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Number 81433093 Name Suguru Okami

Title

Development and Evaluation of the Model for the Spatial Heterogeneity of Disease Burdens
Corresponding to Disparities of the Environmental Context for the Efficient Healthcare Resource
Deployment: A Case of Drug-Resistant Malaria Issue in Cambodia

Abstract

Long lasting fight with Malaria has been entering in new situations. Still, Malaria is an
important global health issue causing millions of deaths for many years. Substantial effort for the
malaria containment action by many stakeholders has decreased the burden of this infectious
disease in a number of endemic places. However, a number of remaining issues and emerging
challenges still exist in the way toward malaria elimination. One emerging issue is the artemisinin
resistance reported mostly in the Greater-Mekong subregions.

This thesis studies about the development and evaluation of the system for the modeling and
computational simulation approach of the spatial heterogeneity of malaria disease burdens to visualize
the effectiveness of containment actions for the purpose of optimal healthcare resource utilization in
western Cambodia where the artemisinin resistance was previously reported. The mapping approach
with malaria spatial risk distribution modeling is an effective tool and widely used for malaria
containment actions, which was established through the long history of effort by many
contributors. However, as the disease burden of malaria decreases along the way malaria
elimination effort progresses, this approach needs some adjustment in accordance with the
situational changes surrounding malaria elimination effort. Under the low-to-moderate
transmission settings such as those in Cambodia, mathematical modeling methods and
measurement approaches of malaria risk need reinvestigations.

To address this issue, we applied a mathematical modeling approach for standardized
morbidity ratio (SMR) calculated by annual parasite incidence (API) using routinely aggregated
surveillance reports, environmental data such as remote sensing data and non-environmental
anthropogenic variables to create spatial risk distribution maps in fine-scale of two provinces
(Pailin and Preah Vihear) in western Cambodia. Furthermore, we incorporated the combination of

given containment status indicators into the model to demonstrate the regional heterogeneities of




the relationship between containment status and risks.

The estimated SMR by empirical Bayesian method (EBSMR) for each operational health
district in western Cambodia was calculated using routinely aggregated surveillance reports. We
then developed an explanatory mathematical model for EBSMR using environmental variables
calculated from remote sensing data and non-environmental anthropogenic variables. Bayesian
modeling frame was applied to estimate the uncertainty of the model and cross-scale predictions.
Finally, we created maps visualizing the risks by interpolating the estimated SMR at each village
and conducted computational simulations to demonstrate the relationship of expected outcomes
and containment status indicators.

The explanatory model was fitted to estimate the SMR of each area (adjusted R* = 0.774, AIC
= 149.423). Fine-scale maps were created by the inverse distance weighed method (IDW) and
ordinal kriging interpolation of estimated SMR at each village. In comparison with geocoded case
data, corresponding predicted values showed conformity [Spearman’s rank correlation; r = 0.662
in IDW and 0.645 in ordinal kriging (95% confidence interval; 0.414 — 0.827 and 0.368 — 0.813,
respectively), Welch’s t-test; N.S.]. Computational simulations demonstrated visual
representations of the different expected outcomes of interventions in respective areas.

We conclude the validity of the proposed approach by which, regional malaria risks can be well
explained and fine-scale risk maps can be created under the low-to-moderate malaria transmission
settings where reinvestigations of existing risk modeling approaches are needed. Moreover, different
representations of simulated outcomes of containment status indicators for respective areas provide
useful insights for the tailored interventional planning considering regional malaria endemicity.

Further studies are needed to demonstrate how this system will provide the effect in the
Cambodian health information system. The implications from this study suggested the system
would provide increased reciprocity of the information, by which the improved quality of reported

data could be expected.
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Mathematical modeling, Risk modeling, Risk mapping, Spatial epidemiology, Malaria
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1. INTRODUCTION

1.1 Background

1.1.1 Motivations

Spatial epidemiology is widely applied as an effective tool to understand the
geospatial distributions of disease burdens and the level of health of people to reduce
the risk threatening public health [1]. In recent years, a number of technologies related
to this research area, such as the people mobility analysis using mobile phone log [2],
the application of remote sensing technology [3], big data analysis and simulation
technologies to predict the effectiveness of interventions, have made significant
progresses, which have already been piloted or applied to a number of healthcare
projects [4]. Still, further opportunities can be found for the improvements in providing
more practical and visualized information for the appropriate drug use with these

advanced technologies.

1.1.2 Malaria problem

Malaria is a life-threatening disease caused by parasites that are transmitted to
people through the bites of infected mosquitoes. It is a public health issue causing
millions of deaths for many years. In 2013, malaria caused 584,000 deaths (Uncertainty
range 367,000 — 755,000) [5]. Furthermore, malaria is the 5™ biggest cause of death in

children except neonatal causes (Figure 1) [6].
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Figure 1 Cause of deaths among children under 5 years, 2011 [6]



Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Prasmodium
malariae are the parasite species that can transmit to humans. Malaria damages the body
through a number of pathways. Malaria causes the red blood cell distruction leading to
anemia. The waves of parasites are bursting red blood cells, which can be a trigger for
the classic cycles of fever and chills. The changes of adhesive properties of infected
redblood cells can block the blood flow in the vessels causing tissue hypoxia. If this
tissue hypoixia is happen in brain, it can cause cerebral malaria, which is often fatal.

Once people get infected through the bites of vectors, infected Anopheles
mosquitoes, they get acute febrile illness and several patients are in the severe condition
such as hypoglycemia, anemia, respiratory distress and cerebral malaria, which can lead
to the fatal conditions. Malaria also has chronic effects such as anemia, neurologic
cognitive and developmental disfunction which lead to the impaired growth and

development causes malnutrition as well as infant mortality and impaired productivity.

1.1.3 Situational changes in the malaria problem

Long lasting fight with Malaria has been entering in new situations. Still, Malaria
is an important global health issue causing millions of deaths for many years.
Substantial effort for malaria containment actions by many stakeholders has decreased

the burden of this infectious disease in a number of endemic places (Figure 2).

3400 Kiometers

Trends in malaria incidence
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I 50%-75% decrease in incidence projected 2000-2015 o e e : -/
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<50% decrease in incidence projected 2000-2015 have been intensified OR Country has recently expanded diagnostic testing B increase in incidence 2000-2012
Figure 2 Trends in malaria incidence [7]

Green colored area represents more than 50% decrease in malaria incidence.



Some decades after the past effort of the global malaria eradication program,
malaria elimination features again in global health agenda [8]. In recent years, an
increasing number of countries with low-to-moderate transmission areas have moved
into the actions toward the malaria elimination from their entire territories [9]. In
Cambodia, this target is placed on 2025 [10]. Recent activities have decreased the
incidence of malaria in Cambodia to less than a half compared with those in early 2000s
[11]. Nowadays, about a half of people are living in malaria-free or low-transmission
settings [12]. However, a number of remaining issues and emerging challenges still

exist in the way toward malaria elimination.

1.1.4 Emerging artemisinin resisitance in the Greater Mekong subregions

One of the most potentially hazardous issues is the artemisinin resistance reported
mostly in the Greater-Mekong subregions [13]. Artemisinin is a potent and rapidly
acting blood schizontocide, effective for all plasmodium species, which is used in
combination with other antimalarials (Figure 3) [14]. In P. falciparum malaria,
artemisinin also kills the gametocytes — including the stage 4 gametocytes, which are
otherwise sensitive only to primaquine. This drug should be given as combination

therapy to protect from drug resistance because of its short half-life in the body.
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Figure 3 Chemical structure of artemisinin [14]
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Figure 4 Extent of artemisinin resistance in the Greater-Mekong subregions [17]

The blue color represents the proportion of parasite clearance half-life is equal or less than Shrs and
the red color represents the proportion of parasite clearance half-life is more than Shrs or kelch 13
polymorphism at or beyond amino acid position 441.

The delayed parasite clearance, i.e. resistance to artemisinin, has so far been
detected in five Southeast Asian countries; Cambodia, the Lao People’s Democratic
Republic, Myanmar, Thailand and Viet Nam and there has been a number of report of
delayed parasite clearance in patients taking artemisinin in western Cambodia [15-19]
(Figure 4). As no alternative effective antimalarial treatment can be used at present, the
public consequence could be dire, if resistance spreads to wide geographical regions
[15]. In areas along the Cambodia—Thailand border, P. falciparum has become resistant
and multi-drug resistance is a current major concern [16]. Usually in such areas,
mobility of people is high, which contains the potential dangers of spreading the
multi-drug resistance to larger geographical areas. One recent report showed that the
artemisinin resistant malaria has infectious potential to vectors in other geographical
regions [20].

In relation to this, there are some issues in antimalarial drug use such as spreading
availability of the artemisinin monotherapy, poor quality counterfeit medicines and
unregulated antimalarial use [17, 21]. An important driver is said to be the use of oral
artemisinins alone as monotherapy [15].

The reported treatment failure in western Cambodia varies on conditions [17,



22-24]. However, even considering the variance in these aggregated reports, all of them
strongly suggest urgent needs for addressing this issue. Under the current situations, the
appropriate medication use is undoubtedly important. The right patients should be
screened and treated by the right way. In areas such as those in western Cambodian
country border, this approach, in occasions, needs the intensive care and monitoring for
the patients. In order to attain the required outcome, several studies such as focused
screening and treatment [25], community based surveillance [26] and mass drug
administration [27] have been piloted. What is common to these interventions are
intensive support and monitoring for local practitioners were critical for obtaining

desired outcomes.

1.1.5 Problem structure of aretemisinin resistance in Cambodia

An example of the problem structure of artemisinin resistance is shown in Figure 5.
This problem structure was drawn through the interview results with the director of
provincial health center (Table 1) and the literature search. Each element in this
structure is connected by relevant causal relationship, indicating that multiplicative
contributions made by multiple issues are consisting of this problem. The middle layer

of the structure indicates two types of resource related issues, insufficiency and quality

1SSue€s.
Spread of artemisinin
resistance
Preventive measures Patients do not get Transmit by patients' Treatment is ineffective [22] |
are not working medical treatment™* travel movement [17] /—_——N
Actions not Resources (mosquito Rc_l)f on Do not use Asymptomatic or || Long latent || Incompliant || Health care resource Availability of
implemented net etc.) not working traditional health center* mild symptoms period with treatment insufficiency* counterfeits [21]

remedies

Prediction Cannot trace the patients

gap by field healthcare providers
i N———
Insufficient knowledge of Lack of experience and Heavy work Unestablished
disease and treatment training opportunity [26] load [26] incentive system [26]

Figure 5 An example of the problem structure related to artemisinin resistance in Cambodia

* Represents findings from the interview

Inappropriate use || Resource Lack of || Poor accessibility Artemisinin mono Stop taking Unexpected loss in the || Insufficient health || Prediction gaps
of resources insufficiency money || to the hospital therapy [21] medications distribution process center budget* from required
amount
Undersupplicd Not understanding > Patients do not || Symptoms are relieved earlier || Insufficient stock || Unexpected out
the impotance come back than parasite clearlance [17] monitoring break




Another factor, seen in this structure is the patient related issues. Patients are in the
various circumstances and have respective reasons for not reaching appropriate
treatment. Not only the accessibility to the healthcare but also the insufficient
knowledge and awareness can be expected for the reasons. Especially for these patient
related issues, the effort of local healthcare providers such as village malaria workers, in

other words the intervention by field healthcare providers is the last stand to address

these problems.

Table 1 Questions and responses at the interview with the local health center staff

No | Questions Responses
1 How many patients have come to this center?
(Today/ This week/ This month) >0/350/1,500
2 What kind of disease do patients have most? Fever and Gastroenteritis
3 How about malaria patients, how much is the . .
. Not a serious issue
proportion?
4 Can you spare enough time for each patient? Yes
5 Once patients are treated at this hospital do they come Yes
back here to check to ensure they are fully recovered?
6 For how long do you prescribe antimalarials is it 3 Day, 3 davs
6 Day or 1 week? Y
7 Are health resources and staffs enough to cover all the Yes
patients?
8 What kind of information do you need to provide Medical consultation
enough care?
9 Are you cooperating with village malaria worker well? Yes
10 | Do they.have epough knowlgdge, experience and skills Not enough
for treating patients appropriately?
11 | What is the issue in cooperating with village malaria Need more training and budget
worker?
12 Hoyv. many patlents. are going to private .hgalth care Almost 50%
facilities such as private pharmacy or clinics?
13 | Do you need more budget for providing quality care for Yes
patients?
Do you think patients will adhere to the treatment more
14 | and keep taking medications up to prescribed terms if Yes
they are followed up more intimately?
Worry about some people move
15 | Do you have any other things to worry about? their home to other living and
education is low.

Interviewee: Mr. Phin Chanmonin (Director of provincial health center in Kampon Chhnang province)

As of February 2015
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Figure 6 Provincial health center visited for fieldwork

If we can measure the risk and present it on the map, for areas not covered by
current healthcare system sufficiently, the required amount of healthcare resource
delivery and staff deployment can be facilitated. Furthermore, for the cross-border
transmissions, efficient cross-border screening can be targeted to the high-risk area. As
healthcare resources cannot be used inexhaustibly, identification of the target hotspot of
malaria endemic area, delivery of the sufficient stockpile of resources and intimate
support for field healthcare providers are essential, especially for remote endemic places
where the accessibility cannot be retained over a year.

To summarize, it is essential for drug resistant malaria containment activities to let
the patients continue the standard quality treatment based on the sufficient health
resource distribution. However, the level of the availability of healthcare resources and
the support for field healthcare providers differs by area. The widespread mobility of
the people in the area is also attributing to this issue. Through the utilization of
information from predicted regional disease burdens and the predicted effectiveness of
interventions, further steps closer to the effective healthcare resource distributions and

the support for the field healthcare providers can be attained.



1.2 Research objective

This thesis studies about the development and evaluation of the system for the
modeling and computational simulation approach of the spatial heterogeneity of malaria
disease burdens to visualize the effectiveness of containment actions for the purpose of
optimal healthcare resource utilization in western Cambodia where the artemisinin
resistance was previously reported. The mapping approach with malaria spatial risk
distribution modeling is an effective tool and widely used for malaria containment
actions, which was established through the long journey of effort by many contributors.
However, as the disease burden of malaria decreases along the way malaria elimination
effort progresses, this approach needs some adjustment in accordance with the

situational changes surrounding malaria elimination effort.

The specific objectives of this study were as follows:

(1) To develop the spatial risk distribution modeling, adjusted for the current endemic
situations, i.e. low-to-moderate malaria transmission settings.

(2) To identify the areas at high malaria endemicity where intensive monitoring and
support is needed by creating fine-scale risk maps using cross-scale prediction with
Bayesian modeling frame.

(3) To demonstrate the computational simulations of expected outcomes from given
combinations of containment status indicators for evaluating tailored action

planning considering regional malaria endemicity.



1.3 Contributions of this work

Our original contributions are; (1) the demonstration of the mathematical modeling
approach which utilizes the reliable measure under the low-to-moderate transmission
settings from routine aggregated surveillance reports, (2) cross-scale prediction by
modeling framework corresponding to environmental context disparities to create
malaria risk maps in fine-scale under the low-to-moderate transmission settings, where
a number of countries are or will soon be facing, and (3) the demonstration of different
representations of computational simulations from given containment status indicators,
which can provide the insight for tailored planning of action alternatives considering
regional malaria endemicity.

In spite of numbers of previous publications in this research area, few studies
demonstrated the practical applications of developed risk modeling frame. This study
covers not only the spatial risk distribution modeling using available dataset but also the
application of developed modeling frame by predicting expected outcomes using
computational simulations. Figure 7 represents the typical program phase of malaria
elimination. The low-to-moderate transmission setting is the situation where the many
of the countries aiming for malaria elimination will soon be facing and thus an
important step toward the goal. At this stage, the program reorientation is needed for
moving the program effort forward. The approach and implications described here will

provide more efficiency for countries under such situations.
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Figure 7 Program phase and major interventions in the malaria elimination program [28]



1.4 Chapter organization

This thesis consists of following chapter organizations:

Chapter 2 reviews related studies in the area of the mapping approach of malaria
disease burdens with spatial risk distribution modeling. Besides, the author explains the
limitations of these approaches under the current situational changes in the malaria
problem and proposes modified method to address these issues.

Chapter 3 describes the design processes and products of the system of interest. Author
provides the requirement analysis and the system architecture using the diagrams
developed through this system design process.

Chapter 4 presents the development and evaluation of the spatial risk distributions
model using Bayesian modeling frame corresponding to the environmental context
disparities for cross-scale prediction.

Chapter 5 presents the fine-scale mapping with the spatial risk distributions model
developed in chapter 4. This approach was evaluated through the comparison with
previously reported maps and geocoded case data.

Chapter 6 presents the demonstrations of the computational simulations under the
given combinations of containment status indicators. Author proposes the examples of
how these results can be utilized for the malaria problems.

Chapter 7 reviews the verifications and validation of the system of interest. Based on
the requirement developed discussed in chapter 3, author summarizes the Requirement
Verification Traceability Matrix of the system. Furthermore, the stakeholders’ review
for the system validation is provided.

Chapter 8 discusses the results and findings throughout this study. Author provides the
implications from development and evaluation processes for future applications of study
results. Furthermore, several limitations of this research are discussed.

Chapter 9 concludes this thesis. This chapter summarizes contributions of this study

and describes the future study directions.
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2. LITERATURE REVIEW AND THE PROPORSED
APPROACH ADDRESSING EXISTING ISSUES

2.1 Spatial prediction map of malaria
Recent efforts for the quantification of risk burden and the creation of the spatial
prediction map of malaria risk made substantial contributions to address the needs for

targeted interventions for malaria [29-30].

2.1.1 The framework for geospatial science applied to malaria elimination

Figure 8 shows the framework for geospatial science applied to malaria elimination
[30]. Various kinds of data can be used such as the intervention coverage and
infrastructure and target residences in view of operations. Also the remote sensing data,
meteorological data from environmental side as well as malaria surveillance, survey and
entomogical data can be used for the malaria quantifications. By integrating these data,
the geographical information systems (GIS) can be developed, then, the spatial
statistical analysis can be conducted so that these data can be used for malaria
containment activities as outputs. By predicting areas at risk and examining the
effectiveness of interventions from estimated risk at the target hotspot, some more steps
closer to the efficient resource allocation can be attained. Among the outputs described
in this frame, our focus was providing spatial prediction map. Moreover, model-based

simulation approach was demonstrated, which is one of our original contributions.
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| Geographical information system |
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Spatial statistical analysis | |

target residences Entomogical data

Infrastructure and |

o Outputs J/ \'l \|/
-E Spatial Identified Maps of Estimates of
g prediction clusters or intervention population
OD- maps hotspots coverage at risk

Figure 8 Framework for geospatial science applied to malaria elimination [30]
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2.1.2 The world map of malaria endemicity

In that context, world map of P. falciparum malaria endemicity was published
using parasite rate (PR) surveillance report and the model-based geostatistical approach
(Figure 9-10) [31-32]. These procedures were implemented within a Bayesian statistical
framework to represent the uncertainty in the unknown map while retaining robustness
of these predictions [33].

These mapping products and methodologies for spatial risk distribution modeling
are provided by Malaria Atlas Project, which is aiming to disseminate free, accurate and
up-to-date information on malaria. The team in the university of Oxford is receiving
designation as a World Health Organization (WHO) Collaborating Centre in geospatial

disease modeling.

Figure 9 The Spatial distribution of P. falciparum malaria endemicity by Malaria Atlas
Project [31]

Figure 10 The Spatial distribution map of P. falciparum in Cambodia [31]
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2.1.3 Application of remote sensing data from space satellites

The remote sensing techniques are the powerful tools to identify the hotspot and
investigating the malaria epidemiology [3]. Several environment related indices
calculated from remote sensing data, such as normalized difference vegetation index
(NDVI), normalized difference water index (NDWI) and topological wetness index
(TWI) were utilized to predict the regional malaria endemicity [34-37]. Climate is also
closely related to the risk of malaria [38-39]. Cohen et al. created fine-scale risk maps of
both high endemic and low endemic seasons from routine aggregated case report using

meteorological and remote sensing data (Figure 11) [40].

.
e
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Figure 11 Predicted probability map for malaria cases in Swaziland [40]

2.1.4 Human interactions with surrounding environment
It is important to take human interactions with environment into the model when

describing the risk as malaria is transmitted through the interaction with vectors lurking
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in the surrounding environment. In fact, several behavioral factors and human reactivity
to this disease are incorporated in the mathematical model for the prediction of malaria
transmission [41-42]. From this perspective, the map represents the model incorporating
non-environmental anthropogenic factors were reported [43]. Also with related to this
topic, Ellis et al. proposed the concept of anthropogenic of the world (Figure 12) [44].
This concept is, in short, the conceptual thinking of “putting people in the map”,
meaning environmental factor together with anthropogenic factor such as population
density may explain how the people use or interact with surrounding environment,

which is expected to relate to the geographically observed phenomenon.
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Figure 12 Anthropogenic biome visualized in the Google Earth® [44]

2.1.5 Quantifications of the impact of human mobility

It is also important to consider the influence of the human mobility for the malaria
transmissions. Using spatially explicit mobile phone data and malaria prevalence
information, Wesolowski et al. projected the source and sink of malaria parasites in
Kenya (Figure 13). By that, they could identify the dynamics of human carriers that

may drive parasite importation between regions [2].
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Figure 13 Projected source and sink of parasites in Kenya [2]
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Figure 14 Fine-scale risk map created by cross-scale prediction in Swaziland [49]



2.2 Limitations of existing malaria mapping and measurement approach
Despite these advancement, as the prevalence of malaria decreases along the way
malaria elimination effort progresses, this risk mapping approach needs some

adjustment in accordance with the situational changes.

2.2.1 Measurement of the malaria risk

In terms of the measurement of malaria disease burden, when malaria becomes rare,
it becomes increasingly difficult to detect ongoing transmission monitoring by PR [45].
Since, these situations are the important steps toward malaria elimination, there is an
important need for examining the modeling method of disease burden under low to
moderate transmission settings. Annual Parasite Incidence (API) can be a reliable
measure for reporting new malaria infections under these settings supported by good
reporting systems [46]. However, intensive focused screening method indicated that, in
low-transmission settings, not a few malaria cases are asymptomatic, which makes it

difficult to identify all the cases by passive surveillance systems [47-48].

2.2.2 Accessibility for fine-scale data

Under low transmission settings, because of few infectious cases reported, the
sample size required for both estimation and spatial prediction of infection prevalence
becomes very large and such information, usually, cannot be obtained in fine-scale.
Instead of using such data, cross-scale prediction with the data collected in the coarser
scale is used while managing the spuriousness and unreliability of prediction by the

Bayesian modeling framework (Figure 14) [49].

2.2.3 Assessment of the effectiveness of combinations of interventional measures
At present, there are a few examples of investigations for the benefits of combining
different vector control measures, but further studies are needed about the assessment of
the effectiveness of using these combined approaches. This issue has become
increasingly important, as “One-size fits all” approach is no longer applicable to the
areas under the low-to-moderate transmission intensity. All interventions should be
reviewed carefully and should be tailored for regional circumstances in an ongoing way

to ensure that they remain fully effective and cost-effective.
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2.3 Hypothetical questions and proposed approach
Based on the current situations and findings from previous studies we propose

following hypothetical questions:

(1) Can we use standardized morbidity ratio (SMR) calculated by API in the spatial
risk prediction model as an appropriate measure of disease burdens?

(2) Can we predict the fine-scale risk better if human interactions with surrounding
environment, i.e. environmental context, are considered?

(3) Can we demonstrate the expected outcome of interventional measures by

incorporating containment status indicators into the risk prediction model?

Here, we applied a mathematical modeling approach for SMR calculated by API
using routinely aggregated surveillance reports and variables related to human
interactions to surrounding environment to create spatial risk distribution maps in
fine-scale of two provinces (Pailin and Preah Vihear) in western Cambodia where the
artemisinin resistance was previously reported. In addition, we incorporated the
combinations of containment status indicators into the model, by which the regional
heterogeneities of the relationship between containment status and risk can be visually
represented for the efficient healthcare resource allocations and intervention planning

considering temporal descriptions of regional malaria endemicity.

PreahVihear
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I —— ) «n © OpenStrestMap contributors

Figure 15 A map of the research area

Open Street Map® was used to create this map
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2.4 The environmental context disparities

Human interactions with surrounding environment are the important factors
affecting the risk especially for communicable diseases transmitted through infectious
vectors. Figure 16 shows an applied case of the epidemiologic triad of disease causation
[50] for the malaria case. This triad consists of an external agent (Malaria), a host
(Human) and an environment in which host and agent are brought together, causing
disease. Vector plays as the transmission carrier of malaria parasite that does not present

malaria symptoms.

Host
(Human)
Vector
(Anopheles mosquito)
- ~.
(ﬁﬁzgz) Environment

Figure 16 An applied case of the epidemiologic triad of disease causation for malaria

Based on this conceptual thinking, the environmental context surrounding human
communities, i.e. how the environmental features exist and interact with people, is an
important factor affecting the risk of this infectious disease. Thus, disparities in
environmental context among communities could explain the extent of disease burden
across areas. In this study, we defined this concept as “The environmental context

disparities” as a key factor for the development of malaria risk model.

Forest

Water source

Pagjdy field

Urbanized area Health center

Figure 17 An example of environmental context
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3. SYSTEM DESIGN FOR THE MALARIA RISK
MODELING APPROACH

In this chapter, we designed the system for the modeling approach of the spatial
heterogeneity of malaria disease burdens and its implementation called “Malaria risk
modeling and simulation system”. The purpose of this chapter is to examine the key
stakeholders, the context, the behavior, the requirement and the architecture of the
system. Based on that, the system was verified and validated for evaluations. At the

same time, early design products could be validated through the fieldwork and the

interview with key local stakeholders.

3.1 Use case analysis

Malaria risk modeling and simulation system
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Figure 18 Use case diagram of the system

19



The use case diagram of the system is shown in Figure 18. The system collects

various information from data sources and processes them to make malaria risk

prediction model. The output the system is visualized on the map as GIS, which makes

users easily identify the areas at high risk. Identified key stakeholders are as follows:

Village malaria worker (VMW)

Public officer such as staff in Ministry of Health

Organization engaged in malaria containment actions such as Malaria consortium

Non-Government Organization (NGO)

Health care provider at regional health center

Therefore, expected users are the professional healthcare provider and related party.

Figure 19 shows the context diagram of the system. This diagram shows the primal

function seen from each stakeholder, i.e. the interface of the system could be examined

in this diagram. Displayed information plays as the key output of the system.
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Figure 19 Context diagram of the system
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3.2 System function

Based on the information from use case analysis and the context diagram, the

sequence diagram for examining the interaction between the system and stakeholders

was drawn.
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Figure 20 Sequence diagram of the system
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Figure 20 shows the concept of operation describing the interface between users
and the system. The major insight from this analysis was the system interacts with users

multiple times to collect the data, by which the system shall display the output as GIS.

As users need to take practical actions for malaria containment, the displayed

information needs to be interlinked to these actions, also the extent of regional risk

should be clearly identified not only by decision makers such as the government officer
but also the regional practitioner. Thus, the scale of the system output needs to cover

both wide and fine-scale. In that sense, the GIS platform can provide both wide and

fine-scale view.

The functional flow block diagram (FFBD) shown in Figure 21 provides the required

system function extracted from this operational sequence.
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Figure 21 Functional flow block diagram
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3.3 Requirement analysis

The requirement diagram provides a bridge between the typical requirements

management tools and the system models [51].
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Figure 22 Requirement diagram of the system
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Refined requirements indicate the needs for presenting risk with colored gradation to

make it more visible interlinking to actions.

Table 2 Requirement table of the system

# ID Requirements Description

1 1 Estimate the risk of malaria System shall estimate the risk. Risk is expressed as
probability distributions in the research area.

2 2 Receive data System shall receive data provided by stakeholders
and other information sources.

3 2.1 Receive malaria information System shall receive malaria information system data

system data

4 2.2 Receive map resource data System shall receive geographical information (e.g.
DEM, political boundary, village and road etc.) to
make basal maps for spatial analysis.

5 2.3 Receive containment status System shall receive containment status data (e.g.

data percentage of mosquito net distribution and treatment
failure).

6 2.4 Receive demographic data System shall receive demographic data (e.g.
proportion of each age subgroup and population
density)

7 2.5 Receive remote sensing data System shall receive remote sensing data captured by
space satellites.

8 2.6 Receive the data for simulation | System shall receive data for simulation modeling

modeling (e.g. published drug efficacy data, correlation
between malaria risk and variables in the spatial risk
model made in the system)

9 2.7 Receive meteorological data System shall receive meteorological and
climatological data.

10 |3 Visualize (Provide) System shall visualize information supporting

information malaria containment actions (e.g. estimated malaria
risk for healthcare resource deployment planning and
simulated efficacy of intervention).

11 | 3.1 Display estimated malaria risk | System shall display estimated malaria risk.

12 | 3.1.1 Display risk with colored System shall display the risk with gradation colored

gradation manner so that user can identify the risk area and its
extent.

13 | 3.1.1.1 | Risk interpolation System shall interpolate the risk of the area between
the geographical points of estimation.

14 (32 Display the simulation results | System shall display the result of computational
simulations.

15 321 Display time series results System shall display the time series of simulation
results both on the maps and graphs.

16 |33 Display basal map System shall display the basal map on which spatial
analysis is conducted and calculated risk is plotted.

17 |33.1 Reflect accurate positioning System shall reflect accurate positioning of each
geographic information with uniform coordinates
reference system (CRS).

18 (34 Support decision making System shall provide information supporting decision

making for healthcare providers, public health
planners, government official and NGO staffs.
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19 (4 Risk modeling System shall make spatial regression modeling for
predicting the risk of malaria. Environmental factors
(e.g. NDVI, Water indices and Temperature),
demographical factors (e.g. Population density and
Proportions of each age subgroup) and containment
status indicators (e.g. Mosquito net distributions) are
incorporated into the model.
20 |5 Simulation modeling for the System shall simulate the expected outcomes using
variables of interest combinations of containment status indicators.
Results are provided as probability distribution.
21 |6 Simulate the efficacy of System shall simulate the efficacy of interventions
intervention using simulation model made in the system.
22 | 6.1 Probability sensitivity analysis | System shall conduct the probability sensitivity
analysis of the simulation results.
23 |62 Incorporate containment System shall incorporate containment actions
actions simulated in the model. Actions are translated into
appropriate variables in the model.
24 |7 Data processing System shall process the data suitable for usage in the

system.
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3.4 System architecture

Based on the information from the analysis, candidates of the system architecture

were considered and selected as below (Figure 23). Then the system functions were

allocated to each subsystem.
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Figure 23 Block definition diagram of the system

The system consists of three subsystems, the database and processing subsystem,

the modeling and simulation subsystem and the geographical information subsystem.

These subsystems act in conjunction to support the malaria containment actions by each

stakeholder.
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Data are received at the database and processing subsystem and processed to the
appropriate variables used in the model. This subsystem acts as database collecting data
continuously and provides up to date information used for the spatial risk distribution
modeling. Geospatial analysis (i.e. modeling and simulation) is conducted in the
modeling and simulation subsystem. Parameters are combined to calculate the risk in
accordance with risk calculation model. Then the results are transmitted to the
geographical information subsystem that displays the risk easily identifiable for users.
These subsystems work separately and in conjunction with each other, which let the
system have more reliable sustainment of the traceability of each component and
requirements. Furthermore, each component can be replaced in accordance with

situational changes in the environment and advancement in the technologies.

3.5 Customer value chain analysis

An analysis of expected value flow was performed with Customer Value Chain

Analysis (CVCA) as shown in Figure 24.
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Figure 24 Customer value chain analysis

Based on the analysis, it was assumed that the budget and supply of diagnostic
testing kit and medicines are strongly controlled by central government even for the
field health care providers such as VMW and regional health center. Whereas the

support for such field health care providers relies on the information based on the report
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from field. The reporting pathway is the opposite direction of resource supply. As
several stakeholders are involved in this reporting pathway, the reliability of data should
be carefully monitored from the fact that there is a possibility that the falsification and
misreporting occur. Whereas the importance of data reliability, the work load of field
healthcare providers is sometimes intensive so that the timely and appropriate support is
critical to attain the expected outcome from the current patient care system for malaria.
For instance, intensive supervising during high malaria endemic seasons, trainings,
educations and designing incentive system for offering the reward commensurate with
their contribution can be considered. In any event, it is assumed that by prediction of
regional emdemicity and expected outcomes attained from targeted containment status
such resource optimization can be much more facilitated. Especially, it is important for
the low-to-moderate transmission setting like in Cambodia, as the budget and healthcare
resource needs to be managed within the reasonable extent while achieving the effect of

as much as possible.

3.6 Summary of the system design

Through the system design process described here, following design products were
identified. These products provided not only the insight for the current malaria care in
Cambodia and the requirement for the system but also an opportunity to validate the
concept design with key stakeholders at early development phase and the direction for
the system verification and validation. Details of the system verification and validation

are reviewed in chapter 7.

(1) Stakeholders list

(2) Concept of operation
(3) Requirement table
(4) System architecture

(5) Customer value chain
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4. DEVELOPMENT AND EVALUATION OF THE
SPATIAL MALARIA RISK MODEL

4.1 Malaria data collection

Malaria data were collected from Cambodia malaria bulletin report in 2010 to 2013
[52-53]. This comprehensive dataset was made from the case report collected through
the effort of the malaria information system (MIS) and the national facility-based health
information system (HIS) using common coding system [54] and contains API (per
1000 people) in each health operational district for two malaria species (P.falciparum
and P.vivax) from two respective reporting pathways (by healthcare facilities or village
malaria workers), which is reported periodically by National Center for Parasitology,
Entomology and Malaria Control, Phnom Penh, Cambodia. SMR, standardized
mortality or morbidity ratio is a quantity, expressed as a ratio or percentage of
quantifications compared with the general population of interest (equation 1, 2) [55].

~ 0;

SMR = §,=% (1)

€i

e = znikpk (2)
X

Where, o; : observed case number in i area, e; : expected case number in i area, n; :
population of k age group at i area and Py : incidence in k age group in reference
population. e; was estimated by multiplying age population and reported incidence in
each age group in western-Cambodian 10 provinces [56]. SMR, 8 ; in given i district,
was then calculated dividing API by e; per 1,000 people. Assuming small case number
and relatively large dispersions under the low-to-moderate transmission settings, the
case count data can be assumed to follow the negative binomial distribution, o; | y;,
where p; is the corresponding distribution mean and p is the scale parameter
(equation 3). With this, by transforming equation 1, u; can be derived by multiplying

e; and the relative malaria risk, 8 ; (equation 4) [57].
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0; | p; ~ NegBin (;, p) 3)
log u; = loge; + log 8 ; 4)

Considering the small number of observed cases compared with population size and
the modifiable areal unit problem in geographical analysis, SMR for each health
operational district was smoothed by empirical Bayesian method (EBSMR) [58] for
adjusting the influence of different population size in area units. EBSMR was calculated
by equation 5-7, given that 8 ; follows gamma distribution (equation 8) and observed

0; under 6; follows Poisson distribution (equation 9).

0i+U

EBSMR =6 ; = e[6;]o;,¢;] = e +a )
n
v 1Z§ 6
P=1>, (©6)
=1
" 2
N ORI
@ n+1s e ‘a @
=1
0i|9i~ PO(Qi,ei) (9)
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4.2 Environmental and non-environmental anthropogenic predictor
variables

Predictor variables incorporated into the modeling framework were described in
Table 3. The normalized difference vegetation index (NDVI), the normalized difference
water index (NDWI) and the land surface water index (LSWI) were calculated from
Terra-MODIS 8-day composite data (http://LPDAAC.usgs.gov) from 2010 to 2013. As
EBSMR was represented as yearly average, these environmental variables were
averaged to the mean values for each year. NDVI, an index correlating with the extent
of vegetation and used for forest monitoring was calculated using the reflectivity of red
in visible range (R) and near infrared radiation range (IR) collected by satellite sensor
(equation 10). For the MODIS satellite, IR corresponds to band 2 and R corresponds
to band 1 (equation 11).

npvi = B—R 10
" IR+R (10

NDVI = (Band2) — (Band1) an

(Band2) + (Bandl)

NDVI (x 10%)
7812

4949

Figure 25 Example of NDVI calculation using MODIS satellite data
Note: NDVI values were multiplied by 10°.
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In the same manner, NDWI and LSWI, indices of water, can be calculated by

combinations of the reflectivity of different wave lengths (equation 12-13).

_ (Band2) — (Band5)
NDWI = (Band2) + (Band5) 12)

_ (Band2) — (Band6)
~ (Band2) + (Band6)

LSWI (13)

The digital elevation model at 30 m resolution was extracted from ASTER GDEM
database (http://gdem.ersdac.jspacesystems.or.jp) [59] and used to estimate the altitude.
The topographic wetness index (TWI) was calculated using this altitude model and
estimated by the method described in previous report [60]. Considering interactions
between surrounding environment and people in the malaria transmission process, we
extracted these data from multiple surrounding circular buffers with different radius
distance (For each 1km from 1 to Skm) from villages, that could potentially indicate the
human interactions with surrounding environment, and compared them by correlation
efficient of the models. Distance and surrounding circular buffers were generated by the
Quantum GIS software. As temperature influences the ecology of mosquito breeding
habitat, i.e. malaria transmission [38], the Plasmodium temperature suitability index
[61] was extracted from Malaria Atlas Project database [62]. The rapid urbanization is
related to the change in the risk patterns of malaria transmission compared with rural
sparsely populated areas [63-64] and the susceptibility of these populations is
influenced by implementations of containment actions. Population density per km® was
calculated using the record in Cambodia Malaria bulletin divided by areas of each
health operational district as a variable reflecting the extent of urbanization. Besides, we
used the reported proportion of sufficient ownership of long lasting insecticide-treated
nets (LLIN) [56] and treatment failure rate of artemisinin (TF.) [65] as containment
status indicators. Sufficient ownership of LLIN (LLINg,) is defined as proportion of
household in which distributed mosquito net covers 2 persons or less per net. As no
geographical localities could be obtained for these status indicators, they were

aggregated to the provincial level and incorporated in the model development.
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Table 3 Variables used to build the modeling framework to estimate EBSMR

Category Variable Data source Data collection
Vegetation NDVI Terra-MODIS 8-day Extracted mean value
composite data from1,2,3,4,5km
2010-2013 surrounding circular
buffer from each
populated village

Water NDWI Ditto Ditto
LSWI Ditto Ditto

Geography TWI Digital elevation model  Ditto

at 30 m resolution from
ASTER GDEM
database

[59]

Temperature P. falciparum Malaria Atlas Project Averaged to mean
Temperature suitability ~ database [62] value for each HOD
index (PfTSI)

Population Population density Cambodia malaria Population record
(/km?) bulletin report divided by total areas of

2010-2013 [52-53] each HOD

Vector control  Sufficient ownership of ~ Cambodia malaria Used the values
LLIN*® survey 2010 [56] reported at each

provincial level

Treatment Treatment failure rate by National Center for Ditto
artemisinin combination  Parasitology,

Therapy ° Entomology and

Malaria Control [65]

* Proportion of household in which distributed mosquito net covers 2 persons or less per net.

®Test positive for P. falciparum on day 28 or day 42

EBSMR, Standardized morbidity ratio estimated by empirical Bayesian method; NDVI,

Normalized difference vegetation index; NDWI, Normalized difference water index; LSWI,

Land surface water index; LLIN, Long lasting insecticide-treated net; Topographical wetness

index; HOD, Health operational district

33



4.3 Spatial risk distribution modeling

The relationship between EBSMR (8) and predictive variables was modeled using
a generalized linear regression model as a function of the N predictive variables (X, Z),

given that the logarithmic 8 follows the Gaussian distribution.

6 = et (14)
A=a+ Z,BNXN+Z]/NZN+S (15)
N N

Where o is the model intercept,  is the parameter associated with environmental
covariates X and y with non-environmental anthropogenic covariates Z. The likelihood
of observed data given to the model and the input predictors were calculated based on
this modeling frame (equation 14-15). The method used for model fitting can be the
maximum likelihood method or Markov Chain Monte Carlo (MCMC). Firstly, we chose
the maximum likelihood method for the examination of predictor variables and then,
based on that information, MCMC using the Bayesian modeling frame was applied to
estimate the uncertainty about the relationships represented by o and  (equation 15)
and cross-scale predictions. Models were fitted wusing the R software
(https://www.r-project.org). Predictor variables were entered into the initial models in a
stepwise manner for the identification of the variables incorporated in the model, and
then entered jointly into the model. This approach was repeated until all remaining
variables in the final model were significant at 0=0.05. An MCMC sampler in JAGS
[66] was used for the Bayesian model fitting. 3 MCMC chains with 50,000 iterations as
burn-in and 30,000 iterations thinned every 30 were stored for parameter estimates.
Convergence of the model was examined by Gelman-Rubin diagnostics [67] and visual

assessment of trace plots of chains.
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API (per 1,000 )

4.4 Results

Of the 329,830 cases reported in 2011-2013, 124,888 cases in 18 operational health
districts in western-Cambodian 10 provinces were included in the analysis. SMR in
each health operational district were smoothed using an empirical Bayesian method. In
contrast to the decreasing tendency of the API in each district, estimated EBSMR

suggested remaining or even the increasing tendencies in endemic areas (Figure 26-28).
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Figure 26 Yearly change of annual parasite incidence (API) for western-Cambodian
health district and empirical Bayese estimated standardized morbidity ration (EBSMR)
for six operational health districts at high EBSMR *.

Bar graph represents API in each health operational district
and dotted line represents EBSMR of five provinces at high EBSMR.
*District at higher EBSMR than 1.0
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Figure 27 Maps of API for western-Cambodian health districts from 2010 to 2013

API was smoothed by empirical Bayese method with & near length method (nearest 3 districts were
considered). The map on the top left corresponds to the map of 2010, top right for 2011, down left
for 2012 and remaining down right for 2013.
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Figure 28 Maps of EBSMR for western-Cambodian health districts from 2010 to 2013

The map on the top left corresponds to the map of 2010, top right for 2011, down left for 2012 and
remaining down right for 2013.
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Within Skm distance from villages, absolute correlation values between
environmental variables (NDVI, LSWI and TWI) extracted from surrounding circular
buffers (from 1 to Skm) and EBSMR were highest at 5 km, whereas at 1 km for NDWI
(Figure 29). Correspondingly, the correlation efficient of the model differs at each

distance.
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Correlation
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w ~
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Distance (km)

NDVI ——NDWI LSwiI TWI

Figure 29 Absolute value between environmental variables
(NDVI, NDWI, LSWI and TWI) extracted from surrounding circular buffer from
populated villages (from 1 to 5km) and EBSMR

Values were extracted from each 1 km distance circular buffer (1, 2, 3, 4, 5 km)
from populated villages and then averaged to mean values.
NDVI, Normalized difference vegetation Index; NDWI, Normalized difference water index; LSWI,
Land surface difference index; TWI, Topographical wetness index
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Thus, the data collection range chosen for the model was 5 km for NDVI, LSWI,
TWI and 1 km for NDWI, respectively. After the variable selection, the final model
well estimated the SMR of each area (adjusted R* = 0.774, AIC = 149.423). This model
included NDVI, NDWI, Topographical wetness index, P. falciparum temperature
suitability index, LLINg,r and TFu. Parameter estimates for each variable are shown in

table 4.

Table 4 Parameter estimates selected for the final generalized linear regression model

Category Variable Parameter estimate Standard error  P-value
Vegetation NDVI (5 km) 7.446 1.947 <0.001
Water NDWI (1 km) -24.330 5.009 <0.001
Geography TWI (5km) -1.707 0.6346 0.009
Temperature P. falciparum 0.0002681 0.0000403 <0.001
Temperature suitability
index (PfTSI)
Vector control ~ Sufficient ownership -0.06387 0.007157 <0.001
of LLIN *
Treatment Treatment failure rate 0.03611 0.008309 <0.001
by artemisinin
combination
Therapy °

* Proportion of household in which distributed mosquito net covers 2 persons or less per net.
® Test positive for P. falciparum on day 28 or day 42
NDWI, Normalized difference water index; NDVI, Normalized difference vegetation index;

TWI, Topographical wetness index; LLIN, Long lasting insecticide-treated net

The calibration plot of final model represented the good fitting of the predicted and
actual values (Figure 30A). Mean absolute error (MAE) of this final model was 0.499.
Figure 30B shows the proportions of predicted values within the range of absolute error
from 0.1 to 2. 55.56% of predicted values were covered within the range of + 0.2, 75%

were in 0.5 and 87.5% were in *1, respectively.

39



A)

,
’
-
N ’
,
,
,
7’
-
’
-
»
s
,
s
- — ,
.
,
,
-
,
,
,
7’
— ,
(] ’
= 7’
= — -
mo 7
> 4
—
© s
.
g ’
4
2 ,
o ’
(] ’
= ‘
s
- 5 ,
.
8 ,
= -
,
’
,
4
,
,
,
,
o s
' 4
,
,
.
;
s
7’
.
’
,
-
™© s
v ,
,
7’
I | | | | |

log(actual value)

o ]
>
—_
S
o o
S -
2 ©
®
Y
o
<
£=3
£
£ o |
g R
)
=
©
>
Eo
5 8
5
)
hd
a
-
c
)
=4
o
2 8
o ]
<

T T T T
0.5 1.0 1.5 2.0

absolute error
Figure 30 The calibration plot (A) and the proportion of predicted values within the range
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Based on the information from generalized linear regression modeling, the
Bayesian modeling frame was applied to estimate the uncertainty about the relationships
represented by a and B (equation 15). The trace plots of the Bayesian modeling frame
were monitored to examine the convergence of cross scale prediction (Appendix). The
model was settled with given condition for MCMC and provided the range of posterior

distribution of parameters (Figure 31).
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Figure 31 Density plot of posterior distributions of each parameter

Parameter distributions for (A): Intercept, (B): NDVI, (C): NDWI,
(D): TWI, (E): LLIN, (F): Temperature and (G): TF
Horizontal axis of each graph indicates estimated kernel density of each parameter
NDWI, Normalized difference water index; NDVI, Normalized difference vegetation index;
TWI, Topographical wetness index; LLIN, Long lasting insecticide-treated net
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S. FINE-SCALE RISK MAPPING USING SPATIAL
MALARIA RISK MODEL

5.1 Fine-scale mapping and its evaluation

Using Bayesian modeling frame, estimated SMR for each village was calculated.
The fitted model was then applied in conjunction with spatial covariates aggregated
from the location of each village to estimate the village level SMR. We created maps
visualizing the risks of two provinces in western Cambodia, Pailin and Preah Vihear, by
the inverse distance weighed method (IDW) and ordinal kriging interpolation of
estimated SMR at each village. For accuracy evaluations of cross-scale prediction from
the model, predicted SMR was compared with geocoded case data in Pailin [68] and
Preah Vihear [69] extracted from Malaria Atlas Project database [62] using Spearman’s
rank correlation [70] and Welch’s t-tests for unequal variances [71]. As the source data
of our map were mostly depending on the report from VMW and HIS based on the
rapid diagnostic kit (RDT) and Microscopy detection, these data were chosen for the
reason of the detection method (RDT / Microscopy) and closer report period among the
available data. To exclude the incidental nature for spearman’s correlation with this
sample data, we conducted 2,000 times of resampling of this dataset with replacement
to create confidence interval by non-parametric bias corrected and accelerated percentile
method [72] and assess the distribution of correlation values. Visual representations of
risk distributions in the maps were also validated through interviews with healthcare

providers in regional health center and professionals of GIS.

5.2 Results

Fine-scale maps were created by the inverse distance weighed method (IDW) and
ordinal kriging interpolation. Figure 32 shows the maps created from the predictive
models for Pailin and Preah Vihear province. Each map represents different risk
representation pattern in accordance with respective interpolation method. The map
interpolated by IDW showed more spotted risk, which helps identification of localized
risky hotspots, whereas the map interpolated by ordinal kriging showed broader patterns

providing bigger perspective for optimizing healthcare resource distributions.
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(A) Pailin, 2010 (IDW)
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(B) Pailin, 2010 (Ordinal kriging)
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(C) Preah Vihear, 2010 (IDW)
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(D) Preah Vihear, 2010 (Ordinal kriging)
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Figure 32 Representative maps created from the predictive models for Pailin (A, B) and
Preah Vihear (C, D) province in 2010

Map (A, B) are the representative maps of Pailin province and (C, D) for Preah Vihear province in
2010. Map (A) and (C) were the risk maps created by the inverse distance weighed interpolation
method (IDW) and map (B) (C) correspond to the maps created by the ordinary kriging.
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In comparison with geocoded case data, corresponding predicted values in this map
showed conformity (Spearman’s rank correlation; r = 0.662 in IDW and 0.645 in ordinal
kriging, Welch’s t-test; N.S.) showing that the -cross-scale predictions were
corresponding to the actual case reports (Figure 33A). 95% confidential intervals for
both IDW and ordinal kriging were 0.414 — 0.827 and 0.368 — 0.813, respectively,
showing steep peak in the kernel density plot at around 0.65 — 0.7 (Figure 33B). The
visual representations of hotspot shown in this map were confirmed that they were
aligned with the actual areas at high risk, which could be identified by other sources [48,
62, 69], through the visual assessment by a number of healthcare providers and experts
of GIS.
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Figure 33 Comparison of the standardized morbidity ratio calculated from geocoded
case data with corresponding predicted values (A) and the kernel density plot of the
resampled spearman’s rank correlation (B) in the risk map created by the risk-modeling
frame work.

The dashed line represents 1:1 relationship of observed and predicted values
IDW, Inverse distance weighed method
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6. COMPUTATIONAL SIMULATIONS UNDER
GIVEN CONTAINMENT STATUS INDICATORS

We conducted computational simulations to demonstrate the relationship of
expected outcomes and containment status indicators using the model developed

here. The followings are the results and implications.

6.1 Simulation results of expected outcomes under given containment

status indicators

Using the model, computational simulations of expected outcomes under given
conditions of LLINg,r and TF were conducted. The visual representations of
simulation results demonstrated not only multiplicative contribution of these indicators
but also the different patterns of expected outcomes from the combination of these two

containment status indicators in respective areas (Figure 34).

A
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SMR

Figure 34 Computational simulations of expected standardized morbidity ratio
(SMR) under various conditions of LLIN coverage and
Treatment failure rate of artemisinin

Figure (A) represents the relationship of two containment status indicators with expected SMR
in Pailin province. Figure (B) represents the different pattern of expected outcomes from the
combination of these two containment status indicators in respective areas. The green surface

corresponds to that in Pailiin, and the blue surface corresponds to Preah Vihear province.
LLIN, Long lasting insecticide-treated net; TF, Treatment failure rate of artemisinin defined
as test positive percentage on day 28 or day 42.

6.2 Geographical analysis for expected outcomes from the targeted

containment status

The simulation results could be mapped to examine the geographical effect
expected from targeted containment status. Figure 35 shows an example of geographical

analysis. The geographic view of the effect from each or combined containment status
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could be obtained from this analysis, providing geographical perspective for decision

makers.

A: Current state

B: TF decreased to 0% (from current 14.7%)
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C: LLIN increased to 20% (from current 5.5%)

0

Hs
B

Figure 35 An example of geographical analysis of expected outcomes from targeted
containment status in Preah Vihear

Figure (A) represents the current predicted state. Figure (B, C) mapped geographical view of
expected outcomes from targeted containment status. Simulation outcomes can be visualized on the
same map (D), by which the effect can be examined. The green (for TF decrease), purple (for LLIN

coverage increase) and gray (combined) colored area corresponds to areas at more than 5 SMR.
LLIN, Long lasting insecticide-treated net; TF, Treatment failure rate of artemisinin.
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7. VERIFICATION AND VALIDATION OF THE
SYSTEM

7.1 The Requirements Verification Traceability Matrix of the system
The Requirement Verification Traceability Matrix for the requirements need
evaluations is shown in Table 5. Almost all the requirements were verified except the
requirement 3.2.1. As available data were not sufficient to conduct spatio-temporal
analysis, we did not consider time series transition in the regional malaria risk during
the data collection period in the modeling frame developed here on condition that the
relative regional risk does not change drastically in a short period. This issue needs to
be covered by future work to demonstrate the spatio-temporal transition of malaria risk

in fine-scale. This issue is discussed in chapter 8.

Table 5 Requirements Verification Traceability Matrix

ID Sources Requirements Verification method Results
1 Sequence Estimate the risk of malaria Section 4.4: Analysis Met
diagram, Calibration plot and the
FFBD model examination
Section 5.2: Analysis
Comparison of geocoded
data and predicted data on
the map
2 Sequence Receive data Section 4.4: Test Met
diagram, Variables used to build
FFBD modeling framework
2.1 Use case, Receive malaria information Section 4.4: Test Met
Context system data Variables used to build
diagram modeling framework
2.2 Use case, Receive map resource data Section 4.4: Test Met
Context Variables used to build
diagram modeling framework
2.3 Use case, Receive containment status data Section 4.4: Test Met
Context Variables used to build
diagram modeling framework
2.4 Use case, Receive demographic data Section 4.4: Test Met
Context Variables used to build
diagram, modeling framework
2.5 Use case, Receive remote sensing data Section 4.4: Test Met
Context Variables used to build
diagram modeling framework
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2.6 Use case, Receive the data for simulation Section 4.4: Test Met
Context modeling Variables used to build
diagram modeling framework
2.7 Use case, Receive meteorological data Section 4.4: Test Met
Context Variables used to build
diagram modeling framework
3 Use case, Visualize (Provide) information Section 7.2: Met
Sequence Demonstration/Inspection
diagram Stakeholders interview
3.1 Use case Display estimated malaria risk Section 5.2: Inspection Met
Inspection of visual
representation of the map
3.1.1 Requirement | Display risk with colored gradation | Section 7.2: Met
diagram Demonstration/Inspection
Stakeholders interview
3.1.1.1 | Requirement | Risk interpolation Section 5.2: Inspection Met
diagram Inspection of visual
representation of the map
3.2 Use case Display the simulation results Section 6.1/6.2: Met
Demonstration
Simulation and visual
inspection of the results
3.2.1 Requirement | Display time series results N/A Not
diagram met
33 Requirement | Display basal map Section 5.2: Demonstration | Met
diagram Visual inspection of the map
3.3.1 Requirement | Reflect accurate positioning Section 5.2: Met
diagram Analysis/Inspection
Visual inspection and
comparison of geocoded
data and predicted data on
the map
34 Sequence Support decision making Section 7.2: Inspection Met
diagram Stakeholders interview
4 Requirement | Risk modeling Section 4.4: Analysis Met
diagram Calibration plot and the
model examination
5 Requirement | Simulation modeling for the Section 4.4: Analysis Met
diagram variables of interest Calibration plot and the
model examination
6 Use case, Simulate the efficacy of Section 6.1/6.2: Met
Sequence intervention Demonstration/Inspection
diagram Simulation and visual
inspection of the results
6.1 Requirement | Probability sensitivity analysis Section 5.2: Analysis Met
diagram Comparison of geocoded

data and predicted data on
the map
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7.2 Stakeholders interview
7.2.1 Method

To validate the system, we conducted series of interviews with key stakeholders.
At first, following 3 key questions were asked to the interviewee while showing the
process and products of the fine-scale map created here and the map of Preah Vihear
province from Malaria Atlas Project database as a reference comparator. Additional

comments from stakeholders made in the interview were also recorded.

Table 6 Key questions for the stakeholders interview

No. Questions
Is this approach useful for supporting the planning of

1 healthcare resource distributions and malaria containment
actions?

) From visual feature perspective, are the hotspots easily

identified?

What kinds of improvements are needed to make this be
more valid? Possibilities of other applications?

Figure 36 Visual representations of the map from Malaria Atlas Project database
[62] and the fine-scale map created by the risk prediction model developed

Figure (A) corresponds to the map from Malaria Atlas Project database. Figure (B) is the
fine-scale map created by the method developed in this research.
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7.2.2 Interview with NGO staff

Interviewee: Ms. Akemi Takahashi (Chief of Cambodia office, Foundation for
International Development / Relief)

The visual representation of the fine-scale map is very similar to that of Malaria
Atlas Project. It makes it easier for the initial selection of interventional target area and
its control, which facilitates the impact evaluation by visualize the effectiveness of
planned interventions. However, this does not reflect the selective effect on the targeted
hotspot. Introducing this map to the staff in the health ministry and the health
operational district can be recommended. There are too many reporting steps in the
current health information system in Cambodia. The educational level is also related
and need consideration. In terms of ensuring appropriate drug use, this approach can be

applied to the case of tuberculosis.

7.2.3 Interview with GIS professional and engineer

Interviewee: Professor Sophiap Seng (President of National Institute of Posts,
Telecommunications and ICT) and Professor Sarann Ly (Professor of rural engineering,
Institute of Technology of Cambodia)

This approach is very interesting and the visual representation of the fine-scale map
is similar to that of Malaria Atlas Project. Co-kriging can be considered for
interpolation method to reflect the regional context appropriately. The most attentive
thing is that the map was created mainly from open data sources. However, I think this
kind of approach has already done a lot in this research field. Therefore, the uniqueness
of this approach needs to be clearly conveyed. The output needs to be simpler,
especially for the part of practical application of risk model. Sequence diagram is one
option. For country level, this map could give good view. There are many stakeholder
acts locally but their action is too detailed. Good customer is the staff of the health
ministry. Bill and Melinda Gates foundation could be interested in this product. As for

the color presentations, hotspot should be presented as red like colors reminding risk.

7.2.4 Interview with field healthcare provider
Interviewee: Mr. Phin Canmonin (Director of provincial health center in Kampon
Chhnang province)

He thought that the map was useful to see the hotspot and conduct intervention. By
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2025, Cambodian government is aiming for eliminating malaria. He thought that this
map could support these activities for achieving this target. Most patients come to
health center (HC) in January. In August, in the middle of rainy season, people get
infected especially in mountain and forest. They regularly go to the mountainside for
their work. 24 cases came to the hospital in August. Once patients get treated at HC,
they never come back to the HC, unless they get infected again. There are 4 species of
malaria, 2 common species are falciparum and vivax. P. falciparum is the most common
case in this HC. He reports all the malaria cases come to the HC to the health

operational district.

7.2.5 Interview with business owner working with farmers in Pailin province

Interviewee: Mr. Kengo Kitaura (Founder of Agribuddy Itd.)

Basically, the hotspots shown in this map seems to align with the actual risky areas.
However, care needs to be taken for the reliability of source data. As is often the case in
other areas, falsifications and misreporting can be observed in the data reporting system
in Cambodia. Another issue is, in the current situation in Cambodia, it is not easy to
make community residents understood and take actions based on the information from
risk prediction. They cannot imagine the merit of intervention with only the future
prediction. Instead of that, it may be better to design the incentive system for them to
take any actions. In other words, it is important to consider how the intervention can be

realized by sustaining the action.

Figure 37 Photography with Mr. Phin Chanmonin and health center staff (October 2015)
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8. DISCUSSION

8.1 Results overview

As malaria elimination effort progresses, it became increasingly important to
identify the residual foci of malaria transmission for addressing the remaining
challenges such as preventing the residual transmission to protect immunologically
susceptible populations from developing serious infectious symptoms and emerging
artemisinin-resistant malaria. The maps created here can be utilized for the facilitation
of efficient health resource distributions to make use of limited resources for areas
where the effort for the malaria elimination has been made. This approach enables the
targeted surveillance, preventive measures and monitoring for the treatment failure
requiring intensive support for local health practitioners. Previous report in this area
suggested that remarkable proportions of patients still had parasitaemia on day 3 after
starting treatment of artemisinin combination therapy whereas symptom resolutions
were seen in this period [17]. Thus, the treatment monitoring is important for preventing
patient from discontinuing treatment and developing drug resistance, which requires the
intensive support and supervision of local health practitioners. Interestingly, visual
representations of the maps created here were similar to those of Malaria Atlas Project
and displayed the finer level of risk distributions. Several differences were also seen and
can be partially explained by spatial and temporal variations of source data. However,
clearly highlighted areas at high-predicted risk can be distinguished from the other
regions at low risk in finer scale, while providing information to quantify the expected
outcomes from the combination of containment status, suggested that these fine-scale
maps play important roles under current situations in Cambodia. Validation by
comparing predicted risk with geocoded case data confirmed that the predicted areas at
high risk of transmission are likely the areas where the attention and appropriate support

are needed.

8.2 Application of SMR for spatial risk distribution modeling

This research also describes an application of SMR using API reported in routine
aggregated surveillance data to quantify the spatial distributions of risk by capturing the

environmental context and containment status indicators in the model under the
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low-to-moderate transmission settings. Although there is room for investigations for its
interpretation, API can be a reliable measure under the low malaria transmission setting
[46]. We saw the remaining or even increasing tendency of SMR reflecting the relative
risk of respective areas during the research period, which can be a useful measure for
deciding the allocation of limited healthcare resources at least for a few years. Sturrock
et al. built a prediction model using routine aggregated case data and created a
fine-scale risk map in Swaziland [49]. In their model, mean temperature and travel time
to health facilities are the predictors of both the pixel scale and the coarser district scale
of risk. Whereas Lowe et al. reported various kinds of predictors such as altitude, living
conditions, urbanizations, precipitations and temperature [57]. Variables chosen for our
model were in line with these reports, in terms of using environmental and human
behavior-related variables for malaria risk predictions. Although the altitude was
thought to relate to malaria ecology, it was not incorporated into the model.
Nevertheless, the risk was well explained. This could be explained by relatively flat

terrain consisting most of this area, which did not affect the transmission pattern.

8.3 Environmental context disparities

Of note, the data collection distance from each village for environmental variables
affected risk predictions of the model. Besides, the selected distance for model
development for vegetation (NDVI) and water related variables (NDWI) were different
each other. This partially describes human interactions with what exists around living
communities. The relationships of malaria incidence and Anopheles mosquito numbers
with distance from mosquito bleeding sites were reported in previous studies [73-75].
According to the surveillance report [56, 76-77], malaria prevalence was decreased by
distance from forests. Also a number of studies have addressed the relationship with
distance from environmental features for malaria spatial risk distribution modeling such
as the proximity of water puddle [78], health facilities [49]. This distance effect for
vegetation and water indices indicates that such environmental features are interrelating
to human living communities by different way. Forest workers are usually going and
working in the forests several kilometers away from their living communities whereas
the activity range of vectors are limited to few distances from their breeding habitat.

The maps created here suggested that the spatial heterogeneity of disease risk could be
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explained by such environmental context disparities. The results suggest that the
distance from living communities can serve as a useful reference when considering the
environmental context. Through this approach, the relative risk specified from
surrounding environmental context can be described over a wide area, while
maintaining the uniformity of unknown conditions, using remote sensing data by earth

observations of space satellites.

8.4 Implications from computational simulations

In Swaziland, the fine scale map was created using household level data. However,
this kind of micro data is often inaccessible, hence they cannot be used for mapping.
The encouraging results for fine-scale risk prediction here in the modeling framework
enabled the visualization of the effect size from combinations of containment status
indicators. The simulation results suggested that the predicted outcomes of containment
status were different among each environmental context. Therefore, the results provided
an opportunity for evaluating the interventions considering these environmental
situations in target areas. Moreover, the simulation results of expected interventional
outcomes can be mapped, by which the decision-maker can assess combinations of the
interventional approach considering several constraints such as detailed characteristics,
specific issues and resource constraints in the target area. Generally, under the
low-to-moderate transmission settings, the situation surrounding malaria containment
actions differs by area. For instance, the coverage of LLIN is higher in some area where
the high malaria prevalence was reported and interventional effort has been made for
that. Therefore the incremental cost for improving the conditions of each activity may
also be different. Figure 38 shows an example of probability sensitivity analysis using
the model developed here. The expected outcomes attained as containment status
indicators differ by actions. The decision needs to be made based on the predictions.
This example demonstrates the possibility for providing the tailored information for the
targeted hotspot, by which the decision make can examine the action alternatives based

on the required balance of cost and effectiveness.
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LLIN

Figure 38 An example of provability sensitivity analysis under given containment status
indicators in Preah Vihear province

Red-colored grid represents likelihood of expected outcomes under given containment status.
Darker color indicates the higher likelihood expected from this simulation.

8.5 Reliability of data

Generally, the reliability of data is one critical factor for creating relevant models to
be used in the real world practice. The current malaria reporting system in Cambodia
relies on the aggregation of field report from village malaria workers and healthcare
practitioners to the district, then the province and eventually the national level. Under
the low transmission setting, it gets harder for the passive surveillance to capture the
reliable case number reflecting the actual situations [79]. Although we cannot deny the
possibilities of variations in the reliability of data, this mapping approach can add more
reciprocity among stakeholders than simply recording the aggregated case numbers,
which will encourage more effective report-and-utilization cycles improving the data
quality and reliability. Therefore, this will complement the recent mobile phone based
real time case reporting system [54], providing an opportunity for effective data
utilization. Considering the structure of Cambodian malaria health information system,
the system can be considered as a system of systems in its nature and output. In the last

few years, SoS has been gaining increased attention as a means to understand the high
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complexity of metasystems [80]. Boardman and Sauser proposed the five main
properties of SoS: autonomy, belonging, connectivity, diversity, and emergence [81],
[82]. Table 7 summarizes the properties thought to be applicable to be a SoS that the
Cambodian information system has. As shown in Figure 39, the system has five or more
independent systems: Health ministry, NGO such as Malaria consortium, Health
operational district, Health center and the network of village malaria workers. All
component system acts independently and cooperatively interacting each other for the
purpose to collect the precise regional malaria risk to utilize malaria containment.
Therefore, to this fact, one needs to understand the effectiveness of the system

developed here in the system of systems.

Table 7 Summary of properties applicable for those of the system of systems

Properties Descriptions

Cambodian malaria health information as a whole aims to
provide updated precise information of disease prevalence.
Autonomy Currently this system succeeds in providing these information to
public periodically. The reported information are managed or
consolidated in the whole body of the system.

The relationship among the national agency, health operational
districts, provincial health centers and village malaria workers
are connected as resource provision and the pathway of reported
information flow. Some stakeholders such as village malaria
workers are, in some occasion, independent from ownership of
higher entity. Furthermore the supporters from outside of
Belonging Cambodia such as NGO also play and provide important
contributions. Malaria information system provided by Malaria
Consortium is an example of unique contribution of the
component system that is independently managed from the
whole system. For the case of malaria, they interoperate together
for the same purpose while sharing the mission of malaria
elimination by 2025.

Despite component systems are geographically isolated, they are
connected by reporting and resource provisional pathway.
Connectivity Furthermore, all the component systems have intimate
relationship to communicate regularly each other to share the
information, support and expertise.

The system consists of various types of component systems such
as public agencies, village health volunteers, NGO and Malaria
Consortium, which allows the diversity and flexibility of the
system capability.

Diversity

The system of village malaria workers sometimes, and also
Emergence basically, the support from foreign agencies, foundations and
NGOs are based on the voluntary aids of people.
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Figure 39 An example of the concept graphic of the Cambodian

malaria health information system

8.6 Prospects of the value of the system

In spite of these considerations, like any programs, the malaria elimination action
needs specific plans with realistic time limits and well-defined parasitological and
entomological goals [46]. Maps created by the modeling framework here can provide
the insight for establishing realistic goals based on the current tools. Furthermore, they
can provide the useful information both in quantitatively and qualitatively for
monitoring and evaluations of interventional activities while the providing
decision-makers with a platform for cross-scale wandering to make a decision for the
efficient healthcare resource use. Our approach outlined here is no more than a
quantitative prediction technique for further utilization of existing dataset, thus may
play only a part in the whole healthcare information system for malaria elimination. For
sure, we might have to consider the possibilities of the divergence of prediction from
real world. Still, these adjustments in malaria quantification provide us with further

steps, working together in the system, toward malaria elimination.
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9. FUTURE WORK

9.1 Limitations of this research

While our approach outlined here has generated several supportive results in terms
for fine-scale risk prediction under low-to-moderate transmission settings, it has several
important limitations and consideration for the future work. Firstly, we didn’t consider
other containment status indicators than LLINgs and TF for the development of
modeling framework. The expected outcomes of interventional efforts may be provided
from the results of various activities. This could not be explained by a simple additive
effect but by a synergetic effect through the interaction of these activities. We
considered this interaction between LLIN. and TF.., however the result was not
improved. Therefore, this issue has not been fully elucidated and should be considered
for practical applications to describe the complex realty for assessing the effectiveness
of interventions. Secondly, we didn’t consider the influence of migrant population and
time series variation of the risk in the modeling framework. The influence of these two
factors may be important for considering practical situations. The dynamics of human
carriers that drive parasite transportation between regions can be quantified using
spatially explicit mobile phone data and malaria prevalence information [2]. More
useful models can be developed incorporating such factors as people migrations
between the regional boundaries and time series element into the modeling framework.
As we used API for the calculation of SMR, the predictor variables related to
environment were boiled down to yearly average. As is the same case in the spatial
granularity of data, deciding appropriateness of the time granularity is a perplexing
issue, because of the difficulties for catching adequate case numbers for the reliable
spatial risk distribution modeling from detail level data. Furthermore, the
appropriateness for deciding the region of interest for data collection is also unknown
factor to be elucidated, as the calculation of the denominator for SMR is influenced by

this factor.

9.2 Understanding the effectiveness of the system

One issue found in the research is reliability of reported data in Cambodia. There is

possibility that our mapping approach can add more reciprocity among stakeholders
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than simply recording the aggregated case numbers. Throughout the facilitation of more
effective report-and-utilization cycles, data quality and reliability can be improved.
However, this is not elucidated qualitatively and quantitatively. To address this
hypothesis, we need to understand the structure of the health information system, by
which the causal relationship of suspected data quality could be more clarified. The
Cambodian health information system is expected to be a system of systems.
Understanding the behavior and characteristics of SoS by systemic approach is one
important topic of interest [80]. One of the metrics being interested for the
quantification is the efficiency of information understanding among the stakeholders. It
is still a challenging question but meaningful to understand the usefulness of this

system.

9.3 Applications to other epidemiological issues

Strength of our approach is utilization of existing dataset. Generally, most of such
data sources are open to public. In that sense, several more useful information can be
added to the aggregated surveillance report in a real time manner. One area that we can
consider this approach make contribution is the real time monitoring of emerging
infectious disease such as Ebora [83] and recent severe acute respiratory syndrome
(SARS) corona virus out break [84]. Also the application to non-communicable disease
such as life-style disease needs to be elucidated considering future transition of disease
structure globally. Recent advancement in the information technology enables the
real-time collection of various kinds of data surrounding people. The recognition of
Internet of Things (IoT) [85] is expanding and was actively introduced into the policy
development in several countries [86]. Thus, we expect that the environmental context
related to non-communicable disease could be understood using these advancing

technologies such as atypical information surrounding people.
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10. CONCLUSION

We conclude the validity of the system. Using routine aggregated surveillance
reports combined with the environmental data and the non-environmental anthropogenic
data, regional malaria risks can be well explained. Using this modeling framework, the
fine-scale risk maps can be obtained under the low-to-moderate transmission setting
where reinvestigations of existing risk modeling approaches are needed. Our
contributions are; demonstration of the mathematical modeling approach for SMR using
API from routine aggregated surveillance report, cross-scale prediction by modeling
framework corresponding to environmental context disparities to create malaria risk
maps in fine-scale. Different representations of simulated outcomes from containment
status indicators provide us with useful insight for tailored planning of action
alternatives considering regional malaria endemicity.

Further studies are needed to demonstrate how this system will provide the effect
in the Cambodian health information system. The implications from this study
suggested the system would provide increased reciprocity of the information, by which

the improved quality of reported data could be expected.
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11.PUBLICATON

This thesis has allowed the following scientific productions.

Conference

[1] Suguru Okami, Naohiko Kohtake, “Designing the GIS predicting regional

malaria emdemicity in Cambodia”, Esri Health and Human Services GIS
Conference, Grand Hyatt Atlanta in Buckhead, Atlanta, Georgia, 14 - 16
September 2015.

Journal

[1] Suguru Okami, Naohiko Kohtake, “Fine-scale mapping by spatial risk

distribution modeling for regional malaria endemicity and its implications under

the low-to-moderate transmission setting in western Cambodia” (submitted).
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13.APPENDIX

b0

b2

Following figures are the trace plots of the Bayesian modeling frame to examine
the convergence of each parameter.
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Figure 40 Trace plot of the parameter in the Bayesian modeling for cross prediction for
fine-scale malaria risk

Parameter distributions for (A): Intercept, (B): NDVI, (C): NDWI,
(D): TWI, (E): LLIN, (F): Temperature and (G): TF
NDWI, Normalized difference water index; NDVI, Normalized difference vegetation index;
TWI, Topographical wetness index; LLIN, Long lasting insecticide-treated net
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ACRONYM LIST

API
CNM
CRS
CVCA
DEM
EBSMR
FFBD
GIS
HC
HIS
HOD
IoT
LLIN
LSWI
MCMC
MIS
NDVI
NDWI
NGO
PR
PfTSI
RDT
SMR
SoS
TWI
VMW
WHO

Annual Parasite Incidence

National Center for Parasitology, Entomology and Malaria Control
Coordinate Reference System

Customer Chain Value Analysis

Digital Elevation Model

Standardized Morbidity Ratio Calculated by Empirical Bayese Method
Functional Flow Block Diagram

Geographical Information System

Health Center

Health Information System

Health Operational District

Internet of Things

Long-Lasting Insecticide Treated Mosquito Net

Land Surface Water Index

Marcov Chain Monte Carlo

Malaria Information System

Normalized Difference Vegetation Index

Normalized Difference Water Index

Non Governmental Organization

Parasite Rate

Prasmodium falciparum Temperature Suitability Index
Rapid Diagnostic Testing Kit

Standardized Morbidity Ratio

System of Systems

Topograhical Wetness Index

Village Malaria Worker

World Health Organization
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R-code for spatial modeling

library(R2jags)
library(bayesm)
library(mgcv)

#Data load

#Regression modeling

data <- read.table("R_Analysis.csv", sep = ",", header = T)

EBSMR.1m <- 1m(log(EBSMR)~NDVI_mean_5000+NDWI_1000+TWI_5000+Temp+LLIN_Suf+TF_rate, data =
data)

summary(EBSMR. 1m)

pred.EBSMR <- predict(EBSRR.1m)
plot(log(datal$EBSRR), pred.EBSRR, xlab = "actual value", ylab = "predicted value™)
abline(@, 1)

#Preparing Data frame

y <- as.vector(log(data$EBSMR))

n <- length(y)

x <- as.matrix(cbind(data$NDVI_mean_5000, data$NDWI_1000, data$TWI_5000, data$LLIN_Suf,
data$Temp, data$TF_rate))

model.lm <- 1ImCy~x)

summary(model.1m)

data <- list("n", "y", "x")

inl <- 1list(b@® = model.lm$coefficients[1], bl = model.1lm$coefficients[2], b2 =
model.1lm$coefficients[3], b3 = model.1lm$coefficients[4], b4 = model.1lm$coefficinets[5], b5
= model.1lm$coefficients[6], b6 = model.1lm$coefficients[7], tau = 1)

in2 <- 1list(b® = model.lm$coefficients[1], bl = model.1lm$coefficients[2], b2 =
model.1lm$coefficients[3], b3 = model.1lm$coefficients[4], b4 = model.1lm$coefficinets[5], b5
= model.1lm$coefficients[6], b6 = model.lm$coefficients[7], tau = 1)

in3 <- 1list(b@® = model.lm$coefficients[1], bl = model.1lm$coefficients[2], b2 =
model.1lm$coefficients[3], b3 = model.1lm$coefficients[4], b4 = model.1lm$coefficinets[5], b5
= model.1lm$coefficients[6], b6 = model.1lm$coefficients[7], tau = 1)

inits <- list(inl, in2, in3)

parameters <- c("b@", "b1l", "b2", "b3", "b4", "b5", "b6", "tau", "sigma")
model.file <- system.file(package = "R2jags", "model", "Spatial_modeling_jags")
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#Bayesian regression modeling
1m.jags <- jags(data = data, inits = inits, parameters, n.iter = 80000, n.burnin = 50000,

n.chains = 3, model.file = model.file)

print(lm.jags, digits = 5)
plot(lm. jags)
traceplot(1lm. jags)

1m.fit <- update(lm.jags)
print(lm.fit, digits = 5)

#Plot samples

jags_samples <- as.mcmc(lm.jags)
plot(jags_samples[, 'b@'])
plot(jags_samples[, 'bl'])
plot(jags_samples[, 'b2'])
plot(jags_samples[, 'b3'])
plot(jags_samples[, 'b4'])
plot(jags_samples[, 'b5'])
plot(jags_samples[, 'b6'])
plot(jags_samples[, 'tau'l)
plot(jags_samples[, 'sigma'])
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JAGS code for the Bayesian modeling frame

model{

for(i in 1:n){

y[i]~dnorm(mu[i], tau)

mu[i] <- b@ + bl*x[i, 1] + b2*x[i, 2] + b3*x[i, 3] + b4*x[i, 4] + b5*x[i, 5] + b6*x[i, 6]
}

b@~dnorm(@, 1.0E-6)
bl~dnorm(@, 1.0E-6)
b2~dnorm(@, 1.0E-6)
b3~dnorm(@, 1.0E-6)
b4~dnorm(@, 1.0E-6)
b5~dnorm(@, 1.0E-6)
b6~dnorm(@, 1.0E-6)

tau~dgamma(@.01, 0.01)
sigma <- 1/tau

}
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R-code for interpolation for fine-scale mapping

library(spdep)
library(gstat)
library(maptools)
library(spsurvey)
library(ggplot2)
library(rgdal)

#Data load

Pailin <- read.shape("Pailin_village_32648.shp™)
mesh.grid <- read.shape("Pailin_mesh.shp™")

mesh.grid <- as(mesh.grid, "SpatialPixelsDataFrame")

Pol <- read.shape("Pailin_poly.shp")

#Plot variogram

var® <- variogram(SMR~1, data = Pailin)

plot(var®)

varl <- variogram(SMR~X+Y, data = Pailin)

plot(varl)

plot(variogram(SMR~X+Y, data = Pailin, cloud = TRUE))
var2 <- variogram(SMR~X+Y, data = Pailin, alpha = 0:4*90)
plot(var2)

#Application of variogram (Gauss)

model <- vgm(psill = 0.2, model = "Gau", range = 15000, nugget = 0.02)
plot(varl, model)

model.fit <- fit.variogram(varl, model)

plot(varl, model)

#IDW

idwl <- idw(SMR~1, Pailin, mesh.grid, idp = 2)

IDW <- as.data.frame(idwl)

names(IDW)[1:3] <- c("long", "lat", "SMR™)

ggplot() + geom_tile(data = IDW, aes(x = long, y = lat, fill = SMR)) + stat_contour(data =
IDW, aes(x = long, y = lat, z = SMR), size = 0.1) + geom_path(data = Pol, aes(x = long, y
= lat, group = group)) + ggtitle("IDW") + scale_fill_gradient2(low = "white", mid = "yellow",
high = "red")

#Write Geotiff
writeGDAL(idwl, fname = "IDW.tif", drivername = "GTiff", type = "Float32")
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#Plot
spplot(idwl["varl.pred"], main = "IDW", scales = list(draw=T), xlab = "X Coord", ylab = "Y
Coord™)

#Contour
plot(Pol, 1lwd = 2)
contour(idwl["varl.pred"], add = TRUE)

#0rdinal kriging
go <- gstat(id="ID", formula = SMR~1, data = Pailin, model = model)
po <- predict(go, mesh.grid)

#plot
spplot(po[1], main = "Ordinal Kriging", scales = list(draw=T), xlab = "X Coord", ylab = "Y
Coord™)

#Write GeoTiff
writeGDAL(po, fname = "Ordinal_Kriging.tif", drivername = "GTiff", type = "Float32")

#Display map

PO <- as.data.frame(po)

names(P0)[1:3] <- c("long", "lat", "SMR™)

ggplot() + geom_tile(data = PO, aes(x = long, y = lat, fill = SMR)) + stat_contour(data =
PO, ages(x = long, y = lat, z = SMR), size = 0.1) + geom_path(data = Pol, aes(x = long, y
= lat, group = group)) + ggtitle("Ordinal_Kriging") + scale_fill_gradient(low = "yellow",
high = "red")

#Contour

plot(Pol, 1lwd = 2)
contour(po, add = TRUE)
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