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Abstract 

A supply chain is an integrated process wherein raw materials are extracted and converted 

to the final products, and delivered to the customer. To design and analyze an appropriate 

supply chain we have to evaluate its performance. In practice, performance measurement 

of the supply chain is complicated due to the influence of different parameters involved 

in production planning, inventory control, logistics and transportation activities through 

the chain. On the other hand control theory is a well-known methodology to measure 

performance of business related problems. In control theory differential equations of a 

continuous model is derived in time domain and then Laplace transform is used to convert 

the model to the complex frequency domain or simply s-domain. The converted model is 

solved and the solution converted back to time domain by invers Laplace transform.  

  The purpose of this dissertation is to measure performance of the supply chain using 

frequency response analysis. So control theory approach is used to measure different 

performance aspects of the supply chain. The IOBPCS model is used as a benchmark to 

propose an analytical approach for modelling production smoothing constraints. Since 

production constraints are nonlinear, the extended model which in this research is called 

Nonlinear IOBPCS (NIOBPCS) is no longer linear and thus nonlinear control theory is 

applied to measure frequency response for zero target inventory. The results of frequency 

response show improvement of production performance of the system facing with 

production smoothing constraints compared with the system without constraints, but 

deterioration of inventory performance especially if demand has higher amplitudes so 

amplitude of production signal ideally should be more than production constraints but 

practically could not be fluctuate appropriately to satisfy the customer demand. Due to 

lower performance of inventory in zero target inventory condition stock outs is observed 

during demand peaks, so non-zero target inventory conditions is applied to calculate the 

amount of safety stock that is necessary to have no stock out in the supply chain.  

  Furthermore a total performance function is developed based on APIOBPCS which is 

an extended version of IOBPCS. Frequency response is used to introduce a total 

performance function encompassing all types of the system costs including production, 

finished goods holding and shortage, WIP, and ordering costs. The developed total 

performance function represents aggregate performance of the system in one general 

function. The results of sensitivity analysis of total performance function indicate a 

reverse effect of work in process recovery speed compared with finished goods recovery 

and demand updating rate for different demand frequencies.  
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Notation 

IOBPCS:  Inventory and Order Based Production and Inventory System 

APIOBPCS:  Automotive Pipeline Inventory and Order Based Production and 

Inventory System  

s:  Laplace operator � :   Demand frequency 

t:  Time 

T:  Time period 

D:   Demand  

P:  Production  

I:   Finished goods inventory 

WIP:   Work in process inventory ����  Maximum value of demand signal ����:  Maximum value of production signal ����:   Maximum value of finished goods inventory ������:  Maximum value of work in process inventory ����  Maximum value of demand signal |�/�|  Amplitude ratio of production to demand |�/�|  Amplitude ratio of Inventory to demand |���/�| Amplitude ratio of WIP to demand ��:   Production lead time ��:   Estimated production lead time ��:   Time to adjust finished goods inventory ��:   Time to adjust demand  �� :  Time to adjust WIP 

TINV:   Target level of finished goods 

TWIP:   Target level of WIP 

EINV:   Error of finished goods 

EWIP:   Error of WIP  

L:   Average number of items in the system 

W:  Average waiting time of an item  λ:  Throughput of the system ��  Product cost per unit  ��  Production variation cost per unit ��  Finished goods holding cost per unit 
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��  Shortage cost per unit ��  WIP excess cost per unit ��  Ordering cost per order 
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1 Introduction 

1.1 Research motivation 

A supply chain is a network of companies involved at upstream and downstream of a 

chain involving at different activities and processes to deliver product to the hand of end 

customer (Christopher, 1992). The supply chain takes into account all processes of 

production and processing from raw material to delivery of final product (New & Payne, 

1995). So in the supply chain there is an integrated process wherein raw materials are 

extracted and converted to the final products, and delivered to the customer where 

processes could be divided to upstream and downstream processes. The upstream 

processes consist of production planning and inventory control including manufacturing 

and holding of sub processes. The aim of these processes are design ,management and 

control of a production planning, scheduling and acquisition system for all materials 

including raw material, work in processes and finished goods. But downstream processes 

on the other side are about distribution and logistics process and concentrate on the 

transportation of the final products to the end customer through retailers or sometimes to 

the wholesalers. These processes include design, management and control of logistic 

activities at downstream of the supply chain until the end customer (Beamon, 1998). 

Furthermore every supply chain has different flows up to down and vice versa through 

the chain. One of the most important flows is material flow which could be considered 

almost up to downstream. Existence of recycling or reuse paths create another material 

flow but from down to upstream. Generally material flow includes acquisition of raw 

materials and parts which then will be processed and added values until the end consumer 

(Cooper et al., 1997).  

Another important flow through the supply chain is information flow which should not 

be neglected from our analysis. The information flow has reverse direction compared with 

material from such that information is down to upstream from customer to the retailer. 

The retailer in tune makes an order based on the consumers’ order and send it up to the 

warehouse or distributer. And distributer gathers all retailers’ orders, sum it up, then place 

an order based on its current stock, customer demand and forecasting method. Now the 

order is on the production line where manufacturer should produce the final product 

necessary to satisfy the down stream’s demand. To follow demand the manufacturer have 

to supply raw material to build and assemble them and deliver it to the downstream. So 

in order to complete the whole chain, another order is necessary from manufacturer to the 

suppliers (Min & Zhou, 2002).  
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As it is clear performance measurement of a supply chain with above-mentioned 

characteristics is complicated due to the impact of a variety of factors parameters involved 

in a wide range of activities such as production planning, inventory control, logistics and 

transportation through the whole supply chain. In order to design and analyze an 

appropriate supply chain we have to evaluate its performance to observe the present 

situation of the chain.  

On the other hand control theory is a well-known methodology to measure performance 

of engineering, economics and also business related problems. Control theory uses 

transformed version of the problem to overcome complexity issues. In control theory first 

differential or difference equations of a model is written in time domain. These equations 

shows behavior of one phenomena or the whole system over time. After deriving model 

equations in time domain, Laplace transform is used to convert the continuous model to 

the complex frequency domain or simply s-domain. In case of discrete model z-transform 

is applied to derive the converted version of model. The converted model is solved in the 

transformed domain and the solution converted back to time domain. For continuous 

model invers Laplace transform is used to return the solution to the time domain and for 

discrete model the inverse z-transform is applied for this operation.  

Control theory has a variety of advantages compared with dealing with the problem in 

time domain. The problem often become simpler to solve after converting to equation 

transformed domain. For instance differential equations converts to algebraic equations 

(Dorf & Bishop, 2010). Moreover since the transformed version of the model 

automatically include initial conditions therefore both steady state and transient solution 

could be analyzed altogether (Ogata, 2004). The converted version of the problem is often 

easy to solve compared with its original form and could be solved in the transformed 

domain and then the solution is again reconverted to the original domain using invers 

Laplace transform. And also for signals that are physically realizable we always could 

find their Laplace transforms (Dorf & Bishop, 2010).  

In practice models representing supply chain activities are complicated and include 

more than only one difference or differential equation. In this situation still control theory 

could be applied because not only a single function but also a set of interconnected 

differential or difference equations with its accompanying initial values could be 

converted to the transform version and solved then reverted to the original format by 

inverse transform operators. So by using control theory we have capability to transfer a 

whole model consisting of multiple differential equations to s-domain. In this research 

the control theory is applied to measure and evaluate the performance of a supply chain 

including production, inventory and work in process.    
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1.2 Research scope 

Supply chain models generally categorized into deterministic and stochastic models 

(Beamon, 1998). But there are also other detailed categorizations. Min & Zhou (2002) in 

a comprehensive literature review about supply chain modelling discover four different 

types of supply chain models including deterministic, stochastic, hybrid and IT-driven 

models. They divide deterministic models to single and multiple objectives, stochastic 

models to optimal control theory and dynamic programing, hybrid models to inventory 

theoretic and simulation, and IT-driven models to WMS, ERP and GIS as illustrated in 

Figure 1.1.  

 

Figure 1.1 Supply chain Models.  

Source: Min & Zhou (2002) 

 

  And since supply chains have always cross functional properties, Min & Zhou (2002) 

define integrated supply chain modeling only if they take into account different functions 

of the supply chain together. They specifically categorize integrated supply chain 

modelling into five different categories consisting of supply selection/ inventory control, 

production/ inventory, location/ inventory control, inventory control/ transportation as 

shown in Figure 1.2. 

 

Figure 1.2 Supply chain Modelling 

Source: Min & Zhou (2002) 

 

  On the other hand supply chain is a phenomena which we could write its differential 

equations in time domain. And similar to other physical and natural phenomena we could 

convert supply chain differential equations to the s-domain using Laplace transformation.  
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Therefore we could deal with a supply chain problem both in time and s-domain. In this 

study we aim to model a typical continuous supply chain in s-domain and then measure 

its performance and analyze its behavior for different deterministic demand fluctuations. 

Based on this argument our study fits to the category of deterministic models with 

multiple objectives in Figure 1.1 and our modelling approach falls into the category of 

production/inventory or inventory control/transportation approaches in Figure 1.2. 

 

1.3 Thesis structure  

The aim of this dissertation is to evaluate performance of a continuous deterministic 

supply chain using control theory and more specifically frequency response analysis. 

Therefore after introducing research motivation and scope in chapter 1, we focus on 

analysis of control theory principles as a basis for our modelling and design in chapter 2. 

In chapter 2 applications of control theory is explained and then Laplace transform as an 

important approach in this field is demonstrated. Laplace transform is defined and number 

of its properties of Laplace transform indicated such as linearity, s shifting, time shifting, 

integration, differentiation, initial and final value theorems. Then the convolution integral 

as the based for Laplace transform is demonstrated. And finally the last step of Laplace 

transform analysis i.e. inverse Laplace transform is explained in chapter 2. 

Laplace transform is used to make transfer functions. Therefore in chapter 3, transfer 

function analysis is discussed. First a transfer function is define and then order of typical 

transfer functions is explored. In order to understand transfer function analysis we have 

to know what would be the response of a transfer function to different inputs. Thus the 

response of integrator, first order transfer function and second order transfer function to 

constant, step, impulse and ramp inputs are analyzed.  

The higher level of analysis is to analyze a whole system. In order to analyze the whole 

system we have to make the block diagram of the whole function of the system including 

all interconnected phenomena in the format of block diagram. Therefore in chapter 4, 

block diagram analysis is demonstrated and then block diagram reduction as a basic 

method for deriving transfer function of the system is explained. And finally open and 

close loop block diagrams is indicated at the end of chapter 4. 

Transfer function and block diagram analysis are principles of deriving frequency 

response of the system. After block diagram reduction and deriving transfer function of 

the system we have to find frequency response of the most important signals of the system. 

Therefore frequency response of gain, integrator and derivative, double integrator and 

derivative, second order transfer function with different damping ratios from zero to 

infinity is derived and demonstrated in chapter 5. 
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After analyzing control theory, Laplace transform and block diagram we demonstrate 

supply chain most important features including supply chain activities, supply chain 

processes, structural dimensions of the supply chain, material and information flows, 

supply chain interdependences, supply chain models and supply chain modelling in 

chapter 6. After analysis of different supply chain features we have to focus on control 

theoretic models that have already been developed in previous studies. Since the main 

goal of this research is concentrated on IOBPCS family, at continuation of chapter 6 this 

modelling approach is demonstrated. Although there are different versions of IOBPCS 

but in this chapter the transfer functions of production, finished goods inventory, work in 

process inventory are derived only for Inventory and Order Based Production and 

Inventory System (IOBPCS), Inventory Based Production and Inventory System (IBPCS), 

Order Based Production and Inventory System (OBPCS), Variable Inventory and Order 

Based Production and Inventory System (VIOBPCS), Variable Inventory Based 

Production and Inventory System (VIBPCS) and Automotive Pipeline Inventory and 

Order Based Production and Inventory System (APIOBPCS). And finally response of the 

system to step, impulse and sinusoidal demand subject to zero and non-zero target 

inventories are analyzed.  

Since IOBPCS model is used as a benchmark for our study it is utilized to model 

production smoothing constraints in chapter 7. Production smoothing constraints are 

nonlinear phenomena, resulting in the extended model which in this research is called 

Nonlinear Inventory and Order Based Production and Inventory System (NIOBPCS) is 

no longer linear. Therefore we have to apply nonlinear control theory to measure 

frequency response and evaluate its performance. First the response of NIOBPCS to zero 

target inventory is analyzed and then the non-zero target inventory conditions is applied 

to calculate the amount of safety stock that is necessary to have no stock out or less levels 

of stock out in the supply chain.  

Furthermore a total performance function based on APIOBPCS which is an extended 

version of IOBPCS considering work in process inventories, is developed in chapter 8. 

The frequency response is utilized to introduce a total performance function 

encompassing all types of the system costs including production, finished goods holding 

and shortage, WIP excess and starvation, and ordering costs. The developed total 

performance function represents aggregate performance of the system in one general 

function enabling us to analyze total performance of the supply chain as a whole system. 

In chapter 9 we conclude the research by a summary and an outlook of the result, plus 

a brief discussion for future researches.  
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2 Methodology 

In this study control theory is applied as methodology of the research. The control theory 

deals with analysis and design of computer control and management system or decision 

support systems, to construct decision making algorithms needed for such systems 

(Bubnicki, 2005, p.1). Control theory has a wide range of applications in industry, 

economics, finance, marketing, natural resources, maintenance and replacement, 

distributed systems, production and inventory control (Sethi & Thompson, 2000, p.1). It 

is also applied to intelligent systems such as machine tools, flexible robotics, 

photolithography, biomechanical and biomedical, and process control (Golnaraghi & Kuo, 

2010, p.2). Development of control systems backs to 1769 when 1769 James Watt's made 

first steam engine and governor to mark the beginning of the Industrial Revolution (Dorf 

& Bishop, 2010, p.9). Since then control theory has used in different control system in 

order to produce necessary needs of human being in the industrial ages. Laplace transform 

has an important role in the design and modelling of the system using control theory and 

the aim of this section is to establish a comprehensive context for analyzing performance 

of the supply chain based on Laplace transform.   

 

2.1 Laplace transform 

Mathematical transforms are operators converting functions from one space to the other. 

Laplace transform is a well-known operator that is applicable in a wide range of 

engineering and science including differential equations, control engineering, 

communication, signal processing and system analysis. The Laplace transform converts  

functions to the complex frequency or simply s-domain as shown in Figure 2.1 where the 

Laplace transform is shown with L, the original function with f(t) and the converted 

function with F(s).  

Source: Dyke (2014) p.3 

f(t) F(s) 

L[f(t)]=F(s)  

t-domain s-domain 

Figure 2.1 Laplace transform  
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In the field of operation research we often transform functions from time domain such 

as inventory, production or order functions over time to s-domain to analyze the system 

behavior. . 

After converting to s-domain, the problem often become simpler to solve. For instance 

differential equations converts to algebraic equations (Dorf & Bishop, 2010) or since the 

transformed form automatically include initial conditions therefore both steady state and 

transient solution could be analyzed altogether (Ogata, 2004, p.14). The converted 

version of the problem is often easy to deal compared with its original form and could be 

solved in the s-domain and then the solution is again reconverted to the original domain 

using invers Laplace transform as shown in the Figure 2.2. For signals that are physically 

realizable we always could find their Laplace transforms (Dorf & Bishop, 2010). 

Not only a function but a whole differential equation with its accompanying initial values 

could be converted to the s-domain and solved then reverted to the original format by 

inverse Laplace transform. Furthermore the Laplace transform has capability to transfer 

a whole model consisting of multiple differential equations to s-domain. In this situation 

which we are looking for, first the whole model is developed in time domain and then 

converted to s-domain. 

 

2.1.1 Definition  

Given the desired function of f(t) in time domain, its Laplace equivalent is defined as (cf. 

Churchill, 1958) 

*(%) = +,-(.)/ =  1 2345-(.)6.7
8

 

where L is Laplace operator, t is time variable from zero to infinity, s is complex frequency, 

f(t) is desired function in time domain and F(s) is converted version of f(t) in s-domain. 

f(t) F(s) 

+3�,*(%)/ = -(.) 

t-domain s-domain 

Inverse  

Laplace transform 

Figure 2.2 Inverse Laplace transform 
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And s is the complex frequency which includes imaginary and real parts is defined as 

below: s = σ + jω, 

where σ, ω are real numbers and i is imaginary unit defined as j = √−1. 

  There are other definitions of Laplace transform. Eq(1) is one side or unilateral Laplace 

transform but the two side or bilateral transform which is more close to Fourier transfer 

is defined as (cf. Oppenheim et al., 1997). 

*(%) = +,-(.)/ =  > 2345-(.)6.737   

This equation is used in mathematics and probability theory but in our study the main 

variable of almost all inputs and outputs of an inventory production system is time, and 

since negative time does not have meaningful concept in operation research we use one-

side Laplace transform to covert system signals such as inventory and production and 

moreover differential equations of the system. 

 

2.1.2 Properties of Laplace transform  

A comprehensive Laplace transform table is proposed in Appendix A, but here some of 

its special specifications that facilitate its applicability in different problems with different 

conditions is explained. In this section we introduce some of its properties that could be 

applied in the modelling of production and inventory system (cf: Dyke, 2014) 

 

2.1.2.1 Linearity 

If f(t) and g(t) are two functions that their Laplace transforms exist, then their weighted 

summation also have Laplace transform as below +,?-(.) + @A(.)/ = ?+,-(.)/ + @+,A(.)/ = a*(%) + @C(%), 

where F(s) and G(s) are Laplace transforms of f(t) and g(t), and a and b are two arbitrary 

constant numbers.  

 

2.1.2.2 s shifting  

The Laplace transform have two shifting properties. The first shifting happens on 

transformed side where F(s), the Laplace transform of f(t) shifts by a constant number as 

below: +,23�5-(.)/ = *(% + ?) 

The effect of shifting in transformed side is a multiplying component i.e. e3EF, on the t 
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side. 

 

2.1.2.3 Time shifting 

The second shifting property is on the original side where the function in time domain 

shifts by a constant number 0 ≤ ? as below: +,-(. − ?)/ = 23�4*(%) 

This property is significantly important for us since it could represents the substantial lead 

time phenomena in production and inventory systems (Grubbstrom & Tang, 2000). For 

instance if production line have the lead time of Tp, then there would be a time delay 

between placing an order and delivery of the final product. In this case the transfer 

function that connects order to delivery is: Delivery(s) = e3ENOP62P(%) 

This equation shows a transfer function between delivery and order of a production 

system. It means that the delivery rate is a function of order rate but with a pure delay that 

indicates the lead time of the production line. We will later comprehensively explain what 

is transfer function and how it works in our modeling in detail. 

 

2.1.2.4 Integration 

If L[f(t)]= F(s), then we will have:  

+,> -(Q)6Q58 / = R(4)4 , 

where τ is an artificial variable only for doing the integral operation. This property has 

many applications in our modelling and everywhere that we have an integrational 

phenomena. It could be used to figure out the transfer function of the operation in s-

domain. For instance inventory in all of its shapes including finished goods or work in 

process, have integral properties such that it accumulates over time and makes inventory 

position. We will use the basic of this property in different situations in the modelling of 

our inventory production system in the next sections. 

 

2.1.2.5 Differentiation 

The Laplace of a differentiation function could be derived through its Laplace 

transformation as below: +T-(.)U V = %*(%) − -(0), 

where F(s) is the transformed version of f(t). This equation shows that the Laplace 

transformation of differentiation of a function is not only a function of Laplace of the 

original function but also to its initial conditions. 
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  The second differentiation of f(t) also could be calculated by its Laplace transformation 

as below: LT-(.)X V = %�*(%) − %-(0) − -U(0) 

 

2.1.2.6 Initial value 

The Initial value theorem allows us to find the value of desired signal at t=0 based on its 

transformed version as below 

lim5→8 -(.) = lim4→7 %*(%), 

where F(s) is Laplace transform of f(t). 

 

2.1.2.7 Final value 

On the other hand the final value theorem is used to analyze the function in the infinity 

which is utilized for analysis of steady state response of the system when system becomes 

stable as below 

 lim5→7 -(.) = lim4→8 %*(%). 

 

2.2 Convolution  

The convolution of two functions is derived from integral of reverse of one the functions 

shifting over another function to produce a third function which is blending of two 

original function. (Hirschman & Widder, 1955). The convolution of two functions is 

denoted by f*g and calculated as below: 

(- ∗ A)(.) = > -(Q)A(. − Q) 6Q737 , 

or since either of two functions could be inversed and shifted we could write the integral 

in another equivalent format as below 

(- ∗ A)(.) = > A(Q)-(. − Q) 6Q737 . 

The convolution integral which has a significant role in the control theory is also known 

as Duhamel's integral or the Duhamel's Convolution Principle in mathematics and 

engineering (Shmaliy, 2007, p.154).  

The convolution integral has some properties that could help us in the further 

calculations and modelling. A set of convolution properties are as below (cf: Bracewell, 

1965): f ∗ g = g ∗ f 
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- ∗ (A ∗ ℎ) = (- ∗ A) ∗ ℎ - ∗ (A + ℎ) = (- ∗ A) + (- ∗ ℎ) ?(- ∗ A) = (?-) ∗ A = - ∗ (?A) (- ∗ A)U = -U ∗ A = - ∗ AU , 
where a is an arbitrary constant number and f, g and h are integrable over time (Stein & 

Weiss 1971). 

  The concept of convolution is fundamentally important in our modelling and analysis. 

The reason is behind the input-output analysis and the fact that finding output of the 

system in the time domain is hard and we need to sometimes convert the problem to the 

s-domain. But the output of the system will change for different input so we need to find 

a general method to overcome this difficulty. And convolution integral have the below 

characteristics that facilitate this problem: +,-(.) ∗ A(.)/ = *(%)C(%) 

This property which is another significant underlying property of Laplace transform, 

allow us to find the convolution of two signals by just multiplying their corresponding 

transformed versions in s-domain. In our transfer function analysis there are many 

situations that we have to find the convolution of two signals, but since finding 

convolution integral is a time consuming process we simply replace it by the 

multiplication of Laplace of input and transfer function of the corresponding block. 

Indeed the concept of convolution integral is mostly useful in finding transfer function of 

each production-inventory phenomena and afterward making the block diagram of the 

whole system. In the next step we explain the concept of transfer function in detail. 

  

2.3 Inverse Laplace 

The inverse Laplace is used to convert back the solution of a transformed version of a 

system, to the initial time domain. And virtually Laplace transform such as other 

operations has inverse and Laplace transform is not exception (Dyke, 2014, p.3). The 

inverse Laplace transform is expressed as below 

-(.) = +3�,*(%)/(.) = ��_` > 245*(%)6%ab�7a3�7  , 0<t 

where f(t)=0 at t<0, and integration is performed along the line s=c+jy in complex s-

plane, while c is chosen so that s=c lies on the right of F(s) poles (Enns, 2006, p.244). 
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2.4 Transfer function 

Laplace transform has many applications in the solving electrical circuits or differential 

equations, and could be applied for a variety of problem from space control to economical 

and managerial problems. Application of Laplace transform in transfer function analysis 

via convolution integral are frequently used to explore the input-output relationship in 

components and whole systems. 

 

2.4.1 Definition of Transfer function 

A transfer function is defined as the ratio of Laplace transform of the output to Laplace 

transform of Input with zero initial conditions (Ogata, 2004, p106). Assuming x(t) and 

y(t) as input and output of a system, and X(s) and Y(s) as their Laplace transformations 

respectively as shown in the Figure 2.3, the transfer function of the system with zero 

initial condition is calculated as below 

�P?c%-2P -dce.fgc = C(%) = +(gd.hd.)+(fchd.)  

= i(4)j(4). 
  Having the transfer function we could easily find the output for any input of the system 

where we have k(%) = l(%) × C(%).  

This is very important for us to model and observe the behavior of the system. Finding 

transfer function of a system has many advantageous for design, control and optimization 

of the system. 

  The transfer function shows inherent properties of a system or component and in case 

of unknown transfer function, control engineers try to find it experimentally by 

introducing a set of known inputs and observing the corresponding outputs. Once the 

transfer function Figured out, it could be applied for any inputs (Ogata, 2004, p 107). 

  In this approach the objective of control engineering is to control the outputs subject to 

specific inputs through controllers of the model to satisfy predefined objective of the 

system design (Golnaraghi & Kuo, 2010). 

G(s) 
X(s) Y(s) 

Figure 2.3 Transfer function of a system, its input and output 
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2.4.2 Order of transfer functions  

The transfer function of a single input single output linear time invariant system could 

be generally written in the form of 

 C(%) = nop4opb⋯bnr4bnp4ob�osr4osrb⋯b�r4b�p   c ≤ c8, 

where ?t3�, … , ?8  and @tp , … , @8  are real numbers, representing coefficients of 

denominator and nominator, respectively. In this general equation n is the order of 

denominator and also the order of whole system, and c8 is the order of nominator (Orlov 

& Aguilar, 2014, p.5).  

  Since we use first and second order transfer function many times in our modelling, we 

investigate the behavior of some examples of first and second order systems subject to 

some fundamental inputs including step, impulse, ramp and sinusoid. But first we need 

to find Laplace transform of each of these inputs. 

 

2.4.3 Inputs of transfer function 

The step input could represents turning on a system by switching on the key 

instantaneously (Sundararajan, 2008, p33). Considering the step function wd(.) =           0      . < 0, 

                     w      0 < ., 

where A is a constant number and is shown in Figure 2.4.  

The parameter A could be shown as an exponential function with the power of zero w = w2�5, 
where a=0. So Laplace transform of a unit step function is (Ogata, 2004, p16)  

+,d(.)/ = > w78 2345 6. =  y4. 

Figure 2.4 Unit input 

t 

A 

0 

Au(t) 
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The ramp input could be shown as P(.) =           0    . < 0, 

                 w.   0 < ., 

where A is constant number (Ogata, 2004, p17) and is shown in Figure 2.5.  

And its Laplace transform is 

+,P(.)/ = > w.78 2345 6. =  y4z. 

  The impulse or Dirac delta function is another important input that should be 

analyzed. An impulse function is defined as δ(t) = lim5p→8 δ5p(t) where 

δ5p(t) =             w             0 < . < .8, 

              0   g.ℎ2P}f%2, 

  The value of impulse function is infinite at t=0 and is zero at t<0 and 0<t such that the 

integral of the whole function over time is equal to unit (Ogata, 2004, p22) as shown in 

Figure 2.6.  

  

Figure 2.5 Ramp input 

Figure 2.6 Impulse input 

t 

At 

0 

r(t) 

t 

w.8 → ∞ 

.8 → 0 

w�(.) 
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Considering u(t) as unit step function, Laplace transform of impulse function would be 

LTδ5p(t)V = L �w.8  d(.)� − + �w.8  d(. − .8)� 
= � w.8%� − � w.8% 2345p  � 

= w.8% (1 − 2345p) 

And since .8 → 0, thus 

    L,δ(t)/ = lim5p→8 y5p4 (1 − 2345p) 

       = lim5p→8
�,��rs�s��p�/��p�,�p�/��p

 

= y44 = w. 

  So we observe that interestingly Laplace transform of impulse function is equal to unit 

function (Ogata, 2004, p22). 

  Now that we found the Laplace transformations of step, ramp and impulse functions, 

we could discover the response of selected transfer functions to these inputs in the 

following section. 

 

2.4.4 Integrator 

Integrator is an important transfer function that accumulate the signal values over time 

and makes a new signal as output. The integrator is defined as 

Integrator = �4 , 

or if it is drawn in the block diagram format we have Figure 2.7 that shows the input, 

output and the transfer function of integrator. 

  We apply different inputs to see what would be the behavior of integrator and how it 

influence on its output.  

1% 
X(s) Y(s) 

Integrator  

Figure 2.7 Integrator transfer function 
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2.4.4.1 Step input 

The second input that is necessary to analyze is the step input to the integrator and is a 

signal with a fixed value after a specified time. Before that specified time the value of 

step input is zero. It means that the value of the input suddenly changes from zero to a 

constant quantity. So considering the step input as  �(.) =                   0      . < 0, 

                          w      0 < .,  

where A is constant number, its transformed version is  

l(%) = y4. 

and we could calculate the output of the integrator as below 

Y(s) = X(s) × G(s) = y4 × �4 = y4z . 

We could easily convert back the output from s-domain to time domain and thus the 

output at 0<t is �(.) = w.. 

As an example for A=1 the output is �(.) = .. 

By drawing the response of integrator to the step input Figure 2.8 is created.  

 

Figure 2.8 Output of the integrator for step input 

  A step input is similar to a sudden changes of the market demand not only from zero 

to one but also from a constant number to higher or lower amounts. This phenomena 

happens a lot in the real world when market demand changes at once.  
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2.4.4.2 Impulse input 

The impulse input is a signal with a sharp infinite increase and decrease of the value of 

the function on a specific time. Before and after that specific time the value of impulse 

input is zero. Considering the impulse input as δ(t) = lim5p→8 δ5p(t) where 

δ5p(t) =             w             0 < . < .8, 

              0   g.ℎ2P}f%2, 

where A is constant number. So the transformed form of impulse function as below X(s) = w. 

The integrator output is calculated as below  

k(%) = l(%) × C(%) = w × �4 = y4 . 

The output could be converted back to the time domain by using inverse Laplace 

transform and therefore the output at 0<t is �(.) = w. 

For A=1 the output is y(t) = 1. 

And since the infinite input in practice does not exist we draw the output for the increase 

of 10 in the period of t=0.1 as shown in Figure 2.9. This is an estimation of impulse. 

 

Figure 2.9 Output of the integrator for impulse input 

  The impulse input is more similar to an odd demand outside the predefined production 

region which is not planned beforehand.  
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2.4.4.3 Ramp input 

The ramp input is another important input to the integrator and is representative of 

constant increase of a signal with constant slope. Considering the ramp input with slope 

of A at 0<t we have  �(.) = w. 

where A is constant number. Using Laplace transformation formula it could be written in 

s-domain as 

l(%) = y4z. 

So the output of integrator is   

k(%) = l(%) × C(%) = y4z × �4 = y4�  

Using inverse Laplace transform, output of integrator could be converted back to the time 

domain and therefore at 0<t we have 

y(t) = y� .�. 

For A=1 the output is 

y(t) = 5z
� . 

This output could be drawn as a function of time as shown in Figure 2.10. It shows that 

if the input of an integrator is ramp, its output would be parabolic and increase by more 

speed compared with its input. 

 

Figure 2.10 Output of the integrator for ramp input 
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2.4.5 First order transfer function 

A first order transfer function is a fraction with one pole in its denominator which in the 

form of block diagram could be illustrated as shown in Figure 2.11. 

2.4.5.1 Step input 

An step input of a system could be shown as x(t) = A , 

where A is constant number for 0<t, and thus its output would be   

k(%) = l(%) × C(%) = y4 × ��4b� = y4(�4b�) . 

We could derive its output in s-domain by partial fractions where we have 

k(%) = y4 − y��4b� . 

And the inverse Laplace transform of the output in the time domain for 0<t could be 

readily calculated as below  

�(.) = w − w23�� , 

and if we draw it for A=1 and Q = 2 we will have Figure 2.12, the output of a first order 

system to step input 

 

Figure 2.12 Output of the first order function for step input 
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Figure 2.11 First order transfer function 
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2.4.5.2 Impulse input 

Considering an impulse input to the first order element the function of input at time 

domain is δ(t) = lim5p→8 δ5p(t) where 

δ5p(t) =             w             0 < . < .8, 

              0   g.ℎ2P}f%2, 

where A is constant number. So the transformed form of impulse function is  X(s) = w. 

So the first order output to the impulse input is  

k(%) = l(%) × C(%) = w × ��4b� = y�4b�. 

The inverse Laplace transform of this the output in time domain for 0<t is  

y(.) = �� Ae3�� , 

Assuming the output for A=1 and Q = 2 we have 

y(.) = �� e3�z . 

Drawing this output as a function of time we have Figure 2.13. 

 

Figure 2.13 Output of the first order function for impulse input 

 The output of the first order system to an impulse input shows the damping effect of first 

order element where the amplitude of the output signal starts from w Q⁄ = 1 2⁄ , and 

attenuate to zero at infinite by an exponential speed. 
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2.4.5.3 Ramp input 

The ramp input to the first order function could be shown as a line with slope of A for 0<t 

as below �(.) = w. 

where A is constant number. And thus its Laplace transform in s-domain would be  

l(%) = y4z. 

And therefore we could find the output as 

k(%) = l(%) × C(%) = y4z × ��4b� = y4z(�4b�)  

The output in time domain is calculated through finding partial fractions   

k(%) = w( �4z − �4 + �z
�4b�)  

And using inverse Laplace transformation we could find output of the system in time 

domain for 0<t 

�(.) = w(. − Q + Q23��) , 

and for A=1 and Q = 2 the output is 

�(.) = (. − 2 + 223�z) , 

and if we draw it as a function of time we will have Figure 2.14. We observe that the first 

order system makes a steady state error equal to  Q = 2 in response to the ramp input. 

 

Figure 2.14 Output of the first order function for ramp input 
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2.4.6 Second order transfer function 

The second order transfer function has two poles or in the other word two zeros in its 

denominator which in the form of block diagram is shown in Figure 2.15. 

where �t  is natural frequency and �  damping ratio. The location of denominator’s 

zeros have a fundamental impact on the behavior of the system. The zeros could be 

derived by %� + 2��t% + �t� = 0 , and therefore we could find zeros as below %�,� = −��t ± �t��� − 1 . 

The value of � is important factor influencing on the shape of output and if � = 0 %�,� = ±��t.  

If 0 < � < 1 %�,� = −��t ± ��t�1 − ��. 

If � = 1 %�,� = −�t. 

If 1 < � %�,� = −��t ± �t��� − 1.  

So we observe that by changing � from zero to infinite the location of zeros changes on 

the complex plane as shown in Figure 2.16. And the response of the system changes by �.  

 

�t�%� + 2��t% + �t� 
X(s) Y(s) 

� = 00 < � < 1
1 < � 1 < �

� = 1 � = 0

��

�

Figure 2.15 Second order transfer function 

Figure 2.16 pole movement  
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2.4.6.1 Step input 

The step input of the second order system alters by the value of damping ratio i.e., because 

it determines partial fractions and therefore the output of the system changes. Here we 

skip detail calculations and thus the outputs for different � values are as follow. So If � = 0  y(t) = 1 − cos�t., 

and if 0 < � < 1 

�(.) = 1 − �s��o�
��3�z sin (�t�1 − ��. + cos3� �) , 

and if � = 1 �(.) = 1 − 23�o5(1 + �t.) , 

and if 1 < � 

�(.) = 1 − �o���z3� (�s�r�
4r − �s�z�

4z ) , 

where %� and %� are two zeros of denominator. We could draw these outputs as function 

of time in Figures 2.17-20.  

  Figure 2.14 is for � = 0 and �t=1 and shows the response of the system is sinusoid 

without any damping. Figure 2.18 is for � = 0.1 and �t=1 and shows a sinusoid output 

which is damping over the time. Figure 2.19 is for � = 1  and �t =1 which is an 

exponentially increasing signal excluding any sinusoid signal. Figure 2.20 is for � = 3 

and �t =1 which is another exponentially increasing signal having less damping 

compared with the � = 1.   

 

Figure 2.17 Output of the second order function for step input with � = 0 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

In
pu

t a
nd

 o
ut

pu
t

 

 
Step input
Second order response



24 

 

 

 

Figure 2.18 Output of the second order function for step input with � = 0.1 

 

 

Figure 2.19 Output of the second order function for step input with � = 1 
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Figure 2.20 Output of the second order function for step input with � = 3 

 

2.4.6.2 Impulse input 

The impulse input of the second order system is also a function of damping ratio i.e., due 

to partial fractions. Changing partial fractions changes the output of the system in s-

domain and as a result influence on the response of the system in time domain. 

Calculating the response of the system for different values of � we could derive output 

of the system in time domain. If � = 0  y(t) = �tsin�t�1 − ��. , 

and if 0 < � < 1 

�(.) = �o��3�z 23��o5sin�t�1 − ��.  , 

and if � = 1 �(.) = �t�.23�o5 . 

  Drawing all of these equations as function of time we could derive the output of second 

order system as follow.  

Figure 2.21 is for � = 0 and �t=1 and shows the output of system to the impulse 

function which is sinusoid signal without any damping. Figure 2.22 is for � = 0.1 and �t=1 and shows a sinusoid response which is damping over time and its amplitude 

reduces to zero. Figure 2.23 is for � = 1 and �t=1 which is an exponential signal 

multiplying a ramp and has no sinusoid component. Figure 2.24 is for � = 3 and �t=1 

which is another exponential signal but its amplitude is less than � = 1 resulting more 

damping.   
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Figure 2.21 Output of the second order function for impulse input with � = 0 

 

 

 

Figure 2.22 Output of the second order function for impulse input with � = 0.1 
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Figure 2.23 Output of the second order function for impulse input with � = 1 

 

 

 

Figure 2.24 Output of the second order function for impulse input with � = 3 
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2.4.6.3 Ramp input 

The last input to the second order transfer function that we are going to analyze is the 

ramp input which is again a function of damping ratio i.e. � . Having different damping 

ratio influence on the output of the system in both time and s-domains. The response of 

the system for ramp input and for different values of damping ratio is calculated as below. 

If � = 0  

�(.) = . + ��o sin(�t. +  ), 

and if 0 < � < 1 

�(.) = . − ���o + ��o��3�z 23��o5sin(�t�1 − ��. +  ), 

and if � = 1 

�(.) = . − ���o − ��o 23�o5sin(�o5� + 1). 

  These outputs could be drawn as a function of time to observe behavior of the system 

to ramp inputs in Figures 2.25-28. 

  Figure 2.25 is for � = 0 and �t=1 and shows the sinusoidal behavior of the output 

oscillating around a ramp signal without any damping. Figure 2.26 is for � = 0.1 and �t=1 and shows a damping sinusoid output around ramp signal. Figure 2.27 is for � = 1 

and �t=1 which is a ramp signal without sinusoid component that finally produce a 

constant steady state error in the output. Figure 2.28 is for � = 3 and �t=1 which is 

another ramp signal causing more steady state error increasing over time.   

 

Figure 2.25 Output of the second order function for ramp input with � = 0 
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Figure 2.26 Output of the second order function for ramp input with � = 0.1 

 

 

 

Figure 2.27 Output of the second order function for ramp input with � = 1 
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Figure 2.28 Output of the second order function for ramp input with � = 3 
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2.5 Block diagram 

If the system is consist of only one component the analysis is easy but if the system 

includes different component with different inter-relationships we need to draw block 

diagram that shows the whole system with all of relationships among components. So 

that we could derive whole transfer function of the system for any desired outputs in 

response to any input. And therefore we could model a set of simultaneous differential 

equations representing a system. In this approach block diagram includes unidirectional, 

operational blocks representing transfer functions of the components of the system. (Dorf 

& Bishop, 2010, p.80). 

 

2.5.1 Block diagram reduction 

A practical system may include many differential equations resulting in a complicated 

block diagram. And since analyzing such sophisticated block diagram might be complex, 

thus we need to reduce the block diagram to simple configuration. We could reduce a 

block diagram to a simpler version by a set of rules as shown in Figure 2.29. (cf. Dorf & 

Bishop, 2010 and Ogata, 2004) 

  The first rule in Figure 2.29 shows multiplying two serial blocks and creating a single 

block which is multiplication of two transfer functions of two blocks, such that the input 

of whole system would be the input of first block and the output of whole system would 

be the output of second block. The second rule is Figure 2.29 represents the existence of 

feedforward in block diagrams. A feedforward takes the information from an upstream 

point of the system and feeding it forward in a point at downstream. If the position of 

branches are as shown in the second raw of the Figure then they will be combined to a 

single block. The third rule of Figure 2.29 is about a feedback path. A feedback path takes 

the information of the system at a downstream point and feed it back somewhere on the 

upstream of the block diagram. A system with a feedback path same as shown in the 

Figure 2.29 could be simply reduced to a single block. The forth rule of Figure 2.29 is 

about moving a summing point a head of a block diagram. But the difference is that the 

inverse of the block diagram of the first branch will be add to the second branch of the 

system. So that the input of second branch will be multiplied to the inverse of the block 

diagram of the first branch. The fifth rule of Figure 2.29 is opposite of the forth rule where 

the summing point moves behind the desired block. The effect of this movement is 

addition of the desired block diagram to both of the branches that enter to the summing 

point, so that the two inputs will be multiplied to the desired block diagram and then enter 

to the summing point.   
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Rule 

No. 

Transformation Original  

block diagram 

Equivalent  

block diagram 

 

1 

 

Combining 

serial blocks 

 

 

 

 

 

2 

 

Removing the 

feedforward 

path 

 

 

 

 

 

3 

 

Removing the 

feedback path 

 

 

 

 

 

 

4 

 

Moving a 

summing point 

a head of block 

 

 
 

 

 
 

 

5 

 

Moving a 

summing point 

behind of block 

 

 
 

 

 

 

Figure 2.29 Block diagram reduction 
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2.5.2 Open and closed loop systems 

Block diagrams could be designed for the desired targets of the problem. There are two 

important types of block diagram: Open and closed loop diagrams. In the open loop 

diagram the control system do not take into account output of the system in the control 

policy (Golnaraghi & Kuo, 2010, p.7). The open loop means that the system output is not 

fed back to the upstream of the block diagram to be compared with the reference as shown 

in Figure 2.30 (Dorf & Bishop, 2010, p.2). 

  On the other hand, a closed loop control system considers its output in the control 

policy and therefore the error between the actual and desired output will be reduced. A 

schematic representation of a simple closed loop system with only one feedback loop is 

shown in Figure 2.31.   

  Comparing them we observe that in a closed loop system instead of desired output, the 

amount of error of desired output and actual output is the input of controller and indeed 

the error is reduced in this system. 

  The feedback in a control system has a stabilizing role. The stability is a property of 

the system and shows how well a system could follow its input and a feedback loop can 

improve the stability but sometimes it is harmful for a stable system (Golnaraghi & Kuo, 

2010, p.7).   

  The open loop control system is missing part of information which is useful for 

accurate tracking of the input. A feedback loop could improve the performance of the 

system by using output information in the decision making process.  

Controller 

Desired 

output Output 
Actuator Process 

Controller 

Desired 

output Output 
Actuator Process 

Sensor 

+−
Error 

Figure 2.30 Open loop system 

Figure 2.31 Closed loop system 
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  There is a general categorization of open loop system with and without taking into 

account the disturbances as shown in Figure 2.32 and 2.33, and closed loop systems as 

shown in Figure 2.34 and 2.35 (cf. Bubnicki, 2005) 

 

 

  

Controller 

Desired 

output Output 
Actuator Process 

Disturbance 

Controller 

Desired 

output Output 
Actuator Process 

Disturbance 

Controller 

Desired 

output Output 
Actuator Process 

Sensor 

+−

Disturbance 

Controller 

Desired 

output Output 
Actuator Process 

Sensor 

+−

Disturbance 

Figure 2.32 Open loop system without taking into account disturbances 

Figure 2.34 Closed loop system without taking into account disturbances 

Figure 2.33 Open loop system with taking into account disturbances 

Figure 2.35 Closed loop system with taking into account disturbances 
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2.6 Frequency response 

As mentioned before models might have different types of inputs which trigger systems 

and force them to produce the outputs. Among them sinusoidal function is an important 

input in the design and analysis of the systems. Frequency response is one of the most 

suitable ways to discover the response of a system with any order to a sinusoidal input. 

For instance electric demand follows an approximately sine curve. Figure 2.36 shows 

the demand of Tokyo bay area in summer peaks (Tepco illustrated, 2013). This sinusoid 

demand result in sinusoid pattern of LNG or other fuels in power plants. 

  (Source Tepco illustrated, 2013) 

Figure 2.36 Pattern of daily electricity usage Tokyo area 



36 

 

  Given the transfer function of a system as G(s), the function G(��) is a complex 

function of frequency ω and can be shown as G(jω) = |C(�ω)|∡C(�ω) , 

  where |C(�ω)| and ∡C(�ω) denote the amplitude and phase of C(��) (Golnaraghi 

& Kuo, 2010, p26). This function shows the amplitude and phase of the response of the 

system at steady state condition and is used to derive Bode diagram of the system. The 

Bode diagram is the amplitude ratio and phase shift of the system compared with input 

for all frequencies from zero to infinity. Using the frequency response approach, transfer 

function of the system is described in the frequency domain with real  C¢(ω) = Re,C(�ω)/, 
and imaginary parts C¤(ω) = Im,C(�ω)/, 
where we have |C(�ω)| = �C¢(ω)� + C¤(ω)�,  

and  

∡C(�ω) = tan3� ¥¦(§)¥¨(§),  

such that the amplitude and phase of the response is derived through the real and 

imaginary parts of the C(�ω)  directly (Dorf & Bishop, 2010, p.557). Drawing the 

amplitude ratio and phase shift of the system compared with input, we could find 

frequency response of the system which is called Bode diagram as mentioned-above. And 

since amplitude ratio and phase shift are both functions of frequency ω , we could find 

the frequency response by drawing them as a function of ω. The frequency response 

methodology is an appropriate technique that enables us to derive the performance of the 

system and its stability from above mentioned plots at the same time. We could find output 

of the system for different test inputs with different frequencies, therefore in this 

methodology we could use measured data rather than a transfer function. Furthermore 

any system with any order could be analyzed and optimized by this method which can be 

done with transfer function analysis. Since we use frequency response in our study, we 

calculate Bode diagram of basic transfer functions in the following step. 

  The bode diagram is 20 ©gA�8|C(��)| and ∡C(�ω), but we do not consider the log 

operator and only draw |C(�ω)| in this research. 
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2.6.1 Gain   

Constant numbers are gains of the blocks or product of gains of multiple blocks. Since 

gains always appear in transfer functions and corresponding block diagrams we need to 

know what is the effect of a gain on the frequency response of the system. Assuming a 

gain with transfer function of G(s) = 2, 

we put  s = jω in equation, thus G(jω) = 2. 

The real part of the function is C¢(ω) = 2, 

and the imaginary part is C¤(ω) = 0. 

So we have  |C(�ω)| = √2� + 0� = 2, 

and  

∡C(�ω) = tan3� 8� = 0, 

where amplitude ratio is 2 and phase shift is zero degree. We derive different result for 

negative gains, for instance G(s) = −5, 

substituting  s = jω, we have G(jω) = −5. 

The real part of the function is C¢(ω) = −5, 

and the imaginary part is C¤(ω) = 0. 

So we have  |C(�ω)| = �(−5)� + 0� = 5, 

and  

∡C(�ω) = tan3�( 83�) = 180. 

  Drawing bode diagram of G(s) = 2 and G(s) = −5 for different frequencies we 

derive Figure 2.37 and 2.38. Figure 2.37 shows that positive constant gain has same effect 

on the amplitude for frequencies without making any phase shift. But negative constant 

gain, although has same effect on the amplitude for all frequencies but decrease phase of 

the output by 180 degrees as shown in Figure 2.38. 



38 

 

 

 

 

 

Figure 2.37 Bode diagram of G(s) =2 

 

 

 

Figure 2.38 Bode diagram of G(s) = -5 
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2.6.2 Integrator and derivative 

As mentioned before integrator and derivative are two fundamental components of real 

phenomena which appear in differential equations of the system. In this section we will 

analyze the effect of each of them on the shape frequency response of the system 

separately. Assuming the transfer function of derivation as C(%) = %, 

substituting s = jω, we have C(��) = ��. 

The real part of the function is C¢(ω) = 0, 

and its imaginary part is C¤(ω) = ω. 

Thus we have  |C(�ω)| = √0� + ω� = ω, 

and  

∡C(�ω) = tan3�(§8 ) = 90°. 
  So amplitude ratio is ω and phase shift is 90 degrees. The result of integrator’s 

frequency response is different. Assuming a simple integrator as 

C(%) = �4 , 

We put  s = jω, thus 

C(%) = �̀� , 

The nominator is only real number but the real part of the denominator is Denominator C¢(ω) = 0, 

and its imaginary part is Denominator C¤(ω) = ω. 

So we have  

|C(�ω)| = �√8zb§z = �§, 

and  

∡C(�ω) = 0 − tan3�(§8 ) = −90°. 
  Drawing bode diagrams of C(%) = % and C(%) = 1/% we derive Figure 2.39 and 

2.40, where the amplitude ratio of integrator increase but for derivative decrease. 
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Figure 2.39 Bode diagram of G(s) =s 

 

 

 

Figure 2.40 Bode diagram of G(s) =1/s 
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2.6.3 Double integrator and derivative 

We discussed the effect of single integrator and single derivative in the previous section 

and here we aim to analyze the effect of double integrator and derivative. Although two 

integrator and derivative may not appear in the phenomena serially but they may appear 

after reducing the block diagram. Assuming the transfer function of two derivation as C(%) = %�, 

substituting s = jω, we have C(��) = (��)� = −��. 

The real part of the function is C¢(�) = −��, 

and its imaginary part is C¤(�) = 0. 

So we have  |C(�ω)| = √ω� + 0� = ω�, 

and  

∡C(��) = .?c3�( 83�z) = 180°, 
so amplitude ratio is ω� and phase shift is 180 degrees. Assuming double integrator as 

C(%) = �4z , 

we put  s = jω, thus 

C(�ω) = �(`�)z = �3�z , 

where its real part is 

C¢(ω) = �3§z , 

and its imaginary part is C¤(ω) = 0. 

and we have  

|C(�ω)| = �§z , 

and thus 

∡C(�ω) = − tan3�( �3§z) = −180°. 
  Drawing bode diagrams we derive Figure 2.41 and 2.42, where the slope of amplitude 

ratio of double integrator and derivative is sharper than single one.  



42 

 

 

 

 

 

Figure 2.41 Bode diagram of C(%) = %� 

 

 

 

Figure 2.42 Bode diagram of C(%) = �4z 
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2.6.4 Zero and pole 

Single zeros and poles exist in many inventory-production phenomena such as demand 

forecasting and production lead time. For instance a transfer function that only has one 

zero at its nominator is C(%) = 2% + 1, 

substituting  s = jω, we have C(��) = 2�� + 1. 

The real part of the function is C¢(ω) = 1, 

and its imaginary part is C¤(ω) = 2ω. 

So we have  |C(�ω)| = �(2ω)� + 1� = �(2ω)� + 1 , 

and  

∡C(�ω) = tan3� �§� = tan3� 2ω , 

so amplitude ratio and phase shift is both functions of frequency. On the other hand 

assuming a pole we have  

C(%) = ��4b� , 

substituting s = jω we have  

C(%) = ��`�b� , 

where its nominator is real but its denominator has real part of C¢(ω) = 1 , 

and its imaginary part is C¤(ω) = 2ω, 

and we have  

|C(�ω)| = ��(�§)zb�z = ��(�§)zb� , 

and  

∡C(��) = − .?c3�(2�1 ) = − .?c3� 2� 

  Drawing both bode diagrams we derive Figure 2.43 and 2.44, where they represents 

amplitude ratio and phase shift of single zero increase but for single pole decrease by 

increasing frequency.  
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Figure 2.43 Bode diagram of G(s) = 2s + 1 

 

 

 

Figure 2.44 Bode diagram of C(%) = ��4b� 
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2.6.5 Second order transfer function 

We analyzed the step, impulse and ramp response of second order system and here we 

aim to figure out its frequency response which is also depend on the location of poles of 

the system. Assuming a second order system as 

C(%) = �4zb���o4b�oz , 

where �t is natural frequency and � is damping ratio of the system. The value of � 

effects on the shape of frequency response of the system. In this section we separately 

calculate frequency response of the system for different values of  �. 

 

2.6.5.1 ¬ =  

If damping ratio is zero for instance we have   

C(%) = �4zb® , 

and we have  

|C(��)| = �√®3�z , 

and  ∡C(��) = 0° 0P − 180°. 
  Drawing its Bode diagrams we derive Figure 2.45, where there is a sharp infinite 

increase and decrease at amplitude ratio and phase shift respectively. 

 

Figure 2.45 Bode diagram of C(%) = 1/(%� + 9) 
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2.6.5.2  < ¬ < ¯ 

If damping ratio becomes between zero and one, then the denominator will has two 

complex zeros. For instance assuming damping ratio of 0 < � < 1  in the transfer 

function of a system we have 

C(%) = �4zb�4b� , 

and by substituting  % = ��, we have 

C(%) = �(`�)zb�`�b� , 

where its nominator is real number but its denominator has two zeros and each of them 

has real and complex parts. Thus we have  

|C(��)| = ��(�b�)zb�z�(�3�)zb�z = ��(�b�)zb��(�3�)zb� , 

and  

∡C(��) = − .?c3� �b�� − .?c3� �3��  = − .?c3�(� + 1) − .?c3�(� − 1) , 

  By drawing the Bode diagram of the system we derive Figure 2.46, which shows that 

amplitude ratio of second order system if 0 < � < 1 is decreasing from 0.5 to zero when 

frequency increase from zero to infinite. The phase shift also decrease to -180 degrees as 

frequency increase. Figure 2.46 is indeed a smoothed version of Figure 2.45 where in the 

latter case both amplitude ratio and phase shift smoothly decrease. 

 

Figure 2.46 Bode diagram of C(%) = �4zb�4b� 
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2.6.5.3 ¬ = ¯ 

In case of damping ratio of unit, the system has double zeroes therefore the denominator 

will has two complex zeros. This is so called critically damped case in the control theory. 

For instance assuming damping ratio of � = 1 the system has two poles and thus we 

have  

C(%) = �(4b�)z , 

which by substituting  % = ��, we have 

C(%) = �(`�b�)z , 

where the nominator of the function is a real number but its denominator has two equal 

complex zeros. So we have  

|C(�ω)| = �√§zb�√§zb� = �§zb�  , 

and  

∡C(�ω) = − tan3� §� − tan3� §�  = −2 tan3� §�  , 

  We draw Bode diagram of the system as shown in Figure 2.47, representing the 

amplitude ratio and phase shift of critically damped system. Both amplitude ratio and 

phase shift become smoother compared with the previous case where we had under 

damped conditions and damping ratio was less than one. 

 

Figure 2.47 Bode diagram of C(%) = �(4b�)z 
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2.6.5.4 ¯ < ¬ 

Having damping ratio of more than one, we are facing with an over damped condition. In 

this case the second order system have two real zeros. For instance if the denominator has 

two zeros at -2 and -3 so the transfer function is 

C(%) = �4zb�4b� = �(4b�)(4b�)  , 

which by substituting  s = jω, we have 

C(%) = �(`�b�)(`�b�) , 

where at its nominator the function has real number but its denominator has two real 

poles. Thus we have  

|C(�ω)| = �√§zb�z√§zb�z = �√§zb�√§zb®  , 

and  

∡C(�ω) = − tan3� §� − tan3� §�  , 

  Drawing Bode diagram of the system we could derive frequency response as shown in 

Figure 2.48, where the amplitude ratio and phase shift of an over damped system is 

represented. We observe that both amplitude ratio and phase shift become smoother 

compared with previous cases of critically and under damped conditions. 

 

Figure 2.48 Bode diagram of C(%) = �4zb�4b� 
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3 Literature review 

A supply chain is a network of companies involved at upstream and downstream of a 

chain involving at different activities and processes to deliver product to the hand of end 

customer (Christopher, 1992). The supply chain takes into account all processes of 

production and processing from raw material to delivery of final product (New & Payne, 

1995) as shown in Figure 3.1 where the value chain comments with raw material 

extraction from the mineral resources and pass through production, wholesaler, retailer 

and arrives at the ultimate users point, plus the recycling or reuse processes of the final 

product which is supplement of the open loop supply chain and upgrades it to the perfect 

close loop supply chain (Tan, 2001).  

 

 
Figure 3.1 Supply chain activities 

Source: Tan (2001) 

 

Beamon (1998) defines a supply chain as an integrated process wherein raw materials 

are extracted and converted into final products, and delivered to customers. He classifies 

supply chain integrated processes into two basic types, production planning and inventory 

control, and distribution and logistics as shown in Figure 3.2, illustrating transformation 

and movement of the raw material from upstream toward final product at downstream. 

The upstream processes are production planning and inventory control including 

manufacturing and holding of sub processes. These processes is about design, 

management and control of a production planning, scheduling and acquisition system for 

all materials including raw material, work in processes and finished goods. On the other 

hand the downstream processes are distribution and logistics process and concentrate on 

the transportation of the final products to the retailer or sometimes to the wholesaler. 

These processes encompasses design, management and control of logistic activities at 

downstream of the supply chain until delivery of final product to the end user.   
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Figure 3.2 Supply chain processes 

Source: Beamon (1995) 

  Individual companies can no longer survive solely and the competition in not between 

companies but among supply chains (Christopher, 1992). Better collaboration between 

supply chains will improve delivery service decrease total cost of the system. A suitable 

collaboration may occur in an integrated supply chain network structure. The partnership 

among supply chain members is important in the collaboration performance. It is 

sometimes hard to define supply chain members where the suppliers and real end 

consumer exist as shown in Figure 3.3. The start and end of a supply chain could be 

defined as the points that value adding process start and end (Min & Zhou, 2002).  

Furthermore a supply chain has two structural dimensions which are important to 

understand before analyzing any supply chain.  The two dimensions are horizontal and 

vertical dimensions referring to the number of tiers and supplier of the chain which in 

turn determines the length and boundaries of the supply chain (Lambert & Cooper, 2000). 

  Beside the structural dimensions of a supply chain that indicate its boundaries, there 

are different flows up to down and vice versa. The material flow is one of them that is 

almost up to down. Recycling or reuse path is other material flow but down to up. The 

material flow include acquisition of raw materials and part which then will be processed 

and added values until the end consumer (Cooper et al., 1997). The other flow which 

should not be neglected is the information flow and is down to up flow from customer to 

the retailer. The retailer in tune makes an order based on the consumers’ need and send it 

up to the warehouse or distributer. And distributer gathers all retailers’ orders, sum it up, 

then place an order based on its current stock, customer demand and forecasting method. 

Now the order is on the production point where manufacturer should produce the final 

product needed to satisfy the down stream’s demand. To follow demand the manufacturer 

have to supply raw material to build and assemble them and deliver it to the downstream. 

So in order to complete the whole chain, another order is necessary from manufacturer to 

the suppliers (Min & Zhou 2002) as shown in Figure 3.4. 
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Figure 3.3 Structural dimensions of the supply chain 

Source: Lambert & Cooper (2000) 

 

 

 

 

Figure 3.4 Material and information flows 

Source: Min & Zhou (2002) 
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If we consider material and information flows of companies in the context of different 

streams that flows inside the supply chains we will observe an interdependence between 

different supply chains that are sharing companies. Interconnected supply chains appear 

in the context of other supply chains. For example the focal company, F, is the producer 

of the heavy components focusing on machining industry as illustrated in Figure 3.5, 

where the whole chain produces five different products a-e. The five products a, b, c, d 

and e are different but produced by supply chains that in some point share their capacities 

among themselves. The company F produces three product that are used to produce four 

products (Dubois et al., 2004).  

 

Figure 3.5 Supply chain interdependences 

Source: Dubois et al. (1995) 

 

Although Beamon (1998) proposes two supply chain models consisting of 

deterministic and stochastic models, Min & Zhou (2002) in a comprehensive literature 

review about supply chain modelling discover four different types of supply chain models 

including deterministic, stochastic, hybrid and IT-driven models. They divide 

deterministic models to single and multiple objectives, stochastic models to optimal 

control theory and dynamic programing, hybrid models to inventory theoretic and 

simulation, and IT-driven models to WMS (Warehouse Management System), ERP 

(Enterprise resource planning) and GIS (geographic information system) as illustrated in 

Figure 3.6.  
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Figure 3.6 Supply chain Models 

Source: Min & Zhou (2002) 

  And since supply chains have always cross functional properties, Min & Zhou (2002) 

define integrated supply chain modeling only if they take into account different functions 

of the supply chain together. They categorize integrated supply chain modelling into five 

categories consisting of supply selection/inventory control, production/inventory, 

location/inventory control, location/routing, inventory control/transportation as shown in 

Figure 3.7. 

 

Figure 3.7 Supply chain Modelling 

Source: Min & Zhou (2002) 

  On the other hand supply chain is a phenomena which we could write its differential 

equations in time domain. And similar to other physical and natural phenomena we could 

convert supply chain differential equations to the s-domain using Laplace transformation.  

Therefore we could deal with a supply chain problem both in time and s-domain. In this 

study we aim to model a typical supply chain in s-domain and then measure its 

performance and analyze its behavior for different deterministic demand fluctuations. In 

the previous sections, we explained how a Laplace transform works on differential 

equations transfer function and complicated block diagrams. We started from simple 

equations and single transfer functions toward more complicated block diagrams. In the 

following section we analyze different proposed control theoretic supply chain models 

relating to our study. Based on this argument our study fits to the category of deterministic 

models with multiple objectives in Figure 3.6 and our modelling approach falls into the 

production/inventory or inventory control/transportation approaches in Figure 3.7. 
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3.1 IOBPCS family 

A supply chain facing with the demand of its downstream could be molded with control 

theory. We use control theoretic approach on supply chain to analyze performance of the 

system. Control theory was first applied to production and inventory control problems by 

Simon (1952) on continuous systems and then extended to discrete systems by Vassian 

(1954). Towill’s (1982) paper was a revolution in this field where he proposed an 

Inventory Order Based Production Control System (IOBPCS) in which a production 

process has lead time of ��. The system is controlled by two control parameters, i.e. �� 

which represents demand averaging, and ��  which represents the gap filling process 

between on hand inventory level and target inventory level.  

  A simplified version of IOBPCS is IBPCS proposed by Edghill & Towill (1990) where 

the control policy operates without demand forecasting path (Zhou et al., 2006). The 

system without inventory control pass is called OBPCS where the order is only based on 

demand information. A few years later Edghill & Towill (1990) extended IOBPCS into 

Variable IOBPCS (VIOBPCS) by setting variable target inventory level instead of 

constant target inventory level. The simplified version of VIOBPCS without directly 

considering demand information in the order is called VIBPCS. John et al. (1994) and 

Diesny et al. (2000) extended the IOBPCS into APIOBPCS by considering work-in-

process inventory. And subsequently it is extended to APVIOBPCS by considering 

variable target inventory instead of constant target inventory. Although there are other 

versions of IOBPCS (Figure 3.8) but here we derive transfer functions of production, 

finished goods inventory, work in process inventory only for IOBPCS, IBPCS, OBPCS, 

VIOBPCS, VIBPCS and APIOBPCS. And then we analyze response of the system to 

step, impulse and sinusoidal demand subject to target inventory of TINV=0 and TINV=5. 

Figure 3.8 The IOBPCS family, Source: Lalwani et al. (2006). 
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3.2 IOBPCS 

Modelling of a supply chain should take into account demand and stock levels in the 

ordering policy in an integrated manner. IOBPCS proposed by Towill (1982) has such 

capability where a smoothed version of demand plus a fraction of inventory errors 

construct the order levels to the production line as shown in Figure 3.9. Demand is the 

input of the system triggering all of the system components including production unit and 

inventory holding sections. A smoothed version of demand with time constant of �� is 

utilized in the ordering process to filter out demand uncertain or random fluctuations. 

Another part of ordering policy is error of finished goods which is derived through 

subtracting target inventory and then multiplied to inventory recovery gain of	1/�� . 

Higher	�� , ��  and ��  result slower production, demand updating and inventory 

recovery.  

Figure 3.9 Block diagram of IOBPCS. Source: Towill (1982) 

  There are three important outputs which we are interested in, consisting of production, 

finished goods and work in process inventories and we label them as P, I and WIP 

respectively. Inventory signal could be negative due to backlog orders and unsatisfied 

demand. Assuming TINV=0 and using block diagram reduction techniques, transfer 

functions of P, I, WIP compared with Demand (D), are 

�

°
�

�b�±²b±³!4

��b±³4!��b±²4b±²±́ 4z!
   Eq (1), 

¤

°
�

3±²��±³b±́ !4b±³±́ 4z!

��b±³4!��b±²4b±²±́ 4z!
   Eq (2), 

µ¤�

°
�

±́ ��b�±²b±³!4!

��b±³4!��b±²4b±²±́ 4z!
   Eq (3). 

  If		�¶ � 4,	�� � 4,	�� � 8, the poles are derived from �1 # 8%!�1 # 4% # 16%�! � 0, 

causing resonance around ωt � 0.25, but due to damping of ξ � 0.5 the resonance will 

not be exactly at 0.25 and the amplitude of output will not be infinite at resonance point. 
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We assumed TINV=0 due to simplicity of the calculation and we could derive the effect 

of non-zero target inventories separately and add it to the demand response easily by using 

superposition principle. Work in process inventory is the difference between order and 

production and although is not shown in the block diagram of Figure 3.9 but we could 

derive it by 

WIP = (»¼½¾¼3¿¼À½ÁÂFÃÀÄ)4 = (»3Å)4 , 

and since order is equal to 

O = (Å)rrÆÇÈ�, 
Thus the WIP is  

WIP = É (Ê)rrÆÇÈ�  −PË
% .= �h�. 

  That is why Eq(3) is Eq(1) multiplied �¶. Comparing Eq (1) and Eq (3) we observe 

that transfer function of WIP signal, is equal to transfer function of production signal 

multiplied lead time (�¶), or in the other word ��� = �¶�.. This is a significant result 

that we derived from analytical calculation and could be validated by theory and practice. 

More than fifty years ago Little (1961) introduced a queuing formula (L = λW), which 

then become widely known as Little’s law. The law have proved and used more than a 

half a century in a wide range of operation management studies to solve both theoretical 

and practical problems (Little, 2011). In this simple but fundamental formula L is the 

average number of items in the system, W is the average waiting time of an item and λ is 

throughput of the system (Little & Graves, 2008). On the other hand IOBPCS, WIP is 

unfinished goods under process in the system, �¶ is the time that it takes to process and 

change a raw material to finished product or simply lead time, and P is the production 

quantity or output of manufacturing line. Comparing our result with little’s law we 

observe a meaningful correspondence between WIP and L, �¶ and λ, and between P and 

W. And indeed the model is validated by little’s law or we could state that our result is 

another analytical proof for this substantial operation management rule. Now that we 

found transfer functions of the all signals of the system, we could figure out the response 

of the system to any kind of input. In this section we will find the response of the system 

to step, impulse and sinusoid inputs. We set�¶ = 4, �� = 4,�� = 8 (Disney, Naim, & 

Towill, 1997) , and then draw the outputs first for step, impulse and sinusoidal demand 

subject to TINV=0 and then for zero demand and TINV=5. The result could be easily 

added up based on superposition principle. 
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Figure 3.10 Response of IOBPCS to Demand=unit step and TINV=0 

 

 

 

Figure 3.11 Response of IOBPCS to Demand=unit impulse and TINV=0 
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Figure 3.12 Response of IOBPCS to Demand=sin(0.3t) and TINV=0 

 

 

 

Figure 3.13 Response of IOBPCS to Demand=0 and TINV=5 
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3.3 IBPCS 

IOBPCS without taking into account demand information in the ordering policy is labeled 

as IBPCS as shown in Figure 3.14 (Zhou et al., 2006). We draw the response when �� =
∞ as shown in Figures 3.15-3.18, where considering TINV=0 three transfer functions of 

P, I, WIP compared with Demand (D), are 

�

°
�

�

�b±²4b±²±́ 4z
        Eq (1), 

¤

°
�

3±²��b±́ 4!

�b±²4b±²±́ 4z
        Eq (2), 

µ¤�

°
�

±́

�b±²4b±²±́ 4z
       Eq (3). 

Figure 3.14 Block diagram of IBPCS. Source: Zhou et al. (2006) 

 

Figure 3.15 Response of IBPCS to Demand=unit step and TINV=0 
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Figure 3.16 Response of IBPCS to Demand=unit impulse and TINV=0 

 

Figure 3.17 Response of IBPCS to Demand=sin(0.3t) and TINV=0 
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Figure 3.18 Response of IBPCS to Demand=0 and TINV=5 

 

3.4 OBPCS 

Without considering inventory information in the ordering policy IOBPCS becomes 

OIBPCS as shown in Figure 3.19. We draw the response when �� = ∞ as shown in 

Figures 3.20-3.23, where considering TINV=0 three transfer functions of P, I, WIP 

compared with Demand (D), are 

�

°
�

�

��b±³4!��b±́ 4!
   Eq (1), 

¤

°
�

3�±³b±́ !3±³±́ 4z

��b±³4!��b±́ 4!
   Eq (2), 

µ¤�

°
�

±́

��b±³4!��b±́ 4!
   Eq (3). 

Figure 3.19 Block diagram of OBPCS. Source: Lalwani et al. (2006) 
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Figure 3.20 Response of OBPCS to Demand=unit step and TINV=0 

 

 

 

Figure 3.21 Response of OBPCS to Demand=unit impulse and TINV=0 
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Figure 3.22 Response of OBPCS to Demand=sin(0.3t) and TINV=0 

 

 

 

Figure 3.23 Response of OBPCS to Demand=0 and TINV=5 
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3.5 VIOBPCS 

In IOBPCS if we set variable TINV instead of constant TINV, the system converts to 

VIOBPCS as shown in Figure 3.24 where K is constant number (Edghill & Towill, 1990). 

We draw the response as illustrated in Figures 3.25-3.27 by using three transfer function 

of 

�° = �b(±²b±³bÌ)4(�b±³4)(�b±²4b±²±́ 4z)   Eq (1), 

¤° = Ì3±²((±³b±́ )4b±³±́ 4z)(�b±³4)(�b±²4b±²±́ 4z)    Eq (2), 

µ¤�° = ±́ (�b(±²b±³bÌ)4)(�b±³4)(�b±²4b±²±́ 4z)   Eq (3). 

 

 

  

Figure 3.24 Block diagram of VIOBPCS.  

Source: Edghill & Towill (1990) 



65 

 

 

Figure 3.25 Response of VIOBPCS to Demand=unit step and TINV=0 

 

 

Figure 3.26 Response of VIOBPCS to Demand=unit impulse and TINV=0 
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Figure 3.27 Response of VIOBPCS to Demand=sin(0.3t) and TINV=0 

 

3.6 VIBPCS 

VIBPCS is VIOBPCS without directly taking into account demand information in the 

ordering policy. In VIBPCS still TINV is variable as shown in Figure 3.28. We draw the 

response as illustrated in Figures 3.29-3.31 by using three transfer function of �° = �bÌ4b±³4(�b±³4)(�b±²4b±²±́ 4z)   Eq (1), 

¤° = Ì3±²(�b(±³b±́ )4b±³±́ 4z)(�b±³4)(�b±²4b±²±́ 4z)    Eq (2), 

µ¤�° = ±́ (�bÌ4b±³4)(�b±³4)(�b±²4b±²±́ 4z)   Eq (3). 
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Figure 3.28 Block diagram of VIBPCS. Source: Lalwani et al. (2006) 
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Figure 3.29 Response of VIBPCS to Demand=unit step and TINV=0 

 

 

 

Figure 3.30 Response of VIBPCS to Demand=unit impulse and TINV=0 
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Figure 3.31 Response of VIBPCS to Demand=sin(0.3t) and TINV=0 

 

3.7 APIOBPCS 

If we add a pipeline to IOBPCS then we have APIOBPCS (Disney et al., 1997) where  

�° = �b(±²b±³)4b ±́Í ±²4 ±Î⁄(�b±³4)(�b(�b±´ ±Î)±²4b±²±´4z)⁄    Eq (1), 

¤° = ±²(±́Í 3±´3±´±Î43±³(±Îb±´)43±´±³±Î4z)±Î(�b±³4)(�b(�b±´ ±Î)±²4b±²±´4z)⁄   Eq (2), 

µ¤�° = ±´(�b(±²b±³)4b±́Í ±²4 ±Î⁄ )(�b±³4)(�b(�b±´ ±Î)±²4b±²±´4z)⁄    Eq (3 
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Figure 3.32 Block diagram of APIOBPCS. Source: Disney et al. (2000) 
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Figure 3.33 Response of APIOBPCS to Demand=unit step, TINV=0 

 

 

Figure 3.34 Response of APIOBPCS to Demand=unit impulse, TINV=0 
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Figure 3.35 Response of APIOBPCS to Demand=sin(0.3t), TINV=0 

 

 

Figure 3.36 Response of APIOBPCS to Demand=0, TINV=5 

  

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

Time

In
pu

t a
nd

 o
ut

pu
ts

 

 
Demand
Production
Finished goods
WIP

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

Time

In
pu

t a
nd

 o
ut

pu
ts

 

 
Demand
Production
Finished goods
WIP



71 

 

4 Nonlinear IOBPCS (NIOBPCS) 

Inventory and Order Based Production Control System (IOBPCS) is a well-known linear 

model for analyzing inventory-production systems. But in practice, real inventory-

production systems have different natural nonlinearities. Production smoothing is one of 

the nonlinearities that forces the system to produce without extreme fluctuations. In this 

paper we extend IOBPCS with production smoothing constraints to discover behavior of 

the system under nonlinear limitations. The restricted IOBPCS is nonlinear and thus we 

apply nonlinear control theory to find its frequency response. We analyze response of the 

system for different demand amplitudes and frequencies. Furthermore, some important 

side effects of the production smoothing constraints on other outputs of the system, such 

as production delays, inventory amplification and customer satisfaction, are discussed. 

Finally, a set of demand frequencies and amplitudes, which force the system to reach 

smoothing constraints, are discovered and demonstrated.  

4.1 Introduction 

In a production system, an external demand triggers production and inventories. In order 

to analyze the system using control theory, we label all of the demand, production and 

inventory information as system signals. Fluctuations of the production and inventory 

signals undoubtedly are due to the system's endeavor to follow demand variations. 

However, production systems prefer stable manufacturing load, smooth production and 

proper utilization of the system capacity in order to reduce production cost (Dejonckheere 

et al., 2003), but if the system is forced to follow highly fluctuated demand, then it should 

pay higher running cost to realize agility (Towill & del Vecchino, 1994). Agile systems 

can follow external demands faster but with higher cost due to hiring/firing, production 

on-costs, obsolescence and lost capacity (Disney & Towill, 2002). In other word a natural 

trade off always exist between smooth production and inventory levels, resulting in a 

dilemma for both researchers and practitioners (Disney et al., 1997). 

  In this paper we aim to model and analyze the effect of production smoothing on the 

total performance of the system. To model this phenomenon, we extend IOBPCS (Towill, 

1982), by adding production smoothing constraints, i.e., the lower and upper bounds, so 

that production signal is less fluctuated. The lower bound can be supported by less 

idleness of the production capacity and the upper bound is simply justified by production 

capacity constraint. This extension change our linear system to nonlinear where the 

response of system is not only a function of frequency of demand but also its amplitude. 

We label this extended nonlinear IOBPCS as NIOBPCS and then analyze its behavior for 

different demand inputs with different amplitudes and frequencies. 
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4.2 Control theory and nonlinearity 

Control theory was first applied to production and inventory control problems by Simon 

(1952) on continuous systems and then extended to discrete systems by Vassian (1955). 

Since then, two research groups, Towill & Diesny group and the Grubbström & Tang 

group, have made significant contributions to this topic. Towill & Diesny consider the 

cost as an implicit factor and Grubbström & Tang explicitly take into account the cash 

flows and revenues modeling process.  

  Towill (1982) proposed IOBPCS where a production process has the lead time of �� 

and two control parameters, i.e., �� which represents demand averaging, and ��, which 

represents filling the gap between the on-hand inventory level and the target inventory 

level. Edgill & Towill (1990) extended IOBPCS into variable IOBPCS by setting a 

variable target inventory level instead of a constant target inventory level. John et al., 

(1994) and Diesny et al., (2000) extended IOBPCS to APIOBPCS by considering work-

in-process inventory. There are also other extensions on IOBPCS, for instance, using 

different forecasting mechanisms (Riddalls & Benett, 2002; Dejonckheere et al., 2002), 

introducing discrete time (Disney and Towill, 2003; Dejonckheere et al., 2003), applying 

state space (Lalwani et al., 2006) and considering remanufacturing (Zhou et al., 2006). 

  On the other hand, Grubbström developed a methodology for determining best 

production quantity and production sequences (Sarimveis et al., 2008). Grubbström (1996, 

1998) applied control theory to analyze a production system considering different 

objectives and factors, such as maximizing the stream of the annual income, set up cost, 

inventory holding cost and backlog cost. Afterward, they extended it to a multi-level 

multi-stage system with stochastic and deterministic demand (Grubbström & Wang, 

2003; Grubbström & Huynh, 2006). An overview of studies in this direction can be found 

in Grubbström & Tang (2000). 

  One of the obstacles that hinders further development of control theory in the context 

of inventory-production system is linear assumptions of the studies (Ortega & Lin, 2004). 

In practice inventory-production systems usually behave as nonlinear due to waste, 

vulnerability, uncertainty, congestion, bullwhip, diseconomies of scale, and self-interest 

(Blanco et al., 2011). Owing to the complexity of nonlinear analysis, there are few studies 

published in this field. In our knowledge, there are only two research categories related 

to our research in this paper. The first one is research considering the capacity constraint 

(Ishii & Imori, 1996; Grubbström & Wang, 2003; Haksever & Moussourakis, 2005; 

Grubbström & Huynh, 2006; Wang et al., 2009; Rinaldi & Zhang, 2010; Jia, 2013), and 

the second one is the research considering the order constraint (Wang et al., 2012; Wang 

et al., 2014).  
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  This research is a direct extension of the IOBPCS model considering production 

smoothing constraints. In the following steps we model production smoothing and then 

find its frequency response, including amplitude ratio of the production and inventory 

signals. 

 

4.3 Modelling production smoothing 

In this paper, we assume demand of the production system composed of constant and 

sinusoidal signals representing average and variable demand respectively. This type of 

demand has been analyzed in a number of papers especially in the field of linear control 

theory. Edgill and Towill (1990) analyse weekly, monthly and seasonal sinusoid demand 

using IOBPCS and VIOBPCS and compare the results. Towill and del Vecchino (1994) 

use IOBPCS to analyse seasonality in a three echelon supply chain and discover demand 

amplification or attenuation. Dejonckheere et al., (2002), (2003), and (2004) analyse 

sinusoidal demand for APIOBPCS, Order up to policy, and APVIOBPCS respectively.   

All of these papers investigate linear models and in this paper we aim to model and 

analyze nonlinear version of IOBPCS for sinusoid demand. 

  So in this type of demand, the constant part of demand does not have any effect in our 

analysis. The constant demand triggers manufacturing continuously, and produced items 

will be delivered constantly. It could be mathematically shown that if constant demand is �8 , production signal would be �8  such that �8 = �8 . Therefore constant part of 

demand will not contribute on the system fluctuation. So we focus on the variable part of 

demand which is a sinusoid function with arbitrary frequency and amplitude.  

  For this demand signal, if a production system is allowed to produce items without any 

limitation, the production signal could fluctuate limitlessly to satisfy the market demand. 

Therefore the system must be prepared for peak production to satisfy demand. This 

condition is illustrated in Figure 4.1a, where system A, sometimes works with high 

capacity, and most of the time, the production capacity is idle. This unlimited production 

system has higher capacity and therefore could follow demand pattern rapidly, but it has 

higher cost in terms of investment and running cost. 

  However in practice, companies have capacity constraints that force manufacturing 

lines to operate under constraints. In this case, the production signal could not be higher 

than the capacity constraint, as shown in Figure 4.1b. Consequently, part of the demand 

will not be satisfied. This unsatisfied demand could be produced during the lower load 

periods, introducing the lower bound of production, as shown in Figure 4.1c. This delayed 

production can be justified as pre-production for the next peak demand. 
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  System C has three main advantages compared with systems A and B. First, it operates 

with less capacity compared with system A. Second, it utilizes a higher portion of its 

capacity compared with system B. Finally, the production signal in system C is smoother 

than both system A and B. Beside these advantages, the production smoothing constraints 

of the system C will cause some negative effects, such as inventory amplification, backlog 

orders and customer dissatisfaction. So we need to analyze these side effects and discover 

the interrelationship among them. 

  In order to analyze system C we need to find it mathematical function. Figure 4.2 

illustrates production constraints of system C, where production is cut by upper and lower 

bounds, and X and Y represent input and output of the system C respectively.  

The mathematical function of Figure 4.1 is shown as below 
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  Figure 4.2 and Eq (1) represents system C and could be inserted after the production 

signal in IOBPCS to construct production smoothing as shown in Figure 4.3. The inserted 

component is nonlinear and converts IOBPCS to NIOBPCS. It should be mentioned that 

there are two kinds of capacity in the system. Designed and operational capacity. The 

designed capacity is the production capacity that is already constructed by long term 

investment. While operational capacity is the capacity limitation for daily production. We 

applied nonlinear constraints on operational capacity.   

Figure 4.1 Three types of production system 

Figure 4.2 Illustration of the production smoothing constraints. 
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Figure 4.3 Block diagram of IOBPCS and NIOBPCS. 

In Figure 4.3, D represents variable part of external demand with amplitude of M and 

frequency of ω , P represents variable production, I represents inventory, TINV represents 

target inventory, and N is Eq (1) representing the transfer function of nonlinear component. 

From the traditional transfer function point of view, N includes the amplitude of its input 

that complicate finding the system response. To overcome this difficulty, Levinson (1953) 

introduced an analytical method to calculate the frequency response of the system. Based 

on Levinson’s method, at first, we need to reconfigure the system as shown in Figure 4.4. 

  

Figure 4.4 Block diagram of the reconfigured NIOBPCS 
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In Figure 4.4, NIOBPCS is reconfigured assuming target inventory of zero. In this Figure, 

N is the transfer function of nonlinear component with input of X and output of Y, and +�, +� and +�are transfer functions of the linear components. The amplitude of X, which has 

an important role in our analysis, is denoted by A. 

 

4.4 Nonlinear control theory 

In this part, we apply nonlinear control theory to solve the reconfigured NIOBPCS. There 

are three types of steady-state oscillations in this field, forced oscillations, conservative 

free oscillations, and limit cycles. And since NIOBPCS falls into forced oscillations 

category we follow the steps proposed by Gelb and Vander Velde (1968), which are based 

on Levinson’s (1953) method. First we need to calculate the value of A, from X to D 

transfer function. In control theory, the transfer function of a component can be shown by 

the amplitude ratio and the phase of the component as below 

θρ jefunctionTransfer =    (2) 

  In Eq (2), which is known as the Euler formula, ρ  and θ  are amplitude ratio and 

phase of the transfer function of the component, respectively. The method of deriving ρ
andθ  is described in Appendix B and C. Using the Euler formula, we define transfer 

function of 1L , 321 LLL  and N as below 
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  The amplitude of X/D is A/M, which is the left side of Eq (4). The right side of Eq (4) 

is replaced by Eq (3); therefore, we have 
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  We could rewrite Eq (5) as below 
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  The process of deriving Eq (7) is explained in Appendix C. Our nonlinear component, 

N, is non-phase shifting because its transfer function in Eq (1) does not include any 

derivative or integration element in the nominator or denominator. It is only an amplitude 

reducer and does not influence the phase of the system. Therefore, 0=Nθ  and thus 
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  Considering A as an independent parameter, the right side of Eq (7) is a set of ellipses 

for different frequencies and amplitudes. And the left side of Eq (7) is equal to Eq (1) and 

represents the output of the nonlinear component which we added after production 

component in Figure 4.3. The intersection of these two functions is (A, NA ρ ) where 

Vertical axis= NA ρ , and Horizontal axis=A as shown in Figure 4.5. 

 

Figure 4.5 Intersection of left and right sides of Eq (7) for M=1 and ω = 0.4 

Figure 4.5 shows that for each ellipses there are two intersection points at the first and 

third quarter of the plane, but both intersection points lead to the same results. Therefore 

we only consider the intersection point at first quarter.  
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Having the value of Vertical and Horizontal axis from intersection point, N  and D
X

are readily calculated  

A
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On the other hand, P/D is a function of X/D   
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And since in the reconfigured NIOBPCS, 12 =L  as shown in Figure 4.4, therefore 
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Substituting N  and D
X which are derived from Eq (8) and Eq (9), D

P is calculated  
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|� �⁄ |is called frequency response, and is what we need to describe the amplification or 

attenuation of production compared with demand. In the next section, we use the above 

mentioned method to draw frequency response of NIOBPCS for different demand 

amplitudes and frequencies. 

 

4.5 Frequency Response of NIOBPCS 

In this section we apply the Levinson’s (1953) method explained in the last step to 

discover frequency response of the system. First we have to find intersection points of the 

right and left sides of Eq (7). The right side is a set of ellipses and the left side is the 

output of nonlinear component which we added to IOBPCS.  

  For instance, we draw left and right sides of Eq (7) i.e. ellipses, for �� = 4 �� = 8 

and �� = 4, M=0.6<1 ,1<M=2 and �=0.1, 0.2, 0.3, 0.4, 0.5, 1 in Figure 4.6 and 4.7. The 

left side of Eq (7) is equivalent of Eq (1) which is a multi-function of a unit slope ramp 

and a constant number. If an ellipse crosses the nonlinear function in the constant part, 
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the production signal will be cut by the upper and lower bounds, otherwise the system 

operates normally same as IOBPCS. Indeed the location of intersection point shows 

whether or not the production smoothing constraints cuts the production signal. This 

information is used to find the behavior of two main signals of the system, i.e., the 

production and inventory signals. 

 

Figure 4.6 Left and right sides of Eq(7) for M=0.6 and ω=0.1, 0.2, 0.3, 0.4, 0.5. 

 

Figure 4.7 Left and right sides of Eq(7) for M=2 and ω=0.1, 0.2, 0.3, 0.4, 0.5 

  Furthermore Figure 4.6 and 4.7 show that two factors influence on the shape and size 

of ellipses, the frequency and the amplitude of demand. By increasing frequency of 

demand, ellipses rotate counter clockwise. They also become large for very low and very 

high frequencies. On the other hand, by increasing amplitude of demand the size of 
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ellipses increase.  

  For demand amplitudes M=0.6, as shown in Figure 4.6, ellipses never intersect 

constant part of nonlinear function, consequently production signal never reaches 

production constraints and the system operates same as IOBPCS. But for M=2, as 

illustrated in Figure 4.7, all of the ellipses related to low demand frequencies intersect 

with constant part of nonlinear function and thus production signal will be cut and the 

system becomes NIOBPCS. To discover behavior of the production signal for all demand 

frequencies and amplitudes we need to draw frequency response of the system based on 

the intersection points. 

 

4.5.1 Production Signal 

The Intersection points of the left and right sides of Eq (7) is used to find amplitude of 

P/D using Eq (13). We found these intersection points and draw amplitude of P/D for 

demand amplitudes of M=0.6, 0.7, 0.8, 0.9, 1, 2,3,4,5 and for all demand frequencies for �� = 4 �� = 8 and �� = 4 because in the literature researchers believe that �� = ��, �� = 2�� is near to optimum (Towill, 1982; Edghill & Towill, 1990, Disney, Naim, & 

Towill, 1997). 

 

Figure 4.8 P/D amplitude ratio. 

In Figure 4.8, which is the Bode diagrams of P/D, the amplitude ratio of production signal 

is shown. Figure 4.8 shows that for M=0.6, P/D amplitude ratio is not cut thus frequency 

response is equal to IOBPCS. But for M higher than 0.6, smoothing constraint cuts 

production signal consequently P/D amplitude ratio become less and the system converts 

to NIOBPCS. Despite IOBPCS, in NIOBPCS a higher amplitude of demand causes a 

lower production amplitude ratio and thus more production smoothing. So for M=0.6, 
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frequency response is only a function of frequency of demand, whereas for higher M, 

frequency response is a function of both frequency and amplitude of demand.  

  We observe that for frequencies where the production signal is cut due to smoothing 

constraints, the higher M results in a lower amplitude ratio compared with IOBPCS. The 

reason is that in IOBPCS, the production signal is allowed to fluctuate limitlessly, and 

this causes rapid response to the market and higher production cost, whereas in NIOBPCS, 

the system does not fluctuate more than the constraints and the production becomes 

smoother, consequently the manufacturing efficiency increases and production costs 

decrease. This is a positive improvement from manufacturing viewpoint but is not 

appropriate for marketing managers. The negative effect of this phenomenon is slow 

production speed resulting in less delivery rate. If the production signal is not allowed to 

fluctuate arbitrarily due to the production constraints, the company will not be able to 

follow the demand variations rapidly and will lose the market.  

  Figure 4.8 also shows that there are some frequencies and amplitudes where the 

production signal is cut and becomes smoother. It is useful for production managers to 

know for which combination of demand frequency and amplitude, i.e., (ω , M), 

production is cut. To capture this combination, we need to find when ellipses cross the 

break point of the nonlinear function of Eq (1). The break point is the point of intersection 

of the constant number and the ramp in Eq (1), which is the point (1, 1). We found these 

points and the M and ω  corresponding to them. To illustrate the result, we draw M as a 

function of ω  in Figure 4.9. 

 

Figure 4.9 Normal and Cutting area of NIOBPCS 

  Figure 4.9 divides the plane into two areas of cutting and normal operation. In any 

point above this curve, the production signal is cut by smoothing constraints, and below 
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the curve it operates normally. In addition, Figure 4.9 shows that for a constant demand 

frequency, ω the chance of the system to operate normally is high for lower demand 

amplitudes. And for constant demand amplitude, the chance of normal operation is high 

for higher frequencies due to the filtration of demand averaging and production lead time. 

We also simulate and draw four points of this plane to prove our assertion in Figure 4.10, 

where production signal is normal for ω = 0.2, M = 0.5 and ω = 0.4, M = 1 but it is 

cut forω = 0.2, M = 1 and ω = 0.4, M = 3, as predicted by Figure 4.9.  

 

 

 

Figure 4.10 Simulation results of NIOBPCS 
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4.5.2 Inventory signal.  

Alongside analysis of the production signal, we have to consider the behavior of the 

inventory signal. To capture I/D information, we use the P/D information because based 

on the block diagram of NIOBPCS as shown in Figure 4.3, there is a meaningful 

relationship I = (P-D)/s or I/D = (P/D - 1)/s. This equation means that inventory is the 

integration of production minus demand over time. The amplitude of I/D represents real 

inventory at 0<I  and backlog orders at I<0 . Higher I/D results in a higher cost of inventory 

holding and higher market loss. I/D amplitude ratio is obtained using simulation and 

illustrated in Figure 4.11. 

 
Figure 4.11 I/D amplitude ratio 

 Figure 4.11 is what we need to describe behavior of the inventory signal where the 

behavior of inventory signal for M<1 and 1<M is completely different. 

For M<1, behavior of the inventory signal does not change too much, due to lower cutting 

of the production signal. But, for 1<M, behavior of the inventory signal is completely 

different than M<1. In case of 1<M, inventory amplitude ratio is descending by increasing 

the demand frequency. The reason behind this phenomenon is found through analysis of 

the production and demand signals. So if demand amplitude becomes less than production 

constraints i.e. M<1, production signal tries to exceed constraints but since it is not 

allowed to pass them, it will result in a limited increase of inventory amplitude ratio. But 

in case of demand amplitudes higher than production constraints i.e. 1<M, higher values 

of production signal will be cut and thus speed of the system slow down more and 

production system cannot follow demand naturally resulting in higher inventory 

amplitude ratios specially at lower frequencies. Since at lower frequencies the time in 

which production signal stay above demand signal is longer, the discrepancy between 

production and demand increase which in turn causes higher inventory amplitude ratios. 
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4.6 Analysis of results  

In previous section we observed that when the system has production smoothing 

constraints, the amplitude of demand has an important effect on the shape of output. The 

behavior of both production and inventory signals of NIOBPCS for M<1 and 1<M are 

different. 

  For M<1 the production amplitude ratio of NIOBPCS is less than IOBPCS due to the 

cutting of production signal by smoothing constraints, which means that the 

manufacturing line is operating with lower capacity and the production signal fluctuates 

less. Consequently a higher portion of the capacity is utilized. In this situation 

manufacturing performance is higher and production cost is less than IOBPCS, but due 

to the lower production capacity, NIOBPCS could not follow the demand rapidly. 

Therefore amplitude ratio of the inventory increases because during peak demand periods, 

the system is not allowed to produce more than upper limit to satisfy demand and backlog 

orders increase. And also during demand falls, the system is not allowed to produce less 

than lower limit and thus a portion of production must be stored in warehouse as inventory 

resulting in higher inventory amplitudes. Indeed smoothing constraints cause better 

production efficiency, but higher inventory fluctuation. (Cachon et al., 2007)  

  For 1<M at low frequencies, due to the higher amplitude of demand compared with the 

production smoothing constraints the production signal is cut more than M<1, as a result 

inventory fluctuation increases which means that inventory holding and backlog orders 

increase. And also we observe that at 1<M and for demand with low frequencies the 

system is unstable because the inventory signal goes to infinity. This phenomena happen 

due to the slow changes of demand at low frequencies so that the demand signal surpasses 

the production constraints for a long period of time resulting more unsatisfied demand in 

which accumulate over time and causes higher levels of backlog orders (windup effect).    

  Besides differences between behavior of the production and inventory signals of 

NIOBPCS compared with IOBPCS, there is one common area that both of the systems 

operate identically. At high frequency demands the response of both of the systems is 

same. Furthermore the response of the system to high frequency demands is only a 

function of frequency of demand not its amplitude. The main reason is that both IOBPCS 

and NIOBPCS have two low pass filters i.e., demand averaging and production lead time. 

These two components filter out high frequency demands and thus the system do not 

stimulated by such input. In other word, demand averaging and production lead time 

consider high frequency demand as noise and do not allow them to challenge the system 

and thus fluctuation of both production and inventory signals decrease. This result in 

higher performance of production and inventory signals at the same time.  
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4.7 NIOBPCS with Non-zero Target inventory 

An efficient production and inventory planning system controls both material and 

information flows throughout the supply chain. And since supply chain lead time is often 

higher than promised delivery time, a specific safety stock level need to be stored to 

guarantee steady flows and satisfy specific customer service level (Li & Jiang, 2012). 

Some researchers believe that safety stock could be implemented on unfinished items too 

(Whybark & Williams, 1976), while others argue that it is not necessary to apply it to the 

whole chain because a safety stock level for finished product automatically increase the 

stock levels at upstream (Orlicky, 1975; Nahmias, 2009). Regardless of this argument, it 

is generally accepted that safety stock act as a buffer against different demand fluctuations 

and uncertainties to maintain a predefined service level (Bonney, 1994).  

Safety stock is emphasized when the manufacturing line cannot afford high fluctuations 

and thus cannot follow highly fluctuated demands. In this case manufacturing line are 

forced to operate smoothly to prevent capacity idleness (Parsanejad & Matsukawa 2014). 

Although capacity utilization is an important issue but customer satisfaction should not 

be neglected. To overcome this conflict we need to install extra stock of finished items to 

respond customer needs. In turn having extra inventory levels increases the cost. This 

contradictory aspects of production and inventory systems show a strong trade-off 

between production quantities, inventory level and customer satisfaction (Graves 1988; 

Zinn & Marmorstein, 1990). 

In this paper we aim to analyze a Nonlinear Inventory Order-Based Production Control 

System (NIOBPCS) for non-zero target inventory levels to discover the optimum level of 

safety stock for different demand frequencies. NIOBPCS is an extend version of 

Inventory Order-Based Production Control System (IOBPCS) subject to upper and lower 

production constraints implying a production smoothing phenomena. In the following 

steps we briefly explain NIOBPCS proposed by Parsanejad and Matsukawa (2014) and 

then implement non-zero target inventory policy to investigate behavior of the system 

subject to production smoothing constraints. 

All aforementioned results of NIOBPCS is for zero target inventory levels. Having zero 

target inventory the system experiences stock outs during demand peaks. This situation 

can be affordable for companies that the inventory holding cost is extremely high and low 

customer service levels is accepted. The total cost of inventory management can be 

defined as the sum of inventory holding and shortage costs (Persona et al., 2007). Due to 

the importance of customer satisfaction, the cost of a system with stock outs might be 

higher than inventory holding cost. And also the positive relationship between customer 
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service level and inventory holding levels is straightforward. Since the safety stock levels 

are exponentially related to the desired level of customer service (Zinn & Marmorstein 

1990), we need to consider which level of customer service is appropriate for the company 

then allocate the safety stock to satisfy it. We cannot implement safety stock for 

NIOBPCS with zero target inventories, thus we need to consider a non-zero target 

inventory policy. In this case the problem would be finding a level of target inventory to 

achieve a certain customer service level. 

  Target inventory is one of the inputs of NIOBPCS. The other input is demand of the 

market. If we put target inventory equal to zero, it means that we are eliminating its effects. 

Switching from zero to non-zero target inventory result in some changes in the system 

behavior. To analyze its behavior we need to analyze the system response for each input 

separately then combine the results. Considering the only input of non-zero target 

inventory the inventory level at the steady state conditions would be exactly equal to non-

zero target inventory. It means that the only effect of increasing target inventory is 

increasing the mean value of inventory signal. Hence we could set the target inventory 

such that the inventory signal always become a positive number. Since negative inventory 

indicates stock outs, we need to increase target inventory levels up to the amplitude ratio 

of inventory for each frequency as illustrated in Figure 4.12. If we set target inventory 

equal to amplitude ratio of inventory signal the safety stock will be zero and stock out 

does not occur. For lower amounts of target inventory levels there would be a specific 

amount of stock out that implies a specific customer dissatisfaction.  

  We implement a simulation to prove our assertion. The result of simulation for 

production lead time of �� = 4, time to adjust demand of �� = 8 and time to adjust 

inventory of �� = 4, demand signal with frequency of ω=0.2, amplitude of M=1 and 

average value of d=5, are shown in the Figure 4.12 for TINV=0 and TINV=6.57 separately.  

In Figure 4.12, the black sinusoid curve is demand signal, the red line is limited 

production signal which is subject to upper and lower constraints, the green curve is 

inventory signal when TINV=0 and the green dash line is inventory signal when 

TINV=6.57. We found TINV=6.57 from Figure 4.11 where the amplitude of inventory 

signal for ω=0.2, M=1 is 6.57. And if we set TINV=6.57 it acts as average inventory levels 

in output and elevates the inventory signal to above zero and thus the system will not have 

any stock out. The safety stock in this target inventory level is zero but any uncertain 

fluctuation in demand may result in stock out and to be safer we need to increase target 

inventory level to maintain enough confidence levels. 
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The value of inventory amplitude for each frequency which could be found from Figure 

4.11, is the border of having and not having stock out. The target inventories more than 

this value result in less probability of stock out in case of uncertainty, and the target 

inventories less than this value result in stock out. This finding is consistent with the 

theoretical relationship between safety stock and service level. The amount of stock out 

would be the area under inventory signal where it became negative. Needless to mention 

that the area under inventory signal where the inventory signal is positive is equal to real 

inventory holding in the stock. For more clarification we simulate the system behavior 

for the abovementioned specifications with TINV=2 and the results are shown in Figures 

4.13.  

In Figure 4.13 the stock out for each period is shown by black area under negative 

inventory signal. It shows that for target inventories less than amplitude ratio of inventory 

signal shown at Figure 12, (i.e. TINV=2<6.57), the stock out still exists because part of 

inventory signal in this target inventory falls below zero and causes backlog orders.  

On the other hand Figure 4.13 also shows that there are inventory holding where the 

inventory signal is positive. In this case the amount of inventory holding of the system 

cannot compensate stock outs. Indeed the average inventory is not enough to prevent 

stock out and that is why we argue that the system require at least the amount of target 

inventory equal to inventory amplitude shown at Figure 4.11.  
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Figure 4.12 Response of NIOBPCS for TINV=0 and 6.57 
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For demand amplitudes less than production constraints M<1 there is no significant 

difference between IOBPCS and NIOBPCS because the cutting production amplitude by 

smoothing constraints is small. But for demand amplitudes more than production 

constraints i.e. 1<M, there are meaningful differences between IOBPCS and NIOBPCS. 

For 1<M and in low frequencies the need for safety stock is considerably higher than 

other frequencies due to large amount of stock out in low frequencies. It means that 

production managers could find necessary safety stock levels from Figure 4.11 and apply 

it in practice. They could use this safety stock to buffer demand fluctuation and get rid of 

stock outs and increase customer service levels. 
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5 Total performance function 

Inventory production systems have different costs caused by various drivers that 

complicate designing an integrated model to adjust control parameters such that overall 

performance of the system improves in different situations. We use frequency response 

to introduce a total performance function encompassing all types of the system costs 

including production variation, finished goods holding and shortage, WIP excess and 

starvation, and ordering costs. We apply our developed total performance function to 

Automotive Pipeline Inventory and Order Based Production and Inventory System 

(APIOBPCS) as a control system where demand updating, finished goods recovery and 

WIP adjustment are three control parameters. Sensitivity analysis of these control 

parameters based on the proposed cost function can help inventory-production managers 

to better control production, finished goods and WIP levels of a system facing with 

different demand fluctuations so that the total performance of the system become as 

minimum as possible.  

 

5.1 Introduction 

  Achieving high customer service levels while reducing cost is a controversial dilemma 

influencing on the type of an industry to be agile, lean or a mixture of both which is called 

legile. In one side of spectrum an agile system satisfies market demand as fast as possible 

at the expense of higher operational cost due to higher levels of inventory. On the other 

side a lean system emphasizes on Just in Time (JIT) and Pull policy to maintain minimum 

levels of inventory thorough the supply chain. The former approach utilizes inventory to 

hedge against random demand fluctuations, while the latter considers inventory as an evil 

in the system (Schonberger, 1982; Suzaki, 1987), because it conceals the root causes of 

the system failure (Cordon, 1995). Furthermore inventories in all of its forms increase 

company’s expenditures in the form of holding, maintenance and opportunity costs (Haan 

& Yamamoto, 1999)  

  Although inventories are costly for companies, but existence of raw material, work in 

process (WIP) and finished goods are inevitable (Rao, 1992; Sipper & Shapira, 1989), to 

depress delivery delays and achieve higher customer service levels (Axsäter, 2006). 

Moreover industries need to have reasonable levels of inventories to have a smooth 

manufacturing operation and eliminate blockage or starvation (Conway et al., 1988). 

  In this ambiguous trade-off condition, production managers should compromise 

between production cost and customer satisfaction by using an appropriate inventory-

production control system. However choosing a suitable trade-off between these 
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contradictory objectives is not easy to catch owing to the variety of parameters 

influencing on the production and inventory levels. Production lead time, demand 

forecasting, inventory replenishment rate and WIP recovery speed are underlying factors 

that shape production smoothness and customer service levels.  

  On the other hand, Automotive Pipeline Inventory and Order Based Production and 

Inventory System (APIOBPCS) is a well-known control model taking into account all of 

the above mentioned factors in an integrated structure. In this paper we aim to analyze 

system performance by introducing total performance function based on frequency 

response of APIOBPCS for different market demands to discover how performance of a 

system alters by changing parameter settings and moreover to apply the results in different 

operational situations. In the following steps we quickly review the literature related to 

APIOBPCS as a basis for our study. Afterward we develop total performance function 

based on frequency response of the system and then investigate its dynamic behavior for 

different parameters settings. 

 

5.2 Overview 

  Application of control theory on inventory-production systems backs to half century 

ago when Simon (1952) and Vassian (1954) used Laplace transform and Z-transform to 

solve simple continuous and discrete systems respectively. Towill (1982) introduced 

Inventory and Order Based Production and Inventory System (IOBPCS) that could be 

considered as a landmark in this field of research.  Since then many extension of 

IOBPCS proposed for both continuous and discrete versions. APIOBPCS is a continuous 

extension of IOBPCS taking into account production, WIP inventory and finished goods 

levels to place an order to the production process. Furthermore APIOBPCS is a general 

model which by suitably adjusting its parameters represents a wide range of systems such 

as make to stock and make to order (Disney et al., 2000; Mason-Jones et al., 1997), order 

up to (Dejonckheere et al., 2003), lean and agile (Disney & Towill, 2002), Kanban (Zhou 

et al., 2006) and MRP (Disney et al., 2003). 

  The transformed version of APIOBPCS using Laplace transform is shown in Figure 

5.1 where order quantity to the production section is sum of exponentially smoothed 

market demand which is smoothed over ��, a portion (1/��) of finished goods error, and 

a portion (1/��) of WIP error (John et al., 1994). In this model ��, �� and �� are three 

control parameters representing time to adjust demand, time to adjust finished goods and 

time to adjust WIP, respectively. �� and �� are actual and estimated production lead 

time (Towill et al., 1997) where in case of wrong estimation of �� the company will 

experience an inventory offset at long term horizon (John et al., 1994).  
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  In this model TINV and TWIP are desired levels of finished goods and WIP respectively. 

In the literature and for sake of simplicity TINV always considered as zero but non-zero 

condition is also readily calculable based on the superposition principle (Disney et al, 

2000). But TWIP has a more complex dynamics. It should be proportional to the lead time 

to ensure enough orders to the production line (Mason-Jones et al., 1997; Berry et al., 

1998) and should be proportional to market demand to achieve adequate work on the 

manufacturing shop floor (Warburtona & Disney, 2007), thus TWIP= ��Ð  × Smoothed 

Demand (Disney et al, 1997). 

 

5.3 Response of the system 

  The main objective of this paper is to develop a total performance function based on 

frequency response analysis. So we have to calculate frequency response of the system 

first. Frequency response is one of the most important ways to analyze behavior of the 

system. In this approach amplitude ratio of desired output signals is calculated compared 

with the input signal for a wide range of frequencies from zero to infinity. The input signal 

is market demand D, and the desired output signals are production, WIP and finished 

goods inventories P, I and WIP respectively.  

Although step response of APIOBPCS has comprehensively discussed in the literature 

but its frequency response has received less attention (Dejonckheere et al., 2002). In 

frequency response analysis input of the system is sine function and therefore we have to 

calculate steady state response of the system against sine inputs with different frequencies 

and draw the amplitude ratio of outputs as a function of frequency of sine input. The 

importance of sine input and frequency response is due to the nature of sinusoid function 

Figure 5.1 Block diagram of APIOBPCS in S-Domain 
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and Fourier series. In mathematics, Fourier series is one way to represent a function as 

sum of sinusoid functions (Carslaw, 1950). Based on Fourier series any given function 

can be expressed in terms of a series of sine and cosine functions. (Dyke, 2014). So we 

could decompose input D, to sum of sine and cosine functions and then find frequency 

response of the system to each of these individual functions separately. Afterward based 

on superposition principle we could add up these separate frequency responses to derive 

total frequency response which is response of the system to D. This property widen the 

scope of frequency response analysis but the system is needed to be linear to be eligible 

for applying superposition principle. So developing total performance function based on 

frequency response analysis of APIOBPCS is beneficial for analysis of inventory-

production systems facing with different inputs. In this paper we calculate frequency 

response of APIOBPCS only for one sine input but it could be easily extended to multiple 

sine or cosine using superposition principle. 

  To find out frequency response we need to calculate transfer functions of the system. 

Transfer functions are connecting input signal (D: market demand) to output signals (P, I 

and WIP: production, finished goods and WIP respectively) and is calculated as below:  

�° = �b(±²b±³)4b ± Ð́ ±²4 ±Î⁄(�b±³4)(�b(�b±´ ±Î)±²4b±²±´4z)⁄    Eq (1), 

¤° = ±²(± Ð́ 3±´3±´±Î43±³(±Îb±´)43±´±³±Î4z)±Î(�b±³4)(�b(�b±´ ±Î)±²4b±²±´4z)⁄    Eq (2), 

µ¤�° = ±´(�b(±²b±³)4b ± Ð́ ±²4 ±Î⁄ )(�b±³4)(�b(�b±´ ±Î)±²4b±²±´4z)⁄    Eq (3). 

Ñ° = (�b±´4)(�b(±²b±³)4b ± Ð́ ±²4 ±Î⁄ )(�b±³4)(�b(�b±´ ±Î)±²4b±²±´4z)⁄    Eq (4), 

  Comparing Eq (1) and Eq (3) we observe that transfer function of WIP signal, is equal 

to transfer function of production signal multiplied lead time (��), or in the other word 

we could argue that ��� = �� × �. This is a significant result that we derived from 

analytical calculation and could be validated by theory and practice. Little (1961) 

introduced a remarkable queuing formula (+ = λ × � ), which then become widely 

known as Little’s law. The law has been proved and used more than half a century in a 

wide range of operation management studies to solve both theoretical and practical 

problems (Little, 2011). In this simple but fundamental formula L is the average number 

of items in the system, W is the average waiting time of an item and λ is throughput of 

the system (Little & Graves, 2008). Comparing our result with little’s law we find a 

correspondence between WIP, �� and P in APIOBPCS, and L, λ and W respectively, as 

shown in Figure 5.2. 
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  In our model WIP is unfinished goods under process in the system, �� is the time that 

it takes to process and change a raw material to finished product or simply lead time, and 

P is the production quantity or output of manufacturing line. The lead time of APIOBPCS 

i.e.�� , is equal to average waiting time at queue i.e. W. The work in process level in our 

inventory production system i.e. WIP, is equivalent to number of items in the queue i.e. 

L. And finally the number of production or completed products in APIOBPCS i.e. P, is 

identical to throughput of a queuing system i.e. λ. And indeed the model is validated by 

little’s law or we could state that our result is another control theoretic proof for this 

substantial operation management rule. 

  After validating transfer functions we calculate the amplitude ratio of production, 

finished goods inventory and WIP compared with demand by as below: 

�Ò³Ó°Ò³Ó = Ô�°Ô = Õ�b((±²b±³)�b ±È́±²� ±Î)⁄ z 
Õ,�b(±³�)z /×��3±È±²�z�zb(�b±È ±Î)⁄ z±²z�zØ  Eq (5), 

     
¤Ò³Ó°Ò³Ó = Ô ¤°Ô = ±²Õ�(±È́3±È) ±Î⁄ b±³±È�z�b�±Èb±³±È ±Î⁄ b±³�z�z

Õ,�b(±³�)z /×��3±²±È�z�zb(�b±È ±Î)⁄ z±²z�zØ               Eq (6), 

µ¤�Ò³Ó°Ò³Ó = Ôµ¤�° Ô = ±´Õ�b((±²b±³)�b ±È́±²� ±Î)⁄ z 
Õ,�b(±³�)z /×��3±È±²�z�zb(�b±È ±Î)⁄ z±²z�zØ  Eq (7). 

ÑÒ³Ó°Ò³Ó = ÔÙ°Ô = ��b(±´�)zÕ�b((±²b±³)�b ±È́±²� ±Î)⁄ z 
Õ,�b(±³�)z /×��3±È±²�z�zb(�b±È ±Î)⁄ z±²z�zØ  Eq (8). 

 

L 1 2 … 3 

W: average waiting time  

λ: throughput  

WIP 1 2 … 3 

�� : lead time 

P: Production 

Figure 5.2 Correspondences between WIP,TÅ, P in APIOBPCS, and L, λ, W 
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These amplitude ratios are amplitude of desired output signals divide by amplitude of 

input signal i.e. demand and show how much outputs will amplify or attenuate by the 

system, compared with the amplitude of demand. Needless to mention that all amplitude 

ratios are functions of demand frequency (w). Drawing Eq (5-8) as a function of (ω) we 

could find the pattern of frequency response of three desired outputs of the system. We 

draw these three amplitude ratios for ��=��, ��=4, ��=8 and ��=4 as shown in Figure 

5.3. This setting is considered as a benchmark for understanding dynamics of the system 

(Dejonckheere et al., 2003).  

 

  In practice weights of different performance criteria are not equal complicating the 

system design. Furthermore there are situations where production manager is obliged to 

select a parameter settings due to other factors such as ordering limitations or logistic 

problems. Therefore we need to investigate dynamics of the system for different values 

of  ��, ��, �� and �� by a sensitivity analysis and taking into account cost of different 

performance criteria. And since �� is depend on the production technology and could 

not be change rapidly as a short term factor (Towill, 1982), thus we exclude the effect of 

changing ��  on dynamics of the system and focus only on the short term control 

parameter in the following step. 

Figure 5.3 Frequency response of production, finished goods, WIP and order  
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5.4 Parameter adjustment 

  While a highly fluctuated production quantity is costly due to increasing different 

wastes such as capacity idleness, hiring and firing the workers (Ohno, 1988), a highly 

fluctuated inventory position result in high levels of inventory holding in the peak periods 

and low levels of customer service level in case of shortfalls (Towill, 1982). So different 

parameter settings would result in different system performances. Therefore different 

parameter adjustment would be helpful to discover how performance of the system will 

change by changing control parameters.  

  We set a wide range of control parameters of the system as ��=4,5,6,7,8, ��=4,8,16,32, 

and ��=4,8,16,32 by lead time of ��=4. The higher �� means that inventory control 

section reviews finished goods levels slowly and thus replenishment rate diminishes. The 

higher �� means that the company updates its market demand information less often so 

that less random oscillations could penetrates to the production line. And finally the 

higher �� means that the production line recovers error of WIP inventories not quickly, 

resulting in higher WIP errors. The result of amplitude ratio of production and finished 

goods and WIP signals subject to increasing �� , �� and �� are shown in Figure 5.4.  

  Figure 5.4a, b shows that increasing �� increases amplitude ratio of finished goods 

inventory and reduces amplitude ratio of production and WIP. And since higher values of �� are equivalent to slower replenishment of finished goods inventories, thus the system 

could not recover inventory errors suitably and consequently inventory swings are 

amplified but production line and WIP level throughout the chain fluctuate less because 

the control rule i.e. higher ��, do not force the system to recover inventory errors rapidly. 

Higher ��  allows manufacturing line to operate smoothly at the expense of higher 

inventory errors. That is why production levels and WIP through production line become 

less fluctuated with lower amplitude ratios. 

  Figure 5.4c, d indicates increasing �� leads to higher amplitude ratio of finished goods 

inventory and lower amplitude ratio of production and WIP levels. The higher �� result 

in slower demand information updates and acts as a hedge against highly oscillated 

demand and thus production and WIP level will have a smoother operation, but on the 

other hand since the speed of system declines, inventory errors increase significantly. 

  The result of ��  and ��  are consistent with step response of APIOBPCS where 

increasing ��  and ��  depress over shoot of production and worsen undershoot of 

inventory (John et al., 1994; Disney et al., 1997).  But interestingly higher �� yields 

more amplification of all desired outputs including production, WIP and finished goods 

signals as shown in Figure 5.4e, f. It means that for slower WIP recovery rates, all 

production and inventory performances get worsen for all frequencies. This result is 
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consistent with the result of saw tooth demand response where higher �� consequences 

lower fluctuation of both production and inventory and better performance of the whole 

system (John et al., 1994). 

  

Figure 5.4 Impact of different parameter settings on the system performance 
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5.5 Defining total performance function 

  All of the above mentioned results are based on equal weights of production and 

inventory costs. Although this simplification generates a general view about performance 

of the system but we still need to take into account conditions where production, finished 

goods and WIP costs are different. Furthermore in the process of achieving the above 

results we did not consider the ordering cost. In inventory management, costs associated 

with stock inside a company include procurement or purchasing, inward transport or 

traffic, receiving, material handling, warehousing or stores, stock or inventory control, 

order picking, location and communication (Water, 2003), which could be categorized 

into holding, shortage, and ordering costs (Axsäter, 2006). In previous section we only 

consider holding and shortage cost but we need to take into account ordering cost which 

is an important element of inventory control. So first we need to construct a total 

performance function encompassing all components of the system cost and then analyze 

overall performance of the system. 

 

5.5.1 Production performance 

  The first element of system cost is production cost including product cost and 

production variation cost. Product cost is the amount of products produces which is the 

integral of production signal during one period i.e. T and it would be equal to  P8 = D8 as 

shown in Figure 5.5a. On the other hand if production line operate smoothly production 

efficiency is high and production cost is less. And if production line has variations, 

production cost increase due to capacity idleness, changing the schedule, unbalancing and 

human resource idleness, and equipment adjusting. It has been proved that production 

variation cost is proportional to the cube of production variance (Stalk & Hout, 1990). So 

we use cube of P��� in calculation of production variation cost. Since product cost is  hPg6de. eg%. =  ( �8)�.    Eq 9 

  Normalizing product cost by period duration i.e. T, and adding variation cost we have �Pg6de.fgc eg%. h2P h2Pfg6 =   �8 +  �Ú�� �.   Eq 10 

 

5.5.2 Finished goods holding and shortage performance 

  The holding and shortage costs are two other system costs associated with finished 

goods inventory. The holding cost is for periods when the signal of finished goods is 

positive (higher than zero) where there are stocks in warehouse. And shortage cost occurs 

when finished goods signal is negative (lower than zero) where not only there is no stock 

in warehouse but also the system experiences backlog order. So the target here is to 

calculate positive and negative finished goods values as shown in Figure 5.5b. It could be 
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calculated readily by integrating inventory signal where it is above and below the zero 

axis as below: *fcf%ℎ26 Agg6% ℎg©6fcA = �b = > I��� sin �.  6.±/�8 = (���� × �)/π ,    Eq 11 *fcf%ℎ26 Agg6% %ℎgP.?A2 = �3 = > I��� sin �.  6.±±/� = −(���� × �)/π .    Eq 12 

    Normalizing the holding and shortage costs by period duration we have *fcf%ℎ26 Agg6% ℎg©6fcA h2P h2Pfg6 = ����/π ,   Eq 13 *fcf%ℎ26 Agg6% %ℎgP.?A2 h2P h2Pfg6 = −����/π .  Eq 14  

 

5.5.3 WIP excess and starvation performance 

If WIP signal become positive we have extra WIP holding in production line and if WIP 

signal become negative we have starvation and production line stops. So here we assume 

that WIP signal never become negative therefore system operation never stops as shown  

in Figure 5.5c. So WIP starvation cost is zero and WIP excess cost is  ��� 2�e2%% = (���8)�,    Eq 15 

  Normalizing WIP excess by period duration we have ��� 2�e2%% h2P h2Pfg6 = ���8   Eq 16 

where ���8 = ���8 based on the Eq (3). 

 

5.5.4 Ordering performance 

  The ordering cost is another cost associated with set up and information updating 

processes including demand, finished goods and WIP inventory. And since rapid ordering 

needs more human resources or time, ordering cost should be a reverse function of 

ordering time, so that faster ordering causes higher cost and vice versa (Love, 1979) . In 

our model there are three review times representing ordering speed i.e.��, �� and �� 

acting as control parameters of the system. So ordering cost should be proportional to 

inverse of these review times.  

  In order to model ordering cost we could use order signal where we have 

OP62P = �±² (��ÜÝ − �ÜÝ) +  �±Î (���� − ���) + ��b±³Þ (�),   

= �±² (ß�ÜÝ) +  �±Î (ß���) + ��b±³Þ (�) ,   Eq 17 

The amplitude ratio of order signal would be   

Ô Ñàá�à°���táÔ = ÔÑ°Ô = ÑÒ³Ó°Ò³Ó = �±² |ß�ÜÝ| +  �±Î |ß���| + �
Õ�b±³zµz |�|. Eq 18 

We observe that O��� includes three components and each component is proportional 

to inverse of ��, �� and ��. So we use O��� as representative of ordering cost. 
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Figure 5.5 Production, finished goods and WIP levels 
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5.5.5 Integrated formula 

  All of the abovementioned performances will be add up to make total performance of 

the system as below: �g.?© h2P-gPâ?ce2 = �Pg6de. h2P-gPâ?ce2                                                                                   + �Pg6de.fgc ã?Pf?.fgc  h2P-gPâ?ce2              +*fcf%ℎ26 Agg6% ℎg©6fcA  h2P-gPâ?ce2          +*fcf%ℎ26 Agg6% %ℎgP.?A2 h2P-gPâ?ce2        + ��� 2�e2%% h2P-gPâ?ce2                                   + OP62PfcA h2P-gPâ?ce2                                       =  �8                                                       +�����                                                      +����/π                                                 +����/π                                                 +���8                                                     +Oâ?�         Eq 19 

 

 All required information in Eq (19) are derived from Eq (5-8). In the other word P���, I���, WIP��� and O��� could be easily calculated form frequency response of the system 

i.e. Eq (5-8).  

  We draw Eq (17) for �8 = 6, �� = 4,�� = 4, �� = 8 and �� = 4 as benchmark by 

increasing control parameters for �� = 4,5,6,7,8, �� = 4,8,16,32, and  �� = 4,8,16,32 

as shown in Figure 5.6. For sake of simplicity we applied demand with unit amplitude 

variation. For other demand variations all Figures could be readily redrawn by 

multiplying demand amplitude to Eq (19). And also we used demand average of �8 = 6 

because at this point we have 0 < �, 0 < � and 0 < ���. Any other average demand 

could be used if demand, production and WIP signals become positive. 

  We also applied a further sensitivity analysis on Figure 5.6 by multiplying benchmark 

values to 2 and 0.5 to see what happen for the total performance function. The results are 

shown in Figure 5.7. 

All of the results of Figure 5.6 and 5.7 are derived based on equal relative importance 

of different costs based on Eq (19). But non-equal relative importance could also be 

modeled by multiplying each cost component to its relative weight as below   �g.?© }fAℎ.26 h2P-gPâ?ce2 =                 �8 × �� + ����� × ��  + ����/π × �� + ����/π × �� + ���8 × ��  + O���  × ��     Eq (20) 

where ��3� are cost per units for product, production variation, finished goods holding 

and shortage, and WIP excess respectively, and �� is cost per order.  
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Figure 5.6 Total performance  
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5.6 Analysis of the result 

  We observe that, increasing �� and �� result in lower cost for demand with higher 

frequencies and higher cost for demand with lower frequencies, but increasing �� result 

in higher cost at high frequencies, but lower cost at low frequencies. It shows that the 

effect of �� is inverse of the effects of �� and ��. This is because Figure 5.6 follow 

Figures 5.4 including amplitude ratio of production, finished goods, WIP and order. The 

summation of these four curves has dominant role in the shape of Figure 5.6. Therefore 

all properties of Figures 5.4 transfer to the Figure 5.6 by a simple difference that Figure 

5.4 separately shows four performance criteria but Figure 5.6 shows aggregated 

performance of the system in the format of total performance. 

  Based on this explanation, we observe that in Figure 5.6c, increase of �� increases 

total performance for high frequencies but decrease cost at lower frequencies. This is 

what exactly happen in Figure 5.4c where increase of �� increases all of the three curves 

including production, finished goods, WIP and order, but decrease finished goods at lower 

frequencies.  

  On the other hand in Figures 5.6a, 5.6b which are aggregation of Figures 5.4a, 5.4b 

respectively, increase of �� and ��, increase total performance at lower frequencies due 

to the high levels of inventory cost, but at higher frequencies although increasing �� and �� speed down inventory recovery but their positive effect on reduction of production , 

WIP and order variations cause less production , WIP and order costs which in turn reduce 

total performance. It shows that, ��  and ��  should be high for higher demand 

frequencies to make less fluctuation in order, production ,WIP throughout production line, 

therefore the system faced with highly oscillated demand at higher frequencies become 

smoother and total performance of the system decrease. On the other hand at lower 

demand frequencies since the system is not faced with highly fluctuated market, 

production manager is allowed to set smaller �� and �� resulting in faster review and 

ordering process without jeopardizing performance of ordering process and production 

line so that the total performance will reduce.  

  Sensitivity analysis of total performance are shown in Figure 5.7 where a wide range 

of control parameters are tested. Analyzing Figure 5.7 we observe that increasing �� 

shifts the total performance curve to the right but increasing �� and �� it to the left. This 

phenomena again shows an inverse effect of �� on total performance compared with �� 
and ��. The inverse behavior of �� is consistent with other studies such as John et al. 

(1994), Disney et al. (1997) and Berry et al. (1998) where by increasing ��, performance 

of production decreases but performance of inventory improves in front of step input.  
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6 Conclusion 

6.1 Summary  

We modeled a nonlinear production smoothing phenomena and calculated its frequency 

response and interpreted the results. Many production, ordering and inventory 

management activities are nonlinear, and this study could be a starting point to extend 

inventory-production models toward nonlinear analysis using control theory.  

In this study, we compared behavior of IOBPCS and NIOBPCS for different demand 

amplitudes and frequencies. We found that there is a meaningful set of demand amplitudes 

and frequencies that force production smoothing constraints to cut production signal. 

Although these smoothing constraints lead to higher production efficiency, but they have 

some negative side effects on inventory holding and backlog orders resulting in market 

loss or customer dissatisfaction. We discussed all of these side effects and their 

interrelationships.  

A production control engineer could use the result of this study to manipulate control 

parameters, i.e., �� and �� to optimize the system in different situations. On the other 

hand, there are conditions where production constraints occur due to the management 

decision making. In this situation, manager could predict the effects of constraints on 

other outputs of the system, such as inventory holding, backlog orders, market loss and 

customer dissatisfaction. Indeed, this study could be applied for both optimizing and 

describing the behavior of an inventory-production system.  

In this research we also extended NIOBPCS to non-zero target inventory levels. The 

target inventory influences on safety stock levels that acts as a buffer in front of 

uncertainties and demand fluctuations. The results of study indicate that increasing the 

target inventory increases safety stock. The target inventory of zero, leads to significant 

stock outs and low customer service levels. We proved that the minimum target inventory 

level must be at least equal to amplitude of inventory, in order to prevent stock out. The 

more the target inventory, the more safety factors and more confidence interval in terms 

of less probability of stock out.  

From total performance function point of view and based on a wide analysis on 

different control parameters of APIOBPCS we observe that without considering total 

performance function, faster WIP recovery (lower �� ), increase performance of 

production ,WIP and order at all frequencies, and increase performance of finished goods 

at all frequencies excepts very low demand frequencies. But rapid recovery of finished 

goods (lower �� ) and quick update of demand information (lower �� ) only increase 

finished goods performance. In this approach �� should be as low as possible (except at 



105 

 

very low frequencies) for all conditions showing the importance of work in process 

recovery in the system. But about two other control parameters, �� and �� should be 

low only if finished goods performance is important and should be high if production , 

WIP and order performances are important and vice versa.  

But the results are little different if total performance become the dominant factor. 

Taking into account total performance as the final decision variable in the system, 

interestingly ��  should be low at higher frequencies and should be high at lower 

frequencies. But ��  and ��  should be high for higher frequencies to smoothen 

production line at the expense of inventory errors. In the other word our results show that 

from total performance viewpoint at higher demand frequencies lower ��  and �� 

worsen total performance of the system due to higher fluctuation that they create in order, 

production and WIP throughout the production line. But in lower demand frequencies 

since the system do not face with extreme demand oscillations, decreasing �� and �� is 

affordable. In lower frequency demand is not volatile and faster �� and �� do not offend 

production line and it would be reasonable to have rapid updates by reducing �� and ��. 

The overall results of our study show the inverse effect of WIP control i.e. �� 

adjustment, compared with the two other control parameters i.e. finished goods recovery 

(��)and demand updating (��), which is not widely observed in the literature. We also 

proposed another proof for little’s well-known law by using control theory approach, 

where WIP level was analytically proved to be equal to production quantity multiplied 

lead time. 

 

6.2 Future research opportunities 

The nonlinear method that we applied in NIOBPCS could be extended to discrete time, 

stochastic demand and other IOBPCS-based models, such as VIOBPCS and APIOPBCS, 

and further to a multi-stage multi-product supply chain.  

And also a stationary target inventory may not suffice rapid changes of the market and 

therefore future extension of this study can be analyzing Variable Inventory Order-Based 

Production Control System (VIOBPCS) where the target inventory is a dynamic function 

of demand. 

The total performance function could be extended by considering different weights for 

different cost elements. The introduced function has capability to take into account 

relative importance of cost elements by multiplying each cost element at cost per unit for 

each cost. And thus total performance of the system could be analyzed for different 

situations.  

 



106 

 

Furthermore although we found total performance function for sinusoid demand, but 

the result could also be extended to other demand patterns due to inherent properties of 

sine function. One of the future directions for this study is developing total performance 

function for non-sinusoidal demand. As mentioned before, we could decompose the given 

non-sinusoid demand to different sine and cosine functions by Fourier series and then 

find total performance function for each of these sinusoid elements based on integrated 

formula developed in this research. And since the system is linear, based on superposition 

principle, we could add up total performance functions to derive the whole system 

response to the given demand.  

Another future direction for this study is considering negative WIP levels which shows 

starvation of work in process inventory in the production line. And also non-zero target 

inventory extension could be carried out. In this problem principles are identical to zero 

target inventory and the only revision is to consider a bias in integral operation related to 

finished goods inventory and recalculating positive and negative inventories.  
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Appendix A: Laplace transform table 
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Appendix B: Frequency response 

The transfer function of a system could generally include real zeroes and poles and 

complex zeroes and poles as below 
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To find the frequency response of the system, we need to replace s by ωj , where ω  is 

the frequency and j is a complex operator that satisfies 
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and the phase of the system is 
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Having ρ andθ , we can find an equivalent frequency transfer function of the system 

using the Euler formula, as below 

 

θρω jejH =)(  

Following the above mentioned procedure, we can find the equivalent frequency transfer 

function of the transfer functions of1L , 321 LLL  and N as below 
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and 0=Nθ .  We cannot determine a unique Nρ , because of the nonlinearity.   
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Appendix C: Ellipses 
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Multiplying A into left hand and right hand, and using the condition, 1sincos 22 =+ θθ , 

we have,  
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