined on [0, T] × R by

q(E) = σ2
∫

E(0)
dtδ0(dz) +

∫
E′

z2dtν(dz), E ∈ B([0, T] × R),

where E(0) = {(t, 0) ∈ [0, T] × R; (t, 0) ∈ E} and E′ = E − E(0), and the random
measure Q on [0, T] × R by

Q(E) = σ
∫

E(0)
dWtδ0(dz) +

∫
E′

zÑ(dt, dz), E ∈ B([0, T] × R).

Let L2
T,q,n denote the set of product measurable, deterministic functions h : ([0, T] ×

R)n → R satisfying

‖h‖2
L2

T,q,n
:=
∫
([0,T]×R)n

|h((t1, z1), · · · , (tn, zn))|2q(dt1, dz1) · · · q(dtn, dzn) < ∞.

For n ∈ N and hn ∈ L2
T,q,n, we denote

In(hn) :=
∫
([0,T]×R)n

h((t1, z1), · · · , (tn, zn))Q(dt1, dz1) · · · Q(dtn, dzn).

It is easy to see that E[I0(h0)] = h0 and E[In(hn)] = 0, for n ≥ 1. Moreover, this integral
has the usual properties (see Itô [26]):

Proposition 4.2.1 1. For n ≥ 1, f ∈ L2
T,q,n, we obtain, In( f ) = In( f̃ ), where f̃ is the

symmetrization of f :

f̃ ((t1, z1), · · · , (tn, zn)) =
1
n! ∑

π∈Dn

f ((tπ(1), zπ(1)), · · · , (tπ(n), zπ(n))),

where, Dn is the set of permutations of {1, 2, · · · , n}.
2. For n ≥ 1, a, b ∈ R, f , g ∈ L2

T,q,n, we get: In(a f + bg) = aIn( f ) + bIn(g).
3. For m, n ≥ 1, f ∈ L2

T,q,n, g ∈ L2
T,q,m, are symmetric in the n pairs (ti, zi), 1 ≤ i ≤ n, that

is f = f̃ and g = g̃, then, we have

E[In( f )Im(g)] = n!1(n=m)〈 f , g〉L2
T,q,n

.

In this setting, we introduce the following chaos expansion (see Theorem 2 in Itô[26],
Section 2 of Solé[49] and Section 3 of Delong and Imkeller [18]).

Theorem 4.2.2 Any F -measurable square integrable random variable F on the canonical space
has a unique representation

F =
∞

∑
n=0

In(hn), P−a.s.
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with functions hn ∈ L2
T,q,n that are symmetric in the n pairs (ti, zi), 1 ≤ i ≤ n and we have the

isometry

E[F2] =
∞

∑
n=0

n!‖hn‖2
L2

T,q,n
.

By using the chaos expansion, we can define the following:

Definition 4.2.3 (1) Let D1,2 denote the set of F -measurable random variables F ∈ L2(P) with
the representation F = ∑∞

n=0 In(hn) satisfying

∞

∑
n=1

nn!‖hn‖2
L2

T,q,n
< ∞.

(2) Let F ∈ D1,2. Then the Malliavin derivative DF : Ω × [0, T]× R → R of a random variable
F ∈ D1,2 is a stochastic process defined by

Dt,zF :=
∞

∑
n=1

nIn−1(hn((t, z), ·)), valid for q−a.e. (t, z) ∈ [0, T] × R, P − a.s.

(3) For σ 6= 0, let D
1,2
0 denote the set of F -measurable random variables F ∈ L2(P) with the

representation F = ∑∞
n=0 In( fn) satisfying

∞

∑
n=1

nn!
∫ T

0
‖ fn(·, (t, 0))‖2

L2
T,q,n−1

σ2dt < ∞.

Then, for F ∈ D
1,2
0 , we can define

Dt,0F =
∞

∑
n=1

nIn−1( fn((t, 0), ·)), valid for q−a.e. (t, 0) ∈ [0, T] × {0}, P − a.s.

(4) For ν 6= 0, let D
1,2
1 denote the set of F -measurable random variables F ∈ L2(P) with the

representation F = ∑∞
n=0 In( fn) satisfying

∞

∑
n=1

nn!
∫ T

0

∫
R0

‖ fn(·, (t, z))‖2
L2

T,q,n−1
z2ν(dz)dt < ∞.

Then, for F ∈ D
1,2
1 , we can define

Dt,zF =
∞

∑
n=1

nIn−1( fn((t, z), ·)), valid for q−a.e. (t, z) ∈ [0, T] × R0, P − a.s.

(5) Let DW be the classical Malliavin derivative with respect to the Brownian motion W and
Dom DW be the domain of DW (for more details see Nualart [33] and Chapter 2). We define

DW :=
{

F ∈ L2(P); F(·, ωN) ∈ Dom DW for PN−a.e. ωN ∈ ΩN

}
.
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(6) Let F be a random variable on ΩW × ΩN . Then we define the increment quotient operator

Ψt,zF :=
F(ωW , ωt,z

N ) − F(ωW , ωN)
z

, z 6= 0,

where ωt,z
N transforms a family ωN = ((t1, z1), (t2, z2), · · · ) ∈ ΩN into a new family

ωt,z
N = ((t, z), (t1, z1), (t2, z2), · · · ) ∈ ΩN , by adding a jump of size z at time t into the trajec-

tory. Moreover, we denote

DJ :=
{

F ∈ L2(P); E

[∫ T

0

∫
R0

|Ψt,zF|2z2ν(dz)dt
]

< ∞
}

.

By Propositions 2.6.1, 2.6.2 in Delong [17] and result of Alós et al. [2] (see section 3.3), we
can derive the following:

Proposition 4.2.4

1. If F ∈ DW , then F ∈ D
1,2
0 and Dt,0F = 1{σ>0}σ−1DW

t F(·, ωN)(ωW) for q -a.e. (t, z) ∈
[0, T] × {0}, P -a.s.

2. If F ∈ DJ , then F ∈ D
1,2
1 and Dt,zF = Ψt,zF for q -a.e. (t, z) ∈ [0, T] × R0, P -a.s.

3. D1,2 = DW ∩ DJ holds.

Lemma 4.2.5 (Lemma 3.1 of Delong and Imkeller [18]) Let F ∈ D1,2. Then, for 0 ≤ t ≤
T, E[F|Ft] ∈ D1,2 and

Ds,xE[F|Ft] = E[Ds,xF|Ft]1{s≤t}, for q−a.e. (s, x) ∈ [0, T] × R, P−a.s.

We next establish the following fundamental result.

Proposition 4.2.6 (The closability of operator D) Let F ∈ L2(P) and Fk ∈ D1,2, k ∈ N

such that

1. limk→∞ Fk = F in L2(P),
2. {Dt,zFk}∞

k=1 converges in L2(q × P).

Then, F ∈ D1,2 and limk→∞ Dt,zFk = Dt,zF in L2(q × P).

Proof. We can show this proposition by the same sort argument as Theorem 12.6 of

Di Nunno et al. [20]. Let F =
∞

∑
n=0

In( fn), fn ∈ L2
T,q,n and Fk =

∞

∑
n=0

In( f k
n), f k

n ∈ L2
T,q,n. Then

by assumption (1), we have

lim
k→∞

∞

∑
n=0

n!‖ f k
n − fn‖2

L2
T,q,n

= 0.
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This implies that limk→∞ f k
n = fn in L2

T,q,n for all n. From assumption (2), we deduce that

lim
k,m→∞

∞

∑
n=1

nn!‖ f k
n − f m

n ‖2
L2

T,q,n
= lim

k,m→∞
E

[∫
[0,T]×R

(Dt,zFk − Dt,zFm)2 q(dt, dz)
]

= 0.

Hence, we obtain

lim
k→∞

∞

∑
n=1

nn!‖ f k
n − fn‖2

L2
T,q,n

≤ 2 lim
k→∞

∞

∑
n=1

lim inf
m→∞

nn!‖ f k
n − f m

n ‖2
L2

T,q,n

≤ 2 lim
k→∞

lim inf
m→∞

∞

∑
n=1

nn!‖ f k
n − f m

n ‖2
L2

T,q,n
= 0,

because nn!‖ f k
n − f m

n ‖2
L2

T,q,n
≥ 0 for all n, m, k.

Therefore, we can see that F ∈ D1,2 and limk→∞ Dt,zFk = Dt,zF in L2(q × P). �

We next introduce a chain rule for the Malliavin derivatives. First we define the fol-
lowing.

Definition 4.2.7 1. Let C∞
0 (Rn) denote the space of smooth functions f : Rn → R with

compact support.
2. A random variable of the form F = f (Xt1 , · · · , Xtn), where f ∈ C∞

0 (Rn), n ∈ N, and
t1, · · · , tn ≥ 0, is said to be a smooth random variable. The set of all smooth random
variables is denoted by S .

3. For F ∈ S , we define the Malliavin derivative operator D as a map from S into L2(q ×P)

Dt,zF :=
n

∑
i=1

∂ f
∂xi

(Xt1 , · · · , Xtn)1[0,ti ]×{0}(t, z)

+
f (Xt1 + z1[0,t1](t), · · · , Xtn + z1[0,tn ](t)) − f (Xt1 , · · · , Xtn)

z
1R0(z)

for (t, z) ∈ [0, T] × R.

By Lemma 3.1 and Theorem 4.1 in Geiss and Laukkarinen [22], we can see that the closure
of the domain of D with respect to the norm

‖F‖D := {E[|F|2] + E[‖DF‖2
L2

q
]}1/2

is the space D1,2 and Dt,zF = Dt,zF for all F ∈ S ⊂ D1,2. Moreover, by Corollary 4.1
in Geiss and Laukkarinen [22], the set S of smooth random variables is dense in L2(P),
D1,2, D

1,2
0 and D

1,2
1 .

Proposition 4.2.8 Let ϕ : Rn → R, n ≥ 1 be a C1-function with bounded derivative.
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1. If F = (F1, · · · , Fn) ∈ (D
1,2
0 )n, then, ϕ(F) ∈ D

1,2
0 and

Dt,0 ϕ(F) =
n

∑
k=1

∂ϕ

∂xk
(F)Dt,0Fk1{0}(z) for q−a.e. (t, z) ∈ [0, T] × {0}, P−a.s.

(4.2.3)
holds.

2. If F = (F1, · · · , Fn) ∈ (D
1,2
1 )n, then ϕ(F) ∈ D

1,2
1 and

Dt,z ϕ(F) =
ϕ(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕ(F1, · · · , Fn)

z
(4.2.4)

for q-a.e. (t, z) ∈ [0, T] × R0, P-a.s. holds.

Proof. (1) We can show this proposition by the same sort argument as Proposition 1.30
of Nualart [34]. We will only prove the case n = 1. The case n > 1 can be proved in the
same way. Let ϕm(x) =

∫
R

ϕ(x − y)ψm(y)dy, where, ψm(x) = mψ(mx), m ∈ N, x ∈ R,
where, ψ is a C∞ positive function with support [−1, 1] and

∫
R

ψ(x)dx = 1. We can
see that ϕm ∈ C∞ is bounded with bounded derivative. Since, F ∈ D

1,2
0 , there exists a

sequence {Fk}∞
k=1, Fk ∈ S , Fk = fk(Xt1 , · · · , Xtnk

), fk ∈ C∞
0 (Rn) with Fk → F in L2(P)

and Dt,0Fk → Dt,0F in L2(λ × P). Then, we have

Dt,0 ϕm(Fk) =
nk

∑
i=1

∂i(ϕm ◦ fk)(Xt1 , · · · , Xtnk
) = ϕ′

m(Fk)Dt,0Fk.

By using the triangle inequality,

‖ϕ′
m(Fk)Dt,0Fk − ϕ′(F)Dt,0F‖L2(λ×P) ≤ ‖ϕ′

m(Fk)(Dt,0Fk − Dt,0F)‖L2(λ×P)

+‖(ϕ′
m(Fk) − ϕ′(Fk))Dt,0F‖L2(λ×P) + ‖(ϕ′(Fk) − ϕ′(F))Dt,0F‖L2(λ×P)

=: I + I I + I I I.

We can see that for any m, k ≥ 1, ϕ′
m(Fk) is bounded not depending on m and k, hence

I → 0 as k → ∞. Moreover the dominated convergence theorem implies that for any
k ≥ 1, I I → 0 as m → ∞. In the same way, we obtain I I I → 0 as k → ∞. Thus,

lim
k,m→∞

‖ϕ′
m(Fk)Dt,0Fk − ϕ′(F)Dt,0F‖L2(λ×P) = 0.

Since limm→∞ ϕm(x) = ϕ(x) uniformly and ϕm is a Lipschitz continuous function
with Lipschitz constant not depending on m, we obtain limk,m→∞ ϕm(Fk) = ϕ(F)
in L2(P). Therefore, by the closability of Dt,0, we can see that ϕ(F) ∈ D

1,2
0 and

Dt,0 ϕ(F) = ϕ′(F)Dt,0F.
(2) Equation (4.2.4) follows from the definition of the operator Ψ and Proposition 4.2.4.

�
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Proposition 4.2.9 (Chain rule)
Let ϕ ∈ C1(Rn; R) and F = (F1, · · · , Fn), where F1, · · · , Fn ∈ D1,2. Suppose that ϕ(F) ∈
L2(P) and

n

∑
k=1

∂

∂xk
ϕ(F)Dt,0Fk1{0}(z)

+
ϕ(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕ(F1, · · · , Fn)

z
1R0(z) ∈ L2(q × P).

Then, we obtain ϕ(F) ∈ D1,2 and

Dt,z ϕ(F) =
n

∑
k=1

∂ϕ

∂xk
(F)Dt,0Fk1{0}(z)

+
ϕ(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕ(F1, · · · , Fn)

z
1R0(z).

Proof. We can show this proposition by the same sort argument as Lemma A.1 of
Ocone-Karatzas [35]. Let Ψ ∈ C∞

0 (R) satisfy Ψ(y) = y if |y| ≤ 1, |Ψ(y)| ≤ |y| for all

y ∈ R. For any l ∈ N, let ϕl(x) = lΨ( ϕ(x)
l ), x ∈ Rn. For each l, ϕl ∈ C1

b(Rn; R) and thus
ϕl(F) ∈ D1,2 and

Dt,z ϕl(F) = Ψ′(ϕ(F)/l)
n

∑
k=1

∂ϕ

∂xk
(F)Dt,0Fk1{0}(z)

+
ϕl(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕl(F1, · · · , Fn)

z
1R0(z)

by Proposition 4.2.8. Note that |ϕl(F)| ≤ |ϕ(F)| for all l, liml→∞ ϕl(F) = ϕ(F) a.s. and

lim
l→∞

Dt,z ϕl(F) =
n

∑
k=1

∂ϕ

∂xk
(F)Dt,0Fk1{0}(z)

+
ϕ(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕ(F1, · · · , Fn)

z
1R0(z)

=: I∞

q × P-a.e. Moreover note that

|Dt,z ϕl(F) − I∞|

≤ |Ψ′(ϕ(F)/l)
n

∑
k=1

∂ϕ

∂xk
(F)Dt,0Fk1{0}(z) −

n

∑
k=1

∂ϕ

∂xk
(F)Dt,0Fk1{0}(z)|

+| ϕl(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕl(F1, · · · , Fn)
z

1R0(z)

− ϕ(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕ(F1, · · · , Fn)
z

1R0(z)|

≤ (sup
y∈R

|Ψ′(y)| + 1)|
n

∑
k=1

∂ϕ

∂xk
(F)Dt,0Fk|1{0}(z)
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+ sup
y∈R

|Ψ′(y)|
√

n

∑
k=1

(Dt,zFk)21R0(z)

+
∣∣∣∣ ϕ(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕ(F1, · · · , Fn)

z

∣∣∣∣ 1R0(z) ∈ L2(q × P)

Therefore dominated convergence theorem implies that liml→∞ ϕl(F) = ϕ(F) in L2(P)
and liml→∞ Dt,z ϕl(F) = I∞ in L2(q × P). Hence, Proposition 4.2.6 implies that ϕ(F) ∈
D1,2 and

Dt,z ϕ(F) =
n

∑
k=1

∂ϕ

∂xk
(F)Dt,0Fk1{0}(z)

+
ϕ(F1 + zDt,zF1, · · · , Fn + zDt,zFn) − ϕ(F1, · · · , Fn)

z
1R0(z).

�

If we take ϕ(x, y) = xy, then, we can derive the following product rule.

Corollary 4.2.10 Let F1, F2 ∈ D1,2 and F1F2 ∈ L2(P). Moreover, assume that F1Dt,zF2 +
F2Dt,zF1 + zDt,zF1 · Dt,zF2 ∈ L2(q × P). Then F1F2 ∈ D1,2 and

Dt,zF1F2 = F1Dt,zF2 + F2Dt,zF1 + zDt,zF1 · Dt,zF2 q−a.e. (t, z) ∈ [0, T] × R, P − a.s.
(4.2.5)

4.3 The Skorohod integral and commutation of integration and

the Malliavin differentiability
In this section, we consider the Skorohod integral and commutation of integration and
the Malliavin differentiability, which has an interest of its own and could be applied for
other purposes than the one of this chapter. First we introduce the following classes.

Definition 4.3.1 (1) Let L1,2 denote the space of product measurable and F -adapted processes
G : Ω × [0, T] × R → R satisfying

E

[∫
[0,T]×R

|Gs,x|2q(ds, dx)
]

< ∞,

Gs,x ∈ D1,2, q−a.e. (s, x) ∈ [0, T] × R and

E

[∫
([0,T]×R)2

|Dt,zGs,x|2q(ds, dx)q(dt, dz)
]

< ∞.

(2) L
1,2
0 denotes the space of G : [0, T] × Ω → R satisfying



4.3 The Skorohod integral and the Malliavin derivatives 33

1. Gs ∈ D1,2 for a.e. s ∈ [0, T],
2. E

[∫
[0,T] |Gs|2ds

]
< ∞,

3. E
[∫

[0,T]×R

∫ T
0 |Dt,zGs|2dsq(dt, dz)

]
< ∞.

(3) L
1,2
1 is defined as the space of G : [0, T] × R0 × Ω → R such that

1. Gs,x ∈ D1,2 for q-a.e. (s, x) ∈ [0, T] × R,
2. E

[∫
[0,T]×R0

|Gs,x|2ν(dx)ds
]

< ∞,

3. E
[∫

[0,T]×R

∫
[0,T]×R0

|Dt,zGs,x|2ν(dx)dsq(dt, dz)
]

< ∞.

(4) L̃
1,2
1 is defined as the space of G ∈ L1,2 such that

1. E
[(∫

[0,T]×R0
|Gs,x|ν(dx)ds

)2
]

< ∞,

2. E
[∫

[0,T]×R

(∫
[0,T]×R0

|Dt,zGs,x|ν(dx)ds
)2

q(dt, dz)
]

< ∞.

(5) Recall that any function u ∈ L2(q × P) has a chaotic representation

ut,z =
∞

∑
n=0

In(hn(·, (t, z))),

where hn ∈ L2
T,q,n+1 is symmetric in the first n pairs of variables. Denoting by ĥn the sym-

metrization of hn with respect to all n + 1 pairs of variables, we define

Domδ :=

{
u ∈ L2(q × P)

∣∣∣ ∞

∑
n=0

(n + 1)!‖ĥn‖2
L2

T,q,n+1
< ∞

}
.

(6) Let u ∈ Domδ. Then the Skorohod integral δ with respect to the random measure Q of a
process u : Ω × [0, T] × R → R is defined as

δ(u) = ∑
n=0

In+1(ĥn), P−a.s.

The Skorohod integral δ has the following properties (see section 6 of Solé et al. [49]):

Proposition 4.3.2 (1) Duality formula
A process u ∈ L2(q × P) belongs to Domδ if and only if there exists a constant C such
that for all F ∈ D1,2,∣∣∣∣E [∫[0,T]×R

us,xDs,xFq(ds, dx)
]∣∣∣∣ ≤ C(E[F2])1/2.

If u ∈ Domδ, then δ(u) is the element of L2(P) characterized by

E[δ(u)F] = E

[∫
[0,T]×R

u(s, x)Ds,xFq(ds, dx)
]
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for any F ∈ D1,2.
(2) Covariance of Skolohod integrals

A process u ∈ L2(q × P) belongs to L1,2 if and only if

∞

∑
n=1

n · n!‖ĥn‖2
L2

T,q,n+1
< ∞

holds, and, in particular, this implies L1,2 ⊂ Domδ . For u, v ∈ L1,2,

E[δ(u)δ(v)] = E

[∫
[0,T]×R

u(s, x)v(s, x)q(ds, dx)
]

+ E

[∫
([0,T]×R)2

Dt,zu(s, x)Dt,zv(s, x)q(dt, dz)q(ds, dx)
]

.

(3) Differentiability of δ
Let u ∈ L1,2 such that Dt,zu ∈ Domδ for all (t, z) ∈ [0, T]×R, q-a.e. Then δ(u) ∈ D1,2

and
Dt,zδ(u) = ut,z + δ(Dt,zu)

for all (t, z) ∈ [0, T] × R, q-a.e.
(4) Skorohod integral is an extension of the Itô integral

Let u ∈ L2(q × P) be predictable. Then, u ∈ Domδ and

δ(u) =
∫
[0,T]×R

us,xQ(ds, dx).

We next discuss the commutation relation of the stochastic integral with the Malliavin
derivative.

Proposition 4.3.3 (Lemma 3.3 of Delong and Imkeller [18])
Let G : Ω × [0, T] × R → R be a predictable process with

E

[∫
[0,T]×R

|Gs,x|2q(ds, dx)
]

< ∞.

Then
G ∈ L1,2 if and only if

∫
[0,T]×R

Gs,xQ(ds, dx) ∈ D1,2.

Furthermore, if
∫
[0,T]×R

Gs,xQ(ds, dx) ∈ D1,2, then, for q -a.e. (t, z) ∈ [0, T] × R, we have

Dt,z

∫
[0,T]×R

Gs,xQ(ds, dx) = Gt,z +
∫
[0,T]×R

Dt,zGs,xQ(ds, dx), P−a.s.,

and
∫
[0,T]×R

Dt,zGs,xQ(ds, dx) is a stochastic integral in Itô sense.

Next proposition provides commutation of the Lebesgue integration and the Malliavin
differentiability.
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Proposition 4.3.4 (Lemma 3.2 of Delong and Imkeller [18])
Assume that G : Ω × [0, T] × R → R is a product measurable and F -adapted process, η on
[0, T] × R a finite measure, so that conditions

E

[∫
[0,T]×R

|Gs,x|2η(ds, dx)
]

< ∞,

Gs,x ∈ D1,2, for η−a.e. (s, x) ∈ [0, T] × R,

E

[∫
([0,T]×R)2

|Dt,zGs,x|2η(ds, dx)q(dt, dz)
]

< ∞

are satisfied. Then we have ∫
[0,T]×R

Gs,xη(ds, dx) ∈ D1,2

and the differentiation rule

Dt,z

∫
[0,T]×R

Gs,xη(ds, dx) =
∫
[0,T]×R

Dt,zGs,xη(ds, dx)

holds for q -a.e. (t, z) ∈ [0, T] × R, P -a.s.

Remark 4.3.5 We already know the following:

1. If G(s, x) ∈ L1(η) is a deterministic function, and η([0, T] × R) < ∞ or
η([0, T] × R) = ∞, then we can see

∫
[0,T]×R

G(s, x)η(ds, dx) ∈ D1,2 and
Dt,z

∫
[0,T]×R

G(s, x)η(ds, dx) = 0 =
∫
[0,T]×R

Dt,zG(s, x)η(ds, dx).
2. Let η(dx, ds) = δR0(x)ν(dx)ds with ν(R0) < ∞. Then, Proposition 4.3.4 implies that∫

[0,T]×R0
G(s, x)ν(dx)ds ∈ D1,2 and the differentiation rule holds.

3. We assume ν satisfies ν(R0) < ∞ or ν(R0) = ∞. Moreover if G(s, x) = g1(x)g2(s),
where, g1(x) ∈ L1(ν) is a deterministic function and g2(s) ∈ L

1,2
0 is a stochastic

process, then, we have
∫
[0,T]×R0

G(s, x)ν(dx)ds =
∫

R0
g1(x)ν(dx)

∫
[0,T] g2(s)ds =

C
∫
[0,T] g2(s)ds, where C :=

∫
R0

g1(x)ν(dx) is a constant number. Therefore, by

Proposition 4.3.4, we can see C
∫
[0,T] g2(s)ds ∈ D1,2 and the differentiation rule holds.

By using σ-finiteness of ν and Proposition 4.3.4, we can show the following proposi-
tion.

Proposition 4.3.6 Let G ∈ L̃
1,2
1 . Then,∫

[0,T]×R0

Gs,xν(dx)ds ∈ D1,2

and the differentiation rule

Dt,z

∫
[0,T]×R0

Gs,xν(dx)ds =
∫
[0,T]×R0

Dt,zGs,xν(dx)ds

holds for q -a.e. (t, z) ∈ [0, T] × R, P -a.s.
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Proof. Since ν is σ-finite measure, we can find a sequence (An, n ∈ N) in B(R0) such
that R0 =

∪∞
n=1 An and ν(An) < ∞. Hence, Proposition 4.3.4 implies∫

[0,T]×∪k
n=1 An

G(s, x)ν(dx)ds ∈ D1,2, k ∈ N

and
Dt,z

∫
[0,T]×∪k

n=1 An
G(s, x)ν(dx)ds =

∫
[0,T]×∪k

n=1 An
Dt,zG(s, x)ν(dx)ds.

Next, note the following;

lim
k→∞

G(s, x)1∪k
n=1 An

(x) = G(s, x), ν ⊗ λ ⊗ P−a.e.,

hence,
lim
k→∞

G(s, x)1∩k
n=1 AC

n
(x) = 0, ν ⊗ λ ⊗ P−a.e.,

|G(s, x)1∪k
n=1 An

(x) − G(s, x)| = |G(s, x)1∩k
n=1 AC

n
(x)| ≤ |G(s, x)| ∈ L1(ν × λ)

and ∣∣∣∣∫[0,T]×R0

G(s, x)ν(dx)ds −
∫
[0,T]×∪k

n=1 An
G(s, x)ν(dx)ds

∣∣∣∣2
≤
(∫

[0,T]×R0

|G(s, x)|ν(dx)ds
)2

∈ L1(P).

Then, by Lebesgue’s dominated convergence theorem, we can see

lim
k→∞

E

[∣∣∣∣∫[0,T]×R0

G(s, x)ν(dx)ds −
∫
[0,T]×∪k

n=1 An
G(s, x)ν(dx)ds

∣∣∣∣2
]

= 0.

Moreover,

lim
k→∞

Dt,zG(s, x)1∪k
n=1 An

(x) = Dt,zG(s, x), ν ⊗ λ ⊗ P ⊗ q−a.e.,

hence,
lim
k→∞

Dt,zG(s, x)1∩k
n=1 AC

n
(x) = 0, ν ⊗ λ ⊗ P ⊗ q−a.e.,

|Dt,zG(s, x)1∪k
n=1 An

(x) − Dt,zG(s, x)| = |Dt,zG(s, x)1∩k
n=1 AC

n
(x)|

≤ |Dt,zG(s, x)| ∈ L1(ν × λ),
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and ∣∣∣∣∫[0,T]×R0

Dt,zG(s, x)ν(dx)ds −
∫
[0,T]×∪k

n=1 An
Dt,zG(s, x)ν(dx)ds

∣∣∣∣2
≤
(∫

[0,T]×R0

|Dt,zG(s, x)|ν(dx)ds
)2

∈ L1(q × P).

Then, Lebesgue’s dominated convergence theorem shows

∫
[0,T]×R

E

[∣∣∣∣∫[0,T]×R0

Dt,zG(s, x)ν(dx)ds −
∫
[0,T]× ∪k

n=1 An
Dt,zG(s, x)ν(dx)ds

∣∣∣∣2
]

×q(dt, dz) → 0 as k → ∞. Therefore, by Proposition 4.2.6, we can conclude∫
[0,T]×R0

G(s, x)ν(dx)ds ∈ D1,2

and the differentiation rule

Dt,z

∫
[0,T]×R0

G(s, x)ν(dx)ds =
∫
[0,T]×R0

Dt,zG(s, x)ν(dx)ds

holds for q -a.e. (t, z) ∈ [0, T] × R, P -a.s. �

4.4 Clark-Ocone type formula for canonical Lévy functionals and

Girsanov type theorem

4.4.1 Clark-Ocone type formula for canonical Lévy functionals

We next present an explicit form of the martingale representation formula by using Malli-
avin calculus (see e.g., Theorem 3.5.2 in Delong [17]).

Proposition 4.4.1 (Clark-Ocone type formula for canonical Lévy functionals)
Let F ∈ D1,2. Then, we have

F = E[F] +
∫
[0,T]×R

E[Dt,zF|Ft−]Q(dt, dz)

= E[F] + σ
∫ T

0
E[Dt,0F|Ft−]dWt +

∫ T

0

∫
R0

E[Dt,zF|Ft−]zÑ(dt, dz). (4.4.6)

Proof. We introduce two proofs.
(1) First proof is equal to the one for the Brownian motion case (see, Theorem 4.1 in Di
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Nunno et al. [20]) and pure jump Lévy case (see, Theorem 12.16 in Di Nunno et al. [20]).

We denote F =
∞

∑
n=0

In( fn), fn ∈ L2
T,q,n and

Jn( fn) :=
∫ T

0

∫
R
· · ·

∫ t2−

0

∫
R

fn(t1, z1, · · · , tn, zn)Q(dt1, dz1) · · · Q(dtn, dzn) =
1
n!

In( fn)

where 0 ≤ t1 ≤ · · · tn ≤ T. From E[F] = I0( f0), Dt,zF =
∞

∑
n=1

nIn−1( fn((t, z), ·)), We

obtain

E[F] +
∫ T

0

∫
R

E[Dt,zF|Ft−]Q(dt, dz)

= I0( f0) +
∫ T

0

∫
R

E[
∞

∑
n=1

nIn−1( fn((t, z), ·))|Ft−]Q(dt, dz)

= I0( f0) +
∫ T

0

∫
R

E[
∞

∑
n=1

n(n − 1)!Jn−1( fn((t, z), ·))|Ft−]Q(dt, dz)

= I0( f0) +
∞

∑
n=1

n!
∫ T

0

∫
R

E[
∫ T

0

∫
R
· · ·

∫ t2−

0

∫
R

fn(t1, z1, · · · , tn−1, zn−1, t, z)

×Q(dt1, dz1) · · · Q(dtn−1, dzn−1)|Ft−]Q(dt, dz)

= I0( f0) +
∞

∑
n=1

n!
∫ T

0

∫
R

∫ t−

0

∫
R
· · ·

∫ t2−

0

∫
R

fn(t1, z1, · · · , tn−1, zn−1, t, z)

×Q(dt1, dz1) · · · Q(dtn−1, dzn−1)Q(dt, dz)

= I0( f0) +
∞

∑
n=1

n!
∫ T

0

∫
R

∫ tn−

0

∫
R
· · ·

∫ t2−

0

∫
R

fn(t1, z1, · · · , tn−1, zn−1, tn, zn)

×Q(dt1, dz1) · · · Q(dtn−1, dzn−1)Q(dtn, dzn)

= I0( f0) +
∞

∑
n=1

n!Jn( fn)

= I0( f0) +
∞

∑
n=1

In( fn) =
∞

∑
n=0

In( fn) = F.

(2) The martingale representation theorem (see, e.g. Proposition 9.4 of Cont and Tankov
[15]) provides that

F = E[F] +
∫ T

0
ϕ

(1)
s− dWs +

∫ T

0

∫
R0

ϕ
(2)
s−,x Ñ(ds, dx)

= E[F] +
∫ T

0

ϕ
(1)
s−
σ

σdWs +
∫ T

0

∫
R0

ϕ
(2)
s−,x

x
xÑ(ds, dx)

= E[F] +
∫ T

0

∫
R

 ϕ
(1)
s−
σ

1{0}(x) +
ϕ

(2)
s−,x

x
1R0(x)

Q(ds, dx),
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where ϕ(1) and ϕ(2) are L2(q × P)-predictable processes. Since F ∈ D1,2, Proposition
4.3.4 implies that

Dt,zF =
ϕ

(1)
t−
σ

1{0}(z) +
ϕ

(2)
t−,z
z

1R0 (z) +
∫ T

t−

∫
R

Dt,z

 ϕ
(1)
s−
σ

1{0}(x) +
ϕ

(2)
s−,x
x

1R0 (x)

Q(ds, dx).

Hence, we have

E[Dt,zF|Ft−] =
ϕ

(1)
t−
σ

1{0}(z) +
ϕ

(2)
t−,z

z
1R0(z).

Therefore, we can see that ϕ
(1)
t− = σE[Dt,0F|Ft−] and ϕ

(2)
t−,z = zE[Dt,zF|Ft−]. �

4.4.2 Girsanov theorem for Lévy processes

We recall the Girsanov theorem for Lévy processes (see, e.g., Theorem 12.21 of Di Nunno
et al. [20]).

Theorem 4.4.2 Let θs,x < 1, s ∈ [0, T], x ∈ R0 and us, s ∈ [0, T], be predictable processes such
that ∫ T

0

∫
R0

{| log(1 − θs,x)|2 + θ2
s,x}ν(dx)ds < ∞, a.s.,∫ T

0
u2

s ds < ∞, a.s.

Moreover we denote

Zt := exp
(
−
∫ t

0
usdWs −

1
2

∫ t

0
u2

s ds +
∫ t

0

∫
R0

log(1 − θs,x)Ñ(ds, dx)

+
∫ t

0

∫
R0

(log(1 − θs,x) + θs,x)ν(dx)ds
)

, t ∈ [0, T].

Define a measure P∗ on FT by

dP∗(ω) = ZT(ω)dP(ω),

and we assume that Z(T) satisfies the Novikov condition, that is,

E

[
exp

(
1
2

∫ T

0
u2

s ds +
∫ T

0

∫
R0

{(1 − θs,x) log(1 − θs,x) + θs,x}ν(dx)ds
)]

< ∞.

Then E[ZT ] = 1 and hence P∗ is a probability measure on FT . Furthermore if we denote

ÑP∗
(dt, dx) := θt,zν(dx)dt + Ñ(dt, dx)

and
dWP∗

t := utdt + dWt,

then ÑP∗
(·, ·) and WP∗

(·) are the compensated Poisson random measure of N(·, ·) and a stan-
dard Brownian motion under P∗, respectively.
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4.5 A Clark-Ocone type formula under change of measure for

canonical Lévy processes

4.5.1 A Clark-Ocone type formula under change of measure for canonical Lévy

processes

In this section, we introduce a Clark-Ocone type formula under change of measure for
canonical Lévy processes. Throughout this section, under the same setting as Theorem
4.4.2, we assume the following.

Assumption 4.5.1
(1) u, u2 ∈ L

1,2
0 ; and 2usDt,zus + z(Dt,zus)2 ∈ L2(q × P) for a.e. s ∈ [0, T].

(2) θ + log(1 − θ) ∈ L̃
1,2
1 , and log(1 − θ) ∈ L

1,2
1

(3) For q-a.e. (s, x) ∈ [0, T] × R0, there is an εs,x ∈ (0, 1) such that θs,x < 1 − εs,x.

(4) ZT ∈ L2(P); and ZT{Dt,0 log ZT1{0}(z) + ezDt,z log ZT−1
z 1R0(z)} ∈ L2(q × P).

(5) F ∈ D1,2 with FZT ∈ L2(P); and ZT Dt,zF + FDt,zZT + zDt,zF · Dt,zZT ∈ L2(q × P).
(6) FH∗

t,z, H∗
t,zDt,zF ∈ L1(P∗), (t, z) -a.e. where H∗

t,z = exp(zDt,z log ZT − log(1 − θt,z))

To show the main theorem, we need the following:

Lemma 4.5.2 We have

Dt,0ZT = ZT

[
−σ−1ut −

∫ T

0
Dt,0usdWP∗

s −
∫ T

0

∫
R0

Dt,0θs,x

1 − θs,x
ÑP∗

(ds, dx)
]

(4.5.7)

for q-a.e. (t, z) ∈ [0, T] × {0}, P-a.s. and

Dt,zZT = z−1ZT [exp(zDt,z log ZT) − 1] for q−a.e. (t, z) ∈ [0, T] × R0, P−a.s., (4.5.8)

where

Dt,z log ZT = −
∫ T

0
Dt,zusdWP∗

s − 1
2

∫ T

0
z(Dt,zus)2ds

+
∫ T

0

∫
R0

((1 − θs,x)Dt,z log(1 − θs,x) + Dt,zθs,x) ν(dx)ds

+
∫ T

0

∫
R0

Dt,z log(1 − θs,x)ÑP∗
(ds, dx) + z−1 log(1 − θt,z) (4.5.9)

for q-a.e. (t, z) ∈ [0, T] × R0, P-a.s.

Proof. By conditions (1), (2) and (3) in Assumption 4.5.1, Propositions 4.3.3, 4.3.4 and
4.3.6 imply log ZT ∈ D1,2. Moreover, from (4) in Assumption 4.5.1, Proposition 4.2.9



4.5 A COCM for canonical Lévy processes 41

leads to ZT ∈ D1,2,

Dt,0ZT = ZT

[
−Dt,0

∫ T

0
usdWs −

1
2

Dt,0

∫ T

0
u2

s ds

+ Dt,0

∫ T

0

∫
R0

log(1 − θs,x)Ñ(ds, dx)

+Dt,0

∫ T

0

∫
R0

(log(1 − θs,x) + θs,x)ν(dx)ds
]

. (4.5.10)

and

Dt,zZT =
exp(log ZT + zDt,z log ZT) − ZT

z
= z−1ZT [exp(zDt,z log ZT) − 1].

We next calculate right side of (4.5.10). From assumption (1) in Assumption 4.5.1, Propo-
sition 4.3.4 implies

Dt,0

∫ T

0
u2

s ds =
∫ T

0
Dt,0u2

s ds (4.5.11)

and by Proposition 4.3.6,

Dt,0

∫ T

0

∫
R0

(log(1 − θs,x) + θs,x)ν(dx)ds =
∫ T

0

∫
R0

(Dt,0 log(1 − θs,x) + Dt,0θs,x)ν(dx)ds. (4.5.12)

Since condition (1) in Assumption 4.5.1 holds, by Corollary 4.2.10, we have

Dt,0u2
s = 2usDt,0us. (4.5.13)

We calculate Dt,0 log(1 − θs,x). From (3) in Assumption 4.5.1, we have θs,x < 1 − εs,x. We
fix (s, x) ∈ [0, T] × R0. We denote

ls,x(y) = −ε−1
s,x y + ε−1

s,x − 1 + log εs,x

and

gs,x(y) =
{

log(1 − y), y < 1 − εs,x
ls,x(y), y ≥ 1 − εs,x

.

Then, gs,x ∈ C1(R) and
log(1 − θs,x) = gs,x(θs,x).

Moreover, we have
∣∣∣Dt,0θs,x

1−θs,x

∣∣∣ < ε−1
s,x |Dt,0θs,x| ∈ L2(λ × P) by 1

1−θs,x
< ε−1

s,x and θs,x ∈ D1,2.

Hence, Proposition 4.2.9 implies that log(1 − θs,x) ∈ D
1,2
0 and

Dt,0 log(1 − θs,x) = Dt,0gs,x(θs,x) = g′s,x(θs,x)Dt,0θs,x = −Dt,0θs,x

1 − θs,x
.
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From condition (1), (2) in Assumption 4.5.1, Proposition 4.3.3 implies

Dt,0

∫ T

0
usdWs = σ−1ut +

∫ T

0
Dt,0usdWs (4.5.14)

and

Dt,0

∫ T

0

∫
R0

log(1 − θs,x)Ñ(ds, dx) =
∫ T

0

∫
R0

Dt,0 log(1 − θs,x)Ñ(ds, dx). (4.5.15)

Hence, by (4.5.10) - (4.5.15), we obtain

Dt,0ZT = ZT

[
−σ−1ut −

∫ T

0
Dt,0usdWs −

∫ T

0
usDt,0usds

−
∫ T

0

∫
R0

Dt,0θs,x

1 − θs,x
Ñ(ds, dx) +

∫ T

0

∫
R0

(
−Dt,0θs,x

1 − θs,x
+ Dt,0θs,x

)
ν(dx)ds

]
= ZT

[
−σ−1ut −

∫ T

0
Dt,0usdWP∗

s −
∫ T

0

∫
R0

Dt,0θs,x

1 − θs,x
ÑP∗

(ds, dx)
]

.

We next calculate Dt,z log ZT .
By conditions (1) and (2) in Assumption 4.5.1, Proposition 4.3.3, Proposition 4.3.4 and
Proposition 4.3.6 show that

Dt,z log ZT = −Dt,z

∫ T

0
usdWs −

1
2

Dt,z

∫ T

0
u2

s ds

+ Dt,z

∫ T

0

∫
R0

x−1 log(1 − θs,x)xÑ(ds, dx)

+ Dt,z

∫ T

0

∫
R0

(log(1 − θs,x) + θs,x)ν(dx)ds

= −
∫ T

0
Dt,zusdWs −

1
2

∫ T

0
Dt,z(us)2ds

+
∫ T

0

∫
R0

Dt,z log(1 − θs,x)Ñ(ds, dx)

+
∫ T

0

∫
R0

(Dt,z log(1 − θs,x) + Dt,zθs,x) ν(dx)ds +
log(1 − θt,z)

z
. (4.5.16)

Now we calculate Dt,z(us)2. Corollary 4.2.10 implies

Dt,z(us)2 = 2usDt,zus + z(Dt,zus)2, (4.5.17)
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because, u ∈ D1,2 and condition (1) in Assumption 4.5.1 hold. From equations (4.5.16)
and (4.5.17), we have

Dt,z log ZT = −
∫ T

0
Dt,zusdWP∗

s − 1
2

∫ T

0
z(Dt,zus)2ds

+
∫ T

0

∫
R0

((1 − θs,x)Dt,z log(1 − θs,x) + Dt,zθs,x) ν(dx)ds

+
∫ T

0

∫
R0

Dt,z log(1 − θs,x)ÑP∗
(ds, dx) + z−1 log(1 − θt,z).

�

We next introduce a Clark-Ocone type formula under change of measure for canonical
Lévy processes.

Theorem 4.5.3

F = EP∗ [F] + σ
∫ T

0
EP∗

[
Dt,0F − FKt

∣∣∣∣Ft−

]
dWP∗

t

+
∫ T

0

∫
R0

EP∗ [F(H∗
t,z − 1) + zH∗

t,zDt,zF|Ft−]ÑP∗
(dt, dz), a.s.

holds, where

Kt =
∫ T

0
Dt,0usdWP∗

s +
∫ T

0

∫
R0

Dt,0θs,x

1 − θs,x
ÑP∗

(ds, dx).

Proof. First we denote Λt := Z−1
t = e− log Zt , t ∈ [0, T]. Then by the Itô formula (see,

e.g., Theorem 9.4 of Di Nunno et al. [20]), we have

dΛt = Λt−

(
1
2

u2
t −

∫
R0

(log(1 − θt,z) + θt,z)ν(dz)
)

dt

+ Λt−utdWt +
1
2

Λt−u2
t dt +

∫
R0

Λt−

(
1

1 − θt,z
− 1
)

Ñ(dt, dz)

+
∫

R0

[
Λt− · 1

1 − θt,z
− Λt− + Λt− log(1 − θt,z)

]
ν(dz)dt

= Λt−

[
u2

t dt + utdWt +
∫

R0

θ2
t,z

1 − θt,z
ν(dz)dt +

∫
R0

θt,z

1 − θt,z
Ñ(dt, dz)

]

= Λt−

[
utdWP∗

t +
∫

R0

θt,z

1 − θt,z
ÑP∗

(dt, dz)
]

.

Denoting Yt := EP∗ [F|Ft], t ∈ [0, T], we have Yt = ΛtE[ZT F|Ft] by condition (5) in
Assumption 4.5.1 and the Beyes rule (see, e.g., Lemma 4.7 of Di Nunno et al. [20]). From
(5) in Assumption 4.5.1, Corollary 4.2.10 implies that ZT F ∈ D1,2. Hence, Lemma 4.2.5
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implies that E[ZT F|Ft] ∈ D1,2 holds. We apply Proposition 4.4.1 to E[ZT F|Ft], then, by
Lemma 4.2.5, we have

E[ZT F|Ft] = E[ZT F] +
∫ t

0

∫
R

E[Ds,z(ZT F)|Fs−]Q(ds, dz).

Denoting Vt := E[ZT F|Ft], we have Yt = ΛtVt. Itô’s product rule implies that

dYt = Λt−dVt + Vt−dΛt + d[Λ, V]t

= Λt−[σE[Dt,0(ZT F)|Ft−]dWt +
∫

R0

E[Dt,z(ZT F)|Ft−]zÑ(dt, dz)]

+ Vt−Λt−

[
utdWP∗

t +
∫

R0

θt,z

1 − θt,z
ÑP∗

(dt, dz)
]

+ Λt−[σutE[Dt,0(ZT F)|Ft−] +
∫

R0

θt,z

1 − θt,z
E[Dt,z(ZT F)|Ft−]zν(dz)]dt

+ Λt−

∫
R0

θt,z

1 − θt,z
E[Dt,z(ZT F)|Ft−]zÑ(ds, dz)

= Λt−E[σDt,0(ZT F)|Ft−]dWP∗
t + Λt−E[ZT Fut|Ft−]dWP∗

t

+ Λt−

∫
R0

E[Dt,z(ZT F)|Ft−]
1 − θt,z

zÑP∗
(dt, dz)

+ Λt−

∫
R0

E

[
ZT F

θt,z

1 − θt,z

∣∣∣∣Ft−

]
ÑP∗

(dt, dz). (4.5.18)

Now we shall calculate Dt,0(ZT F) and Dt,z(ZT F). As for Dt,0(ZT F), by (5) in Assumption
4.5.1, Corollary 4.2.10 yields that

Dt,0(ZT F) = FDt,0ZT + ZT Dt,0F. (4.5.19)

Therefore combining (4.5.19) with (4.5.7), we can conclude

Dt,0(ZT F) = FDt,0ZT + ZT Dt,0F

= FZT

[
−σ−1ut −

∫ T

0
Dt,0usdWP∗

s −
∫ T

0

∫
R0

Dt,0θs,x

1 − θs,x
ÑP∗

(ds, dx)
]

+ ZT Dt,0F

= ZT

[
Dt,0F − F

(
σ−1ut + Kt

)]
. (4.5.20)

Next we calculate Dt,z(ZT F). From condition (5), Corollary 4.2.10 implies that

Dt,z(ZT F) = FDt,zZT + ZT Dt,zF + zDt,zZT · Dt,zF. (4.5.21)

From (4.5.8),
Dt,zZT = z−1ZT [(1 − θt,z)H∗

t,z − 1]. (4.5.22)

Therefore, combining (4.5.21) and (4.5.22), we obtain

Dt,z(ZT F) = z−1ZT [(1 − θt,z)H∗
t,z − 1]F + ZTDt,zF + ZT [(1 − θt,z)H∗

t,z − 1]Dt,zF

= ZT

[
z−1((1 − θt,z)H∗

t,z − 1)F + (1 − θt,z)H∗
t,zDt,zF

]
. (4.5.23)
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From (4.5.18), (4.5.20), (4.5.23), we arrive at:

dYt = Λt−E

[
ZT [σDt,0F − F (ut + σKt)]

∣∣∣∣Ft−

]
dWP∗

t

+ Λt−

∫
R0

E

[
ZT

[
F
(

H∗
t,z −

1
1 − θt,z

)
+ zH∗

t,zDt,zF
]∣∣∣∣Ft−

]
ÑP∗

(dt, dz)

+ Λt−E[ZT Fut|Ft−]dWP∗
t + Λt−

∫
R0

E

[
ZT F

θt,z

1 − θt,z

∣∣∣∣Ft−

]
ÑP∗

(dt, dz)

= σΛt−E

[
ZT [Dt,0F − FKt]

∣∣∣∣Ft−

]
dWP∗

t

+ Λt−

∫
R0

E

[
ZT{F

(
H∗

t,z − 1
)
+ zH∗

t,zDt,zF}
∣∣∣∣Ft−

]
ÑP∗

(dt, dz).

From (1) and (2) in Assumption 4.5.1, we have Kt ∈ L2(P) t-a.e. Hence, by (5) in As-
sumption 4.5.1,

EP∗ [|FKt|] = E[|FKt|ZT ] ≤ (E[|Kt|2])1/2(E[|FZT |2])1/2 < ∞.

Moreover, from (5) in Assumption 4.5.1, we have Dt,0F ∈ L2(P) t-a.e. and

EP∗ [|Dt,0F|] = E[|Dt,0F|ZT ] ≤ (E[|Dt,0F|2])1/2(E[Z2
T ])1/2 < ∞.

Then, by (6) in Assumption 4.5.1 and F, Dt,0F, FKt ∈ L1(P∗) t-a.e., the Beyes rule implies

dYt = σEP∗

[
Dt,0F − FKt

∣∣∣∣Ft−

]
dWP∗

t +
∫

R0

EP∗ [F(H∗
t,z − 1) + zH∗

t,zDt,zF|Ft−]ÑP∗
(dt, dz).

(4.5.24)

Since Yt = EP∗ [F|FT ] = F, Y(0) = EP∗ [F|F0] = EP∗ [F], Integrating equation (4.5.24)
gives

F − EP∗ [F] = σ
∫ T

0
EP∗

[
Dt,0F − FKt

∣∣∣∣Ft−

]
dWP∗

t

+
∫ T

0

∫
R0

EP∗ [F(H∗
t,z − 1) + zH∗

t,zDt,zF|Ft−]ÑP∗
(dt, dz).

The proof is concluded. �

Remark 4.5.4 1. If σ = 0, u = 0 and ν 6= 0, then, zDt,zF = D(t,z)F, we obtain a COCM
for pure jump Lévy processes:

F = EP∗ [F] +
∫ T

0

∫
R0

EP∗ [F(H∗(t, z) − 1) + H∗
t,zD(t,z)F|Ft−]ÑP∗

(dt, dz),
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where

H∗
t,z := exp

(∫ T

0

∫
R0

[
D(t,z)θs,x) + log

(
1 −

D(t,z)θs,x

1 − θs,x

)
(1 − θs,x)

]
ν(dx)ds

+
∫ T

0

∫
R0

log
(

1 −
D(t,z)θs,x

1 − θs,x

)
ÑP∗

(ds, dx)
)

and D(t,z)F is a Malliavin difference operator for pure jump Lévy functionals defined in
Definition 12.2 in Di Nunno et al. [20] (see Definition 4.5.5).

2. If σ 6= 0, θ = 0, and ν = 0, then, Dt,0F = σ−1DtF and we can derive a COCM for
Brownian motions:

F = EP∗ [F] +
∫ T

0
EP∗

[
DtF − F

∫ T

0
DtusdWP∗

s

∣∣∣∣Ft

]
dWP∗

t ,

where DtF is a classical Malliavin derivative (see Definition 2.1.3). See also Definition 3.1
in Di Nunno et al. [20].

Definition 4.5.5 (Malliavin difference operator for pure jump Lévy functionals) For
n ∈ N and for

hn ∈ L2
T,λ×ν,n := {hn : ([0, T] × R0)n → R :

‖h‖2
L2

T,λ×ν,n
:=
∫
([0,T]×R0)n

|h((t1, z1), · · · , (tn, zn))|2dt1ν(dz1) · · · dtnν(zn) < ∞},

we denote

In(hn) :=
∫
([0,T]×R0)n

h((t1, z1), · · · , (tn, zn))Ñ(t1, z1) · · · Ñ(tn, zn).

For F ∈ D
1,2
N := {F =

∞

∑
n=0

In( fn) ∈ L2(P) :
∞

∑
n=1

nn!‖ fn‖2
L2

T,λ×ν,n
< ∞}, the Malliavin

difference operator for pure jump Lévy functionals is defined by

D(t,z)F =
∞

∑
n=1

nIn−1( fn((t, z), ·))

, λ × ν−a.e. (t, z) ∈ [0, T] × R0, P-a.s.

Remark 4.5.6 To see different points, we review a result of Okur [38]. Let us denote PW the
Gaussian white noise probability measure on (ΩW ,FW

T ), where the sample space is the Schwartz
space S ′(R) and Ft = σ{W(s), s ≤ t} ∨ N1, ∀t ∈ [0, T]. We denote Pη the pure jump Levy
white noise probability measure on (Ωη ,F η

T), where the sample space is the Schwartz space
S ′(R) and Ft = σ{η(s) =

∫ s
0

∫
R0

xÑ(du, dx), s ≤ t} ∨ N2, ∀t ∈ [0, T]. Here N1 and
N2 denote PW-null and Pη-null sets respectively. Let Ω = S ′(R) × S ′(R), FW

T ⊗F η
T . Then,

we have a unique measure on the product σ-algebra such that P = PW × Pη and

P(A) = PW(AW)Pη(Aη), AW ∈ FW
T , Aη ∈ F η

T , A = AW × Aη .
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The orthogonal basis for L2(P) is the family of Kα with ‖K‖L2(P) = α! := α(1)!α(2)! and
Kα := Hα(1)(ω′) · Kα(2)(ω′′), where (ω′, ω′′) ∈ Ω, α = (α(1), α(2))
and {α(i)}i=1,2 ∈ I are multi-indexes defined in section 2 of Okur [38], Hα and Kα are the
orthogonal basis for L2(PW) and L2(Pη) respectively. Moreover, for all F ∈ L2(P), there exist
unique constants cα such that

F(ω) = ∑
α∈I2

cαK(ω)

and we have
‖F‖2

L2(P) = ∑
α∈I2

c2
αα!.

For F ∈ L2(P) with some condition, Hida Malliavin derivatives are defined as

DtF = ∑
α∈I2

∑
i≥1

cαα
(1)
i Kα(1)−εi ei(t),

and
Dt,xF = ∑

α∈I2
∑
i≥1

cαα
(2)
k(i,j)ei(t)pj(x),

where εk = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the k th position, k(i, j) = j + (i+j−2)(i+j−1)
2 ,

{ei(t)}i≥0 ⊂ S(R) are Hermite functions on R and pj(x) = ‖lj−1‖−1
L2(x2ν(dx))xlj−1(x), where

{l0, l1, l2, · · · } with l0 = 1 is the orthogonalization of {1, x, x2, · · · } with respect to inner prod-
uct of L2(x2ν(dx)).

In this setting, Okur derived the following equation:

F = EP∗ [F] +
∫ T

0
EP∗

[
DtF − F

∫ T

t
DtusdWP∗

s

∣∣∣∣Ft

]
dWP∗

t

+
∫ T

0

∫
R0

EP∗ [F(H∗ − 1) + H∗Dt,xF|Ft]ÑP∗
(dt, dx),

for any F ∈ L2(FT ; P), where

H∗ = exp
(∫ T

t

∫
R0

[
Dt,xθs,z + log

(
1 − Dt,xθs,z

1 − θs,z

)
(1 − θs,z)

]
ν(dz)ds

+
∫ T

t

∫
R0

log
(

1 − Dt,xθs,z

1 − θs,z

)
ÑP∗

(ds, dz)
)

.

Of course, to show this equation, we need more conditions, for more detail, see Okur [38].

Corollary 4.5.7 Assume in addition to all assumptions of Theorem 4.5.3, that u and θ are deter-
ministic functions, then we have

F = EP∗ [F] + σ
∫ T

0
EP∗ [Dt,0F|Ft−]dWP∗

t +
∫ T

0

∫
R0

EP∗ [Dt,zF|Ft−]zÑP∗
(dt, dz).
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Proof. If u and θ are deterministic functions, then we have Dt,zu(s) = 0 = Dt,zθ(s, x)
and H∗(t, z) = 1. Therefore, thanks to Theorem 4.5.3, we can get the claimed equation.

�

Remark 4.5.8 If F ∈ D1,2, u ≡ 0 and θ ≡ 0, then, we can see that assumptions of Theorem
4.4.2 and Assumption 4.5.1 hold and we obtain equation (4.4.6).

4.5.2 Poincare type inequalities and log-Sobolev type inequalities

We next consider Poincare type inequalities and log-Sobolev type inequalities as Corol-
lary of Theorem 4.5.3.

Corollary 4.5.9 We assume that θt,z ∈ [−1, 1) for (t, z) ∈ [0, T]×R0 is a nonrandom function.

1. Under all assumptions of Theorem 4.4.2 and Assumption 4.5.1, we have

EP∗ [(F − EP∗ [F])2] ≤ σ2
∫ T

0
EP∗

[
|Dt,0F − FKt|2

]
dt

+
∫ T

0

∫
R0

EP∗ [|F(H∗
t,z − 1) + zH∗

t,zDt,zF|2]νP∗
(dz, dt),

where νP∗
(dz, dt) = (1 + θt,z)ν(dz)dt.

2. Let F ∈ D1,2 with F > η for some η > 0 and we assume that Ft− = Ft for all
t ≥ 0. Moreover, we denote Ut = EP∗ [F|Ft] and we assume that Ut > 0 and Ut +
EP∗ [F(H∗

t,z − 1) + zH∗
t,zDt,zF|Ft] > 0. Then, under all assumptions of Theorem 4.4.2

and Assumption 4.5.1, we have

EP∗ [F log F] − EP∗ [F] log EP∗ [F] ≤ 1
2

σ2
∫ T

0
EP∗

[
U−1

t |Dt,0F − FKt|2
]

dt

+
∫ T

0

∫
R0

EP∗ [U−1
t |F(H∗

t,z − 1) + zH∗
t,zDt,zF|2]νP∗

(dz, dt).

Proof.

1. Theorem 4.5.3 implies that

EP∗ [(F − EP∗ [F])2] = EP∗

[(
σ
∫ T

0
EP∗

[
Dt,0F − FKt

∣∣∣∣Ft−

]
dWP∗

t

+
∫ T

0

∫
R0

EP∗ [F(H∗
t,z − 1) + zH∗

t,zDt,zF|Ft−]ÑP∗
(dt, dz)

)2
]

= σ2
∫ T

0
EP∗

[
EP∗

[
Dt,0F − FKt

∣∣∣∣Ft−

]2
]

dt

+
∫ T

0

∫
R0

EP∗ [EP∗ [F(H∗
t,z − 1) + zH∗

t,zDt,zF|Ft−]2]νP∗
(dz, dt)
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≤ σ2
∫ T

0
EP∗

[
|Dt,0F − FKt|2

]
dt

+
∫ T

0

∫
R0

EP∗ [|F(H∗
t,z − 1) + zH∗

t,zDt,zF|2]νP∗
(dz, dt),

where we use the Jensen’s inequality and Itô isometry.
2. First we denote ζt = EP∗ [Dt,0F − FKt|Ft] and ξt,z = EP∗ [F(H∗

t,z − 1) +
zH∗

t,zDt,zF|Ft]. The Itô formula (see, e.g., Theorem 9.4 of Di Nunno et al. [20])
implies that

F log F − EP∗ [F] log EP∗ [F]

= σ
∫ T

0
(log Ut + 1)ζtdWP∗

t +
1
2

σ2
∫ T

0
U−1

t ζ2
t dt

+
∫ T

0

∫
R0

{(Ut + ξt,z)(log(Ut + ξt,z) − Ut log Ut

− (log Ut + 1)ξt,z}νP∗
(dz, dt)

+
∫ T

0

∫
R0

{(Ut + ξt,z)(log(Ut + ξt,z) − Ut log Ut}ÑP∗
(dt, dz).

Then, we obtain

EP∗ [F log F] − EP∗ [F] log EP∗ [F]

=
1
2

σ2EP∗ [
∫ T

0
U−1

t ζ2
t dt] + EP∗ [

∫ T

0

∫
R0

{(Ut + ξt,z)(log(Ut + ξt,z)

− Ut log Ut − (log Ut + 1)ξt,z}νP∗
(dz, dt)]

≤ 1
2

σ2EP∗ [
∫ T

0
U−1

t ζ2
t dt] + EP∗ [

∫ T

0

∫
R0

U−1
t ξ2

t,zνP∗
(dz, dt)]

≤ 1
2

σ2
∫ T

0
EP∗

[
U−1

t |Dt,0F − FKt|2
]

dt

+
∫ T

0

∫
R0

EP∗ [U−1
t |F(H∗

t,z − 1) + zH∗
t,zDt,zF|2]νP∗

(dz, dt),

where we use the Jensen’s inequality and the following inequality:

(x + y) log(x + y) − x log x − y(1 + log x) ≤ y2

x2 , x > 0, x + y > 0.

�

Remark 4.5.10 1. Assume in addition to all assumptions of Corollary 4.5.9, that u and θ
are deterministic functions, then, we obtain a Poincare’s inequality for Lévy functionals on
P∗:
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EP∗ [(F − EP∗ [F])2] ≤ σ2
∫ T

0
EP∗

[
|Dt,0F|2

]
dt +

∫ T

0

∫
R0

EP∗ [|zDt,zF|2]νP∗
(dz, dt).

2. If F ∈ D1,2, u ≡ 0 and θ ≡ 0, then, we can see that all assumptions of Theorem 4.4.2
and Assumption 4.5.1 hold and we obtain a Poincare’s inequality for Lévy functionals:

E[(F − E[F])2] ≤
∫ T

0

∫
R

E[|Dt,zF|2]q(dt, dz).

3. Assume in addition to all assumptions of Corollary 4.5.9, that u and θ are deterministic
functions, then, we obtain a logarithmic Sobolev inequality for Lévy functionals on P∗

EP∗ [F log F] − EP∗ [F] log EP∗ [F] ≤ 1
2

σ2
∫ T

0
EP∗

[
U−1

t |Dt,0F|2
]

dt

+
∫ T

0

∫
R0

EP∗ [U−1
t |zDt,zF|2]νP∗

(dz, dt).

4. Assume in addition to all assumptions of Corollary 4.5.9, that u ≡ 0 and θ ≡ 0, then, we
obtain a logarithmic Sobolev inequality for Lévy functionals:

E[F log F] − E[F] log E[F] ≤ 1
2

σ2
∫ T

0
E
[
U−1

t |Dt,0F|2
]

dt

+
∫ T

0

∫
R0

[U−1
t |zDt,zF|2]ν(dz, dt).
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Chapter 5

Local risk minimization for Lévy

markets

In this chapter, we obtain explicit representations of locally risk-minimizing
by using the results of previous chapter. For incomplete market models
whose asset price is described by a solution to a stochastic differential
equation driven by a Lévy process, we derive general formulas of locally
risk-minimizing including Malliavin derivatives; and calculate its concrete
expressions for call options, Asian options and lookback options.

The content of this chapter is based on Arai and Suzuki [5].

5.1 Introduction
In this chapter, we obtain explicit representations of locally risk-minimizing by using
Malliavin calculus for Lévy processes given by previous chapter.

Locally risk-minimizing (LRM, for short) is a well-known hedging method for contin-
gent claims in a quadratic way. Theoretical aspects of LRM have been developed to a
high degree. On the other hand, the necessity of researches on its explicit representations
has been increasing. From this insight, we aim to obtain explicit representations of LRM
for incomplete market models whose asset price process is described by a solution to a
stochastic differential equation (SDE, for short) driven by a Lévy process, as a typical
framework of incomplete market models. In particular, we use Malliavin calculus for
Lévy processes to achieve our purpose.

LRM has more than two decades history. There is so much literature on this topic.
Among other things, Schweizer [45] and [46] are useful to understand an outline. LRM
has an intimate relationship with Föllmer-Schweizer decomposition (FS decomposition,
for short), which is a kind of orthogonal decomposition of a random variable into a
stochastic integration and an orthogonal martingale. As the first step, we focus on de-
riving a representation of FS decomposition under some mild conditions by using the
martingale representation theorem. In order to compute its explicit expressions, we use
Malliavin calculus. Note that we adopt the approach, undertaken by Solé, Utzet and
Vives [49], of Malliavin calculus for Lévy processes on canonical Lévy space. As a result,
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using the Clark-Ocone type formula under change of measure shown by Suzuki [50],
[51] (see previous chapter), we will formulate general representations of LRM including
Malliavin derivatives of the claim to be hedged.

In the second half of this chapter, we derive formulas on representations of LRM for
three typical options. Firstly, we shall study call options, whose payoff is not smooth as
a function of the asset price at the maturity. Thus, the chain rule is not available to calcu-
late Malliavin derivatives for call options. Instead, we use the mollifier approximation.
Moreover, we illustrate a concrete expression of LRM for the models whose asset price
process is a solution to an SDE with deterministic coefficients. Next, Asian options will
be discussed. Thirdly, we shall deal with lookback options, whose payoff is depending
on the running maximum of the asset price process. Actually, we need complicated cal-
culations to get Malliavin derivatives of the running maximum. For lookback options,
we shall focus only on the exponential Lévy case; and derive Malliavin derivatives by
using an approximation method.

Summarizing the above, our main contribution is threefold as follows:

1. formulating representations of LRM with Malliavin derivatives for Lévy markets,
2. illustrating how to calculate Malliavin derivatives for non-smooth functions of a

random variable, and the running maximum of processes by using approximation
methods.

3. introducing concrete representations of LRM of call options, Asian options and
lookback options for Lévy markets.

This chapter is structured as follows: In Section 5.2, we prepare some terminologies;
and give model descriptions, mathematical preliminaries and standing assumptions. We
also introduce in Section 5.2 examples satisfying our standing assumptions. General rep-
resentations of LRM are introduced in Section 5.3. Call options, Asian options and look-
back options are studied in Sections 5.4, 5.5 and 5.6, respectively. Section 5.7 is devoted
to concluding remarks.

5.2 Preliminaries

5.2.1 Model description

We consider, throughout this chapter, a financial market being composed of one risk-free
asset and one risky asset with finite time horizon T. For simplicity, we assume that the in-
terest rate of the market is given by 0, that is, the price of the risk-free asset is 1 at all times.
The fluctuation of the risky asset is assumed to be given by a solution to the following
stochastic differential equation (SDE, for short) on canonical space (Ω,F , P; {Ft}t∈[0,T]):

dSt = St−

[
αtdt + βtdWt +

∫
R0

γt,zÑ(dt, dz)
]

, S0 > 0, (5.2.1)

where α, β and γ are predictable processes. Recall that γ is a stochastic process measur-
able with respect to the σ-algebra generated by A × (s, u] × B, A ∈ Fs, 0 ≤ s < u ≤ T,
B ∈ B(R0). Now, we assume the following:
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Assumption 5.2.1 1. (5.2.1) has a solution S satisfying the so-called structure condition
(SC, for short). That is, S is a special semimartingale with the canonical decomposition
S = S0 + M + A such that∥∥∥∥[M]1/2

T +
∫ T

0
|dAs|

∥∥∥∥
L2(P)

< ∞, (5.2.2)

where dMt = St−(βtdWt +
∫

R0
γt,zÑ(dt, dz)) and dAt = St−αtdt. Moreover, defining

a process λt :=
αt

St−(β2
t +
∫

R0
γ2

t,zν(dz))
, we have A =

∫
λd〈M〉. Thirdly, the mean-

variance trade-off process Kt :=
∫ t

0 λ2
s d〈M〉s is finite, that is, KT is finite P-a.s.

2. γt,z > −1, (t, z, ω)-a.e., that is, E
[∫ T

0

∫
R0

1{γt,z≤−1}ν(dz)dt
]

= 0.

Remark 5.2.2 1. The SC is closely related to the no-arbitrage condition. For more details on
the SC, see Schweizer [45] and [46].

2. The process K as well as A is continuous.
3. (5.2.2) implies that supt∈[0,T] |St| ∈ L2(P) by Theorem V.2 of Protter [40].
4. Condition 2 ensures that St > 0 for any t ∈ [0, T].

5.2.2 Locally risk-minimizing

We define locally risk-minimizing (LRM, for short) for a contingent claim F ∈ L2(P).
The following definition is based on Theorem 1.6 of Schweizer [46].

Definition 5.2.3 1. ΘS denotes the space of all R-valued predictable processes ξ satisfying

E

[∫ T

0
ξ2

t d〈M〉t + (
∫ T

0
|ξtdAt|)2

]
< ∞

.
2. An L2-strategy is given by a pair ϕ = (ξ, η), where ξ ∈ ΘS and η is an adapted process

such that V(ϕ) := ξS + η is a right continuous process with E[V2
t (ϕ)] < ∞ for every

t ∈ [0, T]. Note that ξt (resp. ηt) represents the amount of units of the risky asset (resp.
the risk-free asset) an investor holds at time t.

3. For F ∈ L2(P), the process CF(ϕ) defined by CF
t (ϕ) := F1{t=T} + Vt(ϕ) −

∫ t
0 ξsdSs is

called the cost process of ϕ = (ξ, η) for F.
4. An L2-strategy ϕ is said locally risk-minimizing for F if VT(ϕ) = 0 and CF(ϕ) is a

martingale orthogonal to M, that is, [CF(ϕ), M] is a uniformly integrable martingale.

The above definition of LRM is a simplified version, since the original one, introduced in
Schweizer [45] and [46], is rather complicated

Now, we focus on a representation of LRM. To this end, we define Föllmer-Schweizer
decomposition (FS decomposition, for short).
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Definition 5.2.4 An F ∈ L2(P) admits a Föllmer-Schweizer decomposition if it can be described
by

F = F0 +
∫ T

0
ξF

t dSt + LF
T , (5.2.3)

where F0 ∈ R, ξF ∈ ΘS and LF is a square-integrable martingale orthogonal to M with LF
0 = 0.

Proposition 5.2 of Schweizer [46] shows the following:

Proposition 5.2.5 (Proposition 5.2 of Schweizer [46]) Under Assumption 5.2.1, an LRM
ϕ = (ξ, η) for F exists if and only if F admits an FS decomposition; and its relationship is given
by

ξt = ξF
t , ηt = F0 +

∫ t

0
ξF

s dSs + LF
t − F1{t=T} − ξF

t St.

As a result, it suffices to obtain a representation of ξF in (5.2.3) in order to obtain
LRM. Henceforth, we identify ξF with LRM. To this end, we consider the process
Z := E(−

∫
λdM), where E(Y) represents the stochastic exponential of Y, that is, Z is a

solution to the SDE dZt = −λtZt−dMt. In addition to Assumption 5.2.1, we suppose the
following:

Assumption 5.2.6 Z is a positive square integrable martingale; and ZT F ∈ L2(P).

A martingale measure P∗ ∼ P is called minimal if any square-integrable P-martingale
orthogonal to M remains a martingale under P∗. We can see the following:

Lemma 5.2.7 Under Assumption 5.2.1, if Z is a positive square integrable martingale, then a
minimal martingale measure P∗ exists with dP∗ = ZTdP.

Proof. Since d(ZS) = S−dZ + Z−dM + Z−λd〈M〉 − Z−λd[M], the product process
ZS is a P-local martingale. So that, defining a probability measure P∗ as dP∗ = ZTdP,
we have that S is a P∗-martingale, since supt∈[0,T] |St| and ZT are in L2(P). Next, for
any L a square-integrable P-martingale with null at 0 orthogonal to M, LZ is a P-local
martingale. By the square integrability of L, L remains a martingale under P∗. Thus, P∗

is a minimal martingale measure. �

Example 5.2.8 We introduce a model framework under which Assumption 5.2.1 is satisfied, and
Z is a positive square integrable martingale. We consider the following three conditions:

1. γt,z > −1, (t, z, ω)-a.e.
2. supt∈[0,T](|αt| + β2

t +
∫

R0
γ2

t,zν(dz)) < C for some C > 0.
3. There exists an ε > 0 such that

αtγt,z

β2
t +
∫

R0
γ2

t,zν(dz)
< 1 − ε and β2

t +
∫

R0

γ2
t,zν(dz) > ε, (t, z, ω)-a.e.
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The above condition 2 ensures the existence of a unique solution S to (5.2.1) satisfying

sup
t∈[0,T]

|St| ∈ L2(P)

by Theorem 117 of Situ [48]. The first condition of Assumption 5.2.1 is seen as follows: Firstly, we

have
∥∥∥∫ T

0 |dAs|
∥∥∥2

L2(P)
≤ C2T2E[supt∈[0,T] |St|2] < ∞. Next, by the Burkholder-Davis-Gundy

inequality, there exists a C > 0 such that

E[[M]T ] ≤ CE

[
sup

t∈[0,T]
|Mt|2

]

≤ C

{
E

[
sup

t∈[0,T]
|St|2

]
+ |S0|2 + E

[
sup

t∈[0,T]
|At|2

]}
< ∞

Thus, all conditions of Assumption 5.2.1 are satisfied.
On the other hand, the above condition 3 guarantees the positivity of Z. Noting that Z is

a solution to dZt = −λtZt−dMt, we have supt∈[0,T] |Zt| ∈ L2(P) by using Theorem 117 of

Situ [48] again. In addition, since E[
∫ T

0 λ2
t d[M]t] < ∞ by conditions 2 and 3, the process

−
∫ ·

0 λsdMs is a square integrable martingale by Lemma on p.171 of Protter [40]. Thus, the
process −

∫ ·
0 λsZs−dMs is a local martingale, that is, so is Z. Theorem I.51 of Protter [40]

implies that Z is a square integrable martingale. Hence, a minimal martingale measure exists by
Lemma 5.2.7.

5.2.3 Barndorff-Nielsen and Shephard model

We introduce what we call Barndorff-Nielsen and Shephard model as one more example
which satisfies Assumption 5.2.1 and the square integrable martingale property of Z.
This is an Ornstein-Uhlenbeck type stochastic volatility model, undertaken by Barndorff-
Nielsen and Shephard [7], [8]. Let H be a subordinator without drift, that is, a non-
decreasing, pure jump and no diffusion component Lévy process with H0 = 0. Note that
its Lévy measure ν satisfies ν((−∞, 0)) = 0 and

∫ ∞
0 (z ∧ 1)ν(dz) < ∞ by Proposition 3.10

of Cont and Tankov [15]. In addition, we assume that
∫ ∞

0 z2ν(dz) < ∞, that is, the square
integrability of H. Suppose that the underlying Lévy process X is given as X = W + H̃,
where H̃ is the compensated process of H. Now, we define a process Σ2 as a solution to
the following SDE:

Σ2
t = Σ2

0 − R
∫ t

0
Σ2

s ds + Ht,

where Σ2
0 > 0 and R > 0. By simple calculations, we have Σ2

t = e−RtΣ2
0 +
∫ t

0 e−R(t−s)dHs.
In addition, we define

Lt := µt − 1
2

∫ t

0
Σ2

s ds +
∫ t

0
ΣsdWs + ρHt,
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where µ ∈ R and ρ ≤ 0. Note that we restrict the coefficient of the second term to
− 1

2 for the sake of simplicity. Now, the asset price process S is assumed to be given by
St = S0 exp(Lt) with S0 > 0, that is, a solution to the following SDE:

dSt = St−

{
αdt + ΣtdWt +

∫
R0

(eρz − 1)Ñ(dt, dz)
}

, (5.2.4)

where α := µ +
∫

R0
(eρz − 1)ν(dz). Note that the SDE (5.2.4) does not satisfy condition

2 of Example 5.2.8. The goal of this subsection is to confirm that the above model sat-
isfies Assumption 5.2.1 and that Z is a positive square integrable martingale under the
following additional assumptions:

Assumption 5.2.9 1.
∫ ∞

1 exp
{

2 1−e−RT

R z
}

ν(dz) < ∞.

2. α > 0 or e−RTσ2
0 +

∫
R0

(eρz − 1)2ν(dz) > |α|.

Remark 5.2.10 There are two typical examples of the Barndorff-Nielsen and Shephard models.
One is the case where Σ2

t follows an inverse Gaussian distribution, that is, the process Σ2 is given
as an IG-OU process. The corresponding Lévy measure is given as

ν(dz) =
a

2
√

2π
z−

3
2 (1 + b2z) exp

{
−1

2
b2z
}

1{z>0}dz,

where a and b are positive constants. Whenever 1
2 b2 > 2 1−e−RT

R , Condition 1 of Assumption
5.2.9 is satisfied as well as

∫ ∞
0 z2ν(dz) < ∞.

The other is the Gamma-OU case. In this case, Σ2
t follows a Gamma distribution; and ν(dz)

is given as ν(dz) = abe−bz1{z>0}dz for a > 0 and b > 0. If b > 2 1−e−RT

R , then condition 1 of
Assumption 5.2.9 is satisfied. For more details, see Schoutens [42].

As for Assumption 5.2.1, it suffices to see E
[
supt∈[0,T] |St|2

]
< ∞ by the same manner

as Example 5.2.8. On the other hand, the second condition of Assumption 5.2.9 ensures
the positivity of Z. Since E[

∫ T
0 λ2

t d[M]t] < ∞, the square integrable martingale property
of Z is shown by the same way as Example 5.2.8.

Lemma 5.2.11 E
[
supt∈[0,T] |St|2

]
< ∞.

Proof. Step 1. Denoting, for t ∈ [0, T]

M̂t :=
∫ t

0
ΣsdWs −

1
2

∫ t

0
Σ2

s ds + ρHt + t
∫

R0

[−eρz + 1]ν(dz)

=
∫ t

0
ΣsdWs −

1
2

∫ t

0
Σ2

s ds + ρ
∫ t

0

∫
R0

zÑ(ds, dz) + t
∫

R0

[ρz − eρz + 1]ν(dz),

we see that eM̂ is a martingale. From the view of Theorem 1.4 of Ishikawa [25], we have
only to make sure the following three conditions:
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(1)
∫ ∞

0 (1 − eρz)2ν(dz) < ∞,
(2)
∫ ∞

0 (ρzeρz + 1 − eρz)ν(dz) < ∞,

(3) E
[
exp

(
1
2

∫ T
0 Σ2

s ds
)]

< ∞.

Since 1 − eρz ≤ |ρ|z for any z > 0, we have
∫ ∞

0 (1 − eρz)2ν(dz) ≤
∫ 1

0 ρ2z2ν(dz) +∫ ∞
1 ν(dz) < ∞; and

∫ ∞
0 (ρzeρz + 1 − eρz)ν(dz) ≤

∫ ∞
0 (1 − eρz)ν(dz) ≤

∫ ∞
0 |ρ|zν(dz) < ∞.

As for (3), setting B(t) := 1
R (1 − e−Rt) for t ∈ [0, T], we have

E

[
exp

(
1
2

∫ T

0
Σ2

s ds
)]

= E

[
exp

(
1
2

Σ2
0B(T) +

1
2

∫ T

0
B(T − s)dHs

)]
≤ exp

(
1
2

Σ2
0B(T)

)
E

[
exp

(
B(T)HT

2

)]
.

By Proposition 3.14 of Cont and Tankov [15], Assumption 5.2.9 ensures E
[
exp

(
B(T)HT

2

)]
<

∞.
Step 2. Next, we see E[e2M̂T ] < ∞. We have

2M̂T = 2
∫ T

0
ΣsdWs −

∫ T

0
Σ2

s ds + 2ρ
∫ T

0

∫
R0

zÑ(ds, dz) + 2T
∫

R0

[ρz − eρz + 1]ν(dz)

= YT + B(T)Σ2
0 +

∫ T

0

∫
R0

[eg(s)z − 2eρz + 1]ν(dz)ds,

where g(s) := B(T − s) + 2ρ and

Yt := 2
∫ t

0
ΣsdWs − 2

∫ t

0
Σ2

s ds +
∫ t

0

∫
R0

g(s)zÑ(ds, dz) +
∫ t

0

∫
R0

[g(s)z − eg(s)z + 1]ν(dz)ds.

Because 2ρ ≤ g(s) ≤ B(T) + 2ρ for any s ∈ [0, T],

|1 − eg(s)z| ≤

 z(eg(s) − 1), if g(s) ≥ 0, z ∈ (0, 1),
eg(s)z, if g(s) ≥ 0, z ≥ 1,
−g(s)z, if g(s) < 0, z > 0,

and Assumption 5.2.9, we have
∫ T

0

∫
R0

|eg(s)z − 1|ν(dz)ds < ∞. Moreover, we have∫ ∞
0 (1 − eρz)ν(dz) < ∞. We have then E[e2M̂T ] < ∞ if E[eYT ] = 1.
Step 3. We show E[eYT ] = 1. By Theorem 1.4 of Ishikawa [25], it suffices to see the

following:
(4)
∫ T

0

∫ ∞
0

{
(1 − eg(s)z)2 + g(s)2z2 + |g(s)zeg(s)z + 1 − eg(s)z|

}
ν(dz)ds < ∞,

(5) E
[
exp

(
2
∫ T

0 Σ2
s ds
)]

< ∞.
(4) is reduced by the same sort argument as Step 2 and

|g(s)zeg(s)z| ≤

 g(s)zeg(s), if g(s) ≥ 0, z ∈ (0, 1),
e2g(s)z, if g(s) ≥ 0, z ≥ 1,
−g(s)z, if g(s) < 0, z > 0.
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As for (5), Assumption 5.2.9 and the same argument as Step 1 yield

E

[
exp

(
2
∫ T

0
Σ2

s ds
)]

≤ exp(2Σ2
0B(T))E [exp(2B(T)HT)] < ∞.

Step 4. Since we have 2Lt = 2µt + 2M̂t + 2t
∫

R0
(eρz − 1)ν(dz) ≤ 2(µ ∨ 0)T + 2M̂t, the

Doob inequality yields

E

[
sup

t∈[0,T]
|St|2

]
= S2

0E

[
sup

t∈[0,T]
e2Lt

]
≤ S2

0e2(µ∨0)TE

[
sup

t∈[0,T]
e2M̂t

]
≤ 4S2

0e2(µ∨0)TE
[
e2M̂T

]
< ∞

by Steps 1-3. �

5.3 Representation results for LRM

In this section, we focus on representations of LRM ξF for claim F. First of all, we study
it through the martingale representation theorem.

5.3.1 Approach based on the martingale representation theorem

Throughout this subsection, we assume Assumptions 5.2.1 and 5.2.6. Let P∗ be a minimal
martingale measure, that is, dP∗ = ZTdP holds. The martingale representation theorem
(see, e.g. Proposition 9.4 of Cont and Tankov [15]) provides

ZT F = EP∗ [F] +
∫ T

0
g0

t dWt +
∫ T

0

∫
R0

g1
t,zÑ(dt, dz)

for some predictable processes g0
t and g1

t,z. By the same sort of calculations as the proof
of Theorem 4.5.3, we have

F = EP∗ [F] +
∫ T

0

g0
t + E[ZT F|Ft−]ut

Zt−
dWP∗

t

+
∫ T

0

∫
R0

g1
t,z + E[ZT F|Ft−]θt,z

Zt−(1 − θt,z)
ÑP∗

(dt, dz)

=: EP∗ [F] +
∫ T

0
h0

t dWP∗
t +

∫ T

0

∫
R0

h1
t,zÑP∗

(dt, dz)

where ut := λtSt−βt, θt,z := λtSt−γt,z, dWP∗
t := dWt + utdt and ÑP∗

(dt, dz) :=
Ñ(dt, dz) + θt,zν(dz)dt. Girsanov’s theorem implies that WP∗

and ÑP∗
are a Brownian

motion and the compensated Poisson random measure of N under P∗, respectively.
Additionally, we assume that

E

[∫ T

0

{
(h0

t )
2 +

∫
R0

(h1
t,z)

2ν(dz)
}

dt
]

< ∞. (5.3.1)
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Denoting i0t := h0
t − ξtSt−βt, i1t,z := h1

t,z − ξtSt−γt,z, and

ξt :=
λt

αt
{h0

t βt +
∫

R0

h1
t,zγt,zν(dz)}, (5.3.2)

we can see
i0t βt +

∫
R0

i1t,zγt,zν(dz) = 0

for any t ∈ [0, T], which implies i0t ut +
∫

R0
i1t,zθt,zν(dz) = 0. We have then

F − EP∗ [F] −
∫ T

0
ξtdSt =

∫ T

0
i0t dWP∗

t +
∫ T

0

∫
R0

i1t,zÑP∗
(dt, dz)

=
∫ T

0
i0t dWt +

∫ T

0

∫
R0

i1t,zÑ(dt, dz).

The following lemma implies that LF
t := E[F − EP∗ [F] −

∫ T
0 ξsdSs|Ft] is a square inte-

grable martingale orthogonal to M with LF
0 = 0.

Lemma 5.3.1 Under Assumptions 5.2.1 and 5.2.6, and (5.3.1), we have

E

[∫ T

0
(i0t )

2dt +
∫ T

0

∫
R0

(i1t,z)
2ν(dz)dt

]
< ∞.

Proof. Noting that β2
t

β2
t +
∫

R0
γ2

t,xν(dx)
and

∫
R0

γ2
t,xν(dx)

β2
t +
∫

R0
γ2

t,xν(dx)
are less than 1, we have

E

[∫ T

0
ξ2

t S2
t−β2

t dt
]
≤ 2E

∫ T

0

β4
t (h0

t )
2 + β2

t

(∫
R0

h1
t,xγt,xν(dx)

)2

(
β2

t +
∫

R0
γ2

t,xν(dx)
)2 dt


≤ 2E

∫ T

0

β4
t (h0

t )
2 + β2

t
∫

R0
(h1

t,x)
2ν(dx)

∫
R0

γ2
t,xν(dx)(

β2
t +
∫

R0
γ2

t,xν(dx)
)2 dt


≤ 2E

[∫ T

0

{
(h0

t )
2 +

∫
R0

(h1
t,z)

2ν(dz)
}

dt
]

.

By the same way as the above, we can see E
[∫ T

0

∫
R0

ξ2
t S2

t−γ2
t,zν(dz)dt

]
. Together with

(5.3.1), Lemma 5.3.1 follows. �

Consequently, we can conclude the following:

Theorem 5.3.2 Assume that Assumptions 5.2.1, 5.2.6, and (5.3.1). We have then ξF = ξ de-
fined in (5.3.2).
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In the above theorem, a representation of LRM ξF is obtained under a mild setting. Since
the processes h0 and h1 appeared in (5.3.2) are induced by the martingale representation
theorem, it is almost impossible to calculate them explicitly, and confirm if (5.3.1) holds.
In the rest of this section, we aim to get concrete expressions for h0 and h1 by using
Malliavin calculus.

5.3.2 Main results

We now calculate h0 and h1 by using Theorem 4.5.3. Together with Theorem 5.3.2, we
obtain the following:

Theorem 5.3.3 Under Assumptions 5.2.1, 5.2.6 and 4.5.1, h0 and h1 are described as

h0
t = σEP∗

[
Dt,0F − F

[∫ T

0
Dt,0usdWP∗

s +
∫ T

0

∫
R0

Dt,0θs,x

1 − θs,x
ÑP∗

(ds, dx)
] ∣∣∣Ft−

]
, (5.3.3)

h1
t,z = EP∗ [F(H∗

t,z − 1) + zH∗
t,zDt,zF|Ft−]. (5.3.4)

Moreover, LRM ξF is given by substituting (5.3.3) and (5.3.4) for h0 and h1 in (5.3.2) respec-
tively, if (5.3.1) holds.

Remark 5.3.4 1. LRM for Lévy markets has been also discussed in Vandaele and Vanmaele
[52] without Malliavin calculus. They considered the case where all coefficients in (5.2.1)
are deterministic; and studied LRM for unit-linked life insurance contracts.

2. Benth et al [9] also concerned a similar issue by using Malliavin calculus. They however
studied minimal variance portfolio which is different from LRM, and considered only the
case where the underlying asset price process is a martingale.

3. Yang et al. [54] derived an explicit representation of LRM for a European call option in the
Hull and White model by using the Malliavin calculus in Wiener space. They also give a
numerical result of it.

In order to calculate LRM concretely through Theorem 5.3.3, we need to confirm if all
the assumptions in Theorem 5.3.3 are satisfied for a given model. But, it seems to be a
hard work. So that, we introduce a simple framework satisfying all the assumptions.

Example 5.3.5 We consider the case where α, β and γ in (5.2.1) are deterministic functions
satisfying the three conditions in Example 5.2.8. Additionally, we assume that

ZT F ∈ L2(P), and condition 5 in Assumption 4.5.1. (5.3.5)

Now, we confirm if this model satisfies all the conditions in Theorem 5.3.3. Remark that we
discuss this framework in sections 5.4 and 5.5 again for the case where F is a call option or an
Asian option.

As seen in Example 5.2.8, Assumption 5.2.1 is satisfied; and Z is a positive square integrable
martingale. Thus, together with the above additional condition, Assumption 5.2.6 is satisfied.
Since u is bounded and deterministic, condition 1 of Assumption 4.5.1 is satisfied. Since θ is
deterministic, the third condition in Example 5.2.8 ensures that condition 3 holds with ε ∈ (0, 1)
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independent of (t, z) ∈ [0, T] × R0. Note that |x + log(1 − x)| ≤ 1
2ε |x|2, and | log(1 − x)| ≤

− log ε
1−ε |x| hold for any x < 1 − ε. Then,

∫ T
0

∫
R0

|θt,z|2ν(dz)dt < ∞ implies condition 2. As
for condition 4, noting that Propositions 4.3.4 and 4.3.3; and Proposition 4.3.6, we can see that
log ZT ∈ D1,2, and Dt,z log ZT = −σ−1ut1{0}(z) + z−1 log(1 − θt,z)1R0(z). In addition, we
have

∫ T

0

∫
R

{
Dt,0 log ZT1{0}(z) +

ezDt,z log ZT − 1
z

1R0(z)

}2

q(dt, dz)

=
∫ T

0
u2

t dt +
∫ T

0

∫
R0

θ2
t,zν(dz)dt < ∞,

from which condition 4 follows. Since H∗ = 1 identically, F ∈ D1,2 and ZT ∈ L2(P), we have
condition 6. It remains to make sure of (5.3.1). Note that h0 = σEP∗ [Dt,0F|Ft−], and h1

t,z =
EP∗ [zDt,zF|Ft−]. Since KT ∈ L∞, we can see that Z satisfies the reverse Hölder inequality by
Proposition 3.7 of Choulli, Krawczyk and Stricker [12]. We have then (EP∗ [Dt,0F|Ft−])2 ≤
CE[(Dt,0F)2|Ft−] for some C > 0. By Fubini’s theorem, (5.3.1) is satisfied.

Consequently, all the conditions in Theorem 5.3.3 are satisfied; and ξF is given by

ξF
t =

σβtEP∗ [Dt,0F|Ft−] +
∫

R0
EP∗ [zDt,zF|Ft−]γt,zν(dz)

St−
(

β2
t +
∫

R0
γ2

t,zν(dz)
) . (5.3.6)

5.4 Call options
In this section, we deal with call options as a common example of contingent claims. The
payoff of the call option with strike price K > 0 is expressed by (ST − K)+ where x+ =
x ∨ 0. First of all, we calculate the Malliavin derivatives of (F − K)+ for F ∈ D1,2 and
K ∈ R. After that, we shall give an explicit representation of LRM for the deterministic
coefficients case discussed in Example 5.3.5.

Regarding (F − K)+ as a functional of F, it is continuous, but not smooth. Thus, we
cannot use the chain rule (Propositions 4.2.8 and 4.2.9). Instead, the mollifier approxima-
tion is very useful.

Theorem 5.4.1 For any F ∈ D1,2, K ∈ R and q-a.e. (t, z) ∈ [0, T] × R, we have (F − K)+ ∈
D1,2 and

Dt,z(F − K)+ = 1{F>K}Dt,0F · 1{0}(z) +
(F + zDt,zF − K)+ − (F − K)+

z
1R0(z).

Proof. We take a mollifier function ϕ which is a C∞-function from R to [0, ∞) with
supp(ϕ) ⊂ [−1, 1] and

∫ ∞
−∞ ϕ(x)dx = 1. We denote ϕn(x) := nϕ(nx) and fn(x) :=∫ ∞

−∞(y − K)+ϕn(x − y)dy for any n ≥ 1. Noting that

fn(x) =
∫ ∞

−∞

(
x − y

n
− K

)+
ϕ(y)dy =

∫ n(x−K)

−∞

(
x − y

n
− K

)
ϕ(y)dy,
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we have f ′n(x) =
∫ n(x−K)
−∞ ϕ(y)dy, so that fn ∈ C1 and | f ′n| ≤ 1, that is, fn is Lipschitz

continuous with constant 1. Thus, Proposition 4.2.8 implies that, for any n ≥ 1, fn(F) ∈
D1,2 and

Dt,z fn(F) = f ′n(F)Dt,0F · 1{0}(z) +
fn(F + zDt,zF) − fn(F)

z
1R0(z). (5.4.1)

In addition, noting that

| fn(x) − (x − K)+| =
∣∣∣∣∫ 1

−1

{(
x − y

n
− K

)+
− (x − K)+

}
ϕ(y)dy

∣∣∣∣
≤ 1

n

∫ 1

−1
|y|ϕ(y)dy ≤ 1

n
(5.4.2)

for any x ∈ R, we have limn→∞ E[| fn(F) − (F − K)+|2] = 0. Thus, from the view of
Proposition 4.2.6, all we have to do is to make sure that Dt,z fn(F) converges to

1{F>K}Dt,0F · 1{0}(z) +
(F + zDt,zF − K)+ − (F − K)+

z
1R0(z) =: I∞

in L2(q × P) as n tends to ∞.
First of all, we have

lim
n→∞

f ′n(x) =


∫ 0
−∞ ϕ(y)dy if x = K,

1 if x > K,
0 if x < K,

from which we obtain limn→∞ f ′n(F) = 1{F>K} + 1{F=K}
∫ 0
−∞ ϕ(y)dy. By (5.4.1), (5.4.2)

and Lemma 5.4.2 below, we have limn→∞ Dt,z fn(F) = I∞ in q × P-a.e., and

|Dt,z fn(F) − I∞|
≤ | f ′n(F)Dt,0F − 1{F>K}Dt,0F|1{0}(z)

+
∣∣∣∣ fn(F + zDt,zF) − fn(F)

z
− (F + zDt,zF − K)+ − (F − K)+

z

∣∣∣∣ 1R0(z)

≤ 2|Dt,zF| ∈ L2(q × P).

Thus, the dominated convergence theorem provides that Dt,z fn(F) → I∞ in L2(q × P).
�

Lemma 5.4.2 For any F ∈ D1,2, we have 1{F=0}Dt,0F = 0, (t, ω)-a.e.

Proof. Step 1. We take the same mollifier function ϕ as Theorem 5.4.1. Additionally,
we assume that ϕ(0) = 1. We denote, for any n ≥ 1, ϕn(x) := ϕ(nx) and Φn(x) :=∫ x
−∞ ϕn(y)dy. Remark that Φn ∈ C1; and Φ′

n(x) = ϕn(x) is bounded. Proposition 4.2.8
implies

Dt,0Φn(F) = ϕn(F)Dt,0F. (5.4.3)
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Since ϕn(x) → 1{0}(x)ϕ(0) = 1{0}(x) for any x ∈ R, we have

lim
n→∞

Dt,0Φn(F) = 1{F=0}Dt,0F. (5.4.4)

Step 2. Recall that any function u ∈ L2(q × P) has a chaotic representation

u(t, z) =
∞

∑
n=0

In(hn(·, (t, z))),

where hn ∈ L2
T,q,n+1 is symmetric in the first n pairs of variables. Denoting by ĥn the

symmetrization of hn with respect to all n + 1 pairs of variables, we define

Domδ :=

{
u ∈ L2(q × P)

∣∣∣ ∞

∑
n=0

(n + 1)!‖ĥn‖2
L2

T,q,n+1
< ∞

}
.

We shall show that Domδ is dense in L2(q × P). Now, we prepare a subclass of Domδ as

Dom f :=

{
u ∈ L2(q × P)

∣∣∣u(t, z) =
N

∑
n=0

In(hn(·, (t, z))) for some N ≥ 1

}
.

Taking a u ∈ L2(q × P) with u(t, z) = ∑∞
n=0 In(hn(·, (t, z))) arbitrarily; and denoting

uN(t, z) := ∑N
n=0 In(hn(·, (t, z))) ∈ Dom f for any N ≥ 1, we have uN → u in L2(q × P).

Thus, Dom f is dense in L2(q × P). So is Domδ.
Step 3. By the dense property of Domδ, we have only to see

E

[∫
[0,T]×R

1{F=0}Dt,0F · 1{0}(z)u(t, z)q(dt, dz)
]

= 0 (5.4.5)

for any u ∈ Domδ. Fix u ∈ Domδ arbitrarily. By (5.4.4), we have

E

[∫ T

0
1{F=0}Dt,0F · u(t, 0)dt

]
= E

[∫ T

0
lim

n→∞
Dt,0Φn(F) · u(t, 0)dt

]
. (5.4.6)

Since we can find a Cϕ > 0 such that ϕ ≤ Cϕ, (5.4.3) implies

|Dt,0Φn(F)| ≤ |ϕn(F)||Dt,0F| ≤ Cϕ|Dt,0F|.

In addition, we have

E

[∫ T

0
|Dt,0F · u(t, 0)|dt

]
≤

√
E

[∫ T

0
|Dt,0F|2dt

]√
E

[∫ T

0
|u(t, 0)|2dt

]
< ∞.

Thus, the dominated convergence theorem yields

E

[∫ T

0
lim

n→∞
Dt,0Φn(F) · u(t, 0)dt

]
= lim

n→∞
E

[∫ T

0
Dt,0Φn(F) · u(t, 0)dt

]
. (5.4.7)
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Next, by the duality formula (Proposition 4.3.2), there exists a constant C > 0 such that∣∣∣∣E [∫[0,T]×R
Dt,zΦn(F) · u(t, z)q(dt, dz)

]∣∣∣∣ ≤ C‖Φn(F)‖L2(P) ≤ C
1
n

,

which means

E

[∫ T

0
Dt,0Φn(F) · u(t, 0)dt

]
→ 0 (5.4.8)

as n → ∞. Consequently, (5.4.6), (5.4.7) and (5.4.8) imply (5.4.5). �

5.4.1 The deterministic coefficients case

Throughout this subsection, we consider the case where α, β and γ in (5.2.1) are de-
terministic functions satisfying the three conditions in Example 5.2.8. Additionally, we
assume the following condition:∫

R0

{γ4
t,z + | log(1 + γt,z)|2}ν(dz) < C for some C > 0. (5.4.9)

We aim to obtain a concrete representation of LRM for the call option (ST − K)+. As
seen in Example 5.3.5, this model satisfies all the conditions in Theorem 5.3.3, if (5.3.5) is
satisfied. First of all, we calculate the Malliavin derivatives of ST .

Proposition 5.4.3 We have ST ∈ D1,2; and

Dt,zST =
ST βt

σ
1{0}(z) +

STγt,z

z
1R0(z) (5.4.10)

for q-a.e. (t, z) ∈ [0, T] × R.

Proof. Noting that

log(ST/S0) =
∫ T

0

[
αt −

1
2

β2
t +

∫
R0

{log(1 + γt,z) − γt,z} ν(dz)
]

dt

+
∫ T

0
βtdWt +

∫ T

0

∫
R0

log(1 + γt,z)Ñ(dt, dz),

we have log(ST/S0) ∈ D1,2 and Dt,z log(ST/S0) = βt
σ 1{0}(z) + log(1+γt,z)

z 1R0(z) for any
(t, z) ∈ [0, T] × R by (5.4.9) and Proposition 4.3.3. Setting F := log(ST/S0) and f (x) :=
S0ex, we have ST = f (F). Thus, we have f ′(F)Dt,0F = ST

βt
σ for any t ∈ [0, T]; and

f (F + zDt,zF) − f (F)
z

= ST
exp{zDt,zF} − 1

z
=

STγt,z

z

for any (t, z) ∈ [0, T] × R0. Hence, Proposition 4.2.9 implies ST ∈ D1,2 and (5.4.10). �
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Remark 5.4.4 A similar argument with Proposition 5.4.3, together with Example 5.3.5, yields

Dt,zZT = −ZT

(
ut

σ
1{0}(z) +

θt,z

z
1R0(z)

)
.

Now, we confirm condition (5.3.5).

Lemma 5.4.5 Condition (5.3.5) in Example 5.3.5 is satisfied.

Proof. By simple calculations, we have

d(ZtSt) = St−Zt−

{
(βt − ut)dWt +

∫
R0

(γt,z − θt,z − γt,zθt,z)Ñ(dt, dz)
}

,

which implies ZTST ∈ L2(P) by Theorem 117 of Situ [48]. Therefore, ZT(ST − K)+ ∈
L2(P) holds.

Since Theorem 5.4.1 and Proposition 5.4.3 imply that (ST − K)+ ∈ D1,2, and

Dt,z(ST − K)+ = 1{ST>K}
ST βt

σ
· 1{0}(z) +

(ST(1 + γt,z) − K)+ − (ST − K)+

z
1R0(z),

(5.4.11)
we have∥∥ZTDt,z(ST − K)+∥∥2

L2(q×P) ≤ E[Z2
TS2

T ]
(∫ T

0
β2

t dt +
∫ T

0

∫
R0

γ2
t,zν(dz)dt

)
< ∞,

and ∥∥(ST − K)+Dt,zZT
∥∥2

L2(q×P) ≤ E[S2
TZ2

T ]
(∫ T

0
u2

t dt +
∫ T

0

∫
R0

θ2
t,zν(dz)dt

)
< ∞.

In addition, there is a C > 0 such that

E

[∫ T

0

∫
R
|zDt,z(ST − K)+Dt,zZT |2q(dt, dz)

]
≤ E[Z2

TS2
T ]
(∫ T

0

∫
R0

γ2
t,zθ2

t,zν(dz)dt
)
≤ CE[Z2

TS2
T ]
(∫ T

0

∫
R0

γ4
t,zν(dz)dt

)
,

from which condition 5 in Example 4.5.1 follows by (5.4.9). This completes the proof. �

Next, by using the above proposition and lemma, we can calculate an explicit repre-
sentation of LRM for call options as follows:

Proposition 5.4.6 For any K > 0 and t ∈ [0, T], we have

ξ
(ST−K)+
t =

1

St−
(

β2
t +
∫

R0
γ2

t,zν(dz)
){β2

t EP∗ [1{ST>K}ST |Ft−]

+
∫

R0

EP∗ [(ST(1 + γt,z) − K)+ − (ST − K)+|Ft−]γt,zν(dz)

}
.

(5.4.12)
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Proof. From the view of Lemma 5.4.5, (5.4.12) is given by (5.3.6) and (5.4.11). �

Remark 5.4.7 By using this result, we also study numerical analysis of LRM for exponential
Lévy models in Arai, Imai and Suzuki [4].

5.5 Asian Options

In this section, we study Asian options, whose payoff is depending on 1
T
∫ T

0 Ssds. First of
all, Proposition 4.3.4 implies the following proposition:

Proposition 5.5.1 Besides Assumption 5.2.1, we assume the following two conditions:

1. Ss ∈ D1,2 for a.e. s ∈ [0, T].
2. E

[∫
[0,T]×R

∫
[0,T] |Dt,zSs|2dsq(dt, dz)

]
< ∞.

We have then 1
T
∫ T

0 Ssds ∈ D1,2 and Dt,z
1
T
∫ T

0 Ssds = 1
T
∫ T

0 Dt,zSsds for q-a.e. (t, z) ∈ [0, T]×
R.

Next, we calculate Malliavin derivatives and LRM of Asian options for the same setting
as subsection 5.4.1.

Proposition 5.5.2 When α, β and γ are deterministic functions satisfying the three conditions
in Example 5.2.8 and (5.4.9), we have 1

T
∫ T

0 Ssds ∈ D1,2 and

Dt,z
1
T

∫ T

0
Ssds =

1
T

{
βt

σ
1{0}(z) +

γt,z

z
1R0(z)

} ∫ T

t
Ssds

for q-a.e. (t, z) ∈ [0, T] × R.

Proof. By the same way as Proposition 5.4.3, we can see that condition 1 in Proposition
5.5.1 and

Dt,zSs = Ss1[0,s](t)
{

βt

σ
1{0}(z) +

γt,z

z
1R0(z)

}
for q-a.e. (t, z) ∈ [0, T] × R and any s ∈ [0, T]. As for condition 2, we have the following:

E

[∫
[0,T]×R

∫ T

0
|Dt,zSs|2dsq(dt, dz)

]
≤ TE

[
sup

s∈[0,T]
S2

s

](∫ T

0
β2

t dt +
∫
[0,T]×R0

γ2
t,zν(dz)dt

)
< ∞.

�

We illustrate LRM for Asian options with payoff ( 1
T
∫ T

0 Ssds − K)+.
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Proposition 5.5.3 Under the same setting as Proposition 5.5.2, we have, for any K > 0 and
t ∈ [0, T],

ξ
(V0−K)+
t =

1

St−
(

β2
t +
∫

R0
γ2

t,zν(dz)
){β2

t EP∗ [1{V0>K}Vt|Ft−]

+
∫

R0

EP∗
[
(V0 + γt,zVt − K)+ − (V0 − K)+|Ft−

]
γt,zν(dz)

}
,

where Vt = 1
T
∫ T

t Ssds for t ∈ [0, T].

Proof. Theorem 5.4.1 and Propositions 5.5.2 imply that

Dt,z(V0 − K)+ = 1{V0>K}
βtVt

σ
1{0}(z) +

(V0 + γt,zVt − K)+ − (V0 − K)+

z
1R0(z).

Thus, this proposition is concluded by (5.3.6). �

5.6 Lookback Options
We focus on lookback options, that is, options whose payoff depends on the running
maximum of the asset price process MS := supt∈[0,T] St. We treat only the exponential
Lévy case in this section.

5.6.1 Malliavin derivatives of running maximum

First of all, we calculate Malliavin derivatives of the running maximum over [0, T] of the
following Lévy process: Lt = µt + Xt, where X is the underlying Lévy process defined
in (4.2.2), and µ ∈ R. Note that Lt ∈ D1,2 for any t ∈ [0, T]. Before stating the main
theorem, we need some preparations.

Lemma 5.6.1 Let F1, F2, · · · ∈ D1,2. We have then, for any n ≥ 1, Mn := max1≤k≤n Fk ∈ D1,2

and

Dt,z Mn =
n

∑
k=1

1An,k Dt,0Fk · 1{0}(z) +
max1≤k≤n(Fk + zDt,zFk) − Mn

z
1R0(z), (5.6.1)

where An,1 = {Mn = F1} and An,k = {Mn 6= F1, · · · , Mn 6= Fk−1, Mn = Fk} for 2 ≤ k ≤ n.

Proof. Remark that M2 = F1 ∨ F2 = (F2 − F1)+ + F1 ∈ D1,2 by Theorem 5.4.1; and
Mn = Fn ∨ Mn−1. We have then Mn ∈ D1,2 for any n ≥ 1.
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Next, we calculate Dt,0Mn. Theorem 5.4.1 implies

Dt,0Mn = Dt,0(Fn ∨ Mn−1) = Dt,0(Fn − Mn−1)+ + Dt,0Mn−1

= 1{Fn>Mn−1}Dt,0(Fn − Mn−1) + Dt,0Mn−1

= 1{Fn>Mn−1}Dt,0Fn + 1{Fn≤Mn−1}Dt,0Mn−1

= 1An,n Dt,0Fn + 1{Mn=Mn−1}Dt,0Mn−1.

Iterating this calculation shows

Dt,0Mn = 1An,n Dt,0Fn

+1{Mn=Mn−1}

{
1An−1,n−1 Dt,0Fn−1 + 1{Mn−1=Mn−2}Dt,0Mn−2

}
= 1An,n Dt,0Fn + 1An,n−1 Dt,0Fn−1 + 1{Mn=Mn−2}Dt,0Mn−2

= · · · =
n

∑
k=1

1An,k Dt,0Fk. (5.6.2)

For the case where z 6= 0, we have

Dt,z Mn = Dt,z(Fn − Mn−1)+ + Dt,z Mn−1

=
(Fn − Mn−1 + zDt,z(Fn − Mn−1))+ − (Fn − Mn−1)+

z
+ Dt,z Mn−1

=
1
z

[
(Fn − Mn−1 + zDt,z(Fn − Mn−1))+ + Mn−1 + zDt,z Mn−1

−{(Fn − Mn−1)+ + Mn−1}
]

=
(Fn + zDt,zFn) ∨ (Mn−1 + zDt,z Mn−1) − Fn ∨ Mn−1

z
,

that is, Mn + zDt,z Mn = (Fn + zDt,zFn) ∨ (Mn−1 + zDt,z Mn−1). Thus, we have

Mn + zDt,z Mn = (Fn + zDt,zFn) ∨ (Mn−1 + zDt,z Mn−1)
= (Fn + zDt,zFn) ∨ (Fn−1 + zDt,zFn−1) ∨ (Mn−2 + zDt,z Mn−2)
= · · · = max

1≤k≤n
(Fk + zDt,zFk),

which means

Dt,z Mn =
max1≤k≤n(Fk + zDt,zFk) − Mn

z
. (5.6.3)

By (5.6.2) and (5.6.3), we obtain (5.6.1). �

We need to show more two lemmas. We take a countable dense subset U :=
{u1, u2, · · · } ⊂ [0, T] with T ∈ U .

Lemma 5.6.2 Let {Yt}t∈[0,T] be an RCLL process. Denoting MY
n := max1≤k≤n Yuk for any

n ≥ 1; and MY := supt∈[0,T] Yt, we have MY
n → MY as n → ∞.
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Proof. Since MY
n ≤ MY for any n ≥ 1, it suffices to show that P(limn→∞ MY

n < MY) =
0. Now, suppose that P

(
limn→∞ MY

n < MY) > 0. Denoting Ak := {MY − limn→∞ MY
n ≥

1/k} for k ≥ 1, we have 0 < P(limn→∞ MY
n < MY) = P

(
∪∞

k=1 Ak
)

= limk→∞ P(Ak).
Thus, P(Ak) > 0 holds for any sufficiently large k. Now, fix such a k arbitrarily. Note
that there exists a [0, T)-valued random time ζ such that Yζ ≥ MY − 1

2k on Ak, since we
can find a [0, T]-valued random time ζ̂ such that Yζ̂ ≥ MY − 1

2k a.s., but YT ≤ MY − 1
k on

Ak because T ∈ U . By the dense property of U and the RCLL property of Y, we can find
a U -valued random time η such that Yη > MY − 1

k on Ak. This is a contradiction to the
definition of Ak. �

To see Lemma 5.6.3 below, we denote ML
n := max1≤k≤n Luk for any n ≥ 1, ML :=

supt∈[0,T] Lt, and τ := inf{t ∈ [0, T]|Lt ∨ Lt− = ML}. Note that ML = supt∈[0,T](Lt ∨
Lt−) = Lτ ∨ Lτ−; and τ is a unique random time satisfying ML = Lτ ∨ Lτ− by Lemma
49.4 of Sato [41].

Lemma 5.6.3 P(τ = t) = 0 for any t ∈ [0, T].

Proof. Taking a t ∈ [0, T) arbitrarily, we have

P

(
lim sup

s↓0

Lt+s − Lt

s
= +∞

)
= 1

by Theorem 47.1 and Proposition 10.7 of Sato [41]. Thus, P(Lt+s ≤ Lt for any s ∈ (0, T −
t]) = 0 holds, from which P(Lt = ML) = 0 follows. On the other hand, P(Lt− = Lt) = 1
by Proposition I.7 of Bertoin [10]. As a result, we obtain P(τ = t) = 0 for any t ∈ [0, T).
As for the case of t = T, Theorem 47.1 of Sato [41] together with Lemma II.2 of Bertoin
[10] provides

P

(
lim sup

s↓0

L(T−s)− − LT

s
= +∞

)
= P

(
lim inf

s↓0

Ls

s
= −∞

)
= 1,

which implies P(Ls ≤ LT for any s ∈ [0, T)) = 0. By the same argument as the above,
P(τ = T) = 0 follows. �

At last, we introduce the main theorem of this subsection.

Theorem 5.6.4 ML ∈ D1,2 and

Dt,z ML = 1{τ≥t}1{0}(z) +
sups∈[0,T](Ls + z1{t≤s}) − ML

z
1R0(z). (5.6.4)

Proof. Noting that ML ∈ L2(P) by the square integrability of X, ML
n ∈ D1,2 for any

n ≥ 1 by Lemma 5.6.1; and ML
n → ML in L2(P) by Lemma 5.6.2 (because, for any n,

|ML
n | ≤ ML, hence, the sequence (ML

n) is uniformly integrable), we have only to see that
Dt,z ML

n converges to the RHS of (5.6.4) in L2(q × P) in view of Proposition 4.2.6.
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Step 1. Firstly, we consider the case of z 6= 0. Lemma 5.6.1 implies

Dt,z ML
n =

max1≤k≤n(Luk + zDt,zLuk ) − ML
n

z
.

Remark that Dt,zLs = 1{s≥t}, which is RCLL on s. Thus, Lemma 5.6.2 yields

lim
n→∞

Dt,z ML
n =

sups∈[0,T](Ls + zDt,zLs) − ML

z
. (5.6.5)

Moreover, noting that |max1≤k≤n(ak + bk) − max1≤k≤n ak| ≤ max1≤k≤n |bk| for any
{ak}1≤k≤n, {bk}1≤k≤n ⊂ R, we obtain∣∣∣∣ max

1≤k≤n
(Luk + zDt,zLuk ) − ML

n

∣∣∣∣ ≤ max
1≤k≤n

|zDt,zLuk |.

Thus, for any z ∈ R0,∣∣∣∣∣Dt,z ML
n −

supu∈[0,T](Lu + zDt,zLu) − ML

z

∣∣∣∣∣
2

≤ 2

{
|Dt,z ML

n |2 +
| sups∈[0,T](Ls + zDt,zLs) − ML|2

|z|2

}

≤ 2
|z|2


∣∣∣∣ max
1≤k≤n

(Luk + zDt,zLuk ) − ML
n

∣∣∣∣2 +

∣∣∣∣∣ sup
s∈[0,T]

(Ls + zDt,zLs) − ML

∣∣∣∣∣
2


≤ 2

{
max

1≤k≤n
|Dt,zLuk |

2 + sup
s∈[0,T]

|Dt,zLs|2
}

≤ 4 sup
s∈[0,T]

|Dt,zLs|2 = 4.

The dominated convergence theorem implies that the convergence in (5.6.5) also holds
in L2(q × P).

Step 2. Next, we see that Dt,0ML
n · 1{0}(z) converges to 1{τ≥t}1{0}(z) in L2(q × P).

Similarly with Lemma 5.6.1, we denote AL
n,1 = {ML

n = Lu1}, and AL
n,k = {ML

n 6=
Lu1 , · · · , ML

n 6= Luk−1 , ML
n = Luk} for 2 ≤ k ≤ n. In addition, defining τn := ∑n

k=1 uk1AL
n,k

for any n ≥ 1, we have

Dt,0ML
n =

n

∑
k=1

1AL
n,k

Dt,0Luk =
n

∑
k=1

1AL
n,k

1{uk≥t} = 1{τn≥t}

by Lemma 5.6.1. Recall that sups∈[t,T](Ls ∨ Ls−) < Lτ ∨ Lτ− on {τ < t} by Lemma 49.4
of Sato [41]. Then, on {τ < t}, we can find a k ∈ N such that Luk > sups∈[t,T](Ls ∨ Ls−).
Note that k depends on ω. As a result, τn < t holds for any n ≥ k. Similarly, we can
see that, on {τ > t}, we have τn > t for any sufficiently large n. Since P(τ = t) = 0 by
Lemma 5.6.3, we can conclude that limn→∞ 1{τn≥t} = 1{τ≥t} a.s., from which Theorem
5.6.4 follows. �



5.6 Lookback Options 71

5.6.2 LRM for lookback options

We consider the case where St is given as an exponential Lévy process St = S0 exp{Lt},
where S0 > 0; and denote MS := supt∈[0,T] St. In this subsection, we calculate Malliavin
derivatives and LRM of lookback options whose payoffs are given as MS − ST and (MS −
K)+ for K > 0. Here we assume that

∫
R0

{
z2 + (ez − 1)4} ν(dz) < ∞; and there exists an

ε ∈ (0, 1) such that {
µ + σ2

2 +
∫

R0
(x − ex + 1)ν(dx)

}
(ez − 1)

σ2 +
∫

R0
(ex − 1)2ν(dx)

< 1 − ε

for ν-a.e. z ∈ R0. These conditions are corresponding to (5.4.9) and condition 3 in Ex-
ample 5.2.8, respectively. Note that the other two conditions in Example 5.2.8 are also
satisfied. In addition,

∫
R0

(z − ez + 1)ν(dz) is well-defined since ez − 1 − z ≤ (e − 1)z2

for any z ∈ [−1, 1]. The following lemma is also given in a similar way with subsection
5.4.1.

Lemma 5.6.5 (1) We have MS ∈ D1,2; and

Dt,z MS = MS1{τ≥t}1{0}(z) +
sups∈[0,T]

(
Ssez1{t≤s}

)
− MS

z
1R0(z).

(2) Condition (5.3.5) holds for both MS − ST and (MS − K)+.

Proof. (1) Proposition 4.2.9, together with Theorem 5.6.4 and
∫ ∞

1 (ez − 1)4ν(dz) < ∞,
implies that MS ∈ D1,2, Dt,0MS = S0Dt,0eML

= S0eML
Dt,0ML = MS1{τ≥t}; and, for

z ∈ R0,

Dt,z MS = S0Dt,zeML
= S0

exp{ML + zDt,z ML} − eML

z

= S0

exp
{

sups∈[0,T]

(
Ls + z1{t≤s}

)}
− eML

z

=
sups∈[0,T]

(
Ssez1{t≤s}

)
− MS

z
.

(2) We can see this assertion by Lemma 5.4.5. �

Now, we calculate Malliavin derivatives and LRM for lookback options by using Lemma
5.6.5, Theorem 5.4.1 and (5.3.6).
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Proposition 5.6.6 (1)

Dt,z(MS − ST) = (MS1{τ≥t} − ST)1{0}(z)

+

 sups∈[0,T]

(
Ssez1{t≤s}

)
− MS

z
− ST

ez − 1
z

 1R0(z).

(2) For any K > 0, we have

Dt,z(MS − K)+ = MS1{ML>log(K/S0)}1{τ≥t}1{0}(z)

+

(
sups∈[0,T]

(
Ssez1{t≤s}

)
− K

)+
− (MS − K)+

z
1R0(z).

Corollary 5.6.7 For any K > 0 and t ∈ [0, T], we have

ξMS−ST
t =

1
CSt−

{
σ2EP∗ [MS1{τ≥t} − ST |Ft−]

+
∫

R0

EP∗

[
sup

u∈[0,T]

(
Suez1{t≤u}

)
− MS − STγz|Ft−

]
γzν(dz)

}
,

and

ξ
(MS−K)+
t =

1
CSt−

{
σ2EP∗ [MS1{ML>log(K/S0)}1{τ≥t}|Ft−]

+
∫

R0

EP∗

( sup
u∈[0,T]

(
Suez1{t≤u}

)
− K

)+

− (MS − K)+|Ft−

 γzν(dz)

}
,

where γz := ez − 1 and C :=
(

σ2 +
∫

R0
γ2

z ν(dz)
)

.

Remark 5.6.8 There are lookback options whose payoff is described by the running minimum of
the asset price process, instead of the running maximum. Thus, we should mention about how to
calculate Malliavin derivatives for the running minimum of exponential Lévy processes S.

We denote mY := inft∈[0,T] Yt for any stochastic process Y; and S′
t := 1/St = S−1

0 e−Lt . Since
S′ is also an exponential Lévy process, we can calculate MS′

through Theorem 5.6.4. Noting that
MS′ ≥ S−1

0 > 0, we take a C1-function f on R such that f (x) = 1/x if x ≥ S−1
0 . Then, by

mS = 1/MS′
and Proposition 4.2.9, we have

Dt,zmS = Dt,z
1

MS′ = − 1(
MS′)2 Dt,z MS′

.

Remark that we can calculate Dt,z(ST −mS) and Dt,z(mS −K)+ by the same way as Proposition
5.6.6.
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5.7 Concluding remarks
Throughout this thesis, we consider an incomplete financial market model whose asset
price process is given as a solution to the SDE (5.2.1). Under some assumptions, we ob-
tain representation results (Theorem 5.3.3 and Example 5.3.5) of LRM by using Malliavin
calculus for Lévy processes based on the canonical Lévy space framework. So that, rep-
resentations of LRM given in this thesis include Malliavin derivatives of the claim to be
hedged.

As typical examples of claims, we treat call options, Asian options and lookback op-
tions. As for call options, we formulate their Malliavin derivatives in a general form; and
calculate their LRM explicitly for the case where the coefficients of the SDE are determin-
istic. Next, we illustrate how to calculate Malliavin derivatives of Asian options; and
give expressions of their LRM for the deterministic coefficients case. Thirdly, we study
lookback options for the exponential Lévy case.

As said above, we calculate LRM for only the deterministic coefficients case. It is be-
cause Malliavin derivatives of deterministic functions are given by 0, thereby we can
comparatively easily make sure of Assumption 4.5.1 under some mild conditions as seen
in subsection 5.4.1. Besides, LRM is expressed simply from the view of Example 5.3.5.
On the other hand, in the random coefficients case, we need very complicated calcula-
tions to confirm if Assumption 4.5.1 holds. Furthermore, we need to calculate exactly H∗

and Malliavin derivatives of u and θ. That’s why, although we introduce the Barndorff-
Nielsen and Shephard model as an typical example of models with random coefficients,
we do not discuss its LRM in this thesis. As a continuation of this thesis, we consider
LRM for the Barndorff-Nielsen and Shephard model in Arai and Suzuki [6].
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[41] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University

Press, 1999.
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