<table>
<thead>
<tr>
<th>Title</th>
<th>On discriminants and certain matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Title</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Komatsu, Kenzo</td>
</tr>
<tr>
<td>Publisher</td>
<td>慶應義塾大学理工学部</td>
</tr>
<tr>
<td>Publication year</td>
<td>1996</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Genre</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>
ON DISCRIMINANTS AND CERTAIN MATRICES

by

Kenzo Komatsu

Department of Mathematics, Faculty of Science and Technology
Keio University, Hiyoshi, Yokohama 223, Japan

(Received February 28, 1996)

0. Introduction

Let K be an algebraic number field of degree $n > 1$, and let α be an integer of K. In this paper we discuss the $n \times n$ matrix $C(\alpha) = (\text{Tr}(\alpha^{(i-1)+(j-1)})$ and its minors. Certain minors of $C(\alpha)$ are closely related to the ramification of primes in K/Q. For example: If the greatest common divisor of all the minors of order $(n-1)$ of the matrix $C(\alpha)$ is equal to 1, then the discriminant of K is square-free, and K has a very simple and explicit integral basis (§4). Therefore it seems important to study $C(\alpha)$ and its minors in relation to the discriminant and the ring of integers of K. In this paper we prove two theorems on the minors of order $(n-1)$, together with a few elementary results on the minors of order $i \leq n - 1$.

1. The matrix $C(\alpha)$ and its minors of order $n - 1$.

The main purpose of the present paper is to prove the following theorem.

Theorem 1. Let K be an algebraic number field of degree $n > 1$. Let p be a prime number, and let $k \in \mathbb{Z}$, $k > 0$. Suppose that the discriminant of K is divisible by p^{2k}. Then, for any integer α of K, every minor of order $(n-1)$ of the $n \times n$ matrix

$$C(\alpha) = \begin{pmatrix}
\text{Tr}(1) & \text{Tr}(\alpha) & \ldots & \text{Tr}(\alpha^{n-1}) \\
\text{Tr}(\alpha) & \text{Tr}(\alpha^2) & \ldots & \text{Tr}(\alpha^n) \\
\ldots & \ldots & \ldots & \ldots \\
\text{Tr}(\alpha^{n-1}) & \text{Tr}(\alpha^n) & \ldots & \text{Tr}(\alpha^{2n-2})
\end{pmatrix}$$

is divisible by p^k, where $\text{Tr}(\xi)$ means the trace of ξ in K/Q.

Proof. Let $\alpha^{(1)}, \ldots, \alpha^{(n)}$ denote the conjugates of α in K/Q. Then

$$C(\alpha) = \begin{pmatrix}
1 & \alpha^{(1)} & \ldots & \alpha^{(1)n-1} \\
\alpha^{(1)} & \alpha^{(2)} & \ldots & \alpha^{(2)n-1} \\
\ldots & \ldots & \ldots & \ldots \\
\alpha^{(1)n-1} & \alpha^{(2)n-1} & \ldots & \alpha^{(n)n-1}
\end{pmatrix}
\begin{pmatrix}
1 & \alpha^{(1)} & \ldots & \alpha^{(1)n-1} \\
1 & \alpha^{(2)} & \ldots & \alpha^{(2)n-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & \alpha^{(n)} & \ldots & \alpha^{(n)n-1}
\end{pmatrix}.$$
Suppose first that $K \neq \mathbb{Q}(\alpha)$. If $n > 2$, then
\[
\text{rank}\begin{pmatrix}
1 & \alpha^{(1)} & \cdots & \alpha^{(1)n-1} \\
1 & \alpha^{(n)} & \cdots & \alpha^{(n)n-1}
\end{pmatrix} \leq \frac{n}{2} < n - 1.
\]

By (1.1) we see that $\text{rank} C(\alpha) < n - 1$; every minor of order $(n - 1)$ is equal to 0. If $n = 2$, then $\alpha \in \mathbb{Z}$, $k = 1$ and $p = 2$; every entry of the matrix $C(\alpha)$ is divisible by $p^k = 2$. In any case, every minor of order $n - 1$ of the matrix $C(\alpha)$ is divisible by p^k.

From now on, we assume that $K = \mathbb{Q}(\alpha)$. Let
\[
f(x) = (x - \alpha^{(1)})(x - \alpha^{(2)}) \cdots (x - \alpha^{(n)}) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n.
\]

Then the coefficients a_i are rational integers, and $f(x)$ is irreducible over \mathbb{Q}.

$K = \mathbb{Q}(\alpha)$ is a vector space over \mathbb{Q}. We fix its basis: $1, \alpha, \ldots, \alpha^{n-1}$. An element $\xi = c_0 + c_1 \alpha + \cdots + c_{n-1} \alpha^{n-1} (c_i \in \mathbb{Q})$ of K is then represented by a column vector $(c_0, \ldots, c_{n-1})^T$, where T denotes transposition. The linear transformation $\xi \mapsto \alpha \xi$ is determined by the $n \times n$ matrix
\[
A = (e_2 e_3 \cdots e_n a_1),
\]
where
\[
a_1 = (-a_n, -a_{n-1}, \ldots, -a_2, -a_1)^T;
\]
ej denotes the j-th column of the identity matrix I_n. We define a_2, a_3, \ldots inductively:
\[
a_j = A a_{j-1},
\]
where $j \geq 2$. Clearly,
\[
a_1 = A e_n.
\]
By induction on j, we see that
\[
A^j = (e_{j+1} e_{j+2} \cdots e_n a_1 \cdots a_j)
\]
for $j = 1, 2, \ldots, n - 1$.

Now let
\[
g(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \in \mathbb{Q}[x],
\]
and let g_j denote the j-th column of the matrix $g(A)$:
\[
g(A) = c_0 I_n + c_1 A + \cdots + c_{n-1} A^{n-1},
\]
\[
g(A) = (g_1 g_2 \cdots g_n).
\]
Then
\[
g_j = g(A) e_j
\]
for $j = 1, 2, \ldots, n$. The matrix $g(A)$ determines a linear transformation $\xi \mapsto g(\alpha) \xi$.

By (1.12) we see that the column vector g_j represents $g(\alpha) \alpha^{j-1}$ in K. Since
On Discriminants and Certain Matrices

\[g(\alpha)\alpha^{j-1} = \alpha^{j-1}g(\alpha), \]

it follows from (1.9) that

\[g_j = A^{j-1} = \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{pmatrix} \]

for \(j = 1, 2, \ldots, n \). Hence

\[g_1 = \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{pmatrix}, \quad g_j = Ag_{j-1}, \]

where \(2 \leq j \leq n \).

The eigenvalues of the matrix \(A \) are the conjugates of \(\alpha \) in \(K/\mathbb{Q} \); \(f(x) \) is the minimum polynomial of the matrix \(A \). For any \(h(x) \in \mathbb{Q}[x] \), the element \(h(\alpha) \) of the field \(K \) is represented by the matrix \(h(A) \):

\[h(\alpha) \leftrightarrow h(A). \]

The norm \(N(h(\alpha)) \) of \(h(\alpha) \) in \(K/\mathbb{Q} \) is equal to the determinant of \(h(A) \):

\[N(h(\alpha)) = \det h(A). \]

Now let \(b_j \) denote the \(j \)-th column of the matrix \(B = f'(A) \):

\[B = f'(A) = nA^{n-1} + (n-1)a_1A^{n-2} + \cdots + a_{n-1}I_n, \]

\[B = (b_1b_2 \ldots b_n). \]

Then it follows from (1.14) that

\[b_1 = \begin{pmatrix} a_{n-1} \\ 2a_{n-2} \\ \vdots \\ (n-1)a_1 \\ n \end{pmatrix}, \quad b_j = Ab_{j-1}, \]

where \(2 \leq j \leq n \).

Let \(D \) denote the norm of \(\delta = f'(\alpha) \) in \(K/\mathbb{Q} \):

\[\delta = f'(\alpha), \quad D = N(\delta). \]

Then (1.16) gives

\[D = \det B. \]
For \(j = 1, 2, \ldots, n \), let
\[
(1.22) \quad \alpha^{j-1} \delta = r_{1j} + r_{2j} \alpha + \cdots + r_{nj} \alpha^{n-1},
\]
where \(r_{ij} \in \mathbb{Z} \). Then it follows from (1.15), (1.20) and (1.17) that
\[
(1.23) \quad \alpha^{j-1} B = r_{1j} I_n + r_{2j} A + \cdots + r_{nj} A^{n-1}
\]
for \(j = 1, 2, \ldots, n \). By (1.19) we see that the first column of \(\alpha^{j-1} B \) is \(\alpha^{j-1} b_1 = b_j \).
Hence, by (1.14),
\[
(1.24) \quad b_j = (r_{1j}, r_{2j}, \ldots, r_{nj})^T.
\]
Now let \(b_{ij} \) denote the \((i,j)\)-entry of the matrix \(B \):
\[
(1.25) \quad B = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix}.
\]
By (1.22) and (1.24) we see that
\[
(1.26) \quad \alpha^{j-1} \delta = b_{1j} + b_{2j} \alpha + \cdots + b_{nj} \alpha^{n-1}
\]
for \(j = 1, 2, \ldots, n \). Let \(\tilde{b}_{ij} \) denote the cofactor of the \((i,j)\)-entry \(b_{ij} \), and let
\[
(1.27) \quad \alpha^{j-1} \frac{D}{\delta} = s_{1j} + s_{2j} \alpha + \cdots + s_{nj} \alpha^{n-1},
\]
where \(s_{ij} \in \mathbb{Z}, 1 \leq j \leq n \). From (1.15), (1.17), (1.20) and (1.21), we obtain
\[
(1.28) \quad (\det B) B^{-1} B = s_{1j} I_n + s_{2j} A + \cdots + s_{nj} A^{n-1}.
\]
By (1.8) we see that the first column of the matrix \(\alpha^{j-1} \) is \(e_j \). From (1.14) we obtain
\[
(s_{1j}, \ldots, s_{nj})^T = (\det B) B^{-1} e_j = (\tilde{b}_{j1}, \ldots, \tilde{b}_{jn})^T.
\]
Hence (1.27) becomes
\[
(1.29) \quad \alpha^{j-1} \frac{D}{\delta} = \tilde{b}_{j1} + \tilde{b}_{j2} \alpha + \cdots + \tilde{b}_{jn} \alpha^{n-1}
\]
for \(j = 1, 2, \ldots, n \). In particular,
\[
(1.30) \quad \frac{D}{\delta} = \tilde{b}_{11} + \tilde{b}_{12} \alpha + \cdots + \tilde{b}_{1n} \alpha^{n-1}.
\]
It follows from (1.29) and (1.30) that every cofactor \(\tilde{b}_{ij} \) is divisible by the greatest common divisor of \(\tilde{b}_{11}, \ldots, \tilde{b}_{1n} \):
\[
(1.31) \quad (\tilde{b}_{11}, \tilde{b}_{12}, \ldots, \tilde{b}_{1n}) \mid \tilde{b}_{ij},
\]
On Discriminants and Certain Matrices

where $1 \leq i \leq n$, $1 \leq j \leq n$.

Clearly, the column vector

$$ x = (1, \alpha, \ldots, \alpha^{n-1})^T $$

is an eigenvector of the matrix A^T corresponding to the eigenvalue α:

$$ A^T x = \alpha x, \quad x \neq 0. $$

It is easily seen that an eigenvector of the matrix A corresponding to the eigenvalue α is given by $M x$:

$$ A(M x) = \alpha M x, $$

where

$$ M = \begin{pmatrix}
 a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\
 a_{n-2} & a_{n-3} & \cdots & 1 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_1 & 1 & \cdots & 0 \\
 1 & & & &
\end{pmatrix}. $$

Since $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent over \mathbb{Q}, it follows from (1.33) and (1.34) that

$$ AM = M A^T. $$

Hence

$$ A^j M = M (A^T)^j $$

for every $j \in \mathbb{Z}$.

Let c_j denote the j-th column of the matrix $C(\alpha)$:

$$ C(\alpha) = (c_1 c_2 \ldots c_n). $$

By definition,

$$ c_j = (\text{Tr}(\alpha^{j-1}), \text{Tr}(\alpha^j), \ldots, \text{Tr}(\alpha^{j+n-2}))^T. $$

From (1.32), (1.33) and (1.39), we obtain

$$ c_j = A^T c_{j-1} $$

for $j = 2, 3, \ldots, n$. From (1.19),

$$ b_2 = \begin{pmatrix}
 -na_n \\
 -(n-1)a_{n-1} \\
 \vdots \\
 -2a_2 \\
 -a_1
\end{pmatrix}. $$

Newton's formula gives

$$ M c_2 = b_2. $$
From (1.19), (1.37), (1.40) and (1.42), we obtain the following formula (cf. [2], §10):

\[(1.43) \quad B = MC(\alpha).\]

Let \(m^2 \ (m \in \mathbb{Z})\) denote the largest square dividing \(D\). Then

\[(1.44) \quad \frac{D}{m^2} \in \mathcal{O}_K,\]

where \(\mathcal{O}_K\) denotes the ring of integers of \(K\) ([4], Theorem 1). Let \(t\) denote the index of \(\alpha\):

\[(1.45) \quad t = (\mathcal{O}_K : \mathbb{Z}[\alpha]).\]

Then

\[(1.46) \quad (-1)^{\frac{n(n-1)}{2}} D = d_K t^2,\]

where \(d_K\) denotes the discriminant of \(K\). It follows from (1.30), (1.44) and (1.45) that

\[(1.47) \quad \frac{t\tilde{b}_{1j}}{m} \in \mathbb{Z}\]

for \(j = 1, 2, \ldots, n\). By (1.46) we see that

\[(1.48) \quad \frac{D\tilde{b}_{1j}^2}{m^2d_K} \in \mathbb{Z}\]

for \(j = 1, 2, \ldots, n\). By hypothesis \(d_K\) is divisible by \(p^{2k}\). Since \(D/m^2\) is a square-free integer, \(\tilde{b}_{1j}\) is divisible by \(p^k\). From (1.31) we obtain

\[(1.49) \quad p^k | \tilde{b}_{ij}\]

for all \(i, j \ (1 \leq i \leq n, 1 \leq j \leq n)\).

By (1.35) we see that every entry of the inverse matrix of \(M\) is a rational integer:

\[(1.50) \quad M^{-1} \in M_n(\mathbb{Z}).\]

From (1.43),

\[(1.51) \quad C(\alpha) = M^{-1}B.\]

Hence the adjugate of \(C(\alpha)\) satisfies

\[(1.52) \quad \text{adj}C(\alpha) = \text{adj}B \text{ adj}(M^{-1}).\]

It follows from (1.49), (1.50) and (1.52) that the entries of the matrix \(\text{adj}C(\alpha)\) are all divisible by \(p^k\). Q.E.D.

Remark. It follows from (1.1) that, for any integer \(\alpha\) of \(K\), \(\det C(\alpha)\) is equal to the discriminant of \(\alpha\) in \(K/\mathbb{Q}\), which is divisible by every prime factor \(p\) of the discriminant \(d_K\) of \(K\). However, if \(d_K\) is not divisible by \(p^2\), \(K\) may have an integer.
On Discriminants and Certain Matrices

\[\alpha \text{ such that at least one minor of order } n - 1 \text{ of the matrix } C(\alpha) \text{ is not divisible by } p. \] A simple example is

\[K = Q(\alpha), \quad \alpha^2 - p = 0, \]

where \(p \) is an odd prime. The matrix

\[C(\alpha) = \begin{pmatrix} 2 & 0 \\ 0 & 2p \end{pmatrix} \]

has four minors of order one. One of them is not divisible by \(p \), and the other three are all divisible by \(p \).

2. The corner of order \(n - 1 \).

In this section we prove a theorem on the corner of order \(n - 1 \) (i.e. the cofactor of the \((n,n)\)-entry) of the matrix \(C(\alpha) \).

Theorem 2. Let \(K \) be an algebraic number field of degree \(n > 1 \), and let \(\alpha \) be an integer of \(K \). Then for a prime number \(p \) to divide all the minors of order \(n - 1 \) of the \(n \times n \) matrix

\[C(\alpha) = \begin{pmatrix} \text{Tr}(1) & \text{Tr}(\alpha) & \ldots & \text{Tr}(\alpha^{n-1}) \\ \text{Tr}(\alpha) & \text{Tr}(\alpha^2) & \ldots & \text{Tr}(\alpha^n) \\ \ldots & \ldots & \ldots & \ldots \\ \text{Tr}(\alpha^{n-1}) & \text{Tr}(\alpha^n) & \ldots & \text{Tr}(\alpha^{2n-2}) \end{pmatrix} \]

it is necessary and sufficient that the determinant of \(C(\alpha) \) and its corner of order \(n - 1 \) are both divisible by \(p \).

To prove our theorem we require the following lemma.

Lemma 1. Let \(F \) be a field, and let \(S = (s_{ij}) \) be a symmetric \(n \times n \) matrix with \((i,j)\)-entry \(s_{ij} \in F \). Let \(\tilde{s}_{ij} \) denote the cofactor of the entry \(s_{ij} \). If \(\det S = \tilde{s}_{nn} = 0 \), then \(\tilde{s}_{nj} = 0 \) for \(j = 1, 2, \ldots, n \).

Proof. By hypothesis,

\[Sv = 0, \]

where \(v = (\tilde{s}_{n1}, \tilde{s}_{n2}, \ldots, \tilde{s}_{nn})^T \). For \(j = 1, 2, \ldots, n \), let \(S_j \) denote the \((n-1) \times (n-1)\) matrix obtained from \(S \) by deletion of the \(j \)-th row and the \(n \)-th column. Since \(\tilde{s}_{nn} = 0 \), it follows from (2.1) that

\[S_j v_0 = 0 \]

for \(j = 1, 2, \ldots, n \), where

\[v_0 = (\tilde{s}_{n1}, \tilde{s}_{n2}, \ldots, \tilde{s}_{n(n-1)})^T. \]

Suppose that \(\tilde{s}_{nj} \neq 0 \) for some \(j < n \). Then \(v_0 \neq 0 \), and so \(\det S_j = 0 \). This implies that \(\tilde{s}_{jn} = \tilde{s}_{nj} = 0 \), a contradiction. Hence \(\tilde{s}_{nj} = 0 \) for \(j = 1, 2, \ldots, n \).

Proof of Theorem. We may assume that \(K = Q(\alpha) \) (See the proof of Theorem 1).
Let \tilde{c}_{ij} denote the cofactor of the (i,j)-entry c_{ij} of the matrix $C(\alpha)$. Let δ (resp. $d(\alpha)$) denote the different (resp. discriminant) of α in K/Q. Then, from (1.30), (1.35) and (1.43),
\begin{equation}
\frac{d(\alpha)}{\delta} = \tilde{c}_{n1} + \tilde{c}_{n2}\alpha + \cdots + \tilde{c}_{nn}\alpha^{n-1}.
\end{equation}

Let p denote a prime number such that $\det C(\alpha) \equiv \tilde{c}_{nn} \equiv 0 \pmod{p}$. Then Lemma 1 implies that $\tilde{c}_{nj} \equiv 0 \pmod{p}$ for $j = 1, 2, \ldots, n$. It follows from (1.31), (1.50) and (1.52) that $\tilde{c}_{ij} \equiv 0 \pmod{p}$ for all i, j.

3. Minors of order i.

In this section we discuss some elementary properties of the matrix $C(\alpha)$ and its minors.

Let K be an algebraic number field of degree $n > 1$, and let α be an integer of K. Let $i \in \mathbb{Z}$, $1 \leq i \leq n$. We denote by $\tilde{c}_i(\alpha)$ the greatest common divisor of all the minors of order i of the matrix $C(\alpha)$. Clearly, $\tilde{c}_i(\alpha)$ is divisible by $\tilde{c}_{i-1}(\alpha)$ for every $i > 1$.

Theorem 1 becomes

Theorem 1a. Let $s^2 (s \in \mathbb{Z})$ denote the largest square dividing the discriminant of an algebraic number field K of degree $n > 1$. Then, for any integer α of K, $\tilde{c}_{n-1}(\alpha)$ is divisible by s.

Now we have

Proposition 1. Let O_K denote the ring of integers of an algebraic number field K of degree $n > 1$, and let $j \in \mathbb{Z}$, $1 \leq j \leq n-1$. Let $\alpha \in O_K$, and let $c_0, \ldots, c_{j-1}, m_0 \ (m_0 \neq 0)$ be rational integers such that
\begin{equation}
\frac{c_0 + c_1\alpha + \cdots + c_{j-1}\alpha^{j-1} + \alpha^j}{m_0} \in O_K.
\end{equation}

Then $\tilde{c}_{j+1}(\alpha)$ is divisible by m_0.

Proof. Let c_k denote the k-th column of the matrix $C(\alpha)$:
\begin{equation}
c_k = \begin{pmatrix}
\text{Tr}(\alpha^{k-1}) \\
\text{Tr}(\alpha^k) \\
\vdots \\
\text{Tr}(\alpha^{k+n-2})
\end{pmatrix}.
\end{equation}

By induction we see that
\begin{equation}
\alpha^{k-1} = s_{k0} + s_{k1}\alpha + \cdots + s_{k(j-1)}\alpha^{j-1} + m_0\xi_k
\end{equation}
for $k = 1, 2, \ldots, n$, where $s_{kl} \in \mathbb{Z}, \xi_k \in O_K$. Hence
\begin{equation}
c_k = s_{k0}c_1 + s_{k1}c_2 + \cdots + s_{k(j-1)}c_j + m_0
\begin{pmatrix}
\text{Tr}(\xi_k) \\
\vdots \\
\text{Tr}(\alpha^{n-1}\xi_k)
\end{pmatrix}
\end{equation}
for \(k = 1, 2, \ldots, n \). Let \(c_{k_1}, c_{k_2}, \ldots, c_{k_{j+1}} \) be any \((j + 1)\) columns of \(C(\alpha) \), and let \(p \) be a prime number such that \(m_0 \) is exactly divisible by \(p^t \) \((t > 0)\). Then (3.4) implies that some \(c_{k_i} \) is a linear combination modulo \(p^t \) of the other \(j \) columns with integer coefficients. Hence every minor of order \((j + 1)\) of the matrix \(C(\alpha) \) is divisible by \(p^t \), and so, by \(m_0 \). Hence \(\tilde{c}_{j+1}(\alpha) \) is divisible by \(m_0 \).

It is well-known (e.g. [6], p.34) that an algebraic number field \(K = \mathbb{Q}(\alpha) \) \((\alpha \in \mathbb{O}_K)\) of degree \(n > 1 \) has an integral basis of the form

\[
(3.5) \quad \frac{c_{10} + \alpha}{m_1}, \frac{c_{20} + c_1 \alpha + \alpha^2}{m_2}, \ldots, \frac{c_{(n-1)0} + \cdots + c_{(n-1)(n-2)} \alpha^{n-2} + \alpha^{n-1}}{m_{n-1}},
\]

where \(c_{ij}, m_j \in \mathbb{Z} \); \(m_j \) is divisible by \(m_{j-1} \) for every \(j > 1 \). By Proposition 1 we see that \(\tilde{c}_{j+1}(\alpha) \) is divisible by \(m_j \) for every \(j \leq n - 1 \).

Considering the elementary divisors of \(C(\alpha) \), we obtain

Proposition 2. Let \(K \) be an algebraic number field of degree \(n > 1 \), and let \(\alpha \) be an integer of \(K \) such that \(K = \mathbb{Q}(\alpha) \). Then \(\tilde{c}_{i+1}(\alpha)/\tilde{c}_i(\alpha) \) is divisible by \(\tilde{c}_i(\alpha)/\tilde{c}_{i-1}(\alpha) \) for every \(i = 1, 2, \ldots, n - 1 \), where \(\tilde{c}_0(\alpha) = 1 \). Let \(p \) be a prime number such that \(\tilde{c}_i(\alpha) \) is divisible by \(p^t \) \((t > 0)\). Then \(\tilde{c}_{i+1}(\alpha) \) is divisible by \(p^{t+1} \).

Proof. By hypothesis, \(\det C(\alpha) \neq 0 \). The integers

\[
e_1 = \frac{\tilde{c}_1(\alpha)}{\tilde{c}_0(\alpha)}, \; e_2 = \frac{\tilde{c}_2(\alpha)}{\tilde{c}_1(\alpha)}, \ldots, \; e_n = \frac{\tilde{c}_n(\alpha)}{\tilde{c}_{n-1}(\alpha)}
\]

are the elementary divisors of \(C(\alpha) \). Since \(e_{i+1} \) is divisible by \(e_i \), it follows that \(\tilde{c}_{i+1}(\alpha)/\tilde{c}_i(\alpha) \) is divisible by \(\tilde{c}_i(\alpha)/\tilde{c}_{i-1}(\alpha) \). To prove the last assertion, suppose that \(\tilde{c}_{i+1}(\alpha) \) is not divisible by \(p^{t+1} \). Then \(\tilde{c}_{i+1}(\alpha) \) is exactly divisible by \(p^t; e_{i+1} = \tilde{c}_{i+1}(\alpha)/\tilde{c}_i(\alpha) \) is not divisible by \(p \). On the other hand,

\[
\tilde{c}_{i+1}(\alpha) = e_1 e_2 \cdots e_{i+1}, \quad e_j | e_{j+1}.
\]

This implies that \(\tilde{c}_{i+1}(\alpha) \) is not divisible by \(p \), a contradiction.

4. Examples.

1) Consider now a cubic field:

\[
(4.1) \quad K = \mathbb{Q}(\alpha); \quad \alpha^3 + a_1 \alpha^2 + a_2 \alpha + a_3 = 0, \quad a_i \in \mathbb{Z},
\]

where \(f(x) = x^3 + a_1 x^2 + a_2 x + a_3 \) is irreducible. We obtain:

\[
(4.2) \quad A = \begin{pmatrix} 0 & 0 & -a_3 \\ 1 & 0 & -a_2 \\ 0 & 1 & -a_1 \end{pmatrix};
\]

\[
(4.3) \quad B = f'(A) = \begin{pmatrix} a_2 & -3a_3 & a_4 a_3 \\ 2a_1 & -2a_2 & a_1 a_2 - 3a_3 \\ 3 & -a_1 & a_1^2 - 2a_2 \end{pmatrix};
\]
(4.4) \[C'(\alpha) = \begin{pmatrix} \text{Tr}(1) & \text{Tr}(\alpha) & \text{Tr}(\alpha^2) \\ \text{Tr}(\alpha) & \text{Tr}(\alpha^2) & \text{Tr}(\alpha^3) \\ \text{Tr}(\alpha^2) & \text{Tr}(\alpha^3) & \text{Tr}(\alpha^4) \end{pmatrix} \]

\[= \begin{pmatrix} 3 & -a_1 & a_1^2 - 2a_2 \\ -a_1 & a_1^2 - 2a_2 & -a_1^3 + 3a_1a_2 - 3a_3 \\ a_1^2 - 2a_2 & -a_1^3 + 3a_1a_2 - 3a_3 & a_1^4 - 4a_1^2a_2 + 4a_1a_3 + 2a_2^2 \end{pmatrix}. \]

Let \(\tilde{b}_{ij} \) (resp. \(\tilde{c}_{ij} \)) denote the cofactor of the \((i, j)\)-entry of the matrix \(B \) (resp. \(C'(\alpha) \)). Then

\[
(4.5) \begin{align*}
\tilde{c}_{31} &= -\tilde{b}_{11} = a_1^2a_2 - 4a_2^2 + 3a_1a_3, \\
\tilde{c}_{32} &= -\tilde{b}_{12} = 2a_1^3 - 7a_1a_2 + 9a_3, \\
\tilde{c}_{33} &= -\tilde{b}_{13} = 2(a_1^2 - 3a_2).
\end{align*}
\]

Let \(d(\alpha) \) denote the discriminant of \(\alpha \). Then a classical formula

\[
(4.6) d(\alpha) = -4a_1^3a_3 + a_1^2a_2^2 + 18a_1a_2a_3 - 4a_2^3 - 27a_3^2
\]
follows from

\[
(4.7) d(\alpha) = -\det B = -(a_2\tilde{b}_{11} - 3a_3\tilde{b}_{12} + a_1a_3\tilde{b}_{13}).
\]

Let \(p \) \((p \neq 2)\) be a prime factor of \(\tilde{c}_2(\alpha) \) (which we defined in §3). Then \(\tilde{c}_{33} \) is divisible by \(p \), and so

\[
(4.8) a_1^2 \equiv 3a_2 \pmod{p}.
\]

Since \(d(\alpha) = \det C'(\alpha) \) is divisible by \(p \), it follows from (4.6) and (4.8) that

\[
(4.9) 27d(\alpha) \equiv -(a_1^3 - 3^3a_3)^2 \equiv 0 \pmod{p}.
\]

Hence

\[
(4.10) a_1^3 \equiv 3^3a_3 \pmod{p}.
\]

Conversely, if \(p \) \((p \neq 3)\) is a prime number which satisfies (4.8) and (4.10), then \(\tilde{c}_{33} \) and \(d(\alpha) \) are both divisible by \(p \), and \(\tilde{c}_2(\alpha) \) is also divisible by \(p \) (Theorem 2).

Thus we have proved the following result: For a prime number \(p \) \((p \neq 2, 3)\) to divide all the minors of order two of the matrix \(C'(\alpha) \) it is necessary and sufficient that \(a_1^2 \equiv 3a_2 \pmod{p} \) and \(a_1^3 \equiv 3^3a_3 \pmod{p} \).

2) Consider now a cubic field (4.1) satisfying \(a_2 \equiv a_3 \equiv 0 \pmod{3} \), \(a_1 \equiv 0 \pmod{3} \). Then by (4.5) and (4.6) we see that both \(\tilde{c}_{31} \) and \(d(\alpha) = \det C'(\alpha) \) are divisible by 3, but \(\tilde{c}_{33} \) is not divisible by 3 (cf. Theorem 2, Lemma 1). Suppose that \(a_1 \equiv a_3 \equiv 1 \), \(a_2 \equiv -1 \pmod{4} \). Consider the prime \(p = 2 \). By (4.5) and (4.6) we see that both \(\tilde{c}_{33} \) and \(\det C'(\alpha)(= d(\alpha)) \) are divisible by \(p^2 \), but \(\tilde{c}_{31} \) is not divisible by \(p^2 \) (cf. Theorem 2).

3) The converse of Theorem 1 is not true. Let \(k = 1, p = 2 \), and let \(K \) be a cubic field with odd discriminant \(d_K \) such that, for every integer \(\alpha \) of \(K \), the discriminant \(d(\alpha) \) of \(\alpha \) is even (Dedekind[3]). Then, for any integer \(\alpha \) of \(K \), \(\det C'(\alpha) = d(\alpha) \) is
On Discriminants and Certain Matrices

divisible by \(p = 2 \); it follows from Theorem 2 and (4.5) that every minor of order two of the matrix \(C(\alpha) \) is divisible by \(p \), but \(d_K \) is not divisible by \(p^2 \).

4) Let \(O_K \) denote the ring of integers of an algebraic number field \(K \) of degree \(n > 1 \), and let \(\alpha \in O_K \) such that \(K = \mathbb{Q}(\alpha) \). Let \(\delta \) (resp. \(d(\alpha) \)) denote the different (resp. discriminant) of \(\alpha \) in \(K/\mathbb{Q} \), and let \(m^2 (m \in \mathbb{Z}) \) denote the largest square dividing \(d(\alpha) \). By (1.44) we see that

\[
\frac{d(\alpha)}{m\delta} \in O_K.
\]

From (2.4),

\[
d(\alpha) = \frac{\tilde{c}_{n1} + \tilde{c}_{n2} \alpha + \cdots + \tilde{c}_{nn} \alpha^{n-1}}{m},
\]

where \(\tilde{c}_{ij} \) denotes the cofactor of the \((i,j)\)-entry of the matrix \(C(\alpha) \).

Now suppose that \(\tilde{c}_{n-1}(\alpha) = 1 \). Then \(K \) has a very simple integral basis (cf. [1],[4],[6]). By Theorem 2 we see that \(m \) is prime to \(\tilde{c}_{nn} \). Let \(a, b \in \mathbb{Z} \) such that

\[
a \tilde{c}_{nn} + bm = 1,
\]

and define

\[
\beta = \frac{ad(\alpha)}{m\delta} + b\alpha^{n-1} \in O_K.
\]

Then \(\{1, \alpha, \ldots, \alpha^{n-2}, \beta\} \) is an integral basis of \(K \), since

\[
\begin{vmatrix}
1 & \alpha^{(1)} & \cdots & \alpha^{(1)n-2} & \beta^{(1)} \\
1 & \alpha^{(n)} & \cdots & \alpha^{(n)n-2} & \beta^{(n)}
\end{vmatrix}^2 = \frac{d(\alpha)}{m^2}
\]

is square-free. The discriminant of \(K \) is

\[
d_K = \frac{d(\alpha)}{m^2}.
\]

Since \(d_K \) is square-free, it follows from [5] (Theorem 1) that the Galois group of \(\overline{K}/\mathbb{Q} \) is isomorphic to the symmetric group \(S_n \), where \(\overline{K} \) denotes the Galois closure of \(K/\mathbb{Q} \).

References