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Preface

Computationally intensive applications such as image processing or computational fluid dynamics

can be sped up, once the critical parts are off-loaded to accelerators and pipelined on mixed CPU-

GPUs/FPGAs platforms. FPGA and GPU are becoming larger and larger thanks to improvement

of VLSI technology. They can deal with target algorithms more complex than before. However, the

conventional work-flow of application acceleration is very time consuming even for experts who have

specialized knowledge of the underlying accelerator architecture. This is because it contains many

things to consider along with off-loading and most of these are done manually. The conventional

work-flow often starts from understanding the original CPU-only program. At this stage, extracting

runtime processing flow from a running binary is a key problem. Programmers experimentally ex-

tract the processing flow, so they often tweak the source code to analyze and re-compile it for a target

platform. In the next step, they have to decide which parts should be off-loaded to the accelerator,

while also taking into account execution time, parallelism, and data communication overhead of a

target platform. Finally, they implement, optimize, and debug accelerator kernels in a trial and error

manner. Some studies have been done to deal with this problem, for example High Level Synthesis

for FPGA or higher programming language for GPGPU. Such highly abstracted programming lan-

guages automatically explore and utilize small level parallelism such as multiply or add. Their main

target users are highly skilled programmers and they follow the above described work-flow. Easing

and simplifying application acceleration while taking advantage of the features of a heterogeneous

platform are important research topics. Therefore, this thesis proposes our new toolchains to lighten

the burden of application acceleration on heterogeneous platforms.

We developed two toolchains for application acceleration, (Courier and Courier-FPGA) to deal

with the problems. Both toolchains are intended for non-expert users who have neither expertise in

nor special knowledge of target heterogeneous platforms. The goal of the toolchains is to provide an

automatic application acceleration on popular heterogeneous platforms. We also proposed an inter-

accelerator pipeline (IAP) on multiple mixed CPU-GPU platforms. IAP forms a task level pipeline

among multiple GPUs.

Courier automatically extracts a processing flow from running software binaries, generates a task

graph, and off-loads designated parts to GPUs on a mixed CPU-GPU platform. All the user has to

do is just refer to a task graph and modify it if needed. Manual tweaks or re-compilations of target
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source codes or binaries are not required. Courier consists of three main parts: Frontend (Runtime

Analyzer), Courier Intermediate Representation (IR), and Backend (Accelerator Manager). Frontend

analyzes running software binary, and detects dataflow, and then generates Intermediate Represen-

tation (IR) and a task graph. Finally, Function Off-loader in Backend replaces the designated parts

with the pre-defined accelerator functions, and it off-loads them to an accelerator. Courier-FPGA is

based on Courier, but the target platform is a single mixed CPU-FPGA platform. It builds a function-

level pipeline structure between the hardware modules on an FPGA and software functions on a CPU

automatically. IAP provides yet another implementation methodology for stream computation appli-

cations on a multiple CPU-GPU platform. Each task is assigned to each GPU among intra/inter-node

works in a pipelined manner. Practical case studies are conducted to confirm the applicability of the

proposed toolchains. Applications including image processing, matrix multiplication, and Fourier

transfer are accelerated on three heterogeneous platforms.
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Chapter 1

Introduction

1.1 Background

Application acceleration on heterogeneous platforms which have a host CPU and accelerators such as

GPU (Graphic Processing Unit) or FPGA (Field-Programmable Gate Array) have become important

recently. This is because the increase rate of the processing power of typical single/multi-core CPU

becomes slow.

This is because the processing power of typical single/multi-core CPUs has been increasing at a

slower rate than before.

Heterogeneous platforms are used in a scientific computation domain which takes a lot of pro-

cessing power and also used in an embedded device domain which requires a power efficient system.

According to the TOP 500, a project that ranks and details the 500 most powerful computer systems

in the world, five out of the top ten super computers use accelerators in 2014 [1]. Furthermore, the

performance share of accelerators became more than 30% of sum of TOP 500 machines. Figure 1.1

shows the changes of performance share of accelerators in TOP 500 [2]. In the domain of embedded

device, computing platforms which have host CPU with FPGA or GPU has become available [3] [4].

The difference between both domains is whether accelerators are discrete or not. In the domain of

scientific computation, they exist independently and are connected via PCI-Express bus. On the other

hand, they are integrated into one chip and are connected via proprietary bus in the domain of em-

bedded device. Especially in the domain of scientific computation, multiple node which have GPU

becomes common. Each heterogeneous node is connected via optical fiber cables and uses Message

Passing Interface (MPI).

Another reason why heterogeneous platforms has become more important is improvement of

the programming environment. Useful libraries such as BLAS for GPU or OpenCV for FPGA are

available [5] [6]. New programming languages for such platforms are also provided. OpenCL [7]

is a good example of new cross platform language. It can make a program for CPU, GPU and

FPGA. Not only OpenCL, there are many researches of programming language for the heterogeneous



1. Introduction
1.2. Objective 2

Figure 1.1: The changes of performance share of accelerators in TOP 500 [2].

platforms [8] [9] [10]. Users of these languages need to re-write the code causing the bottle neck part

in their target applications. Hence, target users of such researches should have special knowledge of

the target platforms, programming languages, and applications.

Although the combination of heterogeneous platforms and new programming environments has

become mainstream, it is not easy to accelerate existing applications without expertise or special

knowledge. Users of legacy or undocumented applications do not have enough knowledge of the

executing processing flow, and often they do not have the source code itself. For such users, per-

formance improvement with accelerators have been almost impossible. If the users understand the

flow of the applications and find the parts which can be accelerated, we can off-load the binary by

replacing the parts with the corresponding functions of the accelerator. Reflecting such a situation,

there is a need for a new toolchain which can treat the binary of existing application and off-load

critical parts onto accelerators without user intervention.

1.2 Objective

The objective of this thesis is to propose a new toolchain that provides simple work-flow of appli-

cation acceleration for non-expert users. Three heterogeneous platforms are chosen, a node which

has a CPU and a GPU (single-node mixed CPU-GPU platform), multiple nodes which have a CPU

and GPUs (multi-node mixed CPU-GPU platform), and a node which has a CPU and an FPGA

(single-node mixed CPU-FPGA platform).

As briefly mentioned in the previous section, most researches on developing work-flow of off-

loading focus on programmers who understands the source code and want to improve its perfor-
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mance. For developing the code of the accelerator which performs the same function of the target

code with much higher performance, various types of tools and languages have been proposed. They

help the analysis of the source code [11], accelerator management [12] [13], and accelerator kernel

implementation [14] [8] [15] [16]. Unlike them, I do not intend to generate the accelerator code

itself. It is assumed that the target application programs use a common library like OpenCV, BLAS

or FFT, and the corresponding library codes of the accelerator are already available. Our target users

do not need to have the source code of acceleration target. Our toolchain extracts the call flow of

the functions, and find the parts which can be off-loaded to the accelerator during execution of the

binary. The current version of the toolchain cannot do anything if the target binary does not include

corresponding accelerator functions. Even with this limitation, the proposed toolchain can help many

legacy code users who are not a target of the conventional work-flow.

1.3 Contribution

The main contribution of this thesis is to propose a new toolchain for application acceleration called

Courier and Courier-FPGA. Both automatically analyses specific functions and data in a running

binary and replaces functions with corresponding accelerator functions if possible. Whole work-

flow doesn’t require user intervention. Target heterogeneous environments are a single-node mixed

CPU-GPU platform, a multi-node mixed CPU-GPU platform, and a single-node mixed CPU-FPGA

platform.

Courier is a new application acceleration toolchain for single/multiple-node mixed CPU-GPU

platforms. It does not require original source code, manual tweaks, or re-compilation of the target

binary, without user intervention. The users just have to refer to the result and modify off-load parts

if needed. To realize these features, two main methods are proposed.

One is an automatic processing flow graph generation method of analyzable functions from a

running binary.

This method includes tracing sub-programs to analyze functions and a heuristic approach to de-

tect causality. The other is an automatic off-loading method of functions in the binary. If functions

are analyzed by the above mentioned method and corresponding functions are ready for the accel-

erator, functions are off-loaded automatically. The method also reduces the number of data transfer

along with off-loading, and maintains an original processing flow before and after off-loading. In

the case of multi-node mixed CPU-GPU platform, Courier makes an intra-node pipeline by using

a parallelization library and a commonly used communication library. Each stage of the pipeline

is composed of analyzed functions. Additionally, Courier uses a direct accelerator-to-accelerator

communication system called PEACH2 in order to shorten the communication latency between each

accelerator.

Courier-FPGA is another version of Courier that targets is a mixed CPU-FPGA platform. Courier-

FPGA treats software functions on a host CPU and multiple hardware acceleration modules imple-
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mented on an FPGA. By making the best use of the combination of CPU and multiple hardware

acceleration modules, a mixed software hardware pipeline is introduced. Pipeline Generator builds

the pipeline in which processing flow is the same as the original one even if the original flow is not

pipelined.

Practical case studies are shown so as to demonstrate the applicability of Courier and Courier-

FPGA. For Courier, three practical applications are used: a HOG feature detection with OpenCV, a

matrix multiplication using BLAS and a power spectrum density estimation using FFT. These were

sped up 8.89, 8.96 and 1.23 times by using the existing GPU functions on a mixed single-node CPU-

GPU platform. For Courier-FPGA, another three practical applications are used: HOG, Motion

Tracking, and 3D modeling. HOG was sped up 3.98 times on the existing hardware modules by

making a mixed software hardware pipeline on Xilinx’s Zynq platform. Two other cases were also

sped up 22.1 times and 1.29 times, respectively.

1.4 Thesis Organization

The organization of this thesis is illustrated in Figure 1.2. It is described that three heterogeneous

platforms and their programming environments in Chapter 2. A mixed single CPU-GPU platform,

a mixed multiple CPU-GPU platform, and a mixed CPU-FPGA platform are shown. Then Courier

is presented, a toolchain for application acceleration on a mixed CPU-GPU platform in Chapter 3.

Courier is composed of three main components; Frontend, Courier IR, and Backend. Courier has

platform specific features in Backend. Function Off-loader is for a mixed single CPU-GPU platform,

and Task Pipeline is for a mixed multiple CPU-GPU platform. Case studies are given to show the ca-

pability of Courier. In Chapter 4, Courier-FPGA is presented, a toolchain for application acceleration

on a mixed CPU-FPGA platform. Courier-FPGA shares Frontend and Courier IS with Courier, but

Backend is different so as to make best use of the CPU-FPGA platform. Courier-FPGA’s Backend

has a Pipeline Generator that generates a mixed software hardware pipeline. Case studies are also

shown in order to show the applicability of Courier-FPGA. Finally, I conclude the thesis.
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Figure 1.2: Thesis organization.



Chapter 2

Heterogeneous Platforms and
Application Acceleration

Heterogeneous platforms have a host CPU and one or more accelerators in a node. This chapter

overviews three main heterogeneous platforms, including characteristics of accelerators, and appli-

cation acceleration work-flow. An acceleration by using the accelerators on such platforms is called

“off-load”. First, single-node mixed CPU-GPU platform is describe in Section 2.1. In Section 2.2 and

2.3 present a multi-node mixed CPU-GPU platform, and a single-node mixed CPU-FPGA platform.

Then, it is explained that the conventional application acceleration work-flow on these heterogeneous

platforms.
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Figure 2.1: Example of a single-node mixed CPU-GPU platform. A home-built computer.

Figure 2.2: Example of a multi-node mixed CPU-GPU platform. TCA by Univ of Tsukuba [17].

Figure 2.3: Example of a single-node mixed CPU-FPGA platform. Zedboard by AVNET.
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2.1 Single-node mixed CPU-GPU platform

This subsection explain a single-node mixed CPU-GPU platform by taking NVIDIA’s Graphic Pro-

cessing Unit (GPU) for example. Software and hardware aspects of GPU is described. Then the

structure of the CPU-GPU platform is explained.

2.1.1 GPU: Graphic Processing Unit

Figure 2.4: NVIDIA’s Graphic Processing Unit.
(GeForce GTX Titan [18])

Figure 2.5: Comparison of peak performances
of Intel CPU and NVIDIA GPU [19]

Graphics Processing Unit (GPU), shown in Figure 2.4, was originally designed for image pro-

cessing or computer graphics. It has thousands of processing cores since image processing has very

high data parallelism. GPU are currently used in many other areas including scientific computation.

This kind of usage is called “General Purpose computation using GPUs (GPGPU)”. GPGPU gains

advantages over CPU in terms of peak performance, cost-performance ratio, and power-performance

ratio. GPGPU also promotes a multi-node mixed CPU-GPU platform.

Figure 2.5 compares between FLoating Operations Per Second (FLOPS) of Intel’s CPU and

NVIDIA’s GPU since 2003 [19]．According to this figure, the performance of GPU has advanced

faster than that of CPU. This is because each core of GPU has come to contain an SIMD unit or super

function unit.

2.1.1.1 Hardware aspect of GPU

GPU is different from CPU in many aspects. As this thesis previously mentioned, GPU is designed

for massive data parallel processing. Consequently, most transistors are used for data processing,

unlike the CPU, which has spare transistors for instruction control. Figure 2.6 shows an architecture

of a current GPU (Kepler generation). The small green boxes are processing cores (called CUDA

Core), and small orange boxes next to green boxes are L2 caches. The architecture of the GPU has a

hierarchical structure. CUDA Core is a basic processing unit, and it has a floating point unit, integer

processing unit, logic unit, move/compare unit, branch unit, and so on. A Streaming Multiprocessor
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Figure 2.6: An architecture of GPU. Small green boxes are processing cores. [19]

(SM or SMX) is a group of CUDA Cores, and the GPU is a group of SMs. The number of CUDA

Cores in SM is different for each GPU generation. In the case of the previous generation, Fermi, it

was 32. In the case of the current generation, Kepler, it is 192. Additionally, the number of SM is

different for each product, and the processing power of each product is almost equal to the number

of SMs.

NVIDIA’s GPU architecture employs a Single Instruction stream Multiple Thread (SIMT) model.

In the SIMT model, multiple independent threads are executed concurrently using a single instruc-

tion. This is closely-linked to GPU’s programming model.

Memory Hierarchy Figure 2.7 shows a memory hierarchy in a GPU. There are three layers: a per-

thread local memory, a per-block shared memory, and a global memory. Each CUDA thread can

access multiple layers during a program execution. Local memory is used for registering each CUDA

thread. Local memory and shared memory can be accessed quickly since they are on-chip memories.

On the other hand, global memory is slow since it is an off-chip memory. In terms of size, local

memory and shared memory are small, while the global memory is large. One of the key points

of GPU programming is reducing the access to global memory and increasing the access to local

or shared memories. Additionally, a global memory contains two read-only areas, called “constant

memory” and “texture memory”, which are used for storing constant values in a general processing

and texture values in a computer graphics, respectively. [20]

Memory of GPU programming can be summarized as follows. Memory spaces of the host (CPU)

and device (GPU) are separated in the CUDA programming. Moreover, GPU has a hierarchical

memory. Programmers need to keep this in mind and take advantage of this structure to accelerate

their programs.
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Figure 2.7: Memory hierarchy in a GPU. Local
memory is the smallest but the fastest. Global
memory is the largest but slowest. Shared mem-
ory is in between [19].

Figure 2.8: Concept of parallel threads in the
CUDA’s programming model.

2.1.1.2 Software aspects of GPU

CUDA: Compute Unified Device Architecture NVIDIA’s GPU has its own software environment

called Compute Unified Device Architecture (CUDA). CUDA is a scalable parallel programming

mode and software platform. It is not a graphic API but a C/C++ based programming language. [20]

A program running on a GPU is called a “CUDA Kernel” or simply a “Kernel”. Additionally, a

program running on a CPU is called “host program”. Each kernel is kicked by a host program, and

input and output data are stored in a memory on a GPU. Memory spaces of CPU and of GPU exist

separately. Thus, data in the GPU memory space cannot be accessed by the CPU and vice versa. A

typical program first sends the input data from CPU memory space to GPU memory space.

CUDA Thread Figure 2.8 shows the concept of parallel threads in the CUDA’s programming model.

Each thread has a unique ID (threadID) that executes the same CUDA kernel, but the input data are

different. Input data depend on the ID, and the branch condition depends on input data. Thus, it

is classified as SIMT. Correspondence between physical structure and software model is as follows.

CUDA Core corresponds to CUDA Thread, SM corresponds to Thread Block, and GPU itself corre-

sponds to Grid. CUDA introduces a hierarchical thread management mechanism. A certain number

(up to 1024) of CUDA threads are packed into a “thread block”. CUDA threads in the same thread

block are executed on the same SM. This is illustrated in Figure 2.9. CUDA threads in a thread block

are divided evenly into 32 threads by a hardware scheduler in GPU. Each of the 32 threads is called

a “warp” and assigned to SM. SM can execute up to 16 warps. A certain number of thread blocks is



2. Heterogeneous Platforms and Application Acceleration
2.1. Single-node mixed CPU-GPU platform 11

Figure 2.9: CUDA threads are packed into a Thread Block, and thread blocks are packed into a Grid.

packed into a “grid”. The grid is assigned into a GPU when a CUDA kernel is launched. Addition-

ally, the grid can contain thread blocks out numbering CUDA cores in a GPU. A hardware scheduler

in a GPU assigns and executes threads blocks in sequence. This is similar to a batch process.

Multi GPU programming CUDA provides some special functions for multi GPU programming on a

single node. Unified Virtual Address (UVA) unites separated memory spaces. UVA hides memory

management between a CPU and a GPU from the users in a single node platform. Thanks to this

software mechanism, the users do not need to explicitly write the codes that copy the data. A GPU

can send the data to another GPU directly without CPU intervention. Memory copy functions of

inter-node in a source code can be replaced by just pointer interacts. Data copied from/to a CPU and

GPUs can be hidden, but data copies are restricted by an interconnection. The slowness of CPU-GPU

communication is still one of the big problems of this platform.

2.1.2 Platform structure

An ordinary mixed CPU-GPU platform has a host CPU and a single GPU. The host CPU and GPU

are connected by PCI-Express, which is a standardized serial bus for the computer. In the case in

Figure 2.10, a Generation 3’s 16-lane bus is used and its maximum bandwidth is 15.75 GB/s. The

overview of processing flow is as follows. The users first prepare the initial input data on the CPU,
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Figure 2.10: Example of CPU-GPU platform used in Section 3.4.

and send them to the GPU’s global memory, and then GPU processes the data. Finally, GPU sends

back the result data to the CPU.
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2.2 Multi-node mixed CPU-GPU platform

This subsection explain a multi-node mixed CPU-GPU platform by taking University of Tsukuba’s

HA-PACS Tightly Coupled Accelerators (TCA) for example. It is described that the structure of this

platform since all nodes are the same as those for a mixed CPU-GPU platform. Then, a HA-PACS

TCA including a special direct GPU-GPU communication system is explained.

2.2.1 Structure of an ordinary mixed CPU-GPU cluster

A multi-node mixed CPU-GPU platform becomes common in the area of high performance compu-

tation. Each node that has CPUs and GPUs is connected via optical fibre cables. One of the most

significant problems with this platform is data transfer among nodes, as illustrated in Figure 2.11.

Each node is connected by optical fibre cables, and data transfer between nodes is controlled by the

host CPU. This means that the data must be going through the CPU’s memory when the GPU wants

to communicate with the GPU on another node. Especially in the small data transfer, this problem is

serious since such data require lower latency rather than wider bandwidth.

This platform is well known to enormously speed up data parallel applications. Such data parallel

applications are implemented on multiple GPUs as follows. A user first exploits data level parallelism

(DLP) and distributes data to each GPU, and then the same computation is applied to the data in all

the GPUs. Finally, result data are sent back to the host CPU. If other computations are left, the result

data are distributed and processed again. However, the bottleneck of this type of implementation

is bandwidth to distribute the data. Since each GPU requires different data, the required memory

bandwidth linearly increases along with the number of accelerators. When the users want to increase

the number of GPUs or nodes, communication latency and data bandwidth between GPUs over the

nodes become critical. Current CUDA API partly supports direct communication between GPUs

within nodes not between them. To communicate with other GPUs in different nodes, multiple

memory copies via the CPU memory are required. These redundant memory copies cause an increase

of latency that severely degrades performance, especially in the case of small data.

Task level pipelining is a way to implement streaming applications on a multiple mixed CPU-

GPU platform. It does not increase required bandwidth along with the number of GPUs, since the

same amount of data transfer is required between tasks each of which is implemented in a GPU. A

task level pipeline utilizes the data level parallelism (DLP) inside a task in a single GPU and runs

tasks with multiple GPUs in a pipelined manner. A user first exploits task parallelism and assigns

each task to a GPU. GPUs are basically connected in a line to realize the corresponding task flow.

Then the data are processed along with the task flow on GPUs. A task level pipeline on multiple

accelerators is common in an embedded application that uses FPGA, but has not been tried with

GPU. The problem is that the redundant data copy is required to send data to the another GPU in

another node. Especially, small data transfer is often needed.

To deal with the problem of communication among GPUs over multiple nodes, Tightly Cou-
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pled Accelerators (TCA) and PEACH2 board have been proposed [21]. TCA is capable of low

latency communication between GPUs over different nodes. Unlike other non-direct communica-

tion, it can eliminate redundant memory copy overhead. PEACH2 is a board provided in ordinary

supercomputer nodes to realize TCA. The key feature of low latency is that PEACH2 enables direct

communication via the standard PCIe protocol, thus protocol conversion overhead is eliminated.

Figure 2.11: Communication via ordinary optical fibre cables. Data need to be sent to CPU memory
once, then go to CPU memory on the other node, and finally go to the GPU.

2.2.2 HA-PACS TCA

The Highly Accelerated Parallel Advanced system for Computational Sciences (HA-PACS) is the lat-

est generation of the PACS/PAX series supercomputer at the University of Tsukuba. HA-PACS is the

demonstration system for parallel computing with Tightly Coupled Accelerators (TCAs). TCA real-

izes direct communication among multiple accelerators over computation nodes thanks to PEACH2.

In this environment, each computation node (TCA node) has two Ivy Bridge-EP processors, four

GPUs, and one PEACH2 board. Specification of used TCA node are shown in Table 2.1. By using

PEACH2, each GPU is connected via PCIe Gen2 x8 with small input/output overhead. Figure 2.12

depicts an overview of a TCA node. By taking advantage of PEACH2, on the left of the figure, up

to 32 GPUs can directly communicate with another GPU in another TCA node. This bunch of TCA

nodes is called Node Cluster. Up to 16 TCA nodes can constitute a node cluster, and multiple Node

Clusters are connected via InfiniBand.

A heterogeneous supercomputer cluster that has CPU, GPU, and FPGA has been researched.

AXEL [22] from Imperial College London has one with multiple CPUs, GPUs, and FPGAs. These

three computational units are conjoined via PCI. From the viewpoint of a CPU, FPGAs and GPUs

are equivalent to an accelerator. In other words, the FPGA is just used for an accelerator, not a com-

munication system. This thesis discuss the difference in application implementation in Section 2.4.

QP [23] from Illinois University is more similar to TCA node. It has two CPUs, four GPUs, and

one FPGA. However, the FPGA is just used for an accelerator as well as AXEL. In this respect, a
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Figure 2.12: Physical overview of TCA Node: Each TCA node has two CPUs, four GPUs, one
PEACH2 board, and one InfiniBand.

Table 2.1: Specification of used TCA Node

OS Scientific Linux 6.3 (kernel 2.6.32)
CPU Intel Xeon E5-2680v2 @ 2.8GHz (IvyBridge-EP) × 2

# of Cores 20 Core/Node (10 Core/Socket × 2 Socket)
Frequency 2.8 GHz

Peak Performance 224 × 2 GFLOPS/Node
PCI-express Gen.3 × 80 Lane (40 Lane/CPU)

Memory 128 GB, DDR3 1866MHz,
GPU NVIDIA Tesla K20x

# of GPUs / Node 4
Single Precision 14.36 TFLOPS/Node, 3.59 TFLOPS/GPU
Double Precision 5.24 TFLOPS/Node, 1.31 TFLOPS/GPU

CUDA Core 10752/Node (2688/GPU)
SMX 56 (768 CUDA Core)/Node, 14 (192 CUDA Core)/GPU

Memory 24 GByte/Node (6 GByte/GPU)
PEACH2 Altera Stratix IV GX 530 FPGA

InfiniBand QDR×2 rail
Others PEACH2, InfiniBand (QDR×2)

Connection (Mellanox ConnectX-3 dual head)

TCA node with PEACH2 that can be used as communication system and accelerator is different from

previous research. Additionally, AXEL and QP must return the output data to CPU memory once,

even if the user just wants to transfer the data to another accelerator. The TCA realizes ultra low



2. Heterogeneous Platforms and Application Acceleration
2.2. Multi-node mixed CPU-GPU platform 16

Figure 2.13: Communication via PEACH2. Data are sent via PEACH2 and directly goes to the
GPU. PEACH2 enables ultra low latency direct communication among multiple accelerators within
Node Cluster.

latency direct communication between accelerators. That is, the TCA is more suitable for stream

computation than AXEL or QP.

Although a TCA can take many topologies, mesh/torus, hyper-cube, or ring, this thesis explain a

special ring topology used in current TCA clusters. All eight nodes are connected by a ring network,

and two ring networks are directory connected.

2.2.2.1 PEACH2: PCI-Express Adaptive Communication Hub 2

PEACH2 is a key technology of HA-PACS TCA. Communication latency must be reduced to fully

utilize multiple accelerators, since the I/O bandwidth bottleneck seriously degrades performance.

PCI-Express Adaptive Communication Hub 2 (PEACH2) is an FPGA switch that provides an ultra

low latency direct communication via PCI-Express [21]. In the current version, up to 32 GPUs

within 16 nodes can communicate less than 2.5µsec at minimum thanks to PEACH2. Researchers

call such accelerators Tightly Coupled Accelerators (TCA). This section describes the architecture

of PEACH2 and the TCA used in our proposal.

As shown in Figure 2.14, the PEACH2 board uses Altera’s Stratix IV GX530NF45 FPGA as a

switch core. It has four PCIe Gen2 x8 lanes, a DMA controller, a Nios II soft core processor, and a

DDR3-SDRAM memory. Figure 2.15 depicts the block diagram of PEACH2. Four PCIe ports and

a DMA controller are implemented as hard IPs and connected via an Avalon Streaming (Avalon ST)

interface. The DMA controller, the core of PEACH2, can deal with multiple descriptors in arbitrary

positions in order to realize continuous transfer. In addition, DDR3-SDRAM can be accessed in one

clock cycle. FPGA logic utilization is less than 25%, and running frequency is 250MHz. Stratix IV

GX has 32 Gigabit Transceiver Block (GBX) transceivers, all of which are used for the four PCIe

lanes. Typically, the north port is connected to accelerators in the host node, and east/west/south ports

are connected to another PEACH2 in other nodes. PEACH2 can be used to build various network

topologies. Available topologies are fully connected mesh topology with four TCA nodes, cube
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Figure 2.14: PEACH2 Prototype Board. It has Stratix IV FPGA, four PCIe Gen2 x8 lanes, a DMA
controller, a Nios II soft core processor, and a DDR3-SDRAM memory.

Table 2.2: Specifications of PEACH2 board

Device Family Stratix IV EP4SGX530 Usage [%]
Frequency 250MHz —

Logic utilization 23% 23%
Combinational ALUTs 59k/424k 14%

Total block memory bits 2,763k/21,233k 13%
DSP block 18-bit elements 4/1,024 1%

Total GXB RX/TX PCS 32/32 100%
DDR3-SDRAM 512MB, 300MHz —

topology with eight TCA nodes, or ring topology with 16 TCA nodes.

A direct communication network system has been researched. APEnet+ [24] is one of the clos-

est in idea to PEACH2. Unlike PEACH2, which is compatible with PCIe protocol, APEnet+ uses

its own protocol to realize direct connection between GPUs and network interface. PEACH2 has

an advantage over APENet+ since it is not required to convert protocols. The CUDA 5 program-

ming environment for NVIDIA GPU provides the RDMA mechanism to the GPU memory, called

GPUDirect Support for RDMA, with a Kepler-class GPU [20]. This mechanism enables zero-copy

communication between the InfiniBand Host Adapter and GPUs [25]. Although PEACH2 also uses

the same RDMA mechanism, PEACH2 can eliminate the overhead for protocol conversion from

PCIe to the InfiniBand packet, and the overhead of an MPI protocol stack.



2. Heterogeneous Platforms and Application Acceleration
2.2. Multi-node mixed CPU-GPU platform 18

Figure 2.15: Block diagram of PEACH2. Four PCIe interfaces are implemented on GBX. DMA
controller is implemented with hard-wired logic. It also has an Avalon interface to connect Nios II
and DDR3 memory.



2. Heterogeneous Platforms and Application Acceleration
2.3. Single-node mixed CPU-FPGA platform 19

2.3 Single-node mixed CPU-FPGA platform

This subsection explains a mixed CPU-FPGA platform by taking Xilinx’s Zynq-7000 All Programmable

SoC [3] as an example. It is described that hardware aspects of FPGA and then explain the structure

of a CPU-FPGA platform.

2.3.1 FPGA: Field-Programmable Gate Array

Figure 2.16: Xilinx’s Virtex 7 Series FPGA.
(XC7V2000T)
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Figure 2.17: Historical advancement of FPGA
components.

Field-Programmable Gate Array (FPGA) is a programmable integrated circuit designed to make a

user-defined circuit. As the process technology advances, vendors manufacture denser chips contain-

ing multi-million of transistors [26]. Consequently, FPGA’s range of applicability becomes wider.

Figure 2.17 shows the advance in density, advance in speed, and reduction in price over time. One of

the most important feature is that the FPGA does not adopt a von Neumann architecture. It does not

need a program counter, an instruction memory, or software. On the other hand, the FPGA is less

flexible than a CPU since it basically has hard-wired logic.

2.3.1.1 Hardware aspects of FPGA

FPGAs consist of three fundamental components: Logic Block, Connection Block, and Switch

Block. Logic Block includes a Look Up Table (LUT), Configurable Logic Blocks (CLBs), Digi-

tal Signal Processing (DSPs) blocks, Block RAM, and Input/Output Blocks (IOBs). CLBs and DSPs

are similar to a processor’s arithmetic logic unit (ALU) but programmable. They can be programmed

to perform arithmetic and logic operations like add, multiply, subtract, and compare. Unlike proces-

sors, which have fixed ALU designed in a general-purpose manner to execute various operations, the

CLBs can be programmed with the operations needed by an application. This results in increased

computing efficiency. Figure 2.18 shows a typical (island-style) FPGA architecture.

Logic Block can perform bit-wise, integer, and floating point operations. The results of the op-

erations are stored in the registers present in CLBs, DSPs, or Block RAM. These blocks within an
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Figure 2.18: Typical architecture of an FPGA. Logic Blocks, Connection Blocks, and Switch Blocks
are connected.

FPGA can be connected via flexible configurable interconnects. The output of an operator can be

directly forwarded to the input of the next operator. That is, the FPGA architecture can be used to

design data flow processing. A circuit is implemented in an FPGA by programming each logic block

so as to play the role of a small logic portion. Each I/O block (not shown in the Figure 2.18) is

programmed for either an input pad or an output pad. The routing is configurable to make all the

necessary connections among logic blocks and from logic blocks to I/O block. The FPGA architec-

ture provides the flexibility to create a massive array of application specific ALUs that enable both

instruction and data level parallelism. Because data flow between operators are implemented with

CLBs and DSPs, there are no inefficiencies such as processor cache misses. These operators can be

configured so as to be connected with point-to-point dedicated interconnects, thereby a pipeline can

be formed between multiple operators.

Look-Up Table Function generators in Virtex 7 FPGAs are implemented as six-input Look-Up Ta-

bles (LUTs). There are six independent inputs and two independent outputs for four function gen-

erators in a slice. The LUTs can implement an arbitrarily defined six-input Boolean function. Each

LUT can also implement two arbitrarily defined five-input Boolean functions, as long as they share
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Figure 2.19: Architectural overview of SLICEL
[27].

Figure 2.20: Architectural overview of
SLICEM [27].

common inputs. In practice, a Hardware Description Language (HDL) is used to describe the digital

circuit, and then synthesis tools are used to map the textual description into LUTs. The designer

never defines logic in LUTs directly. The important consideration for a designer is representing a

circuit efficiently to utilize available resources.

Slice Every slice contains four logic-function generators (or look-up tables); eight storage elements

(D flip-flop), wide-function multiplexers, and carry logic. In addition to Boolean logic, a slice can

be used for arithmetic and storing data. Some slices are connected in such a way that they can be

used for data storage as distributed RAMs. This is accomplished by combining multiple LUTs in

the slice. Slices can be used as shift registers. A shift register can delay an input with certain clock

cycles. By using a single LUT, data can be delayed up to 32 clock cycles. By cascading all four LUTs

in one slice, the delay can increase to 128 clock cycles. This enables small buffers to be instead of

large block RAMs. There are two type of slice, SLICEM and SLICEL. SLICEL„ which is shown in

Figure 2.19 can be combinational logic. “L” means logic. SLICEM, which is shown in Figure 2.20,

can be combinational logic, distributed memory or shift registers. “M” means memory [27].

Configurable Logic Blocks The Configurable Logic Blocks (CLBs) are the main logic resources for

implementing both sequential and combination circuits. Each CLB element is connected to a switch

matrix for accessing the general routing matrix as shown in Figure 2.18. A CLB element consists

of a pair of slices. These two slices do not have direct connections to each other, and each slice is

organized as a column. Each slice in a column has an independent carry chain. For each CLB, slices
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in the bottom and top of the CLB are labeled as SLICE(0) and SLICE(1) respectively.

Block RAM Block RAM is a dedicated random access memory grouped together in 36 Kbits blocks

in Virtex 7 FPGAs. Every Virtex 7 FPGA has 156 to 1064 dual-port block RAMs. Each block RAM

has two completely independent ports that share nothing but the stored data. The clock controls

each memory access, read and write. All inputs, data, address, clock enables, and write enables are

registered. Nothing happens without a clock. The input address is always clocked, retaining data

until the next operation. An optional output data pipeline register allows higher clock rates at the

cost of an extra cycle of latency. During a write operation, the data output can reflect the previously

stored data, the newly written data, or remain unchanged. One common use of block RAMs in FPGA

design is for FIFOs or data queues.

DSP Slices DSP applications use many binary multipliers and accumulators implemented in dedi-

cated DSP slices. All Virtex 7 FPGAs have many dedicated, full custom, and low power DSP slices.

In Virtex 7, the DSP slices are known as the DSP48E1 (48 bit DSP element) slices. Each DSP48E1

slice consists largely of a dedicated 25 × 18-bit two’s complement multiplier and a 48-bit accumu-

lator. They can operate at 600 MHz in maximum. The multiplier can be dynamically bypassed,

and two 48 bit inputs can be connected into a single-instructions-multiple-data (SIMD) arithmetic

unit, or a logic unit that can generate any one of 10 different logic functions of the two operands.

The DSP48E1 slices provide extensive pipelining and extension capabilities that enhance speed and

efficiency of many applications, even beyond digital signal processing, such as wide dynamic bus

shifters, memory address generators, wide bus multiplexers, and memory-mapped I/O register files.

The accumulator can also be used as a synchronous up/down counter.

2.3.1.2 Software aspects of FPGA

Hardware Description Language (HDL) is used for implementing a desired circuit on an FPGA. The

programmers write, verify a HDL and synthesize it by using an electronic design automation (EDA)

tool. The EDA tool performs a place-and-route, timing analysis, simulation, design rule check, and

so on. After the EDA tool finishes the whole process, a bit file is generated. The bit file is transferred

to an FPGA via a JTAG cable or placed on an external memory device like an SD Card. Finally,

FPGA is re-configured by the bit file.

Verilog and VHDL are the most popular HDLs for FPGA. They can treat a low level circuit and

describe timing-specific behavior. On the other hand, the design complexity becomes a key problem

as an FPGA becomes larger. The programmer must write detailed parts of an entire circuit and spend

a long time verifying and debugging. It is often pointed out that this resembles the development

by assembly languages. Furthermore, this complexity hinders exploration of design space such as

pipeline depth. The programmers are required to prepare test benches to verify their design. A typical

verification process includes simulation and debugging processes. Simulating the design takes a lot of
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time since it is a clock-by-clock simulation. Debugging the design requires special knowledge since

the output of simulation is wave-form. The design process from describing the design to debugging

requires repetition of trial-and-error.

There have been many attempts to reduce the design complexity. High-Level Synthesis Language

(HLSL) and IP cores are the most popular approaches. Vivado HLS and OpenCL are good examples

of HLSL which is provided by the two biggest FPGA vendors: Xilinx and Altera. They are based

on C/C++ language and an abstract hardware layer of FPGA. The compiler generates HDL from

the HLSL. Thanks to this automatic code generation, the programmer does not need to pay attention

to the clock or details of FPGA architecture. IP core is a sort of pre-defined library of software

languages. FFT or floating point arithmetic operators are easy to acquire and are widely distributed

by third-party IP suppliers. OpenCores [28] is one of the most successful projects to provide open-

source IP cores. The programmers can obtain an AES cryptography processing module, Ethernet

controller, and so on. The problem of IP core is timing adjustment. The users must manually meet

the timing between a user logic and IP core. Besides, the combination of HLSL and IP core is the

most powerful solution for reducing the design complexity. In the case of image processing, either

an optimized HDL design exists [29], or a hardware module corresponding to each function can be

easily generated by using recent high level synthesis tools for FPGA [6] [30].

2.3.2 Structure of a mixed CPU-FPGA node

In 2012, Xilinx released a new FPGA device called Zynq [3]. Zynq combines a dual-core ARM

Cortex-A9 processor and Xilinx’s latest FPGA logic fabric (Virtex 7). ARM and FPGA are imple-

mented on the same die, realizing a flexible, low-power, and programmable system-on-chip (SoA).

Zynq is comprised of two main parts: a Processing System (PS) formed around a dual-core ARM

Cortex-A9 processor (upper-left area in Figure 2.21), and Programmable Logic (PL), which is equiv-

alent to that of an FPGA (yellow area in Figure 2.21). It also has integrated memory, peripherals,

and high-speed communications interfaces. ARM CPU and Virtex 7 FPGA are connected via a set

of nine Advanced eXtensible Interface (AXI) buses. An AXI bus can be used for module-to-module

communication on an FPGA part. By combining CPU and FPGA, Zynq takes advantage of many

good points.

Mixed CPU-FPGA platforms are often used in embedded processing for energy-efficient comput-

ing. They work by off-loading computationally intensive parts to a hardware module implemented in

reconfigurable logic. To meet the performance requirements of recent advanced applications, legacy

code working in embedded CPUs must be accelerated by the FPGA part.

2.3.2.1 ARM Coretex-A9 processor

Zynq’s dual-core ARM Cortex-A9 processor includes a set of additional processing units called

Application Processing Units (APUs). APU is composed of peripheral interfaces, cache memory,
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Figure 2.21: Architecture of Zynq-7000. ARM CPU and Xilinx FPGA are tightly coupled by AMBA
bus [3].

memory interfaces, interconnect, and clock generation circuitry [31].

The maximum operating frequency of ARM Cortex-A9 is 1GHz, and each core has its own Level

1 data cache and instruction cache. Both caches are 32KB and used for storing frequently required

data and instructions in order to achieve fast access and optimal performance. The two cores have

a 512KB shared Level 2 caches. There is a Snoop Control Unit (SCU) that maintains coherency

of L1/L2 cache the two cores. It also bridges the two cores and the Level 2 cache. SCU monitors

accessed address lines and checks whether the lines are cached or not. Then it issues a write invalidate

protocol when a write operation is observed in a location that a cache has a copy of, and the cache

controller invalidates its own copy of the snooped memory location. There is a Memory Management

Unit (MMU), and its primary role is to translate between virtual and physical addresses.

ARM Coretex-A9 also has a NEON engine that provides Single Instruction Multiple Data (SIMD)

operations [31]. The NEON engine is used for image processing, a software defined radio that op-

erates on a large number of data samples (pixels) simultaneously, and inherently parallel, generic

signal processing functions such as Finite Impulse Response (FIR) filters and Fast Fourier Trans-

forms (FFTs). NEON instructions are prepared as an extension to the standard ARM instruction set.

The programmers can uses them explicitly or implicitly. The ARM compiler use these instructions

when applicable parts are found in the source code. SIMD operations as NEON engine enhance the

performance by accepting multiple sets of input vectors . Each element of input vectors is applied

with the same operation simultaneously. The NEON engine supports many data types including
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signed and unsigned integers, single precision floating point, and half-precision floating point. How-

ever, double precision is not supported. In addition to NEON, there is a Floating Point Unit (FPU).

This unit is a sort of hardware accelerator and performs floating point operations in compliance with

the IEEE 754 standard. It also supports single and double precision formats, with some additional

support for half-precision and integer conversion.

2.3.2.2 Interconnection

ARM CPU and Virtex 7 FPGA are connected via an AXI bus. AXI is a member of the ARM

AMBA family of micro-controller buses. The AMBA protocol is an open standard on-chip inter-

connect specification, allowing the connection and management of many controllers and peripherals

in a multi-master design. It was originally developed by ARM for use in micro-controllers. Xilinx

optimized and integrated the protocol for use within FPGA architectures. The main features of AXI

are as follows; address/control phases are separate from data phases; byte strobes enable unaligned

data transfers; burst-based transactions are possible with only the start address issued; read and write

data channels are separate allowing low-cost Direct Memory Access (DMA); and transaction can be

completed out-of-order. AXI version 4 is the latest standard and intended for the high-performance

interface, suited for memory mapped I/O. It also supports burst transfer up to 256 data cycles per

address phase. AXI4 introduces other two interfaces for specific situations.

• AXI4-Lite: This is a light-weight variant of the interface, used for memory mapped single

transactions. The benefit of this protocol is a smaller logic footprint with a simplified inter-

face. This variation does not support burst data and so only provides a single data transfer per

transaction.

• AXI4-Stream: This does not have address bit. Thus, this is not memory mapped and allows

for an unlimited data burst size. A single channel is defined for the transmission of streaming

data, modeled after the Write Data Channel but allowing bursts of an unlimited amount of

data. Connection is from master to slave only, so if bidirectional transfers are required both

peripherals must be type of master/slave.

AXI’s master and slave have a single data channel that can send/receive the data from/to slave

or master. On the other hand, the situation of the address channel is different so as to support burst-

based transactions. Read transaction uses a single channel and write transaction uses two channels.

Write transactions have an additional write response channel when all data arrives from master to

slave. Write response channel is also used for the slave to signal completion of a write transaction.

Figure 2.23 and Figure 2.22 show the difference between a write transaction and a read transaction.

AXI adopts a flexible Master-Slave protocol as well. For example, multiple AXI masters can have

multiple AXI slaves. Thanks to this feature, multiple modules can be connected to multiple modules

on an FPGA.
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Figure 2.22: Three channels are required for write transaction

Figure 2.23: Two channels are required for read transaction
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2.4 Application acceleration and programming environments
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Figure 2.24: Conventional Acceleration Work-flow. Experts must make much effort, programmers
must pay attention to many separated things, and the process must be done manually.

For expert programmers, performance of computationally intensive applications can be relatively

easy to improve by off-loading time consuming parts to accelerators like GPUs or FPGAs. In con-

trast, users of legacy or undocumented applications do not have enough knowledge about how to

execute the processing flow and often do not have the source code itself. For such users, perfor-

mance has been almost impossible to improve with accelerators.

A conventional work-flow of application acceleration is shown in Figure 2.24. Rectangular boxes

contains important elements when the programmers implement an accelerator code, and arrows de-

note manual processes. In the software design flow on the left, hardware acceleration experts first

spend a lot of time on static/dynamic program analysis to understand and extract system-level paral-

lelism from the target application source codes or binaries. They then decide which parts should be

off-loaded and start implementation. The hardware design flow on the right potentially requires many

iterations to ensure correctness and overcome performance bottlenecks. For data transfer between

software and hardware , it is not easy to determine which part should be used, since data transfer

time depends on both data size and the target platform. Using the target platform to extract raw data

from the target binary is effective to decrease mistakes and shorten development time. All processes

in the software and the hardware design flow are time consuming, specialized, and manual tasks,

even if programmers just change dataflow a slightly and test the new one. Heterogeneous platforms

incorporating CPUs, GPUs, and FPGAs are the most difficult to target, as there are so many possible

mappings of tasks on the different computational devices.
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Figure 2.25: Example of CPU-GPU programming. Parallelizable parts are off-loaded to GPU.

2.4.1 Programming environment of a mixed CPU-GPU platform.

Figure 2.25 shows the processing flow of CPU-GPU programming. One of its key points is data

transfer. Even if GPU shortens the off-loaded processing, if total time spent on the data transfer

and processing is longer than that of CPU, it is meaningless. Reducing the number of data transfers

between CPU and GPU is a critical challenge on such heterogeneous platforms. Consequently, the

users should carefully choose the parts that should be off-loaded to the GPU. However, this is not

easy since it often becomes a trial-and-error process and requires special knowledge [19].

2.4.2 Programming environment of a multi-node mixed CPU-GPU platform.

To communicate with another node, Message Passing Interface (MPI) is very widely used. MPI is

a standardized and portable message-passing system designed by group of researchers. MPI defines

the syntax and semantics of a core of library routines useful to a wide range of users. There are

some implementations of MPI for high performance computers: OpenMPI [32], MVAPICH [33] or

IntelMPI [34]. Although the application programming interface (function name) is almost the same,

the performances of implementations are different. As I explained previously, the data must be going

through the CPU’s memory when the GPU wants to communicate with the GPU on another node

since MPI is for CPUs. GPUs cannot handle MPI. Additionally, the total processing time including

GPU processing and data transfer must be shorter than that of CPU. This is the same key point as a

single-node mixed CPU-GPU platform.

Figure 2.26 illustrates an example of MPI communication on two nodes. Each node has two host

CPUs and two GPUs. Host CPUs first prepare the input data and send the data to GPUs, and then
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Figure 2.26: Example of MPI communication on a multi-node mixed CPU-GPU platform.

GPUs execute the same processing. When GPUs finish the processing, the result data are sent back

to the CPUs. After that, CPUs send the data to another node. A series of processing is executed until

the final result is obtained. The processing of a single node is almost the same as that for a single-

node mixed CPU-GPU platform. This kind of processing can be seen in the scientific computing

applications, such as earthquake simulation or computational fluid dynamics.

2.4.3 Programming environment of a single-node mixed CPU-FPGA platform.

From a programming perspective, Xilinx provides a software development kit for this platform,

called Vivado [35]. Vivado includes all necessary components to develop and implement a solu-

tion on the platform. Programming difficulty can be alleviated by the vendor’s SDK, but design

complexity is still a problem. As I mentioned in Section 2.4.1, the key point of a mixed CPU and

accelerator platform is data transfer. Even if FPGA shortens the off-loaded processing, if total time

spent on the data transfer and processing is longer than that of CPU, it is meaningless. Thus, the

users should carefully choose the parts to be off-loaded.

In the case of a mixed CPU-FPGA platform, multiple hardware modules can exist on an FPGA

part. This is the main difference from a mixed CPU-GPU platform since the CPU-GPU platform

rarely executes multiple functions on the GPU side. Thus, a combination of multiple functions on a

CPU and multiple modules on an FPGA is a unique problem. Handling these functions and modules

is not fully supported by the vendor’s SDK. Additionally, not much research has been done into

handling such situation.
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2.5 Chapter Summary

This section overviewed three heterogeneous platforms including a mixed CPU-GPU, a multiple

mixed CPU-GPU, and a mixed CPU-FPGA platform. went into detail on accelerators of each plat-

form. On hardware side, GPU has a hierarchical memory and processing core. Cluster GPU has a

communication bottleneck, and PEACH2 is introduced, which lowers communication latency among

multiple nodes, to remove the bottleneck. FPGA has a mesh architecture and realizes an arbitrary

circuit. On the software side, there are big differences between the platforms as well. CUDA for

GPU adopts the SIMT model to control thousands of cores simultaneously. HDL for FPGA adopts

a very low level programming model since it should express timing behavior accurately. Although

there are many differences, these platforms share the same idea when the programmer wants to use

them for accelerating the application. The idea is to “off-load” computational intensive parts on a

CPU to GPU/FPGA and shorten the processing time. Common problem of these platforms are the

difficulty of programming and complexity of choosing parts to be off-loaded.



Chapter 3

Courier: A Toolchain for Automatic
Function Off-load on a CPU-GPU
Platform

This chapter proposes a new toolchain for application acceleration called Courier. Courier automat-

ically analyses specific functions and data in a running binary, and replaces functions with corre-

sponding accelerator functions if possible. The target platforms of this chapter are a single mixed

CPU-GPU and a multiple mixed CPU-GPU platforms.

This chapter first presents Courier, including its features designed for detecting a processing

flow and function off-loading. Then, the technical details of our function off-loading mechanism is

describes. Then an application acceleration technique on a multiple mixed CPU-GPU platform is

presented. Section 3.4 gives case study, showing the capability of Courier. I discuss our toolchain

and related work in Section 3.5.

A short summary of this chapter is as follows:

• Introducing a new application acceleration work-flow, Courier, which does not require original

source code, manual tweaks, or re-compilation of the target binary, without user intervention.

The user just has to refer to the result and modify off-load parts if needed.

• It is proposed that an automatic processing flow graph generation method of analyzed functions

from a running binary. The method includes tracing sub-programs to analyze functions and a

heuristic approach to detect causality.

• It is proposed an automatic off-loading method of functions in the binary. If functions are

analyzed by the above mentioned method and corresponding functions are ready for the ac-

celerator, functions are off-loaded automatically. The method also reduces the number of data

transfer along with off-loading, and maintains an original processing flow before and after

off-loading.
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3.1 Courier: A Toolchain for Application Acceleration

3.1.1 Fundamental Concept

On designing Courier, I considered the following items. This sub section describes how I deal with

these items and fundamental concept of proposed toolchain. Section 3.5 discusses the differences

among related work.

I. Wider range of target users by automating acceleration processes.

II. Larger target applications by using existing accelerator functions.

III. Broader applicability to many heterogeneous platforms by adopting modularized components.

I. Wider range of target users by automating acceleration processes

This comes into consideration while referring related work. Most researches on developing work-

flow for off-loading focus on a programmer who understands the source code and wants to improve its

performance. For developing the code of the accelerator which works the same function of the target

code with much more performance, various types of tools have been proposed. They help the analysis

of the source code [11], accelerator management [12] [13], and accelerator kernel implementation

[14] [8] [15] [16]. Unlike them, I do not intend to generate the accelerator code itself. I assume

that the target application program uses a common library like OpenCV, BLAS or FFT, and the

corresponding library code of the accelerator is already available. Instead, our target users do not

need to have the source code of the acceleration target. Our toolchain extracts the call flow of

functions, and finds the part which can be off-loaded to the accelerator during execution of the binary

code. The current version of the toolchain cannot do anything if the target binary does not include

corresponding accelerator functions. Even with this limitation, the proposed tool can help many

legacy code users who are not the target of the conventional work-flow.

II. Larger target applications by using existing accelerator functions

This consideration is derived from the following assumption. A data transfer time between CPU

and accelerators becomes critical since state-of-the-art CPU is fast enough for calculating small data.

I should focus on function-level processing flow for recent heterogeneous platforms. This is because

there are many researches and commercial tools for generating function itself. A lot of recent appli-

cations use widespread function libraries like OpenCV, BLAS or FFT, and optimized off-the-shelf

code of such functions are already available for popular accelerators [36]. If we understand the flow

of the running binary and find the parts which can be accelerated, I can automatically accelerate a

target application entirely by replacing the parts with the corresponding functions of the accelerator.

III. Broader applicability to heterogeneous platforms by adopting modularized components

This consideration is similar to designing a compiler such as gcc [37] or llvm [38]. Compilers
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are often highly-modularized so as to support many processors and generate better assembler code.

They are composed of Frontend, Intermediate Representation (IR) and Backend [39]. In the case

of C language, Frontend and IR perform the same processing such as lexical analysis or syntax tree

construction. Backend performs both common optimizations and processor specific optimizations. I

do not go into detail of compiler since this is not a main topic of this thesis. Structure of Courier is

designed by reference to that of compilers.

3.1.2 Overview of Courier

Figure 3.1 shows the overview of Courier. It consist of Frontend (Runtime Analyzer) and Backend

(Function Off-loader). Courier Intermediate Representation (IR) is a bridge between them. Each

role is as follows.

• Frontend automatically traces a target running binary and tries to detect a processing flow

of functions by using a heuristic approach. Functions in the detected processing flow are

recognized as the target of acceleration without needing access to the original source code

or any sort of re-compilation. Property of input/output data is also analyzed and taken into

consideration during the acceleration process.

• Courier IR represents the processing flow in a graph and code. A task graph is constructed to

understand and find parts that should be off-loaded.

• Backend automatically performs the off-loading of the functions, if the functions uses a wide-

spread function library like OpenCV, BLAS or FFT, and the corresponding function is ready for

the accelerator. Dynamic Off-loader in Backend automatically adjusts data property, reduces

the number of data transfer along with off-loading, and maintains original processing flow

before and after off-loading.

Example of the processing step is illustrated in Figure 3.1 and caption of the figure describes

the detailed work steps. Running software binary contains a function called “accum”, which obtains

two input data (0x1 and 0x2) and produces an output data (0x3). Courier traces the binary and

detects “accum”. Then Courier replaces the function with the corresponding accelerator function

“acc_accum”. The followings sub sections are go into more detail.

3.1.3 Frontend (Runtime Analyzer)

Frontend consist of three main steps to detect a raw processing flow. It used dynamic program

analysis and a heuristic approach to detect the flow. Users simply start their application as usual, and

Courier performs a data sampling process called a “profile run”. Each step to analyze running binary

works as follows during a profile run.

Step 1. Frontend traces functions in the running binary by using pre-defined tracing sub-programs,



3. Courier: A Toolchain for Automatic Function Off-load on a CPU-GPU Platform
3.1. Courier: A Toolchain for Application Acceleration 34

Figure 3.1: An overview and work steps of the Courier: Frontend traces running binary (1,2) and
detects causality (3) and then generates an Intermediate Representation (4) and a task graph (5).
Users modify off-load parts and changes IR if needed (6). Finally, Function Off-loader replaces
function and off-loads to accelerator (7).

Step 2. gathers runtime information, during execution,

Step 3. and looks for causal function call and input/output data.

The purpose of extracting a function-level processing flow is NOT to translate assembly auto-

matically into accelerator kernel, like the fine grained processing flow [16]. I intend to understand
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processing flow and find parts that can be off-loaded on a current heterogeneous platform.

3.1.3.1 Tracing a running binary

Step 1 performs dynamic program analysis by using a tracing sub-program for each function in order

to obtain runtime information from a target binary. Dynamic program analysis by using tracing

sub-programs in Step 1 is a key feature, since the static program analysis needs sophisticated pointer

analysis and often cannot obtain important information such as processing time, processed raw value,

transfer time, etc. In Step 2 Frontend gathers these information. The information includes absolute

time of entry and exit, thread id, call depth, function name, and raw argument value (not just the

memory address). At runtime, all dynamic pointers/aliases (e.g. int* in C++) are resolved, so the raw

value is available. Frontend covers a super-set of manual profiling and can gather more information

than other approaches [16] [40] [41]. In this paper, I call the value that is actually processed at

runtime the “raw value”.

Tracing sub-programs is based on Intel Pin, a framework for dynamic program analysis [42].

Pin is commonly used for kernel-level profile of the target program, but Frontend uses it to detect a

function-level processing flow. Many libraries such as OpenCV, Basic Linear Algebra Subprograms

(BLAS), and Fast Fourier Transform (FFT) can be simultaneously analyzed by preparing specific

tracing sub-programs. Note that Courier uses conventional tools only in this step. To analyze a

specific function, some information of a target library must be known in advance. Specifically,

information of a structure of data type, functions name and role of each argument are required.

Tracing sub-program is a separated from the Courier implementation so as to improve applicability

to support new libraries. By adding a new tracing sub-program for a specific library, Courier can

trace the library.

void add(InputArray src1, InputArray src2, // input

OutputArray dst, // output

InputArray mask=noArray(), int dtype=-1);

Listing 3.1: Function definition of cv::add in OpenCV

Tracing sub-program for OpenCV knows the name (cv::Sobel), a data structure of cv::InputArray

/ OutputArray and the role of each argument. The role of arguments are as follows, 1st/2nd are

input/output data, 3rd is the depth of output data, and 4th/5th are x-/y-axis parameters. Frontend

obtains the raw value in the running binary by using the information at entry and return point.

Figure 3.2 shows a target function cv::add on the left and a tracing sub-program for it on the

right. Note that “Entry” and “Return” are points of function where control enters or exits each

function region. During the profile run, Frontend accesses a raw address of 1st and 2nd arguments

and obtains a raw value (input data) at the entry point of cv::add. 4th and 5th arguments are also

accessed at that time. At a return point, Frontend accesses 3rd argument and obtains a raw value
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Figure 3.2: Tracing sub-programs for specific functions in Frontend access designated arguments
and obtain raw values at entry and return points of the functions.

[ENTRY]:
cv::add(cv::_InputArray const&, cv::_InputArray const&,
cv::_OutputArray const&, cv::_InputArray const&, int)
[TIME]:
33337
[ARGs]:
0x7fffd6b4cfd0 , 0x7fffd6b4cfb0 ,
0x7fffd6b4cf90 , 0x7fbdc9325540 , 0xffffffff
[IMG]:
0x42ff4005 , 1920, 1080, 0x26f4f30
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, ...
[IMG]:
0x42ff4005 , 1920, 1080, 0x2613f00
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, ...
[RETURN]:
cv::add(cv::_InputArray const&, cv::_InputArray const&,
cv::_OutputArray const&, cv::_InputArray const&, int)
[TIME]:
39939
[IMG]:
0x42ff4005 , 1920, 1080, 0x27d5f60
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, ...

Listing 3.2: Gathered runtime information of cv::add.

(output data). Absolute times are also recorded. List 3.2 is gathered runtime information of cv::add.

It’s just an enumeration of the information and hidden from the users.

3.1.3.2 Looking for causality

A heuristic approach is used to look for causal processing flow between functions and input/output

data dependencies in Step 3. For example, assume that a function, named cv::divide which has

an argument that contains input data, is found after cv::add. If an output data of cv::add and an



3. Courier: A Toolchain for Automatic Function Off-load on a CPU-GPU Platform
3.1. Courier: A Toolchain for Application Acceleration 37

input data of cv::divide are the same, Frontend guesses the causality by which these two functions

are connected by the data and detects processing flow like “cv::add”→“cv::divide”. Raw value is

typically non-identical. Even if some unrelated raw values are the same or functions run in parallel,

Frontend detects causality by referring to time, thread id, or call depth.

Other problems Frontend must address are application control flow, data movement, and data

modification outside functions known to Frontend. Control flow can be extracted such as if-else

branch and count frequency of a taken branch [40] [16]. If the branch exists, constructed graph is

split into several paths. Data movement and modification outside functions can be traced, even if

the target running binary did not use a library function to modify images such as pointer access.

Currently, I understand both problems, but how I treat them is future work.

3.1.4 Courier Intermediate Representation (IR)

Courier IR is an intermediate representation that bridges Frontend and Backend. It can be used to

modify or designate parts to off-load if the users don’t satisfy Courier’s automatic off-load. The three

main steps of Courier IR are as follows. These steps correspond to Step 4 6 in the Figure 3.1

Step 4. Courier generates an IR corresponding to the detected processing flow,

Step 5. generates a task graph, and

Step 6. the users modify or designate off-load parts if needed.

All information gathered from Frontend such as List 3.2 is translated into a more user-friendly

description as shown in List 3.3. Its structure is simple and device independent and shows the inferred

function-data causality. By just lining up functions and data in the order of processing flow. IR is

converted into graph representation called Task Graph. Task graph is a kind of weighted directed

acyclic graph and includes order of function call, their input/output, and some raw values. At present,

Courier IR is manually translated from the detected processing flow. Some special functions are

provided to designate the off-load functions and maintain original processing flow. cpu2acc function

designates off-load function and input/output data from CPU to the accelerator, and acc2cpu function

does the same in the opposite direction. volatileInput/Output functions are automatically called to

notify the users that they cannot change or delete certain nodes, due to the need to protect the overall

inputs and outputs of the task graph. Section 3.4.1 shows an example of HOG feature detection. The

grammar of IR deliberately restricts the number of arguments that functions can accept.

img3 = cv::add(img1, img2);

Listing 3.3: Courier IR description of cv::add.
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3.1.5 Backend (Function Off-loader)

Backend is designed for automatic off-load without user intervention, and consist of the following

main step. These steps correspond to Step 7 in the Figure 3.1

Step 7. The Function Off-loader selects a path and replaces functions with corresponding accelerated

functions within the designated parts.

Backend first searches for “safely off-loadable” parts, where input and output data are both traced,

data conversion is feasible, and a corresponding accelerated function is available. For such parts,

Backend automatically off-loads them by using Function Off-loader in default mode. Note that I

do not attempt any sort of automatic binary translation, since state-of-the-art translation techniques

cannot be used here. Function Off-loader generates wrapper, replaces functions, sends data while

maintaining the original processing flow and reducing the number of data transfer. Section 3.4.1

explains the details with an example of OpenCV.

3.1.6 Applicability of Courier

When the users want to support a new library, they should introduce a new “add-on” for Courier.

Add-on is a supplementary component that improves capability without changing the main applica-

tion. Add-on for Courier includes a tracing sub-program, a data transfer function, a corresponding

accelerator function and a correspondence relationship of accelerator functions. By using this add-on

mechanism, Courier can easily support new libraries without developing a new version of Courier.

A limitation of the current Courier concerns functions within control statement (e.g. if-else

branch or loop). Although Courier can off-load these functions, it currently deals with the straight

forward function calls in binaries in default. There are two major problems to automatically off-load

such functions. One is how to detect such processing flow by Frontend and the other is how to off-

load the function effectively. In the case of functions inside a loop, Frontend cannot recognize that

they are inside a loop and just called iteratively. If the number of iteration of a loop is fixed, off-load

can be done effectively by using the current version of Courier. On the other hand, it requires another

method to off-load non-fixed loop effectively and this is a future work. When multiple function calls

appear continuously in the target binary, Courier off-loads all of them so that the number of data

transfer is reduced even if additional statements exist before and after functions. In this case, the

performance can be much improved. If the corresponding functions are ready in the accelerator, any

type of function calls can be off-loaded in the same manner. For example a binary program using

both OpenCV and BLAS can be off-loaded.

When the corresponding functions are ready in the accelerator, any types of function calls in

the target binary can be off-loaded. In the case of multiple function calls that appear continuously,

Courier off-loads all of them at a time and the performance can be much improved by using Function

Off-loader even if additional statements exist before and after functions. On the other hand, if there
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are additional statements between functions, they are executed in the host processor and each function

is off-loaded independently. In this case, each function call requires the data transfer between the host

processor and the accelerator, and the performance improvement might be degraded if the granularity

of the function is not large compared with the data transfer time. In the current version of Courier,

the users eventually select whether the function is off-loaded or not by using the Off-load Switcher.

Additionally, Courier cannot off-load function calls of non-supported library. They are executed on

the host processor as the same way as the additional statements.



3. Courier: A Toolchain for Automatic Function Off-load on a CPU-GPU Platform
3.2. Function Off-Loading System 40

3.2 Function Off-Loading System

Function Off-loader and Off-load Switcher in the Backend are core features of application acceler-

ation. It automatically generates a function wrapper to replace the original function designated by

IR’s cpu2acc and acc2cpu. The wrapper contains code of the pre-defined corresponding accelera-

tor function, a pre/post-processing and the data transfer. The Backend creates a shared object from

the code. Function off-loading system behaves as follows. At start-up, Courier stops the running

binary, and then Function Off-loader intercepts (hooks) designated functions. It then replaces origi-

nal functions with the wrapper that executes the accelerator functions while maintaining processing

flow or reducing the data transfer by using Function Switcher. Finally, Courier re-starts the binary.

This process does not require any user intervention. The corresponding accelerator functions must

be available beforehand, so OpenCV’s GPU functions, cuBLAS and cuFFT are used in Section 3.4.

Many existing applications use widespread function libraries like OpenCV or BLAS. Enough

optimized codes of corresponding functions are available for popular accelerators. Courier is a pow-

erful tool for users who want to accelerate a current running application with such a library using

accelerators without knowledge about the source code.

3.2.1 Dynamic Linking and Its Problems

Function Off-loader adopts dynamic linking mechanism on Linux environment as a basis. This

mechanism adjusts the runtime linking process by forcibly loading and linking software libraries.

Source-code tweaks or re-compilations of target binary are NOT required. Function Off-loader uses

it to replace original functions in the binary with wrappers. Wrappers needs to be compiled before

deployment. Although this technique is known as DLL hijacking or DLL injection, here, the purpose

is off-loading and some problems occur.

There are three main problems that occur if we just use DLL injection for the function off-loading.

The first is unconditional off-loading (Figure 3.3, UNCOND-OFF), the second is a restriction of

the number of inputs/output of substitute function (Figure 3.4, SAME-INOUT), and the third is

redundant data transfer when a series of functions is off-loaded (Figure 3.5, RDNT-TXRX). In the

figures, ellipse nodes and rectangle nodes represent data and functions, respectively. The UNCOND-

OFF problem is caused by DLL injection, since DLL injection replaces all the same name functions

in a target binary unconditionally. This is not suitable for off-loading, since processing time on

heterogeneous platform usually depends on data transfer overhead. In the case of Figure 3.3, assume

that there is two “CPU_funcA” functions in binary and both are replaced. The data size of “srcImg0”

including communication overhead is large enough to off-load. On the other hand, “srcImg2” is too

small for off-loading, since the total processing time (communication overhead + execution time on

accelerator) is longer than processing time on CPU. Thus, only intended functions should be off-

loaded. The SAME-INOUT problem forces Courier to use a function that has the same number

of inputs/outputs as that of the original function. Some opportunities for off-loading are lost by this
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Figure 3.3: UNCOND-OFF: Typical dynamic
linking replaces all the same name functions in
the target binary.

Figure 3.4: SAME-INOUT: Corresponding
function must have the same number of in-
put/output. Two input/output functions can only
be the corresponding.

restriction. In the case of Figure 3.4, the colored part has two input and two output, and “CPU_funcA”

has one inputs and one outputs. “CPU_funcA” cannot be replaced with the colored part since the

number of input/output are the different. I’m researching a solution to solve this problem, but this

is future work. RDNT-TXRX problem arises when series of functions are off-loaded, data transfer

happens along with each function, and performance degrades. To deal with UNCOND-OFF and

RDNT-TXRX, Function Off-loader and Off-load Switcher are introduced.

3.2.2 Mechanism of Function Off-loader

Function Off-loader generates a wrapping code around accelerator functions code and solves the

above mentioned two problems. To generate an appropriate code, it has a table which contains a

correspondence relationship between software functions and accelerated functions, code of a needed

pre/post-processing and the data transfer. Figure 3.7 shows an example wrapper for the cv::Sobel

function in OpenCV. In the figure, the wrapper introduces a data transfer function, cv::gpu::Sobel and

cv::gpu::cvtColor. cv::gpu::Sobel is the corresponding accelerator function for cv::Sobel. cv::gpu::cvt-

Color is a pre/post-process that adjusts image properties between cv::gpu::Sobel and cv::Sobel. The

additional overhead of the wrapper is transferring image and property conversion. It depends on the

image size.
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Figure 3.5: RDNT-TXRX: Redundant data
transfer happens when a series of functions are
off-loaded.

Figure 3.6: Function Off-loader reduces the
number of data transfer and maintains the origi-
nal processing flow.

To deal with the above described UNCOND-OFF and RDNT-TXRX problems, Off-load switcher

is introduced to the wrapper. This switcher provides one of three possible paths for a function: non-

off-load, off-load and pass through. The path is selected by Function Off-loader and determined

from arguments of function or function ID that is contained in Courier IR. This uses dlsym and

dlopen [43], which are APIs for dynamic loading in Linux. In Figure 3.7, Off-load switcher is shown

at the top, and the three paths work as follows.

• Non-off-load executes the original function, so the function runs on CPU.

• off-load replaces the designated function with corresponding accelerator function. Some pre/post-

processing is also added.

• Pass Through assigns the input data to the output data so as to skip the function in binary.

The UNCOND-OFF is solved by executing original function in a non-off-load path, and the

RDNT-TXRX is solved by the following method. Function Off-loader replaces “the head” of a series

of functions and runs all functions in it. Figures 3.5 and 3.6 illustrate before and after suppression,

respectively. Moreover, to maintain original processing flow, successive functions must be skipped

in the original binary running on CPU. Otherwise they are applied twice in the off-loaded function
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Figure 3.7: Function Off-loader and generated wrapper for OpenCV: One of three paths is selected:
“Non-off-load”, “off-load” and “Pass Through”

and original binary. Thus, our Function Off-loader replaces and skips them by using Pass Through.

The off-load switcher is controlled by gathered information from Frontend, such as function name,

argument value, and data size. Note that I don’t use execution time to control it currently.
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3.3 Task Pipelining on Multiple GPU Platform

In multiple GPUs environment such as Tsubame supercomputer, data level parallelism (DLP) is

typically used to implement application [44]. On the other hand, task level pipelining on multiple

GPUs is not mainstream. In this section, multiple GPUs are directly connected as a form of a pipeline

computation by using PEACH2. Here, I call it Inter Accelerator Pipelining (IAP) as a special case

of task level pipeline. This section describes a concept and an implementation of IAP on TCA.

3.3.1 Basic Idea

IAP connects multiple accelerators (e.g. GPU or FPGA) as a form of a pipeline computation. An

application is divided into some tasks, each of which is assigned to an accelerator. Task means

larger process such as API-function-level, not “fine grained” such as x86 assembly [45]. IAP suits

for stream computation such as image processing or computational fluid dynamics (CFD). I call this

type of implementation “IAP style”.

Compared to DLP, IAP doesn’t increase required memory bandwidth along with the number of

devices. In the case of DLP which is shown in Figure 3.8, required memory bandwidth linearly

increases, since different source data are required for each device. At first, the master host CPU

sends the data to all host CPUs, then each host CPU sends the data to each GPU, and then each GPU

starts processing. Each processing step becomes sequential and scatter/gather process is required

along with each step as well. In the case of IAP on ordinary multiple mixed CPU-GPU nodes, which

is shown in Figure 3.9, the host CPU sends the data to GPU in the node, then GPU starts processing.

Finally, result data are sent to the next pipeline stage on another GPU via host CPU. Communication

via host CPU still degrades performance. This is one of the reasons why task level pipeline on

multiple GPUs is not easy.

Compared to IAP on ordinary multiple mixed CPU-GPU nodes, IAP on TCA nodes can eliminate

extra copy to CPU. Figure 3.10 illustrates the implementation. In the case of IAP on TCA which is

described in Section 2.2, direct communication is enabled thanks to PEACH2, and communication

latency is dramatically reduced. From the point of view of the pipeline, reducing the communication

latency corresponds to shortening the processing time of each stage. As a result, the whole processing

time of a pipeline is reduced. Additionally, other benefits can be found when we implement stream

application. First, merging output data from multiple GPUs into one large output data is done in

chronological order. The pipeline gets input data and generates output data in chronological order

naturally. On the other hand, when DLP style is used, extra merging process is needed. Applications

are implemented in task level pipeline manner on multiple TCA nodes so as to explore the capability

of pipeline implementation on multiple GPUs.
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Figure 3.8: Implementation of data level paral-
lel. CPU runs one or two threads to control GPUs
and each GPU runs the same processing. (DLP1,
DLP2)

Figure 3.9: Implementation of inter-accelerator
pipeline without PEACH2. Data transfer time be-
tween GPUs degrade total performance. (IAP1,
IAP4)

Figure 3.10: Implementation of inter-accelerator
pipeline with PEACH2. Stage tokens and data are
sent to CPU and PEACH2 respectively. (IAP4-P2)
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Figure 3.11: Bandwidth between CPU/GPUs in different nodes: PEACH2 reaches to 93% of the-
oretical peak performance of PCIe. At 8KB, Bandwidth reaches 1.6GB/s and 4 time faster than
MVAPICH2.

3.3.2 Exploratory Evaluation of TCA

It is conducted that an exploratory evaluation of communication latency and bandwidth of TCA.

Figure 3.11 and Figure 3.12 show communication latency and bandwidth between GPUs and CPU

over different nodes. The following is a legend of lines.

• CPU(TCA) shows a CPU to CPU communication between two TCA nodes via PEACH2.

• GPU(TCA) shows a GPU to GPU direct communication between two TCA nodes via PEACH2.

• MV2-CPU(TCA) shows a CPU to CPU communication between two TCA nodes via MVA-

PICH2.

• MV2GDR-GPU(TCA) shows a GPU to GPU direct communication between two TCA nodes

via MVAPICH2’s GPU direct RDMA feature.

• MV2-GPU(SB) shows a GPU to GPU indirect communication between two nodes which have

Intel’s Sandy Bridge CPU via MVAPICH2.

Average latency between two GPUs is around 2.5 µsec when the data size is less than 2048 bytes.

It is around 3 times faster than MVAPICH2-GDR, and around 8 times faster than MVAPICH2. Note

that, MVAPICH2-GDR uses cudaMemcpy() on Unified Virtual Address (UVA) environment, and

MVAPICH2 uses mpi_send(). About bandwidth, 93% of theoretical peak performance is achieved

when the data size is 256 KB. In particular, PEACH2 provides better performance over MVAPICH2

both in latency and bandwidth.
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Figure 3.12: Latency between GPUs in different nodes: PEACH2 achieves 1/7.3 of that of MVA-
PICH2, and 1/2.7 of that of MVAPICH2-GDR. PEACH2 achieves lowest latency in all parts.

Figure 3.13: Latency (left axis, solid line) and Bandwidth (right axis, dash line) between CPU/GPU-
DDR3 on PEACH2: Except for GPU to DDR3 on PEACH2, latency is less than 4 µsec. Bandwidth
reaches to 78% of theoretical peak performance.

The latency and bandwidth of DDR3 on PEACH2 memory is also shown in Figure 3.13. Latency

is less than 4µsec in all parts except for GPU to DDR3 on PEACH2. Besides, bandwidth reaches

78% of theoretical peak performance and 4.8Gbps when the data size is 128 KB. In particular, DDR3
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on PEACH2 memory can be used when the data size is large. In Section 3.4, application transfers

the image data that the size is larger than 2MB. Note that latency and bandwidth from GPU to DDR3

on PEACH2 are much worse than the others. This is caused by smallness of PCIe buffer of Intel’s

Sandy Bridge architecture. This problem will be solved on Intel’s Ivy Bridge architecture.

There are some researches on direct communication network system. APEnet+ [24] is one of

the closest idea to PEACH2. Unlike PEACH2 which is compatible with PCIe protocol, APEnet+

uses their own protocol to realize direct connection between GPUs and network interface. PEACH2

has an advantage to APENet+ since it isn’t required to convert protocols. The CUDA 5 program-

ming environment for NVIDIA GPU provides the RDMA mechanism to the GPU memory, called

GPUDirect Support for RDMA, with a Kepler-class GPU [20]. This mechanism enables zero-copy

communication between the InfiniBand Host Adapter and GPUs [25]. Although PEACH2 also uses

the same RDMA mechanism, PEACH2 can eliminate the overhead for protocol conversion from

PCIe to the InfiniBand packet, and the overhead of MPI protocol stack.

3.3.3 Implementation of intra-node pipeline

Figure 3.14 depicts an implementation and pipeline overview of task pipeline using Intel Threading

Building Blocks (Intel TBB) and OpenMPI on ordinary multiple mixed CPU-GPU nodes. Blue line

shows task token communication and green line shows CUDA based data transfer. Both token and

data are sent to the master thread in host CPU. Figure 3.15 also depicts that on TCA nodes. Orange

line shows inter-node communication via PEACH2. PEACH2 has its own communication API and I

used it.

Implementation of task level pipeline on multiple GPUs is not easy since it requires many parallel

programming techniques such as inter node pipeline, intra-node pipeline, and order of inter/intra-

node task stages of pipeline. Furthermore, to build an efficient inter accelerator pipeline on multiple

GPUs, three major problems remain. First is pipeline execution itself, the second is communication

between accelerators, and the third is storage which stores inter-accelerator data. It is used that Intel

Thread Building Blocks and OpenMPI for the first problem. And PEACH2 is used to address the

remaining two problems.

3.3.3.1 Building the intra-node pipeline

There are some open source libraries which realize task pipeline on CPU, for example pthreads [46],

Boost::thread [47], OpenMP [48], and Glib::thread [49]. OpenMP requires tricky programming

or extension to realize pipeline execution [50] [51], since it is intended for exploiting loop level

parallelism. The others are also developed for exploiting thread level parallelism, not task level

parallelism or pipeline.

TBB is flexible open source library for parallel execution. It provides software controlled task

pipeline using multiple threads. The tbb::pipeline class is provided to implement task pipeline, and
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each stage has a token to keep the order of pipeline. A user first writes each task which runs in each

stage of the pipeline. Then the user registers tasks and also defines a processing order of tasks to

TBB. In the Section 3.4, an image processing algorithm called Sobel operator are divided into three

tasks, and process them in a simple straight forward pipelined manner.

In TBB, data and task assignment to threads is controlled by a master thread. Besides, each task

runs on the slave thread. This type of pipeline makes it easy to reorder tasks and insert new tasks.

Input/output data to/from tasks and storing are done when the master thread receives the finish token

from slave threads. TBB assigns a task which is registered by the user to an idle slave thread, and

also transfers input data. Then the slave thread runs the task, and finally sends back output data and

the finish token to the master thread. TBB can deal with tasks which are written in CUDA. To our

knowledge, the other libraries are more difficult than TBB to make task pipeline and GPU task. TBB

also realizes a double buffering when two or more GPU tasks are registered. The detail of pipeline

structure of TBB is described in the reference [52].

It is conducted that a preliminary evaluation of scalability of TBB pipeline. The target application

was applying 100 input images to Sobel operator 32 times. For it, 32 stages straight forward pipeline

is implemented. The evaluation is done on TCA node and a CPU. When 13 stages run in parallel,

it achieved 89% speed up compared to a single stage. Additionally, when 32 stages run in parallel,

they achieved 92% speed up while the speed up is saturated. According to the evaluation, TBB can

construct effective task pipeline. This preliminary evaluation demonstrates that Intel TBB is effective

to construct the task level pipeline.

3.3.3.2 Building an inter-node pipeline

Blocking communication is required to build an inter-node pipeline, since the first task stage of each

node has to start its process after input data from previous node arrives. Furthermore, the combination

of Intel TBB and blocking communication (OpenMPI or PEACH2 API) naturally maintains the order

of the whole task stage. Task level pipeline on multiple node can be built.

In the case of ordinary node (Figure 3.14), OpenMPI is used to distribute program, communicate

data, and synchronize multiple nodes. MPI_Send and MPI_Recv are used to blocking communica-

tion. MPI_Isend and MPI_Irecv can be used for non-blocking communication, but it collapsed the

processing order of pipeline.

In the case of TCA (Figure 3.15), PEACH2 API is used to communicate data and synchro-

nize multiple nodes. OpenMPI is used just to distribute program. Similar to Figure 3.15, PEACH2’s

blocking communication is used. Polling of special register is required for current version of PEACH2

API. Once after data communication finished, the sender task sets a finish flag to a special register.

The receiver task polls the register and then starts own process.



3. Courier: A Toolchain for Automatic Function Off-load on a CPU-GPU Platform
3.3. Task Pipelining on Multiple GPU Platform 50

3.3.3.3 Storing inter-task data to arbitrary memory

By default, a task of TBB pipeline returns inter-task data to the master thread, and also returns a

token. Redundant copy, non-direct GPU communication in the same node and that of OpenMPI in

the different node, occurs even if TCA is used. To store inter-task data to arbitrary memory, each

task of TBB is modified. TBB’s pipeline (tbb::pipeline class) uses simple token, which is illustrated

in blue line in Figure 3.15, to maintain processing flow. Each TBB task is changed not to return the

inter-task data as follows. After finishing the processing, each task sends just the property (address,

size and bit depth) of the data instead of the data itself. In the case of intra-node, the next task

receives data based on this address via direct GPU communication (cudaMemcpyPeer). In the case

of inter-node, the next task in the next node receives data via PEACH2 API or OpenMPI. Currently,

the property is just eight bytes. In the case of ordinary node (Figure 3.14), OpenMPI is used to

send/receive data to CPU in the next node and redundant copy is unavoidable. On the other hand, in

the case of TCA (Figure 3.15), PEACH2 API is used to communicate data. A GPU in the next node

can directly receive data, and redundant copy is completely eliminated.

Enabling to use arbitrary memory is efficient. It eliminates redundant copy and useful for storing

large size data. Inter-accelerator pipeline often produces large size inter-task data between tasks like

the task level pipeline. For example, an FIFO is a common way to store such inter task data to keep

the processing order. Once processing time becomes imbalanced, the FIFO depth increases and large

size memory is also required. Without the technique that is described here, multiple redundant copy

easily degrades performance.
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Figure 3.14: Implementation and pipeline
overview of inter-accelerator pipeline without
PEACH2. Role of TBB tasks on CPU is inter-
node pipeline which includes send/receive data
with OpenMPI, and control pipeline execution of
two GPUs. OpenMPI distributes program to each
node as well. Data transfer time between GPUs
degrade total performance. (IAP1, IAP4)

Figure 3.15: Implementation and pipeline
overview of inter-accelerator pipeline with
PEACH2. Role of TBB tasks on CPU is just
control two GPUs, and kick PEACH2’s DMA
controller. Then PEACH2 sends the data to next
node. OpenMPI distributes program to each node.
Redundant copies are deleted and data movement
becomes simple. (IAP4-P2)
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3.4 Case Study

This section shows four case studies. First three case studies illustrate work-flow of Courier on

a single CPU-GPU platform. Three case studies are 1) a HOG feature detection algorithm using

OpenCV, 2) a double precision general matrix multiplication using Basic Linear Algebra Subpro-

grams (BLAS), and 3) a power spectrum density estimation using fast Fourier transform (FFT).

Then this section shows an case study of Inter Accelerator Pipelining (IAP) on TCA node. Simple

image processing application is implemented in IAP style, and execution time is evaluated.

Environments of the first three case studies is as follows. Host OS is Fedora 20 64bit (kernel

3.14.3), CPU is Intel Core i7-3770K 3.5GHz, and the accelerator is NVIDIA GeForce GTX670 with

PCIe Gen.3. Binaries are compiled with GCC ver.4.7. Environments of the last case study is as

follows. Host OS is Scientific Linux 6.3 (kernel 2.6.32), CPU is Intel Xeon E5-2670 2.6GHz, and

the accelerator is NVIDIA Tesla K20m with PCIe Gen.3. PEACH2 board is installed on PCIe Gen.2

x8 slot.

3.4.1 Histogram of Oriented Gradients (HOG) on a single mixed CPU-GPU platform

HOG is a widely used algorithm for feature detection, such as face recognition [53]. HOG application

includes three main features that are commonly seen in computer vision applications: OpenCV C++

API functions, diverging/converging flow, and image duplication. Note that OpenCV functions often

perform computationally intensive image transformations, and have clearly defined input and output

images, and so are ideal candidates for off-loading to accelerators. The processing flow in running

binary consisted of the following three main steps. Step 1) Compute gradient and magnitude, Step

2) Gradient adjustment, and Step 3) Create histogram. Pseudo code shown in List 3.4 is just for

explanation since neither Courier nor the user needs access to the source code.

1. Compute gradient and magnitude: Each frame of the video source is converted into gray scale

by cv::cvtColor and cv::split. Then, x and y axis Sobel operators ( cv::Sobel_x, cv::Sobel_y)

are applied. Both operators obtain the same gray scale image. The gradient and magnitude are

calculated from the x/y Sobel images by using cv::cartToPolar.

2. Gradient adjustment: gradient values are adjusted to within 0 to 180 degrees by cv::threshold

and cv::subtract. i f (a > 180) a = a − 180, i f (a < 180) a = 0

3. Create histogram: The two images generated in Step 2 are combined into one image (cv::add),

and adjusted gradient values are calculated. Lastly, this image is divided into a nine-channel

histogram by using cv::divide.
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(a) The original image

(b) Visualized Histogram Oriented Gradient

(c) Detected people

Figure 3.16: An intermediate results of HOG.

3.4.1.1 Acceleration work-flow of Courier

I. Analyzing running binary After user designates the target binary, Frontend analyses running bi-

nary, then detects processing flow and IR. This step corresponds to Step 1∼3 in Figure 3.1. By tracing

sub-programs the following information are extracted:

• OpenCV C++ API function name with arguments,

• function start/end absolute time (execution time),

• # of input/output of function,

• raw value of input/output image data, and

• image properties (size, bit depth and channels).

These information are extracted whenever the target application calls an OpenCV function. All

the OpenCV functions have the prefix “cv::”, such as cv::Sobel. The input/output image data are

actual image value. Data movement and modification outside OpenCV can be traced technically,

even if the target running binary didn’t use OpenCV function to modify images such as pointer

access. Function type denotes one of three transform types (sink, unary, and binary), corresponding

to the FunctionType variable in Courier IR.
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1 #include "opencv2/imgproc/imgproc.hp>"
2 int hog (rtnMagnitude , rtnHistogram){
3 while(true){
4 // Step 1) Compute gradient and magnitude
5 // input and gray scale
6 cv::VideoCapture cap >> frame;
7 cv::cvtColor(frame, yuv, "CV_RGB2YCrCb");
8 cv::split(yuv, graySc);
9 // x/y-axis Sobel filter

10 cv::Sobel(graySc, xsobel, "X-axis");
11 // image duplication via memcopy
12 graySc.copyTo(copyTo_dst);
13 cv::Sobel(copyTo_dst , ysobel, "Y-axis");
14 // Calculate gradient and magnitude
15 cv::cartToPolar(xsobel,ysobel,gradient ,magnitude);
16 // Step 2) Gradient adjustment
17 // Adjust the value within 0 to 180 degrees
18 cv::threshold(gradient , 180up, "<180");
19 cv::convertScaleAbs(180up, 180up_res);
20 cv::subtract(180up_res, 180matrix, sub_res);
21 cv::threshold(gradient, 180low, "180<");
22 // Step 3) Create histogram
23 cv::add(sub_res, 180low, add_res);
24 cv::divide(add_res, div_in, histogram); }}

Listing 3.4: Pseudo code of HOG feature detection in the target binary.

1 void hog.o_main(void){
2 // Original Input/Output, unchangeable
3 volatileInput(frame);
4 volatileInput(180matrix);
5 volatileInput(div_in);
6 volatileOutput(magnitude);
7 volatileOutput(histogram);
8
9 frame = cv::VideoCapture();

10 yuv = cv::cvtColor(frame);
11 graySc = cv::split(yuv);
12 xsobel = cv::Sobel(graySc, "X-axis");
13 copyTo_dst = cv::Mat::copyTo(graySc);
14 ysobel = cv::Sobel(copyTo_dst , "Y-axis");
15 {gradient, magnitude} // generates two results
16 = cv::cartToPolar(xsobel,ysobel);
17
18 180up = cv::threshold(gradient, "<180");
19 180up_res = cv::convertScaleAbs(180up);
20 sub_res = cv::subtract(180matrix, 180up_res);
21 180low = cv::threshold(gradient, "180<");
22
23 add_res = cv::add(sub_res, 180low);
24 histogram = cv::divide(add_res, div_in);}

Listing 3.5: Generated IR description of the target running binary.

II. IR Description The Courier IR description as shown in List 3.5 was automatically generated.

Users modify this to change processing flow if needed (Step 6 in the Figure 3.1). At line 9, the

cv::VideoCapture function was used to provide input images for the processing flow. Note that in the
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actual software, cv::VideoCapture was given extra arguments which were captured in the Courier IR.

However, Courier IR hid these from the user for simplicity. Furthermore, images were taken as an

argument of volatileInput at lines 3 to 7, and so it was protected from modification since this is the

very first data. Two cv::Sobel with different arguments were at lines 12 and 14. At line 10, cv::Sobel

with “X-axis” argument applied a x-axis filter and the other applied a Y-axis filter. Such differences

can be detected by a dynamic program profile on Frontend.

Number of input and output were correctly analyzed as well. cv::cartToPolar, cv::subtract,

cv::add, and cv::divide were binary transforms, which obtained two inputs and generated one output.

All the other functions were unary transforms, which have one input/output, and the column order

corresponds to the original processing order.

III. Generating a task graph After the profile run, a task graph of the binary was automatically gen-

erated, which is shown on the left of Figure 3.17. User can refer the graph and decide off-load

and non-off-load parts if needed (Step 6 in Figure 3.1). The graph was identical to the previously

described processing flow. Rectangle nodes and ellipse nodes represent functions and original in-

put/output data, respectively. Edges represent intermediate data. The thickness of the edge also

reflects the size of data. Processing times are displayed in the second row of the rectangle node.

Nodes are aligned in chronological order. According to the graph, each image was processed in

77,923 [µs] in total.

Rectangle nodes of various sizes allow the user to easily recognize that large nodes (e.g.cv::convert-

ScaleAbs or cv::divide) occupy a large fraction of total processing time. Two kinds of thickness of

edges can be seen in the figure since cv::Sobel and cv::convertScaleAbs functions change the number

of bit-depth of their inputs. The data size of thicker edges is 7.91Mbit (1920×1080×32bit×1-channel)

and 1.98Mbit (the same property, but 8bit), respectively. Dynamic program analysis on Frontend cor-

rectly extracts the runtime information.

The graph also illustrates that this binary included typical branching and converging, for example

both cv::Sobel operators used the same image as an input, and these output images became inputs

of cv::cartToPolar. Furthermore, the vertical relative offsets (separated by dash lines) illustrate

sequential execution, which is an opportunity to exploit function level parallelism. Additionally,

cv::Sobel_y created a copy of input images which seems to be unnecessary. After modifying the

processing flow with IR, such redundant can be deleted.

IV. Acceleration by Courier In this step (Step 7 in the Figure 3.1), Courier searched for “safely off-

loadable” parts, and found that all of the functions are candidates. Courier automatically off-loaded

them by using Function Off-loader and existing corresponding library. Finally, Courier updated the

IR and introduces the following new lines at the end of List 3.5: cpu2acc intercepted cv::cvtColor

function when it was called in running binary. acc2cpu sent back “gradient” image date to the original

binary.
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Figure 3.17: Generated task graph from running binary of HOG (left) and off-loaded functions
(right) with notations. Function Off-loader generated the wrapper for the functions within cpu2acc
and acc2cpu. It also selected the path of “Off-load” and maintained the processing flow by using
“Pass Through”.
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25 // Off-load from cv::cvtColor to cv::divide
26 cpu2acc(cv::cvtColor , MOVE, gpu0);
27 acc2cpu(cv::divide, MOVE, gpu0);

Listing 3.6: Additional statements to off-load functions

In Courier for OpenCV, cpu2acc copied and transferred designated images to the accelerator.

The following images and functions run on the accelerator until acc2cpu function was called.

Courier also selected the “Pass Through” pass in Function Off-loader to reduce the number of

data transfer and maintain the original processing flow. (to deal with a RDNT-RXTX problem which

is shown in Figure 3.6.) For the first purpose, Function Off-loader intercepted cv::cvtColor as “the

head” of a series of functions and “off-loads”, and then all functions were run on GPU. For the rest

of functions, Courier intercepted and “Pass Through” even if a function doesn’t off-loaded.

If Courier used ordinary DLL injection, nine data transfers happen. Small images (1.98MB)

took 447[µs] to make a round trip, while large ones (7.91MB) took 3,176[µs], respectively. Nine data

transfers (two round trips for small images, and seven for large ones: 447×2+3, 176×7 = 23, 106[µs])

were reduced to one (send small image and send back large one: 1, 109 + 724 = 1, 833[µs]). Data

transfer time was reduced to less than 10%, and RDNT-RXTX problem was solved.

Additional tweaks can be performed by the user. According to Figure 3.17, cv::Mat::copyTo

seemed redundant. Therefore, this copying function could be deleted as below by the user, and

Function Off-loader replaced this function with “Pass Through”. Because this deletion may affect

the processing flow, Courier does not automatically perform it. For such “unsafe” processing flow

modification, Courier makes it the responsibility of the user to check whether the final result is the

same as the original one or not.

13 // copyTo_dst = cv::Mat::copyTo(graySc);
14 ysobel = cv::Sobel(graySc, "Y-axis");

Listing 3.7: Delete redundant copyTo

In the case of image processing, processing time can be shorten by changing processing parame-

ters while the final result is almost the same. For example, Sobel filter used in the case study adopted

3x3 processing window, and the size of window can be changed to 5x5. This kind of modification is

classified in the “unsafe” off-load by using domain specific knowledge. Although it can be realized

by changing the correspondence relationship of functions, a quantitative analysis is future work.

V. Results The right side of Figure 3.17 shows the off-loaded result. Courier replaced the designated

functions and maintains the original processing flow by selecting “Pass Through”. On the GPU

side, off-loaded version was the same as the original one and predefined accelerated functions with

wrapper were used. “copyTo” did not run on GPU anymore, and was “Passed Through” in the binary.
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That is, “copyTo” was deleted.

Table 3.1: Processing time comparison of HOG([µs])

Original Off-loaded Courier’s Manual
on CPU functions result imple.

Processing Step1
cpu2acc — 1,123 — 1,109
cvtColor 5,296 418 8,690 418

split 5,240 457 15 442
Sobel_x 12,617 899 8.9 956
copyTo 469 — 7.8 —
Sobel_y 12,769 827 8.8 873

Processing Step2
cartToPolar 9,385 654 7.8 735
threshold 1,529 198 7.4 195

convertScaleAbs 10,900 506 7.8 607
subtract 5,299 438 7.2 495

threshold 1,456 194 6.6 204
Processing Step3

add 2,569 402 7.7 408
divide 15,690 277 7.3 284

acc2cpu — 2,297 — 724
Total 77,923 8,690 8,766 7,450

Speed-up x1.00 x8.96 x8.89 x10.46

Table 3.1 shows processing times. Courier shortened the processing time to 8,766[µs] and sped

up x8.89 compared with the original binary. In Table 3.1, “Original on CPU” shows the target

binary runs on CPU, “Off-loaded functions” is the processing time of each function in off-loaded

parts. “Courier’s” result is the final result including the overhead of “Pass Through”. Note that the

processing time of cvtColor was equal to “Off-loaded” functions. It shows that cvtColor was replaced

by Courier and all functions were executed here. Additionally, processing time of acc2cpu in “Off-

loaded” functions was longer than that of “Manual imple.” because current acc2cpu for OpenCV

included additional data copy. The data copy was required in order to assign the result data forcibly

from GPU to the binary. “Manual imple.” was a manually implemented GPU version of the original

application. The difference between “Courier’s result and “Manual imple.” arose from cpu2acc

and acc2cpu. Both commands included data type conversion along with data transfer from GPU to

CPU. Additionally, the number of data transfer of “Courier’s” result was the same as that of “Manual

imple.” since Function Off-loader reduced the redundant data transfer. An overhead of Function

Off-loader for OpenCV was also measured . We subtracted the processing time of “Not-off-load”

from ordinary run to measure an overhead of wrapper function and dynamic linking. It was around

150[µs] for each and was attributed to OpenCV data type conversion and function pointer replacing.
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The former one was less than 20 [µs] and the latter one was around 130[µs]. For the “Pass Through”,

the overhead was around 7[µs] for each.

3.4.2 General Matrix Multiplication (GEMM) on a single mixed CPU-GPU platform

General matrix multiplication (gemm) performs the following equation C = αAB + βC, and a very

widely used in computational science. dgemm is a double precision version of gemm. We prepared

binary that only had dgemm function of BLAS, widely used for common linear algebra operations.

Binary included cblas_dgemm in ATLAS 3.8.4 [54] for CPU, and Courier used cublasDgemm in

cuBLAS [5] in CUDA 5.5 for GPU.

I. Analyzing running binary We prepared a tracing sub-program for BLAS and it extracted the fol-

lowing information:

• BLAS API function name with arguments,

• function start/end absolute time,

• # of input/output of function, and

• raw value and size of input/output matrix

II. IR Description The following IR description showed that all the data were protected from modi-

fication via volatileInput/Output.

1 void dgemm_cblas.o_main(void){
2 volatileInput(src0); volatileInput(src1);
3 volatileInput(src2); volatileOutput(dst);
4 dst = cblas_dgemm(src0, src1, src2); }

Listing 3.8: dgemm processing flow in Courier IR.

III. Generating a task graph After the profile run, a task graph was generated which is on the left of

Figure 3.18. According to the graph, cblas_dgemm was a ternary function, which obtained three data

(“src0”,“src1” and “src2”) and produced result data “dst”. The matrices were all 2048×2048, and

consequently all the ellipse nodes were the same size. CPU took 1379[ms] to process each matrices.

IV. Acceleration with Courier Courier found cblas_dgemm was “safely off-loadable” because all

the input/output data were extracted, and the corresponding accelerator function cublasDgemm was

available. Then cblas_dgemm was automatically off-loaded. Function Off-loader generated a wrap-

per which reserved memory and transferred matrices to one GPU memory with the use of cudaMalloc
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Figure 3.18: Generated task graph from dgemm binary.

and cublasSet/GetMatrix, respectively. Here no property change was required. For the IR descrip-

tion, Courier automatically introduced the cpu2acc and acc2cpu around the cblas_dgemm. In this

case, all the acceleration processes were done by Courier, and there was no need for the user.

V. Results The right of Figure 3.18 shows the off-loaded flow. Processing time was shortened to

151.3[ms] by cublasDgemm on GPU. Including the data transfer and conversion time, total process-

ing was sped up x8.16. Table 3.2 shows the final result. Courier achieved almost the same speed up

ratio as manual GPU implementation. This is because Function Off-loader just performs the same

thing, memory reservation and data transfer, with manual acceleration.

The overhead of Function Off-loader for BLAS was 0.08[µs]. BLAS had much smaller overhead

than that of OpenCV since it did not require data type conversion in this case. Consequently, overhead

of Function Off-loader depends on the target function.

Table 3.2: Processing time comparison of gemm([ms])

Original Off-loaded Courier’s Manual
on CPU functions result imple.

cpu2acc — 10.5 — 10.4
dgemm 1,379.2 151.3 168.7 150.6
acc2cpu — 6.0 — 5.9

Total 1,379.2 168.7 168.7 166.9
Speed-up x1.00 x8.16 x8.16 x8.26

3.4.3 Power Spectral Density Estimation (PSD) on a single mixed CPU-GPU platform

GNU Octave [55] is an open-source software for numerical computations and mostly compatible with

MATLAB. Octave accepts user script file for execution. We downloaded a script file that performs

power spectral density (PSD) estimation from the website [56]. It included fast Fourier transform
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(FFT) and other processing. FFT is a widely used routine for numerical analysis. Octave performs

FFT by using fftw library [57] on CPU in default. Courier replaced fftw with cuFFT and off-loaded

FFT to GPU. GNU Octave 3.6.4 (with fftw 3.4.4) and cuFFT [58] in CUDA 6.0 were used.

I. Analyzing running binary We prepared a tracing sub-program for FFT in Octave and it extracted

the same type of information as for BLAS.

II. IR Description IR description was almost the same as BLAS case study. Octave included many

other processes, but Courier could not analyze them since the current tracing sub-program doesn’t

support them. By adding information of other functions, applicability will be improved.

1 void octave.o_main(void){
2 volatileInput(src0); volatileInput(src1);
3 volatileOutput(dst);
4 dst = fftw_execute_dft_r2d(src0, src1); }

Listing 3.9: Detected processing flow in Courier IR.

III. Generating a task graph After the profile run, a task graph was generated. The graph was almost

the same as that of BLAS case study and shows that fftw_execute_dft_r2d performed actual FFT

in fftw library. It performed 16,777,216 points FFT and takes 449.0[ms] on CPU. Entire processing

time of the PSD script was 1,270[ms].

IV. Acceleration with Courier Courier found that fftw_execute_dft_r2c was “safely off-loadable” and

a corresponding accelerator function (fftw-compatible cuFFT) was available. Function Off-loader

generated a wrapper includes the real-number input DFT function of cuFFT. IR description was also

changed that just like BLAS case.

V. Results Processing time of FFT was shortened to 99.2[ms]. Including the data transfer and con-

version time, entire processing time became 968[ms]. Table 3.3 shows the final result. Note that

“Total” is the whole processing time of the PSD script which includes FFT and other processes.

Speed up ratio was the same as manual GPU implementation since cuFFT’s FFT function included

pre/post-process. The overhead along with off-load was included in the result and cpu2acc/acc2cpu

was zero. In this case, wrapper did not do any additional processing.

3.4.4 Multiple Sobel Operator on multiple mixed CPU-GPU platform

Evaluation environment is shown in Table 2.1. An equation 3.1 is used to measure speed up ratio.
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Table 3.3: Processing time comparison of PSD([ms])

Original Off-loaded Courier’s Manual
on CPU functions result imple.

cpu2acc — 0 - -
fftw_execute_dft_r2c 449.0 99.2 99.2 99.2

acc2cpu — 0 - -
Other funcs 821.2 - 868.8 868.8

Total 1,270.2 - 99.2 99.2
Speed-up x1.00 - x1.23 x1.23

S peedup[%] =
TIAP

TDLP1 − TIAP
× 100 (3.1)

An image filter called Sobel operators is used for the evaluation. It consists of three tasks, 50

times of x-axis Sobel operator (“xSobel”), 50 times of y-axis Sobel operator (“ySobel”), and gen-

eration of the output image in PNG format (“imout”). 100 images (1280x720 pixel) are processed.

x-Sobel and y-Sobel run on GPU, and imout runs on CPU. Each task is implemented in OpenCV

which is an open source library for image processing [59].

Six different versions of Sobel operator were implemented as described in Table 3.4. “CPU”

running on only a CPU is the baseline. CPU is implemented in task level pipeline style, and used three

physical threads. “DLP1” and “DLP2” are typical implementations for GPU, data level parallelism

is exploited as shown in Figure 3.8. In the case of DLP1, on the CPU a thread to control one GPU

runs. All 100 images are sent to the GPU, then x-Sobel and y-Sobel are applied sequentially. In the

case of DLP2, two threads to control two GPUs run on the CPU. 50 images are sent to each GPU,

then x-Sobel and y-Sobel are applied sequentially. Intel TBB’s thread is only used to run threads.

OpenMP or some other parallelise libraries are not used.

“IAP1”, “IAP2” and “IAP2-P2” are implemented in IAP style. In these three versions, three

tasks are applied to each input image in a pipelined manner. All tasks are registered to TBB and

pipelined as I described in Section 3.3. Setting of TBB is decided to achieve the shortest execution

time. Intermediate data of stages are stored in DDR3 on PEACH2 or DDR3 on CPU. IAP1 isn’t

fully implemented in IAP style since only one GPU is used and two tasks are switched in the single

GPU. For IAP2 and IAP2-P2, all tasks run in a pipelined manner including data communication on

GPUs. IAP2 which is shown in Figure 3.14, is assumed running on an ordinary computer node. It is

necessary to copy inter-accelerator data to CPU to send another node. On the other hand, IAP2-P2

which uses PEACH2 is not required to copy the data to CPU. Additionally, the data are stored to

DDR3 on PEACH2. Figure 3.15 depicts IAP-P2. Note that IAP1 sends back the intermediate date to

CPU in order to make IAPs under fair condition.



3. Courier: A Toolchain for Automatic Function Off-load on a CPU-GPU Platform
3.4. Case Study 63

Table 3.4: Six different implementation of Sobel operator

Style Used GPUs Used memory
CPU Task Pipeline 0 N/A (CPU)

DLP1 Data Parallel 1 N/A (CPU)
DLP2 Data Parallel 2 N/A (CPU)
IAP1 Task Pipeline 1 CPU
IAP2 Task Pipeline 2 CPU

IAP2-P2 Task Pipeline 2 PEACH2

From the viewpoint of data movement, DLP and IAP are completely different. The main draw-

back of DLP implementation is that, imout cannot start process until all the images are processed.

On the other hand, IAP can start imout stage once after each image is finished to be processed in the

former stages, since it is implemented in pipelined manner. Such sequential processing can be found

in many applications.

Results Figure 3.19 shows a processing time and a chronological processing order of five GPU

implementations. CPU only implementation takes 293.1s. It is not included in the figure. Implemen-

tations using GPU achieved at least 88.1% speed up compared to CPU. Processing time to apply three

processes to each image is as follows, xSobel is 0.12 s, ySobel is 0.12 s, and imout is 0.04s. These

numbers are the same in all implementations. The difference is processing order and the number of

used GPUs. Note that, data transfer time is not shown in Figure 3.19 due to space limitations.

Processing time of this application is short, namely, data transfer time accounts for larger portion

of total processing time. Longer data transfer time and short processing time usually cause negative

effect to the total processing time, however IAPs show speed up. That is, I can expect that appli-

cations which have the opposite feature will show better result. In the case of data level parallel

implementations, processing time of x/y-Sobel of DLP2 takes only half of that of DLP1, since evalu-

ation application has no task and data dependencies. By contrast, the whole processing time of DLP2

doesn’t take half of that of DLP1 since imout cannot start processing until two Sobel operators are

finished. In the case of inter-accelerator pipeline, IAP1 achieved 33% speed up compared to DLP2.

IAP1 which is implemented in pipelined manner successfully hides the data transfer time and the

processing time of imout. The scheduler inside a GPU switches two Sobel operator tasks. IAP2 and

IAP2-P2 achieved 52% speed up compared to DLP2, and also achieved 28 % speed up compared

to IAP1. These implementations do not require task switch. Specifically, advantage of task level

pipelining on multiple accelerator is proved.

Difference between IAP2 and IAP2-P2 is the place to store 2MByte inter accelerator data. In the

case of IAP2, round trip data transfer between GPU and CPU occurs twice as shown in Figure 3.14.

It takes approximately 5,000 µsec in total. Table 3.5 shows more specific time of data transfer to

send 2MB to each DDR3.

Data transfer time of IAP2-P2 is a bit slow compared to IAP2. There are some reasons. First of
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Table 3.5: Transfer time of 2MB data to each memory (inside a node)

CPU to GPU GPU to CPU
Time [µsec] 1,170 1,340

GPU to PEACH2 PEACH2 to GPU
Time [µsec] 2,200 1,600

all, PEACH2 uses PCIe Gen2 x8 and CPU-GPU uses PCIe Gen3 x8. Furthermore, another reason is

the small size of Intel Sandy Bridge’s PCIe buffer. In addition, currently our data sending/receiving

API for PEACH2 is beta version. Burst transfer is not fully supported. More precisely large data is

divided into 4 byte data and transferred. Note that, this number is inside the single node, data transfer

time of CPU and GPU to another TCA nodes becomes larger. In contrast, transfer time of GPU and

PEACH2 is constant even if GPU sends the data to other TCA nodes.
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Figure 3.19: Processing time comparison and chronological processing order. IAPs are faster than
DLPs at least 33%. IAP2-P2 which stores data to PEACH2 is almost the same as IAP2 which stores
data to CPU. DLP1/2 cannot start imout until x/y-Sobel are finished. IAP1/2 and IAP2-P2, pipelined
implementations, can start imout once after each image is applied x/ySobel. Processing time of each
task for one image is as follows, xSobel is 0.12 s, ySobel is 0.12 s, and imout is 0.04s.
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3.5 Related Work

3.5.1 Toolchains for supporting off-loading

There is a significant amount of existing researches on automatic off-loading systems [12] [13] [8]

[15] [16] [40] [41] [60] [61].

For a mixed CPU-GPU platform, Chi-Keung et al. proposed a new programming model called

Qilin, and automatic load distribution system that considered the size of a data-set called adaptive

mapping [12]. For automatic distribution, it first requires a training run to build a database of rela-

tionships between the size of a data set and processing time. Users prepare CPU code, accelerator

code, and special data arrays, which are described in Qilin API. Then their system automatically

balances distribution of computation between them while taking data size into account. Such fea-

tures are similar to our “profile run” in Section 3.1.3. This did not include a system to determine the

off-load parts as well as [13] or extract processing flow.

For a mixed CPU-FPGA platform, DARES [14] by Andrew Milakovich et al., Hthread [8] by

Andrews et al., and FUSE [15] by Aws et al. are typical examples. DARES is one of a state-of-the-

art software and hardware co-design framework on a reconfigurable system. Their target platform is

a mixed FPGA-CPU platform called DARE, which is different from ours. In this framework, users

first divide a target application into tasks and describe a communication between tasks in sequential

manner. Then DARES compiles the tasks and the communication hardware. If suitable hardware

modules for tasks are available, DARES uses them. This framework is similar to our “Backend”,

but DARES users have to re-compile a target application source code and profile it. The other two

frameworks also hide arbitration and data communication, since users do not need to care about

hardware modules on FPGA. They just write software source codes in a conventional manner, and

then implemented parts are automatically replaced with pre-defined hardware modules. They do not

focus on automatic choice of the parts or data transfer time either.

Most of them targets the expert user who can write code from scratch. However, as far as I know,

there is no other similar work that can accelerate running binaries without accessing the original

source code. Most common off-loading systems did not touch importance to function call graph with

data and its data transfer time.

3.5.2 Related techniques used in Courier

In terms of the processing flow extraction, Feng et al. proposed a sophisticated method to extract

fine grained dataflow from low-level program representation, and an algorithm to convert dataflow

into threads-level parallelism [11]. They instrument a new static profiling path to GCC middle-end.

Although their algorithm supports multi-thread, the target is a program code not a running binary.

DLL-injection or DLL hijacking are used in software research field [62] [63]. Purpose of them

are to fully replaces an original function. Moreover, data transfer and processing flow are not a matter.
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Backend uses DLL hijacking as a basis for realizing dynamic off-loading, but it didn’t directly use it.

One of the important problems of today’s application acceleration is data transfer time. Once DLL

hijacking fully replace an original function, data transfer time easily degrades performance. Further-

more, Courier has to maintain original processing flow after off-loading. Thus, I proposed Off-load

Switcher to address these problems. In addition, DLL hijacking technique can be widely used in

Linux. This means that Courier potentially supports many platforms. Heterogeneous platform which

has CPU that runs Linux and accelerator emerged even in embedded area.

3.5.3 Related techniques used in Task Pipelining

Little research has been done on this topic for multiple GPUs. AXEL [22], the heterogeneous super-

computer cluster from Imperial College, has Map-Reduce framework to run application efficiently

over multiple AXEL nodes. They implemented N-body simulation while exploiting data parallelism

by using the framework. Although data parallel application works well in the framework and AXEL

nodes, stream application is hard to apply this environment. Though AXEL has an inter-node com-

munication network (PCI-X 2.0, 1.066Gbps at maximum [64]), they didn’t use it in the paper. Huynh

et.al. proposed a framework for implementing stream application on multiple GPUs [65]. They fo-

cused on programming model to exploit task parallelism and to describe stream application.

In the area of high performance computing with multiple FPGAs, Sano et al. proposed a simi-

lar concept in multiple FPGAs environment [66]. They focused on time axis task parallelism, and

achieved strong scaling on stencil computation of CFD while keeping memory bandwidth constant.

Their benchmark application is relatively simple and the target platform is FPGAs. That is, problems

on communication between accelerators, inter-accelerator data, and pipelining become simple. In

their case, FPGAs are connected via two 1GB/s uni-directional links (High-speed Terasic Connec-

tors). Connection doesn’t become bottleneck of this system since inter-accelerator data is divided

into small pieces to fully utilize FPGA benefit. Storage which stores inter accelerator data is consist-

ing of registers, thus the latency is very low. TCA can deal with more various applications since it has

CPU, GPU and FPGA. However, the above three problems (communication between accelerators,

inter-accelerator data, and pipelining) are difficult to solve.
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3.6 Chapter Summary

This chapter presents Courier: a new toolchain for application acceleration. Courier is designed for

detecting a processing flow of a target running binary and function off-loading without needing ac-

cess to and re-compile the original source code of the binary. It consist of three main part: Frontend,

Courier IR, and Backend. Frontend analyzes and detects processing flow within the running binary.

Backend provides Function Off-loader which automatically replaces functions in the binary with cor-

responding accelerator functions, reduces the number of data transfer time, and maintains original

processing flow. Courier IR generates a task graph and bridges Frontend and Backend. We also

proposed a task level pipelining on multiple GPUs in TCA node. Inter Accelerator Pipelining (IAP)

is an implementation concept that connects multiple accelerators as a form of a pipeline computa-

tion. We implemented a simple image processing application on a single TCA node in IAP style to

evaluate the concept. We also consider three problems associated with the pipeline implementation.

The problems are communication between accelerators, storage which stores inter accelerator data,

and pipelining itself. We solved them by using PEACH2 and Intel TBB. Finally, three application

binaries of HOG, dgemm and PSD are accelerated by using Courier on CPU-GPU environment. Sim-

ple image processing application is also accelerated by using IAP implementation not data parallel

implementation.



Chapter 4

Courier-FPGA: A Toolchain for Mixed
Software Hardware Pipeline on a
CPU-FPGA Platform

This chapter proposes yet another new tool chain, called Courier-FPGA. Courier-FPGA is based on

Courier and its target heterogeneous platform is a mixed CPU-FPGA. It analyzes the target binary

running on the CPU, extracts information of functions and builds a function-level pipeline structure

between the hardware modules on an FPGA and software functions on a CPU automatically.

Courier-FPGA is first presented. It includes special features that treat running binaries and ac-

celerate them by replacing software functions with the built pipeline including pre-defined hardware

modules. Then, this chapter describes the details of mixed software hardware pipelines on CPU-

FPGA platforms in Section 4.2 and Section 4.3. Section 4.4 gives a case study showing the capability

of Courier-FPGA.

A short summary of this chapter and the differences between Courier-FPGA and the original

Courier are as follows:

• The original Courier is designed for a system with a host CPU and a GPU. In contrast, Courier-

FPGA treats a CPU and multiple hardware acceleration modules implemented on an FPGA.

• By making the best use of the combination of CPU and multiple hardware acceleration mod-

ules, a mixed software hardware pipeline is introduced on CPU-FPGA platforms. Pipeline

Generator builds the pipeline in which processing flow is the same as the original one even if

the original flow is not pipelined.
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4.1 Courier-FPGA: A Toolchain for Mixed Software Hardware Pipeline

Courier-FPGA is based on Courier, a toolchain for a single accelerator like GPU. This section de-

scribes the detail of Courier-FPGA and its features to make the best use of CPU-FPGA platforms.

Please refer back to Chapter 3 for details of the original Courier.

Figure 4.1: Overview and work-flow of Courier-FPGA: the Frontend analyzes the running binary
(Step1, 2 and 3) and then generates a task graph and a Courier Intermediate Representation (IR). The
user refers to the graph and results, decides which parts to off-load and rewrites IR if needed (Steps
4, 5, 6 and 7). After that, the Pipeline Generator builds a mixed software hardware pipeline (Step 8).
Finally, the Function Off-loader replaces function and off-loads it to the accelerator (Step 9).

4.1.1 Overview of Courier-FPGA

A motivation of the “original” version of Courier was to provide a simplified work-flow of applica-

tion acceleration for non-expert users. The original Courier requires a target binary and pre-defined
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corresponding functions of the accelerator. A user only designates a running target binary to the

original Courier. The original Courier starts analysis and then constructs a processing flow of the bi-

nary. The functions in the binary which is running on the CPU can be dynamically and automatically

replaced with the corresponding functions of the GPU. The original Courier is capable of applica-

tion analysis, processing flow graph construction and dynamic function replacement. It cannot build

function-level pipelines nor deal with hardware modules on an FPGA. By providing Pipeline Gen-

erator and Function Off-loader, Courier-FPGA can build a mixed software hardware pipeline on a

CPU-FPGA platform.

Figure 4.1 illustrates an overview of Courier-FPGA and its work-flow. Frontend and Courier

IR of Courier-FPGA are the same as those of original Courier, but Backend newly supports FPGA.

Courier-FPGA is comprised of three main parts: Frontend, Courier Intermediate Representation

(IR), and Backend.

• The Frontend analyzes a running target binary and takes a heuristic approach to make the task

graph from gathered information. The Frontend doesn’t require access to the original source

code or any sort of re-compilation. It can recognize the functions in the graph to be the targets

of acceleration. Moreover, it can refer to the input/output data and their properties in the graph

during the acceleration process to decrease the number of data transfers between the CPU and

accelerator.

• Courier Intermediate Representation (IR) is a simplified language that enables users to modify

processing flow and designate parts to off-load to the Backend if needed.

• The Backend makes a mixed software hardware pipeline. It automatically off-loads the func-

tion, if the corresponding function is ready for the accelerator. The Function Off-loader auto-

matically decreases the number of data transfers along with off-load, and maintains the origi-

nal processing flow before and after off-load. The original Courier can deal with GPU, while

Courier-FPGA can deal with FPGA.

The Backend can be divided into two steps that corresponds to Steps 8 and 9 in Figure 4.1. In

Step 8, the Pipeline Generator builds a mixed software hardware pipeline. It first generates the

corresponding hardware module on an FPGA, and then prepares software functions and a pipeline

control program. Then, the Function Off-loader selects a path and replaces functions with the gen-

erated pipeline in Step 9. These two functions in the Backend, the Pipeline Generator and Function

Off-loader, are originally developed for Courier-FPGA.
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4.2 A Mixed Software Hardware Pipeline

4.2.1 Fundamental Concept

The Backend automatically builds a mixed software hardware pipeline and off-loads the functions

to the pipeline after the Frontend analyzes the running binary and makes a task graph. The pipeline

includes pre-defined corresponding hardware modules on an FPGA if they exist. If a function does

not have a corresponding hardware module, it is run only on CPU. Hence, the extracted flow is

divided into tasks and each task is composed of multiple software functions or hardware modules.

Here, a “task” is not a “fine grained calculation such as a single x86 assembly code or arithmetic

operation on an FPGA, but a process with a certain amount of computation, such as a group of a

few functions [45]”. Unlike a single GPU, the off-loading target of the original Courier, the target is

multiple tasks than can work in parallel. Both software and hardware tasks should run in a pipelined

manner so as to make the best use of the parallelism.

Figure 4.2 shows an example of automatic off-loading by using the Pipeline Generator and

Function Off-loader. The Structure of a built pipeline; a mixed software hardware pipeline on a

CPU-FPGA platform, is composed of the following three main parts:

• A task pipeline control program: Program that runs the software and hardware tasks in parallel.

• Software task: Software functions run on the CPU.

• Hardware task: Hardware modules run on the FPGA.

The top panel illustrates Step 8, in which the Pipeline Generator makes a mixed software hard-

ware pipeline. First, the Pipeline Generator automatically generates a code of pre-defined corre-

sponding hardware modules, configures them on the FPGA, and prepares software functions. Then,

it makes a control program that runs mixed software hardware tasks in parallel. The parallel tasks

perform processing corresponding to a target binary. In Step 9 that is illustrated at the bottom of

Figure 4.2, “cv::Sobel” in the target binary is replaced with a wrapped function which is made by

the Function Off-loader. The wrapped function includes a switcher. When “off-load” is selected, the

control program made by the Pipeline Generator in Step 8 starts the process. Even if the functions

in the target binary run sequentially, the Function Off-loader can perform the same processing in a

pipelined manner by using the built pipeline. Figure 4.3 shows a typical case of building a mixed

software hardware pipeline.

The following sections describes how the Pipeline Generator automatically builds an efficient

mixed software hardware task pipeline, and how the Function Off-loader performs off-loading auto-

matically.
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Figure 4.2: In step 8, the Pipeline Generator prepares a mixed software hardware task pipeline. In
step 9, the Function Off-loader uses the pipeline when “off-load is selected”.

4.2.2 Software Controlled Task Pipeline

A task pipeline control program that runs mixed software hardware tasks in a pipelined manner is

needed in order to maximize the processing power of a CPU-FPGA platform. Recently, platforms

such as Zynq [3] and Arria V SoC [4] have emerged which integrate FPGA and ARM CPU. In addi-

tion, there are some open source libraries to enable parallel execution on the ARM CPU, for example

pthreads [46], Boost::thread [47], OpenMP [48], or Glib::thread [49]. However, they are not intended

for pipelined execution of tasks. OpenMP requires tricky programming or unofficial extension to re-

alize pipeline execution [50] [51], since it is intended to exploit loop level parallelism. The others

are developed for exploiting thread level parallelism, and not suitable for task level pipeline.

Intel Thread Building Blocks (TBB) is a flexible open source library that runs multiple functions

in a pipelined manner on a multi-core CPU. The tbb::pipeline class is provided to build a straight

forward pipeline. A user adds an arbitrary task to each stage of the pipeline skeleton, and also

specifies the processing order and a parallelism of the stages. After that, TBB automatically runs the

tasks in a pipelined manner. TBB introduces the concepts of a thread pool and token base pipeline.
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Multiple slave threads are managed by a master thread. TBB assigns a task which is registered by

the user to an idle slave thread and also transfers input data. Then, the slave thread runs the task

and finally sends back output data and a token to the master thread. TBB is also capable of double

buffering when two or more tasks are registered. This type of pipeline makes it easy to re-order and

insert new tasks.

Figure 4.3 shows the behavior of a typical mixed software hardware pipeline controlled by a task

pipeline control program. The Pipeline Generator first searches for corresponding hardware func-

tions to replace the running functions in the target binary, which is illustrated on the left of the figure.

To find appropriate hardware modules, I create a table which contains correspondence relationship

between software functions and hardware modules. Pipeline Generator searches corresponding mod-

ules from the table and uses registered modules. In the case of cv::sobel function in OpenCV library,

a corresponding hardware module is hls::Sobel. A user can add correspondence relationship of user-

original modules to use them. In the case of the figure, Courier finds two corresponding hardware

functions: func B and D. Then, it generates source code for two hardware modules: the former con-

tains fpga_funcB, and the latter contains fpga_funcD. In addition, Task #1 and Task #3 which just

send and receive input and output data are also generated as a software part. On the other hand, there

are no hardware modules for funcA, C and E, so a software function is made for it. Thus, five tasks,

two hardware modules and three software functions, are generated for the five pipeline stages shown

in the figure. Tasks are individually compiled as a shared object before a deployed run. The pipeline

control program runs these tasks in parallel.

On a deployed run, tasks work as follows from the viewpoint of the target binary. The Function

Off-loader hooks and replaces funcA with Task #0. It also hooks the first input data (data #0) from

the running binary. Then, Task #0 first executes automatically loaded funcA and stores the result

(data #1’) in external memory. And then, Task #1 invokes “start” command (Xh0_Start()) to send

the data to the hardware module #h0, and receives “done” signal (Xh0_Done()) when fpga_funcB

finishes a process and stores a result data (data #2’) in the memory. While Task#1 is processing the

first data, the pipeline control program starts Task#0. Consequently, the second input data from the

running binary are simultaneously processed by Task#0. This is a software controlled task pipeline.

Note that intermediate data such as “data” #1’ are stored in the external memory and data start/done

commands are automatically generated by Xilinx’s high-level synthesis tool.

Unlike a common hardware pipeline in which the previous stage cannot start until the next stage

has finished, a pipeline provided by TBB can start each stage even if the next stage doesn’t finish.

For example, Task #0 can take the second input while Task #1 is processing a time consuming task

for the first input. As a result, the pipeline can reduce the probability of pipeline stall compared with

the hardware pipeline. Additionally, stages which run in parallel can be automatically changed since

a task is randomly assigned to an idle thread by the control program.
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Figure 4.3: Behavior of a typical mixed software hardware pipeline controlled by software program.
Shaded rectangles are generated by Pipeline Generator. Tasks run in a pipelined manner, and each
task can send and receive input and output data which is indicated by bold line. Input and output data
of tasks are stored in the external memory. In this case, Task #1 and #3 run hardware module #h0
and #h1 while Task #0, #2 and #4 run software function.
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4.2.3 Building an Efficient Mixed Software Hardware Pipeline

When we build a mixed software hardware pipeline, we have to consider concurrency and the number

of threads in order to make it efficient. Considering these problems is equal to a decision of which

tasks can run in parallel and how to divide the extracted flow into some stages. The following solu-

tions are proposed and implemented them in the Pipeline Generator so as to automatically generate

an efficient pipeline.

4.2.3.1 Concurrency

A feature of the mixed software hardware pipeline is that stages which run in parallel can be automat-

ically changed. In typical video processing, only the image input/output must run serially, while the

rest of the function can run in parallel. The former is parameterized as serial_in_order, and the latter

is parameterized as parallel in Intel TBB. The Pipeline Generator defines the volatileInput/Output as

serial_in_order so as to make them run in sequential and the rest of the functions as parallel so as to

make them run in parallel by default.

4.2.3.2 Number of Threads

The number of tasks which can run in parallel, depends on the number of logical CPU threads on

the platform. The number must be defined to make the task pipeline with Intel TBB. The Pipeline

Generator automatically sets the parameter to the maximum number of threads in order to build an

efficient pipeline control program. In the case of Xilinx’s Zynq, there are two logical threads. It

means that even if there are many tasks, only two tasks can run in parallel. This limitation will be

relaxed in future embedded CPU cores which can run more logical threads. For example, the quad-

core ARM Cortex-A7 is already available. When we use this quad-core CPU, four tasks can run in

parallel.

Current Pipeline Generator divides the extracted processing flow into some stages by using the

simple partitioning policy: “Pipeline Generator” divides total processing time by the number of

threads plus one and searches the closest sub-total of processing time of functions. It can be formu-

lated as follows.

Tstage = Ttotal ÷ (Nlogical_thread + 1) (4.1)

where Tstage is the target time of each stage, Ttotal is the total processing time, Nlogical_thread is the

number of logical threads and Nlogical_thread+1 is the number of pipeline stages. The policy is derived

from the following considerations. According to our preliminary evaluation, the number of stages

should be close to that of a logical thread of the Zynq because controlling many tasks is a heavy job

for Zynq’s CPU. Furthermore, to keep the minimal processing time, each pipeline stage should run

in nearly the same time, i.e. a balanced pipeline. Note that, processing time of software functions can

be obtained in the analyzed data from the Frontend and that of hardware modules can be estimated
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by the logic synthesis tool, and thus processing time of all functions are available.

4.2.4 Generating Code for Hardware Module

For each hardware task in Section 4.4, it is used that an OpenCV-compatible high-level synthesis li-

brary provided by Xilinx [6]. The Pipeline Generator generates the source code of the hardware mod-

ule of corresponding processing, and adds an input/output port for the module. The AXI4-Streaming

protocol [67] and Video DMA controller are used for the input/output port to communicate with the

ARM CPU and the hardware module. AXIvideo2Mat and Mat2AXIvideo are added in a source file so

as to synthesize the ports and the DMA module. In the case of a mixed software hardware pipeline,

intermediate data are stored in external memory. Thus, input data from the software is first stored

in the DDR3 on-board RAM on Zynq before being processed and stored again in the RAM after

processing. This kind of streaming architecture require to read and write the data into the DDR3.

Hence, the bus width of the input and output port significantly influences the performance. To deal

with this problem, current Pipeline Generator automatically calculates and defines the width of the

port by using the extracted bit-depth information from the Frontend. Furthermore, the Pipeline Gen-

erator tries to pipeline a series of functions if the functions have no branch nor loop. This pipelining

is performed by inserting #pragma HLS STREAM in the head of the generated functions. Finally,

generated codes are synthesized and placed on an FPGA. In addition, Courier-FPGA can use user-

defined hardware modules if they have AXI-Streaming ports and are integrated into Zynq. But it

doesn’t have any kind of automatic port generation mechanism or automatic integration mechanism

currently. Programmers must manually add the AXI ports to the user-defined modules and integrate

the modules into the platform when they want to append them for off-loading.

Generated hardware modules are prepared as a block device, and basic device driver APIs are

prepared by Xilinx’s high-level synthesis tool. In the case study, XTask0_Start() function sends input

data to start the process on the hardware module, and XTask0_IsDone() function polls done signal

until the hardware module finishes a process. These API functions are used in a task on the CPU

side.

4.2.5 Off-loading Tasks

The Function Off-loader in the Backend automatically makes a function wrapper to replace the orig-

inal function designated by Courier IR. The wrapper contains the equivalent accelerator function that

is built by Pipeline Generator including a pre/post-processing and data transfer. This mechanism of

Step 9 behaves as follows before the run is being deployed. Courier-FPGA stops the running binary

when Step 8 finishes, and then the Function Off-loader intercepts (hooks) the designated functions.

It then replaces the original functions with the wrapper that includes the Off-loader Switcher and a

software task. The Function Off-loader maintains processing flow and optimizes the data transfer by

choosing one of the three paths of the Off-load Switcher. Finally, Courier-FPGA re-starts the binary.
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This process does not require any user intervention. Such a mechanism can be applied to any binary

without re-compilation and is supported in most Linux environments.

An example wrapper is shown at the bottom of Figure 4.2. The wrapper has an Off-load switcher

that provides one of three possible paths for a function: non-off-load, off-load, and pass through.

Each path selected by the Function Off-loader and the role of each path is the same as Section 3.2.
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4.3 An Automatic Mixed Software Hardware Pipeline Builder

In Step 8, the Pipeline Generator automatically searches corresponding predefined hardware mod-

ules from a database by function name, places them on FPGA and prepares software functions. Then,

it makes a software program that runs mixed software hardware tasks in parallel so as to make the

best use of the parallelism. The parallel tasks perform processing which corresponds to a target bi-

nary. In Step 9, Function Off-loader wraps the built pipeline and actually replaces the function in

the target binary with the pipeline. In this step, off-load is ready to deploy. During deployed run, the

control program made by the Pipeline Generator starts to accelerate the binary. Even if the functions

in the target binary run sequentially, Courier-FPGA can run them in a pipelined manner.

4.3.1 Structure of a mixed software hardware pipeline

Structure of a mixed software hardware pipeline on a CPU-FPGA platform is composed of the fol-

lowing three main parts. The control program is needed in order to run multiple software and hard-

ware functions in a pipelined manner. Software functions are used when corresponding hardware

modules do not exist in a database.

• A pipeline control software program that controls the software hardware tasks.

• Software functions run on the CPU.

• Hardware modules run on the FPGA.

In Figure 4.3 the Pipeline Generator generates five-stage pipeline, two hardware modules and

three software functions. The pipeline control program runs these tasks in a pipelined manner. On a

deployed run, tasks work as follows from the viewpoint of the target binary. The Function Off-loader

hooks funcA and its input data (data #0) from the running functions in the target binary, which is

illustrated on the left of the figure. Then, Task #0 processes funcA and stores the result (data #1’)

in an external memory. And then, Task #1 invokes “start” command (Xh0_Start()) to send the data

to the hardware module #h0, and receives “done” signal (Xh0_Done()) when fpga_funcB finishes

and stores a result data (data #2’) in the memory. The second input data from the running binary

are simultaneously processed by Task#0. This is a software controlled task pipeline. Note that

intermediate data such as “data #1’ ” are stored in the external memory.

4.3.2 Building a mixed software hardware pipeline

Figure 4.4 shows a processing flow of how the Courier-FPGA automatically builds a pipeline. First

of all, the Frontend analyzes a target binary and makes a list of running functions name. Then, the

Backend searches corresponding modules from a hardware module database. Found corresponding

modules are synthesized and placed on FPGA. On the other hand, functions which cannot be found
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become software ones running on CPU. Finally, Pipeline Generator builds a balanced pipeline con-

sidering processing time of functions/modules. Each stage of the pipeline runs hardware module(s)

on FPGA or software function(s) on CPU.

In the case of Figure 4.3, the Backend found two corresponding hardware functions: funcB and

E in the database. Then, Pipeline Generator generates two hardware modules: the former contains

fpga_funcB, and the latter contains fpga_funcD. In addition, Task #1 and Task #3, a software part

of these modules, were also prepared. Software parts perform communication between hardware

modules and an external memory. On the other hand, there were no hardware modules for funcA,

C and E in the database, so software functions are used for them. Thus, five tasks, two hardware

modules and three software functions, are used for the five-stage pipeline. The pipeline control

program runs these tasks in a pipelined manner and keeps the order of stages.

4.3.2.1 Generating hardware modules

As I described above, the Backend searches a corresponding hardware module in a database for each

analyzed function. Technically, this database includes an OpenCV-compatible high-level synthesis

library provided by Xilinx [6]. The Pipeline Generator generates code for the hardware modules,

input/output port and optimization pragma. For the hardware modules, Pipeline Generator simply

generates the corresponding module name. For example, hls::Sobel is used for cv::Sobel as a cor-

responding function and arguments are defined. For the input/output port, Pipeline Generator uses

AXIvideo2Mat and Mat2AXIvideo. These are the code of AXI4-Streaming protocol including Video

DMA controller that communicates the CPU and the hardware module. For the optimization pragma,

Pipeline Generator inserts #pragma HLS dataflow by default in order to achieve shorter processing

time.

In the case of Xilinx’s OpenCV library, each function is optimized for per pixel processing. In

addition, input data from the software is first stored in the DDR3 on-board RAM on Zynq before

being processed and stored again in the RAM after processing. This kind of streaming architecture

requires to read and write the data into the DDR3. Hence, the bus width of the input and output

port significantly influences the performance. The Pipeline Generator automatically calculates and

defines the width by using the extracted bit-depth information from the Frontend. Furthermore, the

Pipeline Generator tries to pipeline a series of functions if the functions have no branch nor loop. This

pipelining is performed by inserting #pragma HLS STREAM in the head of the generated functions.

Generated hardware modules are prepared as a block device on Linux, and a basic device driver

APIs that send/receive data are prepared by Xilinx’s high-level synthesis tool. In the case study,

XTask0_Start() function sends input data to start process on hardware module, and XTask0_IsDone()

function polls done signal until the hardware module finishes a process. These API functions are

used in a task on CPU side.
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Figure 4.4: A processing flow of building a mixed SW/HW pipeline. Shadowed rectangles are parts
of the Courier-FPGA and ones filled with oblique lines are explained in Sect.4.2 B.

4.3.2.2 Preparing Software functions

For each software function task, the Backend prepares to run original functions in the binary and

dynamically replaces them during deployed run. The Backend first looks for a function name in

function libraries by using dlsym [68] with “RTLD_NEXT” option so as to use an original function.

The function library is designated by dlopen with “RTLD_LAZY” option [68]. The reason why

Courier used such method is that Function Off-loader basically uses a software technique called DLL

injection so as to realize dynamic off-loading. When we generically use DLL injection and want to

use software functions in the target binary, the above described method is required. In the case of

hardware modules, we don’t need to use this method.

4.3.2.3 Preparing a pipeline control software

For a pipeline control software program, it is used that Intel Thread Building Blocks (TBB) that

runs multiple functions in a pipelined manner on CPU. The tbb::pipeline class is provided to build

a pipeline. A user can add an arbitrary task to each stage of the pipeline skeleton, and specify the

processing order of the stages. After that, TBB automatically runs the tasks in a pipelined manner.



4. Courier-FPGA: A Toolchain for Mixed Software Hardware Pipeline on a CPU-FPGA
Platform
4.3. An Automatic Mixed Software Hardware Pipeline Builder 82

TBB introduces the concepts of a thread pool and token base pipeline. Multiple slave threads are

managed by a master thread and the users write codes for each slave thread (e.g. software functions

or hardware modules). TBB is also capable of double buffering when two or more tasks are running.

Unlike a common hardware pipeline in which the previous stage cannot start until the next stage

has finished, a pipeline provided by TBB can start each stage even if the next stage doesn’t finish.

For example, Task #0 can take the second input while Task #1 is processing a time consuming task

for the first input. As a result, the pipeline can reduce the probability of pipeline stall compared with

the hardware pipeline. Additionally, stages which run in parallel can be dynamically changed since

an idle thread is randomly chosen by the control program.

4.3.2.4 Generating Code

I use Python and Jinja2 [69] to implement the Pipeline Generator. The Pipeline Generator is a script

and technically composed of a pipeline skeleton part and a task part for each stage. The former

is almost static and the latter is flexible since it contains above described software functions and

hardware modules. The Backend tells information (e.g. a filter type of Intel TBB, data type of

input/output or actual processing code) to the Pipeline Generator, and it generates the whole code.

Current Pipeline Generator divides the extracted processing flow into some stages by using the

simple partitioning policy: “Pipeline Generator” divides total processing time by the number of

thread plus one and searches the closest sub-total of processing time of functions”. The policy is

derived from the following considerations. According to our preliminary evaluation, the number of

stages should close to that of a logical thread of the Zynq (= 2). This is because the control load of

master thread and the data transfer frequency of intermediate data should be reduced for a streaming

architecture. Furthermore, to keep the minimal processing time, each pipeline stage should run in

nearly the same time, i.e. a balanced pipeline. Note that, processing time of software functions can

be obtained in the analyzed data from the Frontend and that of hardware modules can be estimated

by the logic synthesis tool, and thus processing time of all functions are available. Additionally, the

Pipeline Generator defines the first and last functions to run serially run (serial_in_order) , while the

rest of the functions run in parallel (parallel).
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4.4 Case Study

This section illustrates our work-flow by describing a practical case study. Three case studies, a

histogram of oriented gradients (HOG), a Harris Corner Detector, a 3D Object Rotation, are con-

ducted. The experimental conditions were as follows: the running binary was analyzed on Fedora

20 (Kernel 3.14.3-200.fc20.x86_64), The binary was deployed on Zynq-7000 AP SoC (XC7Z020-

CLG484-1) on Zedboard. Zynq-7000 was composed of a Dual Core ARM Coretex-A9 CPU 667MHz

with 512MB memory (called PS: Processing System) and 85,000 Series-7 programmable logic cells

(called PL: Programmable Logic). Linaro 32bit (Debian 7.0) ran on the PS. Synthesis tools are Xilinx

Vivado HLS and Vivado 2014.2. OpenCV version 2.4.8 is used.

4.4.1 Histogram of Oriented Gradients (HOG in OpenCV)

4.4.1.1 Acceleration Work-flow of Courier-FPGA

I. Analyze running binary This step is the same as the HOG case study in Section 3.4.1. Although,

the target binary was running on ARM CPU, the same tracing subprogram for OpenCV can be used

in this case.

II. Generating the task graph of the running binary After the profile run, a task graph of the running

binary was automatically generated (see the left of Figure 4.5). The user examined the graph and

decided whether to off-load and non-off-load parts if needed. The graph was identical to the previ-

ously described processing flow in Section 3.4.1. Ellipse nodes and rectangle nodes represent images

and functions, respectively. The size of the node reflects the execution time or the size of the data

(height ×width × bit-depth × channels; e.g., the first node was 1280 × 720 × 32bit × 1-channel). The

processing time is shown in the second row of the ellipse node. Nodes were aligned in chronological

order. According to the graph, each input image was 1280 × 720 and processed in 650,856 [µs] in

total. This was less than 1.5 frames per second ([fps]). The Courier IR description was automatically

generated. Users can modify this to change the actual processing flow if needed. The details of the

IR in the case study was the same as Section 3.4.1.

III. Acceleration In this step (Steps 8 and 9 in Figure 3.1), Courier-FPGA first searched for “safely

off-loadable” parts, where a processing flow was straight-forward, functions and input/output data

are both traced, and a corresponding accelerated hardware module was available. For such parts,

Courier-FPGA automatically built a mixed sw/hw pipeline by using the Pipeline Generator and used

it by using the Function Off-loader in default mode.

In this case, the Pipeline Generator generated a four-stage mixed software hardware pipeline.

Each processing step was assigned to a task of the pipeline. Tasks #0 and #2 could be off-loaded to

the FPGA since the corresponding hardware modules were available. But inside functions of both

tasks could not be pipelined by using #pragma HLS PIPELINE because of branching and converging.
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Figure 4.5: Processing flow extracted from the running binary (left) and off-loaded flow (right). Each
processing step is assigned to a task. The Function Off-loader generates a four stage mixed software
hardware pipeline.

Tasks #1 and #3 run on the CPU by using the same function in the binary. Two of the four tasks run in

parallel since the ARM CPU on Zynq has two logical threads. The Function Off-loader intercepted

cv::cvtColor as “the head” of a series of functions and off-loads it. For the rest of the functions,

Courier-FPGA intercepted and passed them on to maintain the original processing flow by selecting

“Passes Through”. If the functions were not passed, they were off-loaded and used in the original

binary.
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IV. Results The right side of Figure 4.5 illustrates the off-loaded result. Courier-FPGA replaced

functions and maintained the original flow by selecting “Pass Through”. However the process of the

built pipeline was the same as the original one, predefined accelerated modules were run on a PL of

Zynq.

Table 4.1: Processing time comparison ([µs])

Original Binary Courier-FPGA
Processing Task #0

cvtColor 21,408 27,044
Sobel_x 63,214 (x5.05)
Sobel_y 51,936 (on FPGA)

Processing Task #1
cartToPolar 208,174 187,545

Processing Task #2
threshold 23,995

convertScaleAbs 103,947 36,524
subtract 34,192 (x5.80)

threshold 23,856 (on FPGA)
add 25,982

Processing Task #3
divide 46,467 53,771

Total (Average) 650,856 163,510
Speed-up x1.00 x3.98

Table 4.1 shows the average processing times when of 200 video frames. Courier-FPGA short-

ened the processing time to 163,510[µs] and achieved a 6.1[fps], or x3.98 speedup compared with

the original binary. In Table 4.1, “Original Binary” indicates the target binary running on the CPU,

and “Courier-FPGA” is the final result. AXIvideo2Mat is input to the hardware module via AXI bus

and Mat2AXIvideo.

The generated four-stage mixed software hardware pipeline worked well. “Total (Average)” is

smaller than the pipeline’s Task #1 since TBB searched for and run an idle task from the thread pool.

According to our processing log, Task #0 run multiple times and stores multiple results while Task

#1 run. Additionally, Task #0 finished the 50th image while Task #1 was processing the 49th image.

This pipeline mechanism is different from the ordinary hardware pipeline in which the following

stages cannot start until the previous stage has finished. As a result, the average processing time

of a single image became shorter than the time taken by Task #1. Figure 4.6 is a graph showing

the relationship between processing time per frame and the number of processed frames. The graph

shows 155,000[µs] is the lower limit for this task pipeline.

Tables 4.2 and 4.3 show the evaluation of the modules generated for Task #0 and Task #2. The

hardware sped up Task #0 by 5.05 times and Task #2 by 5.80 times (this time includes data transfers

via the AXI Stream bus). In the case of Task #2, there was no Mat2AXIvideo in Table 4.3 because
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Figure 4.6: Processing time per frame fluctuated a little since Intel TBB’s pipeline is based on a
thread pool. It works differently from a pure hardware pipeline.

Table 4.2: Evaluation: Frequency, Latency and Exec. time

Module Freq. [MHz] Latency [clk] Exec. time [µs]
Task#0 172.1 4,654,817 27,044
Task#2 152.4 5,567,778 36,524

Table 4.3: Evaluation: Resource utilization of modules

Module BRAM DSP48E FF LUT
Task#0

Task#0 total 3(1%) 9(4%) 1080(1%) 1574(2%)
AXIvideo2Mat 0 0 235 279
hls::cvtColor 0 3 183 154

hls::Sobel 3 6 580 891
Mat2AXIvideo 0 0 44 106

Others 0 0 38 144
Task#2

Task#2 total 0(0%) 14(6%) 2444(2%) 4224(8%)
AXIvideo2Mat 0 0 91 126

convertScaleAbs 0 14 2194 3733
hls::Threshold 0 0 63 183

hls::AddWeighted 0 0 48 91
hls::SubS 0 0 48 91

Others 0 0 73 209
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the AXI4 Stream can be used as a bidirectional port when the bus widths of the input and output are

the same. The bus widths of the input/output of Task #2 were 8 bits. On the other hand, those of Task

#0 were 32 bits and 8 bits.

4.4.2 Harris Corner Detector (cornerHarris in OpenCV)

cornerHarris_Demo is a sample program of corner detection that is contained in OpenCV (opencv-

2.x.y/samples/cpp/tutorial_code/TrackingMotion/cornerHa-rris_Demo.cpp). The binary was mainly

composed of three functions listed in Table 4.4. Inputted image size was 1920 x 1080. Courier-

FPGA built a three-stage pipeline, and x22.1 speed-up was achieved compared with the original

binary.

Table 4.4: Processing time comparison ([µs])

Original Binary Courier-FPGA Running on
cornerHarris 974.9 14.1 FPGA

normalize 90.0 78.5 CPU
convert
ScaleAbs 221.6 13.7 FPGA

Total (Average) 1286.5 58.3 —
Speed-up x1.00 x22.1 —

4.4.3 Rotate 3D Object (glRotatef in OpenGL)

hello_world_in_glsl is a simple program of OpenGL and can be downloaded from the website [70].

Four functions listed in Table 4.5 are targeted. We implemented a corresponding hardware module of

glRotatef that performs some single precision floating point matrix calculation [71]. Courier-FPGA

built a single-stage pipeline because of the data structure of OpenGL. A 1.29 times speedup was

achieved.

Table 4.5: Processing time comparison ([µs])

Original Binary Courier-FPGA Running on
glLoadIdentity 18.8 17.8 CPU

gluLookAt 18.1 19.0 CPU
glLightfv 17.8 18.1 CPU
glRotatef 18.4 1.9 FPGA

Total (Average) 73.1 56.8 —
Speed-up x1.00 x1.29 —
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4.5 Chapter Summary

This chapter presented Courier-FPGA: a new toolchain for mixed software hardware pipeline on a

CPU-FPGA platform. The Backend of Courier-FPGA builds and deploys a mixed software hardware

task pipeline by using the Pipeline Generator and Function Off-loader. The Pipeline Generator

generates software functions and hardware modules. It also makes a pipeline control program by

using an Intel TBB in order to run software and hardware tasks in parallel. The Function Off-loader

replaces the functions in a target binary with the generated pipeline. In the case studies, the running

binary of three algorithms were accelerated on the Zynq platform by using Courier-FPGA. As a

result, a binary of histogram of gradients (HOG) was sped up 3.98 times. And two other cases were

also sped up 1.29 to 22.1 times without user intervention.



Chapter 5

Conclusion

In this chapter, it is first summarize and discuss our three proposals in Section5.1:Courier, Courier-

FPGA, and Inter Accelerator Pipeline. Advantages and disadvantages are given as well. Then, the

thesis is concluded in Section 5.2.

5.1 Summary and Discussion

5.1.1 Toolchain for Automatic Function Off-load on a CPU-GPU Platform

Chapter 3 described detail features of Courier. Courier is composed of Frontend (Runtime Analyzer) ,

Courier IR and Backend (Function Off-loader). Frontend automatically traces a target running binary

and tries to detect a processing flow of functions by using a heuristic approach. Courier IR represents

the processing flow in a graph and code. A task graph is constructed to understand the flow and find

parts that should be off-loaded. Backend automatically off-loads the functions by using the Function

Off-loader. It automatically deals with problems during off-load such as the number of data transfers

or unconditional off-loads. Courier successfully shortens the processing time of three computational

intensive applications (HOG, BLAS and FFT) on a single mixed CPU-GPU platform. For a multiple

mixed CPU-GPU platform, it is proposed that a task level pipelining technique that enhances the

performance of stream computation applications.

The applicability of Courier is detailed in Section 3.4. The current version of Courier can ac-

celerate well-known functions and has a straight-forward processing flow. Additionally, Courier can

support an arbitrary library by introducing a new “add-on”. On the other hand, there are some limita-

tions as this thesis discussed in Section 3.1.6. The biggest limitation is that corresponding accelerator

functions must exist beforehand. Courier-FPGA can shorten the processing time without the corre-

sponding functions by building a pipeline on a mixed CPU-FPGA platform. This mechanism needs

to be researched for this platform. Other problems are SAME-INOUT limitation and flexibility lim-

itation of functions within control statements. The SAME-INOUT limitation is that the number of

input/output of replaced functions must be the same as that of original functions in the binary. To
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solve this limitation, a certain kind of data management mechanism is required. The flexibility lim-

itation of functions within control is that Courier cannot recognize the control statements. Thus, the

efficiency of automatic off-load is degraded. In addition, some inefficiencies exist on Courier as well.

If the target functions have many inputs/outputs or include a complicated processing flow, Courier

can technically handle them but will not be efficient. To deal with these problems, Courier needs to

be enhanced the features of Frontend and Backend.

5.1.2 Task Level Pipelining on a multiple CPU-GPU Platform

Chapter 3 proposed an inter accelerator pipelining (IAP) on a multiple mixed CPU-GPU platform.

IAP is a special case of task level pipelining and all tasks within inter/intra-node run in a pipelined

manner. Each stage of IAP corresponds with assigned tasks on each GPU. IAP is suitable for stream

computing applications such as computational fluid dynamic or image processing. Note that IAP

does not replace data level parallel implementation but complements it. Although IAP can be ap-

plied to an ordinary multiple CPU-GPU platform, data transfer among nodes degrades the total per-

formance. The TCA cluster, that enables the ultra low latency direct communication among multiple

GPUs within the cluster from the University of Tsukuba, is adopted. On TCA, this thesis shows that

the processing time of simple image filtering can be made shorter than that of an ordinary CPU-GPU

platform.

IAP is applicable in many stream computation applications, but the applicability of IAP must be

studied in more detail. For example, the break-even point of communication latency and processing

time of each task to automatically divide the stage.

5.1.3 Toolchain for Mixed Software Hardware Pipeline on a CPU-FPGA Platform

Chapter 4 explained features of Courier-FPGA in detail. The target platform of Courier-FPGA is a

mixed CPU-FPGA platform. The main contribution of Courier-FPGA is building a mixed software

hardware pipeline on the platform by using a Pipeline Generator and Function Off-loader. Courier-

FPGA shares Frontend and Courier IR with original Courier. Analyzed processing flow is divided

into some tasks, and each task is assigned to each stage of the pipeline. Even if the corresponding

hardware modules do not exist, Courier-FPGA can shorten the processing time by pipelining the

processing flow. The pipeline is controlled by a master thread and can have software functions on

a CPU and hardware modules on an FPGA. A key point of the Pipeline Generator is balancing of

each stage. By using the actual information of processing time collected by Frontend, the Pipeline

Generator builds a balanced pipeline and makes the best use of this platform. Practical case studies

are conducted to confirm the applicability of Courier-FPGA in Section 4.4. Three applications are

accelerated on a mixed CPU-FPGA platform.

A mixed software hardware pipeline successfully shortens the processing time, but there are some

limitations. One is that the number of threads that can be run in parallel depends on the number of
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logical threads of CPU. In the case of Zynq by Xilinx, it is two. I think that this limitation will be

relaxed soon since we can obtain a ARM CPU that has four or more logical threads now. Another

limitation is how to reduce the pressure on a CPU-FPGA bus. Embedded platforms often do not

have powerful bus bandwidth. The bus usage needs to be maximized when the number of hardware

modules increases.

5.2 Concluding Remarks

Heterogeneous platforms have become important in many area. In a scientific computation domain

that requires a lot of processing power, a mixed CPU-GPU platform is going to make up an important

share. In an embedded device domain that requires a power efficient system, a mixed CPU-FPGA

platform has been developed. Many applications, not only compute-intensive ones but also data-

intensive ones, can be accelerated on such platforms. However, although a mixed CPU-GPU plat-

form and a mixed CPU-FPGA platform are different, they share the fundamental idea of off-loading

time consuming parts onto accelerators and shortening the total processing time. Application accel-

eration on such platforms is a specialized task. Although many studies have been done to alleviate

programmers burden, application acceleration is still difficult for non-expert users. Furthermore, if

the programmers cannot access the original source code, acceleration is almost impossible. Against

this background, the demand for simplifying the work-flow of application acceleration has increased.

This thesis proposed two toolchains for application acceleration: Courier and Courier-FPGA.

Both toolchains are intended for non-expert users who do not have expertise in or special knowledge

of target heterogeneous platforms. It is also proposed that an inter-accelerator pipeline (IAP) on a

multiple mixed CPU-GPU platform. IAP forms a task level pipeline among multiple GPUs. Courier

is designed to automatically analyze specific functions and data in a running binary and replace func-

tions with corresponding accelerator functions if possible. The target platforms are a single mixed

CPU-GPU platform and a multiple mixed CPU-GPU platforms. Courier-FPGA is based on Courier,

but the target platform is a single mixed CPU-FPGA platform. It builds a function-level pipeline

structure between the hardware modules on an FPGA and software functions on a CPU automati-

cally. IAP provides yet another implementation methodology for stream computation applications

on a multiple CPU-GPU platform. Each task assigned to each GPU among intra/inter-node works in

a pipelined manner.

There are some future works to extend the applicability of proposed toolchains and implementa-

tion methodology. Dynamic program analysis performed by the Frontend of Courier needs to gather

more information. If Courier can obtain more information of the target application, it can deal with

more complicated processing flows such as loops or branches. I will research how to generate a more

flexible task pipeline to relax user constraints by Backend, such as resource utilization or power

consumption.
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