EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title Design of Adjustable Software for Fault Detection, Isolation and Recovery of Attitude
Determination and Control System in MicroDragon Satellite
Sub Title
Author Nguyen, Van Thuc(Nishimura, Hidekazu)
Y, FA
Publisher BREBBREFRERATALATHA2 - XXX NRER
Publication year 2015
Jtitle
JaLC DOI
Abstract
Notes L ZMMN. 2015FEVATLAIV DT I J% #1785
Genre Thesis or Dissertation
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=K0O40002001-00002015-

0006

BRESBAZZMERVARD NU(KOARA)ICEBHEATVWAR AV TV OEEER., ThThOEESE, ZLFTLFHRLWRTECREL. TOEINEEEEEICELST
REETNTVET, 5lACHLE>TR., EFEELZZEFLTIRAEZTL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

http://www.tcpdf.org

Master’s Dissertation 2015

Design of Adjustable Software for Fault Detection,
Isolation and Recovery of Attitude Determination
and Control System in MicroDragon Satellite

Nguyen Van Thuc

(Student ID number: 81334559)

Supervisor Hidekazu Nishimura

September 2015

Graduate School of System Design and Management
Keio University
Major in System Design and Management

SUMMARY OF MASTER’S DISSERTATION

Student
Identification 81334559 Name Nguyen Van Thuc
Number

Title

Design of Adjustable Software for Fault Detection, Isolation and Recovery of
Attitude Determination and Control System in MicroDragon Satellite

Abstract

Attitude Determination and Control System (ADCS) is one of the most important subsystem
in every satellite. Without the well operating of this subsystem, satellites missions cannot be
achieved. It is very important to ensure the safety operation of ADCS and FDIR (Fault
Detection, Isolation and Recovery) is usually chosen to do that. However, according to
statistical numbers of satellites in-orbit failures in the past, ADCS is the subsystem which
has highest probability of failures, 32%. Therefore, the need of improving FDIR for this

subsystem is very critical.

This research aims to propose a novel FDIR mechanism for ADCS of MicroDragon (MDG)
satellite — the first Vietnamese micro satellite is being developed in Japan. The FDIR is
proposed by using and adjustable software supported by an FIR (Fault Isolation and
Recovery) library. The library is a text file in which, each line starts with a fault ID for all
the predicted failure modes of ADCS, and is followed by the combinations of correspondent
isolation and recovery functions ID. When a predicted fault is detected, the software searches
for isolation and recovery functions ID in FIR library and execute the required functions. On
the other hand, when ADCS faces with an unpredicted fault or there is need of software
optimizations, operators on ground station send uplink data to update FIR library and adjust
FDIR software. New combinations of isolation and recovery functions can be created by
adding or removing function ID to existing lines or new lines can be added to FIR library by
operators on the ground. Once FIR library is updated, software for FDIR of ADCS can be
changed accordingly. The design of adjustable software for FDIR of ADCS is promising to
shorten the time of fault recovery and process of handling in-orbit failures of ADCS becomes

more convenient for operators.

Keyword (5 words)
Adjustable software; ADCS; FDIR; FIR library; MicroDragon Satellite;

Acknowledgements

This master’s thesis could not have been finished without supports from some very important

and special people. | would like to extend my sincere gratitude to all of them.

Firstly, I would like to thank my supervisor, Prof. Nishimura, for his guidance during 2 years
of my master course in SDM. Without his unlimited support, this work would not have been

completed.

Secondly, I am thankful to Prof. Shirasaka, Prof. loki and other professors in SDM. They have

been following and giving me a lot of advises to improve my research.

Last but not least, | must thank to all of my colleagues, my friends in MDG project and my

family for believing in me and supporting me during the time I studied in Japan.

Table of Contents

LISt OF IQUIES ..ottt e b et e et e s e e s reeaeeneenneene s iv
Chapter 1. INrOGUCTIONc.veiiiiiiiiieie bbbt 1
1.1 MicroDragon (MDG) Satellite Background and Challenges............cccccevvvevveiernennenn, 1
1.2 Research Objective and APProachccccvvereeieiieeseeie e 4
1.3 DISSertation OULIINE........ccviiiieieie e 6
Chapter 2. Fault Detection, Isolation and RECOVEIYcccceiiiiiirieiiiene e, 7
2.1 Fault Detection, Isolation and Recovery teChNIQUES.........ccccevvevieiieiierie e 7
2. 1.1 OVEIVIBW ..ttt bbbttt b e 7
2.1.2 Techniques TOr FDIRooi i e 8

2.2 Overview of FDIR IN SAtEIlITecoooiiiiiiiiicce e 12
Chapter 3. Attitude Determination and Control System (ADCS) in MDG Satellite............ 15
3.1 Overview Of MDG SAEHITEc.ooveiiiieieiei e 15
311 MissSions Of MDG SatelItIec.coiiiiiiiiiiieree e 15
3.1.2 Overview of MDG SYStem deSIgNc.covveieiieieiie e, 16

3.2 Attitude Determination and Control SYStemMccccveveiiiiiiiie i, 17
3.2 1 ADCS OVEIVIBW ...ttt sttt st bbb 17
3.2.2 Failures Prediction fOr ADCS ... 27
Chapter 4. FDIR Mechanism for ADCS and Design of Adjustable Software...................... 41

4.1 Proposed FDIR mechanism for ADCS of MDG satellite...........ccccvevevievvciieciennnn, 41

4.1.1 Finding from CONStruCting FTAociiiieeee e 41
4.1.2 Proposed FDIR MECNANISMccouiiiiiiiieiieiesiese e 42

4.2 Adjustable Software Design for FDIR 0f ADCS..........ccoooiiiiiiiiceeeeees 46
4.2.1 Requirements Definitionccooiiiiiiciiie e 46
4.2.2 CONEXE ANAIYSIS ..ecvviiiieieeie ettt sre e re e re e e sneenre s 46
4.2.3 SOMWare arChitECIUIE.ccui i 56
4.2.4 Traceability Of reQUIFEMENTScoiiiiiiiieiere e 70
Chapter 5. Verification and Validationccceeeiiiiiiii i 72
5.1 Demonstration of Software AdjuStMENt...........ccceoieiiiieiicie e 72
511 DemONSratioN SELUPcoveeeieteiteriesie ettt sttt 72
5.1.2 Demonstration of software adjuStments...........ccccceveririiriiieiese e 77
5.1.3 Demonstration OF FDIRcoiiiiiiiiiiiieeiie e 81

5.2 Interviews with Satellite Developers and Operators...........cccoceevveveeviesieveesre s, 85
Chapter 6. Conclusions and FULtUre WOTKS ..o 92
6.1 OVErall SUMMAIYc.oiiiiiiiiiiie bbb 92
8.2 FULUIE WOTKS.....oiiiiii e 93
RETEIEICES ...ttt bbbt 94
N o] 1= 16 | SO URPPR PRSPPI 99

List of figures

Figure 1.1 MicroDragon satellite in 3D MOGEcoooviiiieiiieieeee e, 1
Figure 1.2 Failures in spacecraft SUDSYSIEMSooiiiiiiiiiiiceeeee e 2
Figure 1.3 Impact of ADCS failures on mission of satellites...........ccccccevvvviniiiieiie i, 3
Figure 2.1 Fault — detection MethodS.........coviieiiie i 9
Figure 3.1 Main mission of MDG satellite [22]........ccoooriiiiiiiiieee e 15
Figure 3.2 Store and Forward missSion [22]........cccoeieririiiniiisiseeeese s 16
Figure 3.3 Subsystems in MDG Satellite...........ccoeiiieiiiii e 17
Figure 3.4 Impacts of mission requirements and other sub-systems on ADCS.............c......... 18
Figure 3.5 Hardware components 0f ADCS ..o 19
Figure 3.6 Internal block diagram of ADCS ..o 21
Figure 3.7 State machine diagram for Attitude control modes of MDG............ccccccevvevivennane. 22
Figure 3.8 Transition t0 Safe MOEcccooieiiiie e 23
Figure 3.9 Spin Sun POINtING MOGEooiiiiiiiiieee e 24
Figure 3.10 Sun POINTING MOGEccuoiiiiiiiiiciee e 25
Figure 3.11 Nadir POINtING IMOUEccviiiieiie et ne e 26
Figure 3.12 Target POINING MOEccooiiiiiie et 27
Figure 3.13 Process for CONAUCTING FTA ..ot 28
Figure 3.14 FT for Spin Sun POINtING MOGE.........ccoiiiiiiiieiisieceeee s 31

Figure 3.15 Failure caused by NSAS in UNIFORM-1 ..o 32

Figure 3.16 FT for Sun Pointing MOEcooieiiiie i 32
Figure 3.17 FT for Nadir Pointing MOdEccoeiiiieiiece e 33
Figure 3.18 Three types of data errors in FOG ..ot 34
Figure 3.19 FT for Target POINting MOTE (L) ...oovveruerieiierieeie i 35
Figure 3.20 FT for Target POIinting MOUE (2)vvevueiieiieiecie e 36
FIQUIE 3.21 FT OF RW ...ttt ettt 38
FIQUIE 3.22 FT FOF MTQS. .ttt bbbttt bbbttt 39
Figure 4.1 Proposed FDIR MEChANISIMcoiiiiiiiiieiee e 43
Figure 4.2 Example Of FIR TIDIary ..o 44
Figure 4.3 Requirements for FDIR SOFtWArE.........cccccvveiiiiiiic e 47
Figure 4.4 Use case diagram for top — level functionalityccccooeveiiiininniiiiccee, 48
Figure 4.5 Sequence diagram Of FDIR..........cooiiiiiiiiee e 49
Figure 4.6 Sequence diagram for detect failures of ADCS (context level).........c.cccocevevvennnnne. 51
Figure 4.7 Sequence diagram for isolate failures and recover ADCS (context level) 52
Figure 4.8 Sequence diagram for perform FIR functions (context level)ccccoovviiinnn, 53
Figure 4.9 Sequence diagram for adjust software (context level)..........ccconiiiiniiiicien, 54
Figure 4.10 Block definition diagram of FDIR SOftwarecccocovvvviiieiie i, 56
Figure 4.11 Sequence diagram for observe ADCS status (analysis level)...........cccccevveennnnn, 57

https://d.docs.live.net/ee2f25e1358bea49/Documents/Thesis/Thesis%20writting/20150714_Dissertation_format.docx#_Toc425865757
https://d.docs.live.net/ee2f25e1358bea49/Documents/Thesis/Thesis%20writting/20150714_Dissertation_format.docx#_Toc425865758
https://d.docs.live.net/ee2f25e1358bea49/Documents/Thesis/Thesis%20writting/20150714_Dissertation_format.docx#_Toc425865761
https://d.docs.live.net/ee2f25e1358bea49/Documents/Thesis/Thesis%20writting/20150714_Dissertation_format.docx#_Toc425865764
https://d.docs.live.net/ee2f25e1358bea49/Documents/Thesis/Thesis%20writting/20150714_Dissertation_format.docx#_Toc425865765

Figure 4.12 Sequence diagram for detect fault (analysis level) ... 58

Figure 4.13 Sequence diagram for identify fault (analysis level)cccccooeiiiiiiiiic e, 58

Figure 4.14 Sequence diagram for search isolation, recovery functions in FIR library (analysis

oY= RSP RTRORURTRSPRS 59
Figure 4.15 Sequence diagram for execute isolation, recovery functions (analysis level) 59
Figure 4.16 Sequence diagram for assign new fault ID to current fault (analysis level)......... 60
Figure 4.17 Internal block diagram of FDIR SOftware............ccccocvveveiiiiiece e 60
Figure 4.18 Activity diagram for FDIR 0f ADCS ..ot 61
Figure 4.19 Activity diagram for estimate next SENSOrs OULPULS.........ccevververerererinieieienes 62
Figure 4.20 Activity diagram for judge current Sensors OULPULS..........cevvevveieerreerieseeseernenn 63
Figure 4.21 Activity diagram for conclude fault or NOtccooveiiiiiii e 63
Figure 4.22 Activity diagram for find isolation, recovery functions in FIR library 64
Figure 4.23 Activity diagram for identify isolation, recovery functionsc.ccocevvvieinennn, 65
Figure 4.24 Activity diagram for execute required functionscccceveveiiicci e cie e 65
Figure 4.25 Activity diagram for activate Safe Mode...........c.ccceevveiiiiii i 66
Figure 4.26 Examples of FIR library modifiCationc.ccocvviiiiiiiiiiieeees 67
Figure 4.27 Example of FIR functions deleting..........cccooviiiiiiiiiiiiiice e 68
Figure 4.28 Example of adding FIR fUNCHIONS..........cccoooiiiiiicce e 69
Figure 4.29 Traceability of reqUIrEMENTS.........ccoviiiiiiic e 71
Figure 5.1 Configuration OF HILS ... 72

Vi

https://d.docs.live.net/ee2f25e1358bea49/Documents/Thesis/Thesis%20writting/20150714_Dissertation_format.docx#_Toc425865776
https://d.docs.live.net/ee2f25e1358bea49/Documents/Thesis/Thesis%20writting/20150714_Dissertation_format.docx#_Toc425865787

Figure 5.2 OBC board used fOr HILS ..o s 75

Figure 5.3 ADCS model in SIMUIINKcooviiiiieece e 76
Figure 5.4 Original FIR library for demonstration.............cccccoovveviiieiiecie e 77
Figure 5.5 Result of demonStration #1ccoviieieiieiiee e e 78
Figure 5.6 Result of demOonStration #2ccoviieiiiieiiee e e s 79
Figure 5.7 Result of demonStration #3coeieeiiiieiee e 80
Figure 5.8 Simulink model of a faulty gyroSCOPE........cccevveieiiieii e 81
Figure 5.9 Output from faulty gyroSCOPE (1)ecveverierierieieiisiesieee e 82
Figure 5.10 Attitude error when FDIR is disabled............cccooiiiiiiiiiiciee, 83
Figure 5.11 Attitude error when FDIR is enabled..........c.ccccoeiieiiiiiicccccc e 83
Figure 5.12 SimUlation SCENAIIO.cccueiieiieiieieece et reeneanes 84
Figure 5.13 Output from faulty gyroSCOPE (2) ...c.eeverierieriirieiiiiieiieee e 84
Figure 5.14 SIMUIALION FESUIT.......c.oiiiiiiiii e 85

vii

https://d.docs.live.net/ee2f25e1358bea49/Documents/Thesis/Thesis%20writting/20150714_Dissertation_format.docx#_Toc425865790

viii

Master’s Dissertation 2015

Chapter 1. Introduction

1.1 MicroDragon (MDG) Satellite Background and Challenges

MicroDragon satellite project started in October 2014 and is planned to finish in the mid-year
of 2017. This three years satellite project is founded by Vietnam National Satellite Center
(VNSC) as a sub-contract in the big project to build Vietnam Space Center — a collaboration
project between Vietnamese and Japanese Governments. Until the time of completion of this
master dissertation, 22 researchers from VNSC have been sent to Japan to work on the project.
At the same time, they also need to join master courses at 5 universities in Japan, include Keio
University, The University of Tokyo, Tohoku University, Hokkaido University and Kyushu
Institute of Technology. Scope of this project is mainly focused on space technology education
for VNSC students, especially in micro satellite development process resulted in the first

Vietnamese micro satellite named MicroDragon (MDG).

MDG satellite is one of the typical micro satellite in 50 cm cubic shape and 50 kg in total mass.
The satellite is planned to be launched in 2018 as one of piggyback payloads in HII-A vehicle.
Outer view of this satellite is shown in Figure 1.1. In term of system design, MDG satellite
consists of seven subsystems, and among them, there is an important subsystem called ADCS
(Attitude Determination and Control System). The main functions of this subsystem are to

determine the orientation of the satellite and re-orient the satellite to the target direction.

Figure 1.1 MicroDragon satellite in 3D model

l1|Page

Master’s Dissertation 2015

As in every satellites, ADCS plays a very important role in ensuring the success of mission in
MDG satellite. In this satellite, cameras are required to always point to the Earth to take pictures,
solar panels are also needed to point to the Sun to generate power from sunlight and distribute
to all satellite components. They are all controlled by ADCS. Without the successful operation

of ADCS, satellite mission cannot be achieved.

Safety operation of ADCS in orbit is very significant. However, this subsystem is also well
known to have the highest possibility of failures in orbit. In Ref. [1], ADCS is stated as the
most sensible subsystem in satellite, and failures of this subsystem are the most critical. Ref.
[2] proved those statements by statistic numbers. In Ref. [2], Mak Tafazoli conducted a study
on 156 failures which occurred on 129 spacecraft from 1980 to 2005. Failures are categorized
in several categories such as spacecraft size and mass, failures of subsystems, and time of
failures after launch. A summary of failures in term of satellite subsystems is illustrated in
Figure 1.2. As one can see clearly in this figure, ADCS is the most sensible subsystem which
caused 32% of failures. Figure 1.3 shows the impact of ADCS failures to mission of satellites.
Among those 156 failures, almost 60% of them contributed to degradation of mission and more
critically, 30% of them led to the loss of whole mission. More failures effects can be found in
Ref. [3]. Those statistical numbers are quite huge and, therefore, they are worth of

considerations whenever satellite systems or subsystems are going to be developed.

HPower EADCS CDH EmTTC mOther

Figure 1.2 Failures in spacecraft subsystems

2|Page

Master’s Dissertation 2015

60%

50%

40%

30%

20%

10%

0%
Loss of mission Degradation of mission

Figure 1.3 Impact of ADCS failures on mission of satellites

Since early phase of development process, the design of MDG satellite, except for payloads,
has been decided to follow that of UNIFORM-1 satellite, one of the Japanese micro satellites
launched in May 2014 [4]. All hardware components of MDG satellite, including ADCS, are
identical with those in UNIFORM-1. The software needs to be developed by students. Using
the same set of hardware with UNIFORM-1 satellite was expected to provide some benefits to
the design of MDG because they are all space proven. However, actual operation of
UNIFORM-1 shows that, after several weeks of operating in orbit, the satellite has faced
failures in ADCS. It took several weeks to find out the causes of failures. Then, the problems
are fixed by a set temporary solutions and they accepted to operate the satellite with degraded
performance. This situation yield the concerns in ADCS team about the safety, and reliability
operation of this subsystem when satellite is in orbit. There is necessity of an effective way to

deal with failures of ADCS even when the satellite is already launched to space.

Learning from failures in ADCS of UNIFORM-1 and other satellites in the past (which
mentioned above), the need of ensuring safety operation for this subsystem become more
significant. Fault Detection, Isolation and Recovery (FDIR) is often used to carry out this job,

some of them can be found in Ref. [1] [5] [6] [7]. In general, FDIR has functions to detect

3|Page

Master’s Dissertation 2015

faults/ failures when they occurred, isolate them from propagations then recover the system

operation.

In almost designs of ADCS as well as satellite system, when onboard FDIR failed to maintain
satellite operation, the common way for satellite operators or engineers on ground to handle
satellite in-orbit failures is by reprogramming for onboard computer (OBC) [8]. Example of
this technique is explained in design of ETS-VIII Satellite [9], MDG satellite also has this
function. The advantage of this technique is that onboard software can be fully renewed or
modified to adapt to new situation of satellite in orbit. However, for micro satellites which
usually come with very limited uplink speed (in MDG it is 4 kilobit per second), the process
of uploading new code for reprogramming purpose could take a long time. It is not taken into
account the satellite attitude error which defines antennas direction. When satellite attitude is
lost due to failures of ADCS, that process can be worse. The time spending on reprogramming
for OBC could be much longer. Therefore, operators on ground station needs to have more

options when dealing with failures which occurred on ADCS in orbit.
1.2 Research Objective and Approach

Failures which occur on ADCS in orbit are critical and it is very important to have an effective
way to handle those failures from ground station. This research aims to propose an FDIR
mechanism which can provide operators on ground more options when dealing with in-orbit
failures of ADCS. The FDIR mechanism of ADCS in MDG satellite is proposed by using an

adjustable software supported by FIR (fault isolation and recovery) library.

Adjustable software is the software which can be adjusted during system operation. If onboard
software is adjustable, satellite operators on ground station can add, remove software functions
from execution or they can change orders (or sequence) of functions execution in the software,
even when satellite has already launched into orbit. The main objective of introducing
adjustability to the software is to gain the flexibility of FDIR which, as suggested in Ref. [2] is

one of the keys to gain system safety as well as increase availability.

4|Page

Master’s Dissertation 2015

Having adjustable software for FDIR of ADCS, operators and engineers on ground can have
more options or freedoms when dealing with ADCS failures in the future operation of satellite
in orbit. In proposed FDIR mechanism, those options can be achieved by using the existing
isolation and recovery functions in different orders which are represented by the combinations

of fault 1D, isolation, recovery function ID in FIR library.

In adjustable software for FDIR of ADCS, isolation and recovery actions are prepared as
software functions or subroutines. Each of those functions or subroutines then be assigned with
an ID and stored in a text file called FIR library corresponding to the predicted faults. Each
fault also has a fault ID which stands at the beginning of the line in FIR library and followed
by isolation, recovery function IDs. The text file then be stored in onboard memory of Onboard
Computer before the satellite is launched to orbit so that FDIR software can access to find
isolation, recovery instruction every time when a fault is detected. For the predicted failure
modes of ADCS, the software as the part of FDIR mechanism can automatically detect then
isolate the faults (or causes of failures) and recover ADCS by following instructions stored in

FIR library, operation of ADCS can be maintained as desired.

In situation when a fault occurred but there is no appropriate instructions available in FIR
library, or when an un-predicted failure occurred, the software then activates ADCS Safe Mode
and waits for ground station interventions. At this point, operators or engineers on ground make
adjustments to the software by sending uplink data to update FIR library based on results of
failure analyses on the ground. New order or combination of isolation and recovery functions
will be created in FIR library so that they can be performed onboard by the adjustable software.

There is no needs of reprogramming for onboard computer even in these situations.

Adjustable software is also helpful in the cases when people on ground station found that a
specific fault is actually not a fault anymore due to degradations of components; or in the
situations when there is something needed to be modified to improve isolation, recovery

process.

5|Page

Master’s Dissertation 2015

1.3 Dissertation Outline

This dissertation includes six chapter and followed by list of references and appendix.

Chapter 1 provides the overview of this dissertation. In this chapter, background of this
research is explained as the introduction to MDG satellite and design challenges. Research

objectives and approach are also specified in second part of this chapter.

Chapter 2 discusses about Fault Detection, Isolation and Recovery techniques and the
applications of FDIR in satellite. Some software approaches for FDIR as well as satellite safety

are also being reviewed in this chapter as the related works.

Chapter 3 then gives overview of MDG satellite system focused on Attitude Determination and
Control system (ADCS). Several failure modes of ADCS are also identified in the contents of

this chapter using Fault Tree Analysis (FTA) approach.

Chapter 4 is where the proposed FDIR mechanism for ADCS of MDG satellite is explained in
detail. Then, the design of adjustable software for FDIR of ADCS is illustrated using process
of model-based system engineering (MBSE) with supported by SysML (System Modeling
Language).

Chapter 5 then shows the process of verification and validation. The design of FDIR software
first is verified to be adjustable by updating FIR library. Then how the adjustability of software
can support for FDIR of ADCS is demonstrated using a hardware in the loop simulation (HILS)
with several failure scenarios. Validation of the designed software is done by evaluation from

experts’ opinions.

Finally, in chapter 6, results of this research are summarized for conclusion and followed by

future works.

6|Page

Master’s Dissertation 2015

Chapter 2. Fault Detection, Isolation and Recovery

2.1 Fault Detection, Isolation and Recovery techniques

2.1.1 Overview

Fault detection, isolation and recovery (FDIR) is an important aspect in control engineering.
The primary objective of an FDIR system is early detection of faults, isolation of their location,
and then, enabling correction actions before additional consequences of faults apply to system

operation and lead to the loss of missions.

In ISO/CD 10303-226, a fault is defined as an abnormal condition or defect at the component,
equipment, or sub-system level which may lead to a failure. A failure is a permanent
interruption of a system’s ability to perform a required function under specified operating
conditions. In each organization or each specific system, the definition of fault and failure may
change a little compared to the standard. However, in general, a fault can be understand as the
cause and failure is effect. Fault can occur in the individual unit of the sensors, actuators, or
other devices and has effect to the unit, subsystem or overall behavior of the system. There are

several types of faults and each of them affects on the system behavior in different ways:

<~ Abrupt fault: the sudden change in behavior of components. It could be the change in
sensors output, actuator performance and so on.

< Incipient fault: a fault that not always present, it occurs occasionally in the system.

<> Permanent fault: the fault that leads to total failure of a component, one they occurred, they
do not disappear.

<~ Transient fault: is the temporary malfunction of components, it occurs in certain time
duration then disappears.

< Intermittent fault: is the repeated occurrence of transition faults. It can occur in fix or

variable time intervals.

7|Page

Master’s Dissertation 2015

<> Hidden fault: is a type of fault that presents in components and visible only when

components are activated.

There are several requirements (desired characteristics) for FDIR of a system, such as
requirements for detection delay, sensitivity, and performance. The delay time for detect a fault
which already occurred should be minimized to reduce the consequences as much as possible.
Critical failures can be prevented if the faults (or causes) are detected early. Sensitivity, on the
other hand, is the term to illustrate ability of FDIR mechanism to detect faults with high
detection rate (ratio between occurrence and detected faults). A robust FDIR mechanism also
has ability to distinguish noises, disturbances and faults. This is the meaning of FDIR
performance which is also represented in term of false alarm rate (percentage of detect wrong

faults when they actually not happened).

In process of FDIR, once a fault is detected the next step is to identify location of fault and
isolate the fault from propagation to prevent further consequences. For critical system where
safety and availability are the most important aspects, recovery is usually done by switching to
redundant components, or systems. If there are two or more identical components in the system,
faulty components can be ignored and the system directly switch to the spare components when
the primary ones get failed. In such kind of system, 100% functionality of system can be
recovered. For other systems, where there is no redundancy, recovery can be achieved by using

alternative paths or functional degradations recovery [10].

2.1.2 Techniques for FDIR

Numerous of FDIR methods have been developed and applied since 1970 [11] [12]. In this

section, overview of some common methods is introduced.

2.1.2.1 Fault - Detection

Figure 2.1 shows the decomposition of fault detection methods. There are two main categories

in fault detection techniques: Detection with single signal and detection with multiple signals.

8|Page

Master’s Dissertation 2015

Fault Detection Methods

Detection with single Detection with multi
signal signal
=}
= 2 3 i
2 c I3} B ©
= — o o)
= X = — > 0
[5} &) > [<5) 25
[<5] (5] S © [3+] =
= = o Q c =
o o E < ©
— - IS S C
= = = 19} = ©
e 5}] $ =
J = = =) >
= =)) S
w o

Figure 2.1 Fault — detection methods
In the category of detection with single signal, limit checking is the first one. This fault
detection method is described in detailed in Ref. [13]. Two limit value called thresholds are set
for purpose of fault detection: maximum value Y max and minimum value Y min. A normal status
of the measured value, Y (t), is detected when is falls into this interval [Y min; Ymax]. Otherwise,

a fault is detected.

The principle of trend checking is very similar to limit checking. However, instead of directly
use the measured value Y (t) and its thresholds, the derivation values are considered. A fault is

detected when:
Y (t) E [Ymin ’Ymax]

Signal model based and process model based are known as model based approach for fault

detection and isolation, they are also described in very detailed in Ref. [13]. The general idea

9|Page

Master’s Dissertation 2015

of those techniques is, based on dynamics model of the system, the detection mechanism
calculate or estimate the future values of measured values to generate residual. The generated
residuals then be used to detect faults of system or components by comparing with a fixed or
adaptive thresholds. There are various types of model based fault detection method such as
least square, extended least square, recursive estimators, parameter estimators, parity equations,

state observer, etc.

Multivariate data analysis is a method for fault detection which mainly based on principal
component analysis. Principal component analysis (CPA) is powerful fault detection and
isolation method which have been used for very long time, especially for large scale system
such as chemistry plant [14]. By projecting the original historical data onto a lower
dimensionality space, PCA reduces the dimensionality it to simplify the system. It gets the
principal causes of variability in a process to detect fault. Whenever some of these causes are

changed, they can due to a fault in the process, fault alarm is triggered.

2.1.2.2 Fault - Isolation

As mentioned in above section, once fault is detected, the cause needs to be identified and
isolated from system, operation. This process can be done automatically of manually depends

on characteristics of the system.

Several methods for fault - isolation are already explained in above section when detection
methods are describing. There are still some that needed to be discussed in this section and
inference methods are the most common among them. Several methods in the category of
inference are listed in Ref. [13], including Fault Trees, Approximate reasoning and Hybrid

neuro-fuzzy systems. Each of them have its own advantages and disadvantages.

Fault Trees is a graphical tool to visualize the relationships in reliability and diagnosis. Each
fault tree consists of events and gates connected with lines. The relationships are used in fault
trees are binary relationships (mostly AND, OR) which along with hierarchical structure

supports for human comprehension. Fault trees are usually used since the early phase of system

10|Page

Master’s Dissertation 2015

design to identify the critical components, subsystems that contribute the most to system failure
probability. In this research, fault trees are also used for failure prediction of ADCS (more

details in section 3.2.2).
2.1.2.3 Fault - Recovery
In general, there are three types of recovery [10]:

< 100% functional recovery by using redundancy
< Functional recovery using alternatives paths

<> Degraded functional recovery

Redundancy is the most effective way to deal with failures. Two or more identical components
are implemented in the system, and when one get failed, the system will switch to the redundant
one. There are three levels of redundancy [15]: hot redundancy, warm redundancy, and cold
redundancy. For very critical system which must not go down for even a brief moment under
any circumstance, hot redundancy is used. In systems that are using hot redundancy, the spare
and the primary components work in parallel. The spare will continue to work when the primary
one fails. Warm redundancy is similar, however, the additional components run in idle and will
activated to take over the functions of the primary one when it fails. Cold redundancy, in the
other hand, the redundant components are put into operation only when the primary one get
failed. Depends on level of critical as well as requirements of the system, system designer

choose one of the level or combination of those level of redundancy.

In most system, resources are very limited. Therefore, instead of using redundant components,
units, an alternative path is used in case of failures. For example, once al the main actuators are
failed, the system needs to use the sub-actuators. However, due to the differences in
performance of the alternative which is usually lower, system performance cannot be fully

recovered.

In the worst case when there is no redundant component available, to keep the system still in

operation, operators have to decide to turn off/ or disable several functions of the system. For

11|Page

Master’s Dissertation 2015

example, when some of solar array got damage, three — axis attitude controlled using reaction

wheels is disabled and replaced by using magnetic torques with lower control accuracy.

2.2 Overview of FDIR in satellite

For such a system as satellites, safety, reliability, and availability are very important aspects.
For almost satellite mission, once they are launched into orbits, there is no way to get back and
repair. On ground testing and design of safety assurance are considered as critical parts in
satellite development process. In term of FDIR, depends on satellite missions and architecture,
each satellite has its own FDIR mechanism. In general, FDIR in satellites is implemented using
both hardware and software and can be decomposed into several levels [16] [17] [18]. Some

common levels of FDIR are explained following:

< Level 0 is the lowest level which handles failures entirely on unit level. Usually, FDIR in
this level is ensured with the uses of components by default. Hardware component itself
has functions of auto correction and protection. For example, a power distribution unit
which supply electrical power to all components in satellite must have function to protect
those components from electrical related hazards, such as over voltage, over current, etc.
Since hardware components in satellites are usually COTS products, FDIR in this level is
ensured by manufacturers.

<~ Level 1 covers failures being handled by subsystem onboard software. Failures are being
handled within satellite subsystem and there is no need of interaction with other subsystem
or higher level satellite system.

< Level 2 covers failures being handled by satellite onboard software. When subsystems
cannot handle failures which occurred on them, or failures are severe and affected on other
subsystem as well as the whole satellite, FDIR at level 2 will be triggered, satellite onboard
software will take appropriate actions as predefined before launch to execute onboard.

< Level 3 comprises failures which need to be handled by hardware reconfiguration. As

mentioned above in section 2.1.2, redundant units are implemented in satellites. Once

12|Page

Master’s Dissertation 2015

failures occurred on the primary components, redundant ones will be triggered. This can
be done by software or hardware itself.

< Level 4 comprises failures which cannot be handled onboard and required ground station
interventions. These failures include unpredicted failures modes, critical failures which
affect overall satellite system. Failures analyses are done on the ground from telemetry
data received from satellite, then appropriate isolation and recovery actions will be made
by uplink commands. Reprogramming, as mentioned in section 1.2, is one of the recovery

actions in this FDIR level [8] [9].

It is also important to design FDIR at each level so that failures cannot be isolated or recovered
at that level can be transferred to the next higher level. Besides, safe mode is also needed to be
defined. In case when on board FDIR mechanism cannot handle failures, safe mode should be
automatically activated. Satellite system can be safe in safe mode with minimum function as
possible. Power consumption in safe mode should be as low as possible so that satellite can
save enough power until receive command actions from ground station. Communication
between satellite and ground station also should be kept. Receiver must be turned on at any
time so that ground station can send uplink command every time satellite flies above. Also,
telemetry that consists of satellite system health should be transmitted to ground as much as

possible to help the process of failures analysis from ground station become more effective.

For ADCS — the most sensible subsystem in satellite, the need of a robust, effective FDIR
mechanism is critical. Many studies have been conducted in order to improve FDIR of this
subsystem. Some can be found in [19] [20] [21]. Each of them focuses on some particular
failures in ADCS such as failures of sensors (for example Gyroscope, IMU) or actuators
(reaction wheels, momentum wheels). Various methods or techniques have been also applied
to FDIR of ADCS and among them, model-based approaches which mentioned in section 2.1.2

are the most common one.

In the most design of big satellites where availability is the most important consideration,

ADCS usually includes one or more redundant units, so that services that they provide are not

13|Page

Master’s Dissertation 2015

interrupted even when failures occurred. In smaller satellites such as micro, nano satellites, size
and weight are very limited. Having redundancy for every component is impossible. That is
reason why only moving parts such as reaction wheels are usually considered as the most
dangerous parts with higher probability of failures and are prepared with redundant one. Four
reaction wheels are usually used instead of three, even size and mass are larger than other
components. In such a system as micro satellite, more complicated FDIR functions, in the other
hand, are usually implemented in software. Software has functions to detect, isolate faults and
apply recovery actions to maintain ADCS performance. It makes software become heavier,
more complicated and sometimes introduces more failures. Therefore, having a robust design

software architecture for ADCS in general and FDIR in particular is very important.

l4|Page

Master’s Dissertation 2015

Chapter 3. Attitude Determination and Control System (ADCS)
in MDG Satellite

3.1 Overview of MDG satellite

3.1.1 Missions of MDG satelltie

Ocean color observation to assess coastal water quality and locate living resources is the main
mission of MicroDragon satellite. The satellite will provide images data which can be used by
researchers and scientists in fishery and oceanography fields to analyze then distribute

necessary information to fishermen and environmental managers.

In addition to the main mission, there is a sub-mission which called Store and Forward (S&F)
mission. Satellite will receive information transmitted from sensors modules located on surface
of the sea and store those data onboard. The received data then will be transmitted to ground
station when satellite is passing over ground station. The data provided in this sub-mission will
be used to give additional information including assessments of chlorophyll and algae class to

the main mission data.

Us Dert of State Geographer
2014 Google
© 2014 Mapabc.com
Data SIO, NOAA, U.S. Navy, NCA, GEBCO

Figure 3.1 Main mission of MDG satellite [22]

© MicroDragon Development Team

15|Page

Master’s Dissertation 2015

Figure 3.2 Store and Forward mission [22]

© MicroDragon Development Team

3.1.2 Overview of MDG system design

The MDG satellite consists of six sub-systems as shown in Figure 3.3 and the supporting
structure. Electrical Power Subsystem (EPS) has the functions to supply power for all
components in satellite using the generated power from sunlight. Thermal subsystem is utilized
to ensure the temperature of components within the acceptable ranges. Communication (COM)
subsystem which consists of an X-band transmitter and an S-band transceiver has the functions
to provide the communication links between satellite and ground station so that mission data
can be downlinked to ground and operator on ground can send command to satellite from
ground station. Command and Data handling (C&DH) subsystem then has responsibility to
handle those commands and manages the whole satellite system as well as data generated from
satellite subsystems. Payloads are the most important subsystem which consists of three
cameras and one onboard computer called SHU (Science data Handling Unit). SHU plays the
role as the brain of payloads. It has functions to control cameras to take pictures, store images

and send those image to ground when it is commanded.

16|Page

Master’s Dissertation 2015

bdd [Model] System Structure [MDG satelite U

«blocks

MDG satellite

.«vblock» «b‘lock» . ublock»
Electrical Power Subsystem (EPS)| |Thermal subsystem Attitude Determination and Control System (ADCS)

l | l

«block» «blocks «blocks
Communication Subsystem (COM) Payloads Command and Data handling (CDH)

Figure 3.3 Subsystems in MDG satellite

This research is focused on Attitude Determination and Control subsystem (ADCS), which is
one of the most important supporting subsystems. ADCS controls satellite attitude
corresponding to requirements from payloads as well as other subsystems. Payloads may have
requirements to ADCS to point their lenses to certain target on the Earth and keep them stable
when they are taking pictures. EPS may require ADCS to point its solar panels to the Sun to
generate more power. COM also requires to direction of antenna to be faced to the Earth, so

that communication with ground station can be ensured.

3.2 Attitude Determination and Control System

3.2.1 ADCS overview
3.2.1.1 ADCS definition and design drivers

As shown in Figure 3.3, ADCS is one of the most important subsystems in MDG satellite,
which consists of various ranges of sensors and actuators. The main functions of ADCS are

listed as following:

< Acquire data from attitude sensors

17|Page

Master’s Dissertation 2015

<> Process sensors data to estimate the current attitude of satellite

<~ Compute the deviation of current attitude from target attitude

<> Compute a control torque need to be applied to satellite to achieve target attitude
¢

Control actuators to apply control torque to the satellite

Practices show that attitude system design is an iterative process. Start from mission
requirements to the design of ADCS control modes then identification of control algorithms
for each mode and selections of sensors, actuators to satisfy the requirements. Figure 3.4
describes the impacts of mission requirements and subsystems on the design of ADCS in
general. For MDG case, the main mission of this satellite is to observe Vietnam coastal sea to
get assessments of water quality and also finding potential sources of fish to support to fisher
mans and people in aquaculture filed. This specific mission requires satellite to have ability to

always

Mission
¢ Pointing/Stability accuracy

Power
o Power consumption of ADCS

: gc;Si'E[rol agtleness e Solar paddle pointing
e Autonomy requirement

ADCS Trades

Control algorithms
Sensors selection
Actuators selection
Computational architecture

Structure

e Center of mass constraint
Moment of Inertial constraint
Sensors mounting location
Structure flexibility

Communication
e Antenna pointing accuracy

Figure 3.4 Impacts of mission requirements and other sub-systems on ADCS

18|Page

Master’s Dissertation 2015

point mission cameras to nadir direction and/or to certain area of interest with very high
pointing and stability accuracy. The mission also requires very agile pointing speed so that

target areas can be changed in very short time and more images can be captured.

Design of ADCS also depends on other subsystems such as power, communication and satellite
structure. From Electrical Power Subsystem (EPS), requirements are listed for ADCS as power
consumption of all ADCS components and more importantly is the assurance of power
generation from solar cells as the direction of solar panels corresponding to the Sun.
Communication subsystem (COM) also gives requirement to ADCS to ensure the
communication link between satellite and ground station, especially when satellite is facing
with anomalies. Last but not least, ADCS design is impacted a lot by the satellite structure in
term of satellite center of mass, moment of inertia (MOI), sensor mounting location and
structure flexibility like deployable solar panels. Those kind of considerations need to be taken

care during the design and development phase of ADCS as well as the whole satellite system.

«blocks

ADCS Hardware
ablocks ablocks ablocks
Sensors Actuators Onboard Com puter
«blocks «blocks
5 i «block»
Sunsensors GPS receiver Beaaianheels
ablocks St;blocmk ablocks
Magnetom eter =G e Magnetic torques
«blocks

> Gyroscope

Figure 3.5 Hardware components of ADCS

19|Page

Master’s Dissertation 2015

3.2.1.2 ADCS hardware

The bus system of MDG satellite is decided to be identical with UNIFORM-1 satellite (more
information can be found in [4]), and ADCS is a part of it. Figure 3.5 shows the hardware
decomposition of ADCS hardware components. The interconnections between those

components are shown in Figure 3.6.

ADCS consists of an Onboard Computer (OBC), sensors and actuators. Sensors include six
sun sensors (NSAS), one 3-axis magnetometer (GAS), one 3-axis gyroscope (FOG), one GPS
receiver (GPSR) and one star tracker (STT). Actuators include four reaction wheels (RWSs) and
three magnetic torques (MTQs). Different from UNIFORM-1 satellite, in MDG, there is only
one OBC. That means ADCS has to share this computer with other subsystem such as
Command & Data handling, Thermal, etc. A summary of all components specifications is

shown in Table 3.1.

Table 3.1 Specification of ADCS components

Name | Weight &Size | Power Specs
46g, 5V, RS422,
NSAS
31x50x22mm 150mW ~1 deg accuracy
320 sV Analog out
4 s
GAS +/- 100000nT
95x95x45mm | 30mA o rnee
4000nT/V
" RS5422 and Analog
£ 28V +- 5de
@ range
FOG
’ [1]135" 130x45m 4 50mA 400mV/deg/s,
<0.01de/s noise
RS422, 2Hz output
510g,
STT 28V, Accuracy:
rl]il-?xROx??m 2.5W 30 arcsec (Y, Z)
0.04 deg (X)
Gesr | 400¢ 5V RS422, 1H
: 98x98x22mm | 180mA e
|- Tke 28V(motor), | RS422, >0.003N
,) m
RW 2 — :
rl]f.{)x 120x64m 5V(controller | @4000rpm,
375¢ sy
MTQ | 176x54x47m SAM® +- 20%
m T0mA

20|Page

Master’s Dissertation 2015

4R

mtq1 : Magnetic torquer 1 (MTQ1)

C in,Lrw3 : Reaction Whee! 3 (R¥3)

mtq2 : Magnetic torquer 2 (MTQ2) 20V gfon: Sesla Gyeosccps (FOG)

Motor C in w2 : Reaction Wheel 2 (R¥/7)

mtq3 : Magnetic torquers (MTQ3) v | gPar: GPS receiver (GPSR) 1 5422
i = I 3N

v | 9as : Magnetometer (GASY 10!

onboard computer : Onboard Computer (OBC)

Figure 3.6 Internal block diagram of ADCS

3.2.1.3 Attitude Control Modes in MDG satellite

As mentioned above in section 3.2.1.1, attitude control modes are derived from mission
requirements as well as requirements from other subsystems. For each specific set of
requirements, an attitude control mode needs to be carefully defined. Then, hardware
components and control algorithms to be used in each mode are selected. However, for ADCS
of MDG satellite, all components are already decided to follow UNIFORM -1. These pre-
defined components (shown in Figure 3.5) are beneficial in term of development time and
components reliability since they are space proven products. As a result, however, design
degree of freedom is reduced. There is constrain that all the modes and corresponding functions

of ADCS have to be realized by that set of components.

21|Page

Master’s Dissertation

2015

stm [State Machine] Active control modes[Active control modes]J

!

[w < 0.2 deg/s] ' De-tumbling | [w > 0.5 deg/s or
| mode ’ command

| Spin Sun | [command] \ | Sun pointing
} pointing | =i mode
‘ mode ‘ | v

T

). [command] [Command]

[w|= 0.5 deg/s

orl command] [Command]
=N R
" Target L—/ Nadir
’ pointing ‘ [w= 0.5 deg/s pointing ’L
L mode or command] | mode -
[Command] T
[Command]

Figure 3.7 State machine diagram for Attitude control modes of MDG

Figure 3.7 describes the modes definitions of ADCS of MDG satellite. There are five active

control modes including De-tumbling Mode, Spin Sun Pointing Mode (SSPM), Sun Pointing

Mode (SPM), Nadir Pointing Mode (NPM), Target Pointing Mode (TPM) and one additional

mode defined as ADCS Safe Mode when all the components of ADCS are turned off. The

transitions of modes are defined as:

<> De-tumbling mode is initiated automatically whenever satellite rotational rate is larger than

0.5 degree per second (except when ADCS is in Safe Mode). This mode is also can be

activated by command received from ground station.

22|Page

Master’s Dissertation 2015

<> Four other active control modes will be initiated according to the current operation mode
of satellite system. Mode transitions also can be triggered by command received from
ground station.

<~ Safe Mode can be triggered from any other mode whenever ADCS encounters emergency.

Safe Mode is the mode when all of ADCS components are turned off. Satellite initiates this
mode when it is first separated from rocket because power consumption is needed to be kept
as low as possible. Safe Mode is also activated when ADCS faces the failures that cannot be
recovered on board. Mode transitions are designed in a way such that ADCS can automatically
switch to Safe Mode from any other control mode in cases of emergency. During Safe Mode,
OBC is still in operation. That means ADCS can still transmit telemetry data to ground every
time the satellite pass over ground station so that operators can perform failure analyses then

send appropriate commands to OBC to execute FIR actions.

stm [State Machine] ADCS modes [ADCS modes JJ

[Satelite pow er on)

ADCS Safe Mode

7

[Active control on] [Emergency]

i
:Active control modes

Figure 3.8 Transition to Safe Mode

23|Page

Master’s Dissertation 2015

Solar panel

Camera direction
—>

Figure 3.9 Spin Sun Pointing Mode

Spin Sun Pointing Mode is the most reliable active control mode of ADCS in MDG satellite.
In this mode, satellite first rotates around Z — axis, then the rotating axis is moved so that solar

panels are faced to the Sun. Sensors to be used in this mode are NSAS, FOG and GAS.

MTQs are the only actuators. This SSPM is also the mode in which ADCS consumes least
power but solar cells can generate more power. That is the reason why SSPM is chosen to be
the activated ADCS mode when MDG is in Safe Mode (note that satellite Safe Mode is
different from ADCS Safe Mode).

Similar to Spin Sun Pointing Mode, in Sun Pointing Mode, satellite also needs to face solar
panels to the direction of the Sun. However, 3-axis controlled algorithms is used to increase
pointing accuracy so that solar cells can generate maximum power as designed from Sun light.
This mode is helpful when satellite requires a large amount of electrical power generation in

very short time period.

24|Page

Master’s Dissertation 2015

Figure 3.10 Sun Pointing Mode

Position of satellite in orbit as well as the direction of the Sun are calculated from GPS data.
Attitude of satellite is calculated from outputs of FOG, NSAS and GAS using TRIAD
algorithms. ADCS then computes required torque to be applied to satellite base on attitude
error and rotational rate using PD controller. RWs are used for actuation and MTQs are needed

to unload RWs momentum.

Control algorithms in Nadir Pointing Mode is the same with SPM, and it requires FOG, GAS,
NSAS, GPSR, RWs and MTQs to be turned on. The only different for this mode is control
target, when attitude of satellite is needed to be controlled so that mission cameras always point
to center of the Earth, as shown in Figure 3.11. This mode is activated when satellite is in
nominal operation mode. It is very typical for Earth observation satellite like MDG because in
this mode, cameras can always take pictures of the Earth. Another reason for choosing this
mode as nominal operation mode is that, when the mission data is required for specific area on
the Earth, ADCS can quickly respond to the command received from ground station to change
the control mode to target pointing mode and change the direction of camera to target. By doing
this, efficiency of the satellite is increased, while the time that satellite is passing above target

area is very limited and satellite is traveling with very high speed in the orbit.

25|Page

Master’s Dissertation 2015

-

Figure 3.11 Nadir Pointing Mode

Target Pointing Mode is the mode in which the highest pointing accuracy (0.1 degree) is
required. As shown in Figure 3.12, satellite is controlled to tilt to target direction on the Earth.
List of components to be turned on are FOG, STT, GAS, GPSR, RWs and MTQs. Satellite
attitude is calculated from outputs of FOG and STT. The use of STT in this mode is expected
to provide the highest attitude determination accuracy to satisfy the requirements form mission
payloads. Target attitude is calculated from GPS data and RWs are used as the main actuator.
MTQs in other hand, are used for prevent momentum saturations of RWs in certain amount of

time.

To this point, five control modes of ADCS are already explained. In addition to those mode,
there is a mode that ADCS team defined in MDG satellite called de-tumbling mode. This mode
is used in the case when satellite rotational speed to higher than a certain value (currently

defined as 0.5 degree per second). MTQs are used as the only actuator to stabilize satellite.

26|Page

Master’s Dissertation 2015

.

Figure 3.12 Target Pointing Mode

3.2.2 Failures Prediction for ADCS

Since all the design of bus system as well as hardware components of MDG satellite bus system
are already decided to follow UNIFROM-1 satellite, the actual FDIR activities started from

identify potential failure modes of each hardware component.

There are several approaches to identify potential failures have been applied to the design of
FDIR in space systems, including satellites. Failures Modes and Effects Analysis (FMEA) and
its variation Failure Mode Effect and Criticality Analysis (FMECA) are the most common
approach that are adopted in many space missions including Apollo, Galileo and Skylab [23].
From the first introduction in 1940s, the two techniques are considered as the effective ways
to identify potential failures modes of safety critical systems because of the ease of use.
However, the disadvantage of FMEA and FMECA:s is, while conducting analysis, engineers
only focus on single component faults and their effects to the system but not the combinations

of component faults which are the main contributions to failures.

In MDG project, Fault Tree Analysis approach is adopted to provide an estimate of failure
probability and also to monitor and predict system behaviors, as it is recommended in Ref. [24].

For a critical system as Attitude Determination and Control, FTA is expected to provide

27|Page

Master’s Dissertation 2015

)

.| Define FTA
Scope

——

)
Identif . . Interpret/
y Define FT | Define FTA .| Construct P
FTA > . > Evaluate FT Present
Lol Top Event Resolution FT
Objectives Results
—

)
Define FTA
Ground
Rules

A 4

Figure 3.13 Process for conducting FTA

necessary information which can be used to prioritize the importance of each component failure
mode to the effects or consequences of unexpected events. This also helps development team
to understand about the system that they are going to develop, and more importantly to imagine
all the realistic ways that failures can occur. Results of conducting FTA will be used to diagnose

causes and plan for possible corrective actions as the part of FDIR.

The process of conducting FTA for ADCS of MicroDragon satellite is described in Figure 3.13,
this is the typical process introduced in Ref. [24].

The first step in the process is to identity FTA objectives, one of the five steps to formulate a
successful FTA. It is important to clearly define the objectives of FTA from very beginning of
the process of designing FDIR so that they are satisfied when the actual FTA is performed. For
ADCS in MDG project, FTA is conducted aims to: identify failure modes of each operation
mode of ADCS; identify possible scenarios that failures actually happen; and finally, plan

FDIR countermeasures for each failure mode.

After objectives are identified, the next step is to define Fault Tree (FT) top event to support
those objectives. The top event in FT is the undesired event in which FDIR interventions are
needed in order to maintain ADCS operation as well as prevent consequences of that event to
the safety of whole satellite system. In this step, the development team decided to conduct
different FTs corresponding to different operation modes of ADCS. Five of the important top

events are listed as follow, in consideration of the main objective of ADCS in each mode:

28|Page

Master’s Dissertation 2015

< Spin Sun Pointing Mode (SSPM): Solar panels are not pointing to the Sun

<> Sun Pointing Mode (SPM): Solar panels are not pointing to the Sun

<> Nadir Pointing Mode (NPM): Camera, Antenna (+Z axis) direction is not faced to the Earth
< Target Pointing Mode (TPM): Camera, Antenna direction is not faced to the Earth; Satellite

is not stable when camera is taking picture

In step 3, scope of analysis is identified. At this level, components failures are decided to be
considered in fault tree and the others such as mechanical, software failures will not be included.
All data interfaces and support systems (for example: power, thermal, etc.) are assumed to be

working well and lies out of scope of this FTA for the subsystem.

Since top events are defined as the main functional failures of ADCS, it is suggested that FT
will be conducted to major components failures level — the failure level when FDIR software
plays the main roles to maintain system operation. The FT, if goes too deep will be not only
waited time but also introduced additional uncertainties which contribute to the distractions of

analysis. This is the result of the step to define FTA resolution.

In next step, ground rules are set among the team in order to create the understandable FT

among the team:

<> How to name event: using sentences

< List of abbreviations (for component name):
+ NSAS: Non- spin Sun Aspect sensor

GAS: Geomagnetic Aspect sensor

FOG: Fiber Optic Gyroscope

GPSR: GPS Receiver

STT: Star Tracker

RW: Reaction wheel

MTQ: Magnetic Torque

- F + + + + +

OBC: On-board Computer

29|Page

Master’s Dissertation 2015

Step 6 is the step in which actual construction of FT is performed. This requires ADCS team
to work effectively together to produce the sufficient FT, which will be used in next step of
designing FDIR mechanism and software as well. The results are presented in figures from
Figure 3.14 to Figure 3.22. During the FT constructing several basic paradigms as listed in [24]
are taken care of. After the construction of each FT, it is important to evaluate if the results are
satisfied the objectives identified at the beginning of first step. The final step involves the
interpretation and presentation of results. This helps ADCS team to have an overall view of the
potential impacts of each failure mode and from that, plan for detection, isolation and recovery

actions.

(1) FTA for the top event: Solar panels are not pointing to the Sun (in SSPM).

In Spin Sun Pointing Mode, ADCS first needs to rotate satellite body along z-axis, then it
moves the rotating axis to direction of the Sun. The main purpose of this mode is to face solar
panels direction to the Sun so that more electrical power can be generated. List of components
to be turned on in this mode includes NSAS, FOG, GAS, and MTQ. The top event of FT shown
in Figure 3.14 is defined as “ADCS fails to control satellite attitude to face solar panels to the
Sun”. This can be caused by either, the event that MTQs fail to generate required torque (which
is discussed later in Figure 3.22), or the event when ADCS fails to determine Sun direction -
the part of FT in the left side. Since the attitude in this mode is calculated by using sensors
outputs from NSAS and GAS, so either one of one fails can lead to the event. For NSAS,
failures modes are identified as no sensor output when the sensor fails to detect the Sun and
fails to trigger Sun flag pin. Two other faults are actually known for MDG, because the same
sensor has been using in UNIFROM-1 satellite and has faced those failures modes (see Figure

3.15).

30|Page

Master’s Dissertation

ADCS FAILSTO CONTROL
SATELLITE TO FACE SOLAR
PADDLE TO THE SUN

A

2015

ADCS FAILS TO DETERMINE
SUN DIRECTION

A

GAS FAILS

NSAS FAILS

O

i

NO NSAS OUTPUT

O

NSAS OUTPUT
INCORECT SUN
VECTOR

A

MTQs FAILSTO GENERATE
REQUIRED TORQUE

NSASFAILS TO
AVOID ALBEDO
AND “THINK” THE
EARTH AS THE SUN

NSAS OUTPUTS
FLIPPED VALUE OF
SUN DIRECTION

O

O

Figure 3.14 FT for Spin Sun Pointing Mode

/\

(2) FTA for the top event: Solar panels is not pointing to the Sun (in SPM)

In this mode, ADCS needs to control satellite attitude to the direction in which solar panels are

pointing to the Sun with higher pointing accuracy and more stable than SSPM. Satellite attitude

is calculated by using outputs from FOG, GAS and NSAS. Sun direction is calculated from

satellite position in orbit using GPSR. Three — axis controlled algorithms is used to control

RWs to generate torque, and MTQs are used for unloading RWs momentum. FT is constructed

for ADCS in this mode as shown in Figure 3.16

31|Page

Master’s Dissertation

SATELLITE
INITIATES UVC
MODE

PADDLE TO PO
TO THE SUN

ACS CANNOT
CONTROL SOLAR

ADS OUTPUTS
INCORRECT
VALUE OF
CURRENT
ATTITUDE

NSAS GIVES
FLIPPED OUTPUT
WHEN THE SUN IS
ON THE EDGE OF
NSAS FOV

|
|
|
INT :
|
|

Figure 3.15 Failure caused by NSAS in UNIFORM-1

ADCS FAILSTO CONTROL
SATELLITE TO FACE SOLAR

PADDLE TO THE SUN

ADCS FAILS TO DETERMINE
SUN DIRECTION

GPSR FAILS

O

32|Page

ADCS FAILS TO DETERMINE

CURRENT ATTITUDE

FOG FAILS

O

GAS FAILS

NSAS FAILS

O

O

RWs FAIL TO GENERATE
REQUIRED TORQUE

MTQsFAILTO
UNLOAD RW
MOMENTUM

2\

RWs FAIL

/N

Figure 3.16 FT for Sun Pointing Mode

2015

Master’s Dissertation 2015

As shown in Figure 3.16, the four basic events that could be the causes of this top event are the
events caused by GPSR failure, FOG, GAS and NSAS failures. Failure modes of GAS and
NSAS are already mentioned above in the FTA of SSPM. The main function of GPSR in this
ADCS is to provide information about position of satellite in the orbit (longitude, latitude and
altitude). It is also supposed to output such other data as time and date which will be used for
orbit propagation on board. GPSR failures may involve the event when that sensor gives no

output or provides incorrect outputs as the inputs for navigation algorithms.

RWs are used for actuation in this mode and the failure of them are defined as failed to generate
required torque. This fault can be caused by RWs failure itself or because of the failures of
MTQs to prevent RWs saturation. As the importance of RWs in ADCS of MDG, more detailed

analysis of RWs failures will be discussed in Figure 3.21.

(3) FTA for the top event: Camera, Antenna (+Z axis) direction is not faced to the Earth in

Nadir Pointing Mode (NPM)

ADCS FAILS TO CONTROL
SATELLITE TO POINT +Z
AXISTO THE EARTH

l R l

ADCS FAILS TO DETERMINE ADCS FAILS TO DETERMINE RWs FAIL TO GENERATE
EARTH DIRECTION CURRENT ATTITUDE REQUIRED TORQUE

A

GPSR FAILS [| | |

MTQs FAIL TO
i FOG FAILS GAS FAILS RWs FAIL UNLOAD RW

MOMENTUM

O [wm] O A \
O

Figure 3.17 FT for Nadir Pointing Mode

33|Page

Master’s Dissertation 2015

In this mode, ADCS is required to control satellite attitude so that +Z axis, in which camera
and X-Band antenna are located, is directed to center of the Earth. ADCS also needs to ensure
the stabilization of satellite attitude in order to let camera to take pictures when it passes the
commanded area on the Earth. List of components to be used in this mode includes GPSR,
FOG, NSAS, GAS, RWs and MTQs. They are very similar as they are using in previous Sun

Pointing Mode. Control algorithms is also the same.

The top event for constructing FTA in this mode is defined as the event when ADCS cannot
control satellite attitude to direct cameras/ antenna direction to the Earth. FT as shown in Figure
3.17 presents the basic event for this failure mode in OR relationship as GPSR fails, FOG fails,

NSAS fails, and GAS fails. Actuators failures modes is discussed in detail later.

FOG is used to measure satellite angular rate and it will be used for control satellite stabilization.
The benefit of Fiber optic gyroscope is, it provides very accurate output with very low noise.
However, it is well known for this kind of sensor to occasionally output error data so-called

abruption, ramp or random error. Those data errors of FOG are represented in Figure 3.18.

Those three failures modes of FOG may lead to the situation when satellite is suddenly shaken
when camera is doing mission. This may result to bad images quality such as blurry or
localization error. Having either one type of those pictures transmitted to ground station then

not be satisfied by customer is considered as mission failure.

FOG ERRORS

FOG OUTPUTS FOG OUTPUTS
RANDOM ERROR RAMP ERROR

Q FOG OUTPUTS Q
ABRUPTION ERROR

Figure 3.18 Three types of data errors in FOG

34|Page

Master’s Dissertation 2015

ADCS FAILSTO CONTROL
SATELLITE TO POINT +Z
AXISTO TARGET

l I l

ADCS FAILS TO DETERMINE ADCS FAILS TO DETERMINE RWs FAIL TO GENERATE
TARGET DIRECTION CURRENT ATTITUDE REQUIRED TORQUE

MTQsFAILTO

FOG FAILS STT FAILS RWs FAIL UNLOAD RW
MOMENTUM

O O N 7\

Figure 3.19 FT for Target Pointing Mode (1)

GPSR FAILS

(4) FTA for top event: Camera is not faced to target direction (in TPM)

ADCS functions in this mode is very similar with previous Nadir pointing mode, however, it
requires higher pointing accuracy since ADCS needs to control camera direction to exact the
location received from ground station as the target. Once the target direction is achieved, ADCS
will be required to keep it stable so that camera can acquire mission data by taking pictures of
target. STT is used for determine current attitude instead of the combination of NSAS and GAS
as used in NPM to gain the determination accuracy. Stabilization is also strictly required in this

mode.

Top event for this FT is defined as ADCS fails to control satellite to point +Z axis to target
direction. Result of the FT is very similar to the one in NPM, however, failure modes of GAS
and NSAS are replaced by STT failures. This is noticeable that STT is one of the components
that have higher possibility of fault than other because of its mechanism (like a camera) and

stars identification algorithms used in that STT.

(5) FTA for the top event: Satellite is not stable when camera is taking pictures
As mentioned above, in addition to the function of controlling satellite attitude to point to target

direction, ADCS also needs to keep satellite stable, especially when mission cameras are taking

35 |Page

Master’s Dissertation

ADCS FAILS TO STABILIZE
SATELLITE WHEN CAMERAS
ARE TAKING PICTURES

A

SENSORS ERRORS

ACTUATORS
ERRORS

RWs FAIL

FOG ERRORS STT ERRORS

<

FOG OUTPUTS
RANDOM ERROR

O

FOG OUTPUTS
RAMP ERROR

FOG OUTPUTS Q
ABRUPTION ERROR

O

Figure 3.20 FT for Target Pointing Mode (2)

A

2015

pictures. This is strictly required in target pointing mode when specific target attitude is given

from ground station as the only area to observe.

FT for the top event of this aspect is shown in Figure 3.20. As in other FT of this mode, the

undesired event can be caused by failure modes of sensors or actuators. FOG failure modes are

decomposed in the FT, which is quite similar with what is shown before in Figure 3.18. Failures

of RWs are also considered in as one of the mains contributes in this situation as they are the

main actuators.

(6) RWs failures

Failures of RWs are now discussed in detailed in Figure 3.21. RW is the only component that

is moving (rotating) in ADCS of MDG. It means RW is the component with highest possibility

36|Page

Master’s Dissertation 2015

of fail. As the importance of RWSs in ADCS, one more RW (which named here RW4) is used

as redundant component, despite of its size and weight compared to others.

In Figure 3.21, RWs failures are divided into 4 levels, corresponding to the number of RWs

have been failed.

Level 1 failures only consider failure of RW from 1 to 3. They are the main wheels which are
used in nominal operation. When failure happens to one of them, the redundant one (RW4)

shall be used immediately by FDIR mechanism.

It is quite easy to deal with RW failures at level 1 while ADCS control algorithms does not
require to be changed very much. However, from level 2, it is totally different when two or
more RWs are failed. FT conducted in Figure 3.21 shows the combinations of those failures.
At level 2, when 2 RWs are failed, 9 scenarios are possible. Level 3 with the failures of 3 RWs,
up to 24 scenarios defined, and same number are identified for the case when all of 4 RWs are
failed (level 4). Several control algorithms have been proposed for this kind of situations (so-
called under - actuated satellite) when 2 or 3 RWs have failed [25] [26] [21]. Those are known
as the functional recovery using alternative paths and degraded functional recovery [10] in term
of FDIR. Using MTQs with the modifications of control commands as the alternative path
functional recovery is the sufficient way to deal with RWSs faults. Since the technique is
guaranteed in Ref. [21], ADCS team decided to apply the results to MDG satellite. This is

supposed to reduce a lot of time for planning countermeasures actions as part of FDIR.

37|Page

2015

Master’s Dissertation

MY 4O 14 TZ'E ainbi4

SISV P2 IWL0L SISV YT IVLOL
QR0 QR0 QR0 QR0
AQVAUTIV AQVAYTIV AQVAITTY AQVAITTY
L £ THATT STV P £ THAT e TN STIVA P LN
VA MY TV Y Tvd MY TV
L STV P L STV 7
L < TN] <N
< £ TATT V4 AN < CUTANTT TV MY
Tvd MY Ve MY
k [
P TIATT TIVA MY € THATT TIVA MY

SISV 6 V101
a9AN00 QNINID0
AQVINTIV AQVATTY
L 1 TIATT STIVA MY 1 THATT
VI MY TV M
1 TIATT STIVA ¥ M
STIVA MU T < I TAATT
TV MY
_ I
CTIATT TIVA MY

STV eMd

STV MY

STV MY

[THAT TIVA MY

TV Sy

38|Page

2015

Master’s Dissertation

ﬁ S3SVI 91vV10L % ﬁ SASVO 91vliOol

[THAHT
TINTIVA OLN

JdNAddVH
AQVAITY
TTdAAT
TINTIVA OLN

SOLIN 10} 14 Zz's aunbi-

%

TIVd OLI €

I TAATT
TINTIVA OLN

JINdddVH
Advad1v
I THAHAT

STIVA €OLN

TINTIVA OLIN

STIVA ZOLIN

(¢ 1aA91
TINTIVA OLN)
TIVA OLIN ¢

STIVA IOLN

(1 19A91
TINTIVA OLIN)
STIVA OL [

ANIINOHY HLVIANAD
OL STIVA SOLN

39|Page

Master’s Dissertation 2015

(7) MTQs failures

Because of the simplicity in mechanism and also working principle, MTQs are supposed to be
the most reliable component in ADCS of MDG. However, once MTQ gets failed, the effects
of it is critical since MTQ is the only actuator used for tumbling and SSPM. FT is conducted

for MTQs and shown in Figure 3.22.

To this point, potential failures modes of ADCS in MDG satellite are identified. It is very
important step in designing ADCS, especially in term of FDIR while it makes the process of
designing FDIR become less stressful. However, space environment is still unknown in many
aspects, and because of that, having all potential failures modes predicted is impossible. As
pointed out in Ref. [7], FTA is not the complete representation of all possible faults and failures
in a system. Many satellites have failed before their missions are established [2] [3]. Therefore,
no one can assure that the design of FDIR as well as the countermeasure plans they have made
before satellites are launched to the orbit is competed or perfects. To MDG project, this
problem is more critical since almost members in the development team are very new to space
industry and MDG is their first satellite project. It is required to have an adjustable design for
FDIR of ADCS so that unpredicted failure modes can be recovered even when satellite is in

operational phase.

40|Page

Master’s Dissertation 2015
Chapter 4. FDIR Mechanism for ADCS and Design of

Adjustable Software

4.1 Proposed FDIR mechanism for ADCS of MDG satellite

4.1.1 Finding from constructing FTA

Section 3.2.2 discussed about several of failure modes of ADCS. Constructed FTs show the
possible ways or mechanisms that failures can occur during the operation of ADCS. Also, in
the same section, results of conducting fault tree analysis pointed out the causes of those failure
modes. A lot of faults, mainly for components, are pointed out for analyses. It is not so difficult
to find out that, although the combinations of possible ways failures occur which are the so-
called failure scenarios are so many, there are limited number of causes (as the basic events in
FT) are identified and failure modes are sharing the common causes. Failures of one hardware
component can lead to various types of failures in the system in different operation modes. For
example, failures of FOG lead to the fluctuation of satellite in Target Pointing Mode which
results in blurred images taken by mission cameras. It is considered as failure of ADCS since
this subsystem cannot keep satellite stable when it is needed to be. The same failure of FOG
also causes the failure of ADCS in Sun Pointing Mode when ADCS cannot get the correct
values from sensor to determine current attitude so that solar panels are pointed to different

direction rather than direction of the Sun.

When common causes are identified for different failure modes, it is possible that those failures
can be fixed or recovered in the same ways. In other words, one can say that, a set of isolation
and recovery actions can definitely support to fix several failure modes of the system. Continue
the example of the failures that caused be failure of FOG, once they are detected and identified,
there is no doubt that the failures can be simply fixed by performing the same action (reset the

sensor, for example) or set of actions.

41|Page

Master’s Dissertation 2015

The challenge here is finding the appropriate actions to deal with those various type of failure
mechanisms. It requires a lot of time, efforts as well as experiences which are not the
advantages in MDG project when the satellite is developing by students. They are newcomers
to space industry, and at the same time they have to study at schools as master students and
work on this satellite development project. Finally, the satellite is required to be completed

when students finish their master courses.

4.1.2 Proposed FDIR mechanism

Because of the time limitation as well as the lack of experiences, having a simple but efficient
design of FDIR for ADCS becomes essential. Time limitation can lead to the un-finished
implementation of the FDIR. The lack of experiences in ADCS team also yields the needs of

making changes to the design as time goes and experiences are accumulated.

For MDG project, there are needs of adjustments for FDIR even after satellite is launched to
the space, so FDIR is required to be changeable in some aspects. In such a system like satellite,
making changes to hardware after launch is impossible because once satellite is launched, it
cannot be got back. Making adjustments in software is the only way to change the way ADCS
dealing with failures. Some suggestions for this situation are proposed in [2], software
redundancy is one of them. Hardware redundancy is one of the most common techniques which
been using to enhance system safety. In design of ADCS this technique is also adopted as the
use of one redundant reaction wheel. However, when it comes to software, more redundant has

same meaning with more complexity [27], and as the result, failure probability becomes higher.

The proposed FDIR mechanism for attitude determination and control subsystem of MDG
satellite is shown in Figure 4.1. This is a general mechanism for fault detection, isolation and
recovery of any system. What makes it original is the use of FIR library. Detailed explanation

of this mechanism is as follow:

Fault detection is performed by using model — based technique. This technique is very simple

and straightforward. An observer is implemented for collecting necessary information to

42 |Page

Master’s Dissertation 2015

Observe Fault Search for] Update
5 solution in FIR
ADCS etected yes FIR llbrary llbrary

no

Initiate
Safe
Mode
v Perform
Next process | Isolation/
of ADCS
Recovery

Figure 4.1 Proposed FDIR mechanism

calculate and provide the estimations of sensors measurements. These estimated values then be
compared to the actual values output from sensors for purposes of faults detection. Residuals
are generated from comparisons. A threshold is set so that generated residuals are compared to

this value to give the conclusion about components.

There are two kinds of thresholds are used for fault detection in ADCS of MDG satellite which
are fixed thresholds and adaptive thresholds. A fixed threshold is a constant value
corresponding to each type of sensor. Fixed thresholds are used for fault detection because they
are simple to use and also very reliable [28]. Adaptive thresholds, on the other hand, are less
reliable and the uses of them requires to add additional computations to onboard software. The
big advantage with adaptive thresholds is the enhancement of sensitivity for fault detection.
Depends on current state of system, adaptive threshold provides the optimal magnitude to
detect failure more accurately. They are especially helpful in the cases of components

performance degradations.

Once a fault is successfully detected, the next step is to identify the appropriate cause. In this
step, the residuals which are generated in fault detection are also expected to provide additional

information in such a way that a specific fault can be determined easier. However, only

43|Page

Master’s Dissertation 2015

residuals are not enough. This process also requires the more information about system such
as on/off state of components in ADCS (sensors, actuators) in order to give the conclusion

about faulty component.

The next step after the causes are identified is to take appropriate actions for fault isolation and
to recover ADCS system operation. Usually, a list of actions and their logical relationship with
each failure mode are defined ahead in software [6]. FDIR software performs those actions by
deploying corresponding pre-defined functions as they are planned ahead and fixed in the
software source code. In this research, a library called FIR library is introduced to contain those

relationships.

FIR library which contains a list of fault IDs and isolation and recovery functions
corresponding to each fault ID, is a text file saved in onboard memory before satellite is
launched to the orbit. This text file is created based on the results of fault tree analysis and

countermeasures planning actions. Example of FIR library is shown in Figure 4.2.

There are several important rules for making FIR library to ensure the well functional of FDIR

software when failure occurs. They are defined as following:

< First line in text file contains the phrase “FIR library” to indicate this is the library for FIR

purposes

F A |
“| FIR Lib.txt - Notepad = | B |

Eile Edit Format Miew Help

Figure 4.2 Example of FIR library

44|Page

Master’s Dissertation 2015

< From second line, each line indicates one failure mode and its isolation and recovery

solutions. Format of each line is defined as follow:

» Fault_ID;lsolation_func_01 ID,lsolation_func_02_ID,...;Recovery func 01 _ID,Re
covery_Func_02_ID,...;<CR>

» Fault ID, Isolation functions, and Recovery functions are separated by one semicolon
sign, (;)

» If there are more than one Isolation or Recovery functions, they need to be delimited
by a comma sign, (,)

» There is one carriage return, <CR>, at the end of line

Once a fault of ADCS is identified, a fault ID is assigned as it is defined beforehand in software.
The software, then, searches in library for correspondent isolation and recovery functions and
performs those functions. For example, with FIR library in Figure 4.2, once fault ID number
one “1” is assigned to current fault of ADCS, software can easily find isolation functions with
ID: 1, 2, 3 and recovery function with ID: 1, 4 to perform. All the functions with respected to
the ID in FIR library are needed to be defined beforehand in software source code. One more
thing that needs to be notice for the use of FIR library is that, the software will perform isolation
and recovery functions in the order as they are defined inside the library. If “1, 4” are defined
in library, function with ID number 4 shall be performed after function number 1 has been

completed.

When there is no isolation and recovery function available in FIR library for a detected fault,

the software will take action to activate ADCS Safe Mode and wait for ground interventions.

The introducing of FIR library, first, supposes to reduce the efforts for making software of
FDIR since the logical relationship between ADCS fault and isolation recovery functions as
have been defined in software now are represented in text file library which is very short and
simple. In the proposed FDIR mechanism of ADCS, it is not software guiding itself to deal
with failures when they happen but the FIR library. FIR library will have responsibility to

provide software necessary instructions to deal with every fault of ADCS so that those they

45|Page

Master’s Dissertation 2015

can be isolated and failure can be prevented or ADCS operation can be restored. Secondly, as
it is text file, it is very easy to be updated and modified as time goes and more failure modes
are identified or more precise order of actions are investigated. Last but not least, the most
important contribution of this FIR library for this research is it enables the design of adjustable

software that will be explained in the next section.
4.2 Adjustable Software Design for FDIR of ADCS

In this section, the design of an adjustable software for fault detection, isolation and recovery

of ADCS is going to be explained.

4.2.1 Requirements Definition

As mentioned in section 4.1 the software is required to be able to accept changes even when
satellite is launched to the orbit but still, the functions of fault detection, isolation and recovery

have to be ensured. The detailed requirements are identified as follow:

<~ For the predicted failure modes, the software shall be detect, isolate the fault and recover
ADCS operation automatically
< If un-predicted failure modes occur, the software shall initiate ADCS Safe Mode and can

be adjusted to perform isolation, recovery solution by operators from ground station.

4.2.2 Context Analysis

Text — based requirements for the software to be designed are captured in System Modeling

Language (SysML) requirement diagram and illustrated in Figure 4.3.

In additional to requirements, there are also several constrains for the design of software. For
computation and processing time, it should not be exceeded OBC cycle time as it is already
defined. Also, as mentioned in section 3.2, the design of software must not require any changes

in hardware of ADCS since they are not subjected to change.

46|Page

2015

91eM1J0S {4 J0J siuswalinbay g4 ainbiq

I21ES L-IWHO4INN
Ul pasn se syuauodwon
10185 8y} uiypm wiopad

84 |leys SOav Jo ¥ia4d

10} UONN|OS BIEMYOS, = X8 1

.L£CT6Z.=PI

JUIBIISUOD 3IBMpPIBH
«juaWwainbasy

.SaIn|Ie} 81aAas 10} }dadxa
'SWwg ‘awin 342 DGO uIyIM
wJopad ag ||eys Auanodal
puE uoRe|os! ‘uonIalep

Jyoune| a1ojaq pasedald

S}l SE P3P3a)3p SI}Ne) sy} usym
SuoNN|OS AJaA023l ‘uoRe|os] Jine) SOoay 10s81sp
wiopad UBD BIBMYOS By, = X3] UBD 3JEMYOS 8y, = X3]
< LL'62.=PI JELeZ. =01
yi4 oany a4 oiny
«juawannbal» «juaWanbase

l

1Ne} Jo ainpadosd ay, = kel
262.=pl

JUIBIISUOD SWI |
«juaWannbasn

Master’s Dissertation

SjuleISu0)
«JUBWBNNDIIR

Janoaal
‘uonejosi yney wioyad .Youne| a10jaq papipald
.AN220 sapow 0} punoib uo siojeiado Sy Ajeanewolne
ainjie) papipald-un uaym woy suonanisul buneaal SOQY Jan0dal pue }ney
apoy 8JeS SOAY SleAE S2Qy uaym pajsnipe ay) aejosi uay} ‘A|gjeIndoe
|[BYsS aIiemyos ayl,. =xal a8Q UBD 3Jemyos ayl, = al SDQav Jo }Inejpajap
«< L'62.=PI £162.=P1 UED SJEMYOS Yl . =Pa]l
apoyy ajes aiqessnipy «16C. =PI
«juawannbal» «juawannbas» Hig4 oiny
«jUaWaNnbaI

uonesadQ
«juawannbai»

Juoneis
punoib woyy siojesado Ag uonn|os A1aA0dal ‘uonejos! wiopad
0} pajsnipe aq UBJ PUE 3poy| 3JeS ajeniul 0} SOy wiojul
1lBYS 8Jemyos ay} INJ20 S8powW ain|ie} papipaid-uny| 'z
Ajleanewoine uonelado SOHY JaA0231 PUE }NE} 3y} 8)e|0S!
‘1o8jap aq ||Bys aJeMyos auy} ‘'sapoLu ainjie} papipaid ayj o4
L=PeL

b2.=0I

sjuawaiinbay
«juaWwainbal»

ﬂﬂ 1007520 0} ¥4 10 2JBMY0S 10} SJuaWalnbay | sjuawalnnbay [abeyoed] baa

47|Page

Master’s Dissertation

2015

uc [Package] Behaviors [Use cases]J

l

Softwar

(" Detect fault of ADCS
/

\//4_,_" e

(Isolate fault and I
recover ADCS

e for FDIR of ADCS

/

Ground Station

Opérators

Figure 4.4 Use case diagram for top — level functionality

4.2.2.1 Top - level functionality

Continue the sequence of model — based system engineering, the next step is to define top-level

functionalities of the software using SysML use case diagrams. Two core functions of the any

FDIR software in general are defined as:

<> Detect fault of ADCS
<~ Isolate fault and recover ADCS

Two use cases correspondent with the two top-level functionalities are defined in Figure 4.4

for the FDIR software of ADCS.

4.2.2.2 Functional requirements

Sequence of two top-level functions of the software are represented in Figure 4.5. After a fault

of failure is detected, isolation and recovery functions need to be performed.

48 |Page

Master’s Dissertation 2015

sd [Interaction] FDIR[FDIR]J

‘ : Operators - ‘ : Ground Station - l :ADCS = ‘ Software for FDIR of ADCS

[ref |
Detect fault of ADCS

ref |
Isolate fault and recover ADCS

Figure 4.5 Sequence diagram of FDIR

Each use case that mentioned in Figure 4.4, then be described in more detailed by using SysML
sequence diagram. This step helps ADCS team to identify the interactions between FDIR
software and attitude determination and control system as well as ground station and operators.
Constructing sequence diagram then helps to identify functional requirements for the software

system.

Figure 4.6 illustrates the sequence diagram for the use case: detect fault ADCS. As already
explained in section 4.1.2, to detect fault of ADCS, observers are implemented in the software.
ADCS status such as the variables in ADCS software as well as sensors outputs will be
monitored by observers. From collected information, fault will be detected onboard. Two

functional requirements for the software are obtained from this sequence diagram are:

<> Observe ADCS status
< Detect fault (of ADCS)

Second use case of FDIR software is described in sequence diagram shown in Figure 4.7. Once
a fault is detected, the software will trigger second function to perform isolation and recovery

actions. Identify fault (or failure cause) is the first step in this sequence. Then if faulty

49|Page

Master’s Dissertation 2015
component is successfully identified, the software next will perform isolation and recovery
actions. Detailed sequence diagram for this is shown in Figure 4.8. If the cause is not
identifiable, ADCS Safe Mode is initiated then software will wait for ground station
interventions. This is one of the situations when adjustability of software will play the main

role to support restoring the normal operations of ADCS.
Functional requirements obtained from sequence diagrams in Figure 4.7 and Figure 4.8 are:

Identify fault
Search isolation, recovery functions in FIR library

Activate ADCS Safe Mode

R

Execute isolation, recovery functions

50|Page

2015

Master’s Dissertation

(Jans] 1xe1u02) SOHAV JO Sain|ie) 19919p 10} Welbelp aduanbas 9y ainbiq

” ” “ _
| | | |
I I I I
I I I |
I | | I
i " " " fosie]
—— — — e —— —_— —_— —_— —_— —_— —_— — — —— —_, — — — — — — — —— _——_— —_— —_— —_— —_— —_— —_— — —_,— — — ———
I | I I
| | | |
.—.
SOQY J2A02al pue jjnej a)ejos|
j=1
: ? w -
I I | |
" " " \[paroaiap 1 yney]
| | | | i
T e | |
.|_. | |
I I
| I
| I
| |
I I
[] _ |
| I
|
}nej 818p 2 | "
I |
" | 0
T T I I
sniels anasqo -
\"., 1e1s S0av qo -} \m, " ! -d6o1
T i | |
| | | |
I | I I
I I | I
I I I |
| $2aV Jo yia4 10} aremyos + §0aV - | = uoness punoig : | | = siopesedo : |

_A SO0V o ne} 193180 1SOAV Jo Yney 19218Q [uonaesau] ps

51|Page

2015

Master’s Dissertation

(]an8] 1X81U02) SOAY JaA02al pue sainjie) a1e|osi J0j Welbelp aousnbas /' ainbi-

aremyos isnipy

apoy ajes SOV 3eAoE €

suonouny A1ano2a1 ‘uonejosi wiopad

[suonouny Aianooal ,c_o:m_om_ punoy]
|
lje

|
10— ——<

Aueigl| ¥4 ul suoipouny Auan0dal ‘UoNe|oS Ydleas g

_|'

uney Anuapr |

I
|
|
|
I

_ S$2QAV J0 Hia4 10} siemyjos

e e ¢

>

_ ~£ uopels punois) : _ ~ s10je12dQ :

Q SOQV 18023l pue }nej aje|os| | SOQY 18023l pue J|ney ajejos| [uonoeiau|] ps

52|Page

Master’s Dissertation 2015

sd [Interaction] perform isolation, recovery functions [perform isolation, recovery functions]J

: ADCS 3] Software for FDIR of ADCS l

]

1: execute isolation, recovery functions

Figure 4.8 Sequence diagram for perform FIR functions (context level)

Sequence of how software can be adjusted from ground station is shown in Figure 4.9. It starts
from when operators on ground receive telemetry data from satellite and conduct telemetry
data analysis. Obviously, this kind of analysis is conducted when satellite has faced failure
mode that cannot be recovered onboard, to find out what led to that failure. However, even
when satellite is in normal operation, the work of analyzing telemetry is performed frequently
first to ensure satellite is working well in orbit, secondly to find out or forecast and plan for
future of operation. For example, from analyzing telemetry received from EPS subsystem,
operators can decide what mode of ADCS should be initiated for ensure power safety for whole
satellite system. Also, from those data, they can decide the operation of satellite in the next
orbit cycle, such as how long mission payloads can be turned on to do the missions, or how

long transmitter can be turned on to send mission data to ground station.

53|Page

Master’s Dissertation 2015

sd [Interaction] Adjust software [Adjust software]J

: Operators -2~ ‘ : Ground Station %~ | : ADCS - Software for FDIR of ADCS

1: receive telemetry data

2: analyze telemetry data

r

3: uplink FIR library data

4: receive FIR library data

5: update FIR library

,
—— e

(=]

S

-
-

3] | 6: uplink command to assign new fault ID_ |

7: receive command to assign new fault ID _ |

8: assign new fault ID to current fault

g7 ; perform isolation, recovery functions

Figure 4.9 Sequence diagram for adjust software (context level)

If unusual parameter is detected as the result of analysis, further analysis will be conducted.
The final goal is to investigate the root cause of that abnormal and take appropriate actions to
restore the normal operation. For ADCS of MDG satellite, corrective actions will be send to
satellite by uplink data to update FIR library. ADCS software has function to save all the FIR
library data it received from ground to the existing text file in onboard memory, so that FIR
library can be updated from ground station. There are several type of FIR library updating
including modifying, adding and deleting. Depends on the situation when failure occurs,

operator can decide which type of updating is the appropriate one to take.

54|Page

Master’s Dissertation 2015

FIR library modifying and deleting are performed in the case when the existing FIR solutions
that defined in library is not effective in term of solving the problem or in case when the pre-
defined faulty conditions are not the fault anymore due to components performance
degradation. In those situation, FIR library is updated by replacing the existing function ID by
another one, change the order of functions, or deleting the existing one if it is found to be

needed.

Library adding is also divided into two actions. The first one is adding function ID to existing
solution in library. This action is recommended in the situation when satellite operators find
that the current existing isolation, recovery functions are not enough, there should be more
functions to ensure ADCS operation can be restored. The second action, on the other hand, is
the action to add new line to FIR library. This is extremely necessary in situation when
unpredicted failure mode occurs. After conducting failure analysis based on data received from
satellite, failure cause is identified and isolation, recovery actions are defined (of course using
existing functions that are already defined in software source code). Satellite operators then
need to uplink the solutions to satellite to update FIR library. New line with new fault ID and
new combination of isolation, recovery functions will be added at the end of text file. However,
after FIR library is updated, software has no idea what is the new data represented for, because
it does not know about new fault ID. In this situation, satellite operators, one again need to send
the command to assign that new fault ID to current fault or failure mode of ADCS. Once fault
ID is successfully assigned, software then search again in FIR library to find correspondent

isolation and recovery functions to be executed.

Functional requirement that is obtained from sequence diagram shown in Figure 4.9 is:

< Assign new fault ID to current fault

At this point, all three use cases of the software for FDIR of ADCS are already described using
SysML sequence diagram. Seven functional requirements are obtained from those diagrams as
listed after each explanation. Those functional requirements then be updated to the requirement

diagram shown in Figure 4.3.

55|Page

Master’s Dissertation 2015

4.2.3 Software architecture

After functional requirements are defined, the next step is to develop software structure as well
as identify its components to satisfy those requirements. Base on the required functions of
software associated with use cases developed in previous phase, internal components of FIDR
software need to be defined. Result of this process is illustrated in Figure 4.10 as SysML block

definition diagram.

The software for FDIR of ADCS is decomposed into four components:

ADCS observer software
ADCS fault detection software
ADCS fault identification software

R

ADCS fault isolation and recovery software

Sequence diagrams then need to be constructed for each required function to verify the assumed
software components in Figure 4.10 will satisfy all required functions as derived in section
4.2.2. The main purpose of this step is to confirm the defined software components can realize
the functional requirements. In additional, when this activity is carrying out, ADCS team can
also find out what they should be done to improve the design. For example, if the assumed

components are pointed out to be cannot provide the required functions. They can go back

bdd [Package] Structure[Software for FDIR of ADCS]J

«block»
Software for FDIR of ADCS

«block» [«block» «block» «block»
ADCS observer software ADCS fault detection software ADCS fault identitication ADCS fault isolation and
software recovery software

Figure 4.10 Block definition diagram of FDIR software

56|Page

Master’s Dissertation 2015

sd [Interaction] observe ADCS status [observe ADCS status]J

‘ : ADCS &] : ADCS observer software

1: get sensors outputs in previous cycle

2: get control command to actuators in previous cycle

3: estimate next sensors outputs

e

Figure 4.11 Sequence diagram for observe ADCS status (analysis level)

and re-think about it, or try to find others. This step by step verification is conducted during
the design phase of the software as well as the whole satellite system, so that the consistent of
the design can be verified even during designing phase. At the end, the software is confirmed
to do what it is supposed to do. Other benefits of this model — based approach are about time

and cost for reworks. They can be significantly reduced.

In sequence diagrams shown in figures from Figure 4.11 to Figure 4.16, the required functions
that derived from context level are described and each of those functions is decomposed into
lower level. These functions, finally, are the functions which each software component
represented in Figure 4.10 (by blocks) needs to perform. This process is also expected to
support for the next step which is allocating functions to components. Allocation is a term used
in system engineering which illustrate the process of allocating functions to components.
Functions allocations of FDIR software are described clearer in Figure 4.18 in the form of

SysML activity diagram.

57|Page

Master’s Dissertation 2015

sd [Interaction] detect fault[detect fault]J

: ADCS = l : ADCS observer software : ADCS fault detection software ﬂ

|

1: set threshold for fault detection

2: get gufrent sensors outputs

H 3: judge current sensors outputs

4: conclude fault or not

]

Figure 4.12 Sequence diagram for detect fault (analysis level)

sd [Interaction] identify fault[identify fault]J

:ADCS = l : ADCS fault detection software “ | : ADCS fault identitication software h

1: receive failure detected signal

2: monitor on/aff status of components

H 3: conclude fault ID

|

Figure 4.13 Sequence diagram for identify fault (analysis level)

58|Page

Master’s Dissertation

2015

sd [Interaction] search isolation, recovery functions in FIR library [search isolation, recovery functions in FIR library]J

| : ADCS = I | : ADCS fault identitication software I I : ADCS fault isolation and recovery software |
| T - = -1

1: receive fault ID

T
|
|
|
|
I
|
|

.

T
I
|
|
|
I
I
|
|
|
|
|
|
I
|
|
I
I
|
|

l

|
|
2: find isolation, r'ecovery functions correspond to fault ID
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

3: identify isolation, recovery functions

Figure 4.14 Sequence diagram for search isolation, recovery functions in FIR library

(analysis level)

sd [Interaction] execute isolation. recovery functions [execute isolation, recovery functions]J

: ADCS & [: ADCS fault isolation and recovery software]

2: execute required functions

T

1: check the availability of functions

o

Figure 4.15 Sequence diagram for execute isolation, recovery functions (analysis level)

59|Page

Master’s Dissertation

2015

sd [Interaction] assign new fault ID to current fault[assign new fault ID to current fault]J

«block»
: ADCS fault identitication software

1: assign new fault ID to current fault

T

|
|
|
|
|
|
!

2: value of current fault ID

Figure 4.16 Sequence diagram for assign new fault 1D to current fault (analysis level)

Once the assumed components are confirmed to be able to realize functions, it is also necessary

to model the interconnections between them. Interconnections and interfaces between all four

components of the software are defined in Figure 4.17. This diagram also shows the

connections of software with external system which is ADCS in this case.

ibd [Block] Software for FDIR of ADCS[Software for FDIR of ADCS]J

E;| previous sensors outputs : ADCS observer : ADCS fault isolation
- software and recovery software
E‘] FIR fur:ctions =
L_previous control commandE |
B Tl [T} 4
estimated fault ID IF with FIR library
sensors outputs
[A il
: ADCS fault detection residuals : ADCS fault
software identitication software
= sensors outputs fault flag components status |
E =
Figure 4.17 Internal block diagram of FDIR software
60|Page

2015

1ssertation

Master’s D

SOAV J0 "1 Joj weibeip ANANOY 8T ainbi4

suoiouny
painbai
8IN09X3 :

.._

@l uonouny Josi|

apop aes
a1eANOR ©

@i uonouny joist|

suonjouny
Ksa nooaI

al ey
01 puodsaiiod
suonouny
A n0281
‘uolre|ost puly

ainey

Qlne; mat

ain|ey jusiind
031 4l yney
Mmau ubisse

uonoeIep
1ney 1oy
Sp|oysaiy}1es
sploysaiyy

LY
jou

10 }jNe}8PNOUD :

Be|)1ney s[enpisa.

9.

sness sjupuodwiod

sjuauodwod
Jo snels
140/U0 10y UOW

feubis pajosiap

ain|iey aALIBI Bejy1ney

8

sfenpisal

Y puew|
sindino siosuss

aunoabpnl:

u

o

jdino s1osua

SINAIN0 SIPSUSS parewnss

sindino s10guss
sindjno siosugy

sindino
siosuss
1Ua.1INd 186

ajoka snolnaad
ursindino
siosuas 106

sindino sigsuas snonaid

9Joka snolnaid
ul sioyenioe
0] pUe WwWod

1011u00 196

uoo 0.3u0d snonaid

PO D [0u02 Shipnad
sindino siosups snonaid

.._

] sindino siosuas

parewnsa 1XU BTRWNISA |

alinejmauj

aiyney
Mau ubisse

elep A weel

EINCLC

0] pUe WwWod
EINCECH]

elepAriq]
FIEELEES)]

Ariqy
di48rpdn

ainey

Mau ubisse

0} pUe wwod
yuydn

eepArig]
di4udn

erep Arel|

erep Ailswapel

el

azkeue

91eM1J0S A9 A0931 pUB UOITR|0S! 1|Me} SOAY

91eM1JOS UOIEDINIUB P! I Ne) SOAY

21eM1J0S U0119919P 1| Ne) SOAY

21eM1J0s B ARSA0 SOAY

Soav

uoleIS punoio

sioreredo

[T u1ad 10 108] ¥ia4 19 302 [Wngav] 1oe)

6l|Page

Master’s Dissertation 2015

The activity diagram shown in Figure 4.18 not only describes interactions between software
components but it also represents the flow of actions or functions of the software. According
to Ref. [29], it is very similar to the traditional function flow block diagram (FFBD). The
process of fault detection, isolation and recovery starts with the function of ADCS observer
software to get sensors outputs and control commands from previous cycle (each cycle is 50ms).
The collected data then be used to calculate and estimate the values of next sensors outputs.
Depends on ADCS mode, the software get specific sensors values and estimates the future
values output from those sensors. For example, in target pointing mode, sensors to be used to
determine current attitude of satellite include STT and FOG which output satellite rotational
rate and quaternion. The software then needs to estimate outputs from those sensors. The

principle how that function could be performed is shown in Figure 4.19.

The estimate outputs then be received by ADCS fault detection software along with the current
outputs from sensors to generate residuals. Process of residuals generating is presented in
Figure 4.20. As mentioned in section 4.1.2, the residuals that generated as the results of this
will be used to detect failure by comparing those values to thresholds. The designed software

also has ability to set thresholds for fault detection since they are adaptable.

(act [Activity] estimate next sensors outputs [estimate next sensors outputs]J

previous

Sensors W calculate
outputs ks 7| satellite

\ — attitude

=1 calculate W -
rotational | ! > estimated outputs
speed - i

previous
control

command

Figure 4.19 Activity diagram for estimate next sensors outputs

62|Page

Master’s Dissertation

(act [Activity] judge current sensors outputs [judge current sensors outputs]J

| sensors outputs

values

outputs

compare two

—

estimated
sensors

Figure 4.20 Activity diagram for judge current sensors outputs

2015

residuals

If fault is detected, then a fault flag will be set in the software, by assigning the true value for

a Boolean variable. If not, a false value will be set. This process is carried out by the function

to conclude failure or not in the software (Figure 4.21).

(act [Activity] conclude fault or not [conclude fault or not]J

residuals —
|

7compare |
residuals to
thresholds
L
thregholds

— =) assign fault

|
|
__9Q

— =/ assign fault
| flag =false |

Figure 4.21 Activity diagram for conclude fault or not

63|Page

flag

Master’s Dissertation 2015

The fault flag is then used in ADCS fault identification software as the condition to call out its
functions. If the flag is set to true, this software then execute the function to monitor on/off
status of components in ADCS. Similar to observer software, this function will monitor status
of components respected in ADCS mode. The results of this and information from generated
residuals then be used to give the conclusion about faulty component in form of a fault ID if it

is predicted beforehand.

When a fault is identified and a fault ID is given, ADCS fault isolation and recovery software
will has responsibility to receive that ID then find the correspondence one in FIR library. After
fault ID is found in library, the software finds appropriate action as are defined in FIR library
to perform. The process of this function is described in Figure 4.22. Output of this function is
a text line (or string) which consist of isolation and recovery functions ID. This string then be
used in the next function in sequence to identify the required functions to be executed. Figure
4.23 shows what need to be done in the software to perform this function. List of separated
isolation and recovery function ID will be outputted as the result when the function is
successfully executed. Figure 4.23 also describes the flow of this function. Isolation and
recovery functions as string is split up into isolation functions and recovery functions. List of

required function ID as in array then can be outputted as the result of this action.

(act [Activity] find isolation, recovery functions correspond to fault ID[find isolation, recovery functions correspond to fault ID Ll

find fault ID get the line [adatastorey

fault D ——— jn FIR library = ~ ~ " ? Stf‘;rsl‘t’"'lt)h isolation, recovery functions

Figure 4.22 Activity diagram for find isolation, recovery functions in FIR library

64|Page

Master’s Dissertation

2015

(act [Activity] identify isolation, recovery functions [identify isolation, recovery functions]J

«datastore»
isolation, recovery functions

»

split the
string J

L o

get isolation

functions

get recovery

functions

Fisolaion function ID

list of function ID

secovery function ID

Figure 4.23 Activity diagram for identify isolation, recovery functions

List of required function IDs then become input for the next function: execute required

functions. As shown in Figure 4.24, required functions will be executed one by one until all of

them are done. The process of isolation, recovery now is successfully performed onboard.

(act [Activity] execute required functions [execute required functions]J

the selected

. ,setup —{ get function ’
list <_)f “— ID to execute
function
ID count
numberof: [F . [== e
functions I test e ' decrease |
" number of functlons ; there are = number of
e -
functions \
' body
’ == . U SSEES
find call the
| correspond _ % function for
’ function to execution
l

Figure 4.24 Activity diagram for execute required functions

65|Page

Master’s Dissertation 2015

(act [Activity] activate Safe Mode [activate Safe Mode],[

/ \
/ \

K N
turn off [turn off
Sensors actuators

\ /
\ /
i /

Figure 4.25 Activity diagram for activate Safe Mode

In the case when isolation, recovery functions are not found in FIR library, the software then
has a function to activate ADCS Safe Mode. As already explained in section 3.2.1 of Chapter
3, in Safe Mode, all components including sensors and actuators will be turned off, except for
OBC. Function flow is described in Figure 4.25. The role of FDIR now be given to satellite

operators on ground station side.

Ground station has function to receive telemetry data generated from ADCS as well as all
satellite subsystem to monitor satellite state. Telemetry data is extremely helpful in situations
when failure occurs. Base on received data with supports from ground station facilities and
experiences, failure analyses are conducted and solutions must be pointed out. The operator
then need to identify isolation, recovery functions ID and the right order of them in order to
correct the failure. List of isolation and recovery functions then will be sent from ground station
so that ADCS can receive and update FIR library. Three types of library updating are mentioned
in previous section of this chapter. Depends on the actual situation, operators must choose the

right type to update. Failure mode also decides the need of command to assign fault ID. If it is

66|Page

Master’s Dissertation 2015

known for FDIR software, command is not necessary. However, if failure is un-predicted, after

updating FIR library, sending command to assign new fault ID to that failure is needed.

4.2.3.1 Three types of adjustments and their applications

Corresponding to each type of update in FIR library, there is a set software adjustments and
each of them has their own applications which share the final goal - to support for FDIR
mechanism to work more effective. Having the software with ability to be adjusted on board,

operators on ground can have more degree of freedom when dealing with failures of ADCS.

The first type of software adjustments is swap/change functions. This type is associated with
FIR library modifying. As mentioned in the previous section, FIR library modification is
required in case when existing isolation, recovery functions are found to be not effective in
actual operation of satellite in orbit. Example of library modification is shown in Figure 4.26.
By analyzing received telemetry, engineers or operator on ground find out that, the existing
functions, such as isolation ID number 2, 3 are not in the right order. They send command to
change that order, for example reverse order of those functions to 3, 2 (see Figure 4.26 b).
Another example of FIR library modifications is changing functions. It is required when
functions are found that not in right places and needed to be replaced or changed by other one.

Figure 4.26 ¢) shows an example of this modification type.

[) ARt - Note.. b B S [) AR ot - Note. Lo 3| [) AR ot - Note... b . e |
Eile Edit Format View Help Eile Edit Format Niew Help Eile Edit Format Wiew Help
FIR Tibrary FIR Tibrary: FIR Tibrary:
1;4,2,3;1,4; 1;4,2,3;1,4; 1;4,2,3;1,4;
2;EME.1;2; 2; /¥, 4,1;2; 2;3,2,8,1;2;
3:5,3,2:;1,3; 3:5,3,2;1,3; 3:5,3,2:1,3;

4;3;2; 4;3;2; 4;3;2;
5;2,4;3; 5;2,4;3; 5;2,4;3;

4 1 3 i 4 1 3 i 4 1 3 i
a) Original library b) After swapping c) After changing

Figure 4.26 Examples of FIR library modification

67|Page

Master’s Dissertation 2015

Once FIR library is modified, every time when ADCS is facing with the same failures, ADCS
isolation and recovery software can find the modified solutions in library to perform. As results,

the software now has ability to swap functions orders as well as change functions.

Second type of software adjustment is functions eliminating. This type, basically is very similar
to the first type and corresponding to deleting type in FIR library (an example is in Figure 4.27).
If an isolation or recovery function ID is deleted in FIR library. The software then reacts in the
same way to eliminate that function when a fault is detected. This type of software adjustment
is critical in case of component performance degradation. For example, according to
specification, FOG (Fiber Optic Gyroscope) has output noise less than 0.01 degree per second,
so that a fixed threshold is set for detect fault of FOG if it outputs values out range. However,
after a certain time of operation in orbit, due to effects from space environment (such as
radiation), FOG frequently outputs values with noise magnitude out of range. In this case, the
defined fault is not the actual fault any more so there is no isolation and recovery function is
required. The existing functions in FIR library need to be deleted. Software then do nothing

when that specified failure mode is detected.

Functions adding is the third type of software adjustments which is divided in to two smaller
actions. As mentioned in previous section, operators on ground can add one or more functions
ID to existing line corresponding to a fault ID. Because of that, software then has ability to
automatically call those functions to execution when failure mode is identified. Example if

adding functions to existing failure mode is in Figure 4.28 b).

[3] AR txt - Note... 1B [| [23] AR txt - Note... s) [|
File Edit Format View Help File Edit Format View Help
FIR Tibrary: - FIR Tibrary:
1;4,2,3;1,4; 1;4,2,3;1,4;
2;3,2,4,1;2; 2;3,2,4,1;2;
3;5,3,2;1,3; 3;§j3,2;1,3,
4;EHA; 4;

552,4;3; —) 552,453
4 » -« 3

Figure 4.27 Example of FIR functions deleting

68|Page

Master’s Dissertation

| FRtxt - Note... Lo 0. [

| AR txt - Note... b o0 [

| IRt - Note... Lo . IS

File Edit Format View Help

File Edit Format Wiew Help

File Edit Format Yiew Help

2015

FIR library: FIR library: FIR library:
1;4,2,3;1,4; 1;4,2,3;1,4; 1;4,2,3;1,4;
2;3,2,4,1;2; 2;3,2,4,1;2; 2;3,2,4,1;2;
3;5,3,2;1,3; 3;5,3,2;1,3; 3;5,3,2;1,3;
4:3;2; 4:3;2; 4:3:2;
5;2,4;3; 5;2,4;3,0¥4; 5;2,4;3;
6;5,2;1;

a) Original library b) Functions added to c) New line is added

existing line

Figure 4.28 Example of adding FIR functions

The second action, on the other hand, is the action to add new line to FIR library. This is
extremely necessary in situation when unpredicted failure mode occurs. When a new line with
new fault ID and new combination of isolation, recovery functions is added at the end of text
file, the software then can be adjusted to be able to identify the new fault ID and find the
corresponded isolation and recovery functions to perform. Figure 4.28 c) shows an example
when new line is added which contents a new fault ID 6 and isolation functions ID 5, 2 and
recovery function ID 1. However, in this situation, FDIR software does not have any
information about fault ID 6, so that it cannot perform isolation and recovery function
automatically. This requires operators on ground station to send command to assign that fault
ID to current fault. The software then searches again in FIR library to find appropriate actions
to execute. Now, isolation function with ID 5, 2, and recovery function 1 can be executed

onboard.

To this point, the design of adjustable software for fault detection, isolation and recovery of
ADCS in MDG satellite is explained. With the introduction of an updateable FIR library and
ability to be adjusted, the design of FDIR software is expected satisfy all the requirements as
defined in section 4.2.1 and be able to handle both known and un-known failure modes, and

ensure the safety operation of ADCS.

69|Page

Master’s Dissertation 2015

4.2.4 Traceability of requirements

Traceability of requirements for software of FDIR is shown in Figure 4.29 by SysML
requirement diagram. Requirements relationships such as derivation, satisfaction are used to

support this process.

Process of maintaining requirements traceability supports ADCS team to confirm that the
design of software satisfies all the requirements identified in context analysis phase. Functional
requirements are derived from system requirements for the software and they are all satisfied
by software components. For example, functional requirements observe ADCS status and
detect fault are derived from requirement for auto fault detection of the software. Then they are
satisfied by two software components including ADCS observer software and ADCS fault

detection software.

It is very important to maintain requirements traceability during design phase so that early
verification and validation can be carried out from early phase of system development. In
process of software design for FDIR of ADCS using SysML that explained earlier in this
chapter, traceability of requirements is also ensured by step-by-step refinement during
modeling. Model — based design also helps to improve and optimize the design of software,
problems can be identified and corrected during modeling so that time and cost for reworking

can be significantly reduced.

70|Page

2015

Siuswialinbal Jo Aljigesdel] 6z’ 84nbi4

21BAJOS UOREINRUIPI JINE} DAY
“o0|g»

Master’s Dissertation

7
» ey 21emy0s =o.ﬂww_..ﬂ. uney moni | 21emy30s s12n19sq0 SOV
K aﬂ.h..- L ey mua<_ P i don s
S .:Cm:m\w\ wfysnes» \ _,
/ N -~ ~ \
/ » «ASnEsI— © = «hyspes» | \
’ > =7 Aueigl Hi4 - efysgess |
ARysnes» R A /- 3 SE SUOIOUN 3)JNJaX3 soav \
/ RS 4 EUS SIBMU0S OY 1.0 L 10 yney A4uapl 0} 31gE 8 & !
. g N~ 7 -SE.=PI IIBYS 8JEMYOS 8yl = Xal soav N
= 25 e e CE- =PI 10 S2IN|IE} P2IEP 0] 3G 3G _sme1s 50 sn8sao
pieoquo pawiopad »: ~ g«:oE?_:gbs uney uapr lIBYS SIEMYOS SYL. = X1 lIBYS 2IEMYOS By, = X8
8Q JoUUBd UoOOUNY spow ~N - «juAWNDII» «LE.=PI SL0E.=
f1anodal ‘uone|osi ay} 2% S = jJnej 10313p snjels §OQVY 2AI2sqo
11 8poy ajes SOAY SleAldE w_:hmﬂﬁM:hMMWmﬁ M % mwm% Juesqn = ~ X «juawannba» «juawainbal»
lleys aiemyos ayl. . =pal NEy Mau UBISSE O 0 e o Hi4 ul suonouny AJano0dal ~ N =" T
-€E.=PI ==%:m a1eMyOS wcﬂ._.._m ,xw.n__. PUE UORE|OSI IO} YDIBSS abenaepRT . cicuskiepe N |
2poy 58S SOAV 21eAIER w.M =p1 IIBYS S1emyos syl. =xal ~ : N\ N N \
== VE.=DI = \
«juawannbai» T = ~ § «jbayasIap® \ wbayaauap» |
N o1 aiine; mou uoisse et | <~ . :
SNIIBIES L-WHOSINN \ SR G « 2pn ™ X
u1 pasn se sjusuodwos \ = Suewemnbess RRAIIN® ™ o .Uoune| s10j3g pasedaid e "
10135 8U) UM Wioad N N S111 SE P3O2ISP SINe) BU UBUM
24 1IBYS SOAY 10 MIa4 N suoinjos AaA0231 ‘UORE[OS] JINey SOy 1Palep
\ ~ wiopad UBD SIEMYOS SUL. = X3 1 UEd 3JEMYOS By, = X3 1
J0j uonn|os a. SV CHN S S
267, = \ N ZL'L62.=PI LLL62.=PI
~&'¢62.=Pl «jbayaALap» «jbayasIap»
JUIBIISUOD 21BMPIEH \ » yid o3ny a4 o3ny
= N «juawainbai» «juawainba»
«juaWwannbain» N N
\ . N “_y
.Sainjiej aianas Joj 1daoxa N Jfianodal
‘SwWIQG ‘awi 31940 DO UIyIM. 3 ‘uone|osi yney wiopad yaunej w‘_o»wn papipaid
wiopad aq ||eys Larodal .An220 sapow 0} punoib uo siojeiado o S1U 41 A)|eonewolne
PUE UORE|OS] ‘UoHD318p ainjiey papipaid-un usym woy suononisul bunissal L SOQAY Jan0231 puUE }ney
1INey} Jo 2inpad0oid By = PaL apop ajes SOAV SleAE S0Qv uaym pajsnipe ay} ajejos! usyy ‘AsjeIndde
.L'Z62.=PI 1IBYS 3JEMYOS BUL. = X8 1 8Q UBD 3JEMOS BYL. = X1 SOav o Unespalap
julesISUOd Swiy -Z'L'62.=PI -E'1L'62.=PI UBD BIEMYOS BUL. = MBL
«juawannbal» apoy ajes aiqeisnipy «LL'62.=PI
«juaWanbasn «juawainbas» Hiad ony
«juswainbai»
B
a
=
sjulenysuod uonesado
«juawainnbai» «juawannbalw

£

.uonejs
punoib woy siojesado AQ UORN|OS A13A023] ‘UoRE|0S! Wiopad
0] pa)snipe ag UeDd pue apoyy 8JES 3lENIUl 0] SOAY Wiojul
1IBUS 3JEMYOS 3U] 'IN220 S3pOW aInjie) papipaid-un |z
Alleanewoine uonesado SOAY J3A0231 PUB }Ne) 3U)} S1B[0S!
‘12219p 24 |[BYS JEMYOS 3y} ‘'Sapow ainjie) papipaid syl jo4'L
=L

«62. =PI

sjuawannbay
«JuaWaNnbasn

1 Z00 SOAaV 10} HIa4 Jo aiemyos 1o} syuswannbay] sjuawaiinbay [abexoed] bai

71|Page

Master’s Dissertation 2015

Chapter 5. Verification and Validation

5.1 Demonstration of Software Adjustment

5.1.1 Demonstration setup

Demonstrations are conducted in order to verify the design. A prototype of software for FDIR
as well as attitude control is developed and implemented on a micro controller board called

Mbed LPC1768.

A hardware in the loop simulation (HILS) environment is set up for purpose of demonstration.
Overview of the simulation setup is shown in Figure 5.1. To run the simulation, two computers

and one electronics board are needed.

' PC-1 :
: SiEies Simulink
: environment :
i Actuators Satellite Sensors :
: model Dynamics model |
I USB-RS232 -
:_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_"I_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_',I''I_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'l
RS232 IF B PC-2
: . Mbed XBee 1| _ XBee :
. LPC1768 ~ module ' 1 module
' OBC board | Ground station !

S U |

Figure 5.1 Configuration of HILS

72|Page

Master’s Dissertation 2015

A Simulink model of ADCS (shown in Figure 5.3) is developed and run on PC-1, which is
shown in the upper part of Figure 5.1. The model can be divided into four smaller model.
Actuators model (or block) consists of three reaction wheels with functions to generate required
torque as commanded from OBC. The generated torque from actuators then be the inputs for
satellite dynamics block. In this block, attitude of satellite as well as angular rotational rate is

calculated by solving the kinematic and dynamic equations of motion of a rigid body:

¢ [0 @ —wy wrg
92 _ll_wz 0 Wy Wy (g2
gs| 2[wy, —wy 0 CUZJ q3

qa —w, —w, —w, 0]l9

Where q is satellite attitude represented in quaternion,

@ is angular rotational rate,
T is generated torque,
| is satellite moment of inertia,

and h,,, is reaction wheel momentum.

Space environment block consists of an Earth model and a satellite orbit model. Satellite
position in orbit and target attitude of ADCS is calculated from outputs of this block. Sensor
model in this Simulink model is very simple with one gyroscope and one star tracker. Noises

are added to the input signal to simulate the sensors outputs.

Gyroscope model:

o =w+W +F

Where:

73|Page

Master’s Dissertation 2015

@, 1S gyroscope output,

m

o, true value of satellite rotational rate,

r is random walk,

w,, W, are white Gaussian noise with 1o =0.01 and 0.001 respectively.

Star tracker model:

qm :qt+v

Where:

g, Is star tracker output
g, is true value of quaternion

Vv is white Gaussian noise with 1o =0.001

On ground station side, there is a computer (PC-2). A free software for serial communication
is installed on this computer. All the interactions with OBC from ground station are made via
this software interface. An XBee module is connected to PC-2 via RS232 interface and plays
the role of a transceiver. For purpose of demonstration, this wireless transceiver can be referred
as the real transceiver of ground station. The computer PC-2 is also used for the debugging
purpose. All the information generated from software will be transmitted to this computer and

displayed on screen.

As mentioned above, software prototype (see appendix) is implemented in an Mbed LPC1768
board. This board is developed based on a 32-bit ARM cortex M3 microprocessor. However,
compare to the real OBC on MicroDragon satellite, performance of this board is much lower.
Control cycle is set to 100 ms (millisecond) instead of 50 ms as in real OBC. As shown in the
bottom left of Figure 5.1, there also a USB drive connected to the Mbed. FIR library is saved
in this drive. Another XBee module is implemented to represent for communication transceiver
inside the satellite and do the communication jobs with ground station. Data from OBC board

will be transmitted to ground station via this XBee module. Commands and data from ground

74|Page

Master’s Dissertation 2015
station will be transmitted via XBee module connected to PC-2 and received by XBee module

on this OBC board.

To verify the design of software, two types of demonstrations are made: demonstration of the
adjustability of software and demonstration of FDIR functions. Results of these are shown in

the next sections.

Figure 5.2 OBC board used for HILS

75|Page

2015

Master’s Dissertation

18bie)
FELIET

NUlNWIS Ul [8pow SOAY €°G Inbi

=

h 4

auwn"usg

@

Y

awg"s e ewweb

h 4

awl Mc_v_mum

T e{esTewweb

Jsndwog preoquyy

apow

leal 1

[ex1] eBawo

A

[p1] b

[ex1] ewweb

[apow] | apOW
Yonms spol uoneUIWIa}ap 96 |
p| lox1] 1 e wweb webawo
PIoH LUOISUBL | SjEY
1BpiQ-aiaz
P lex1]1 eBawo w™b
e ajey Jejnbuy sI0SURS
aesr ebawo
Bspow sy
[spow]
g S
P 19RO BUlIBIES iy
Ayzojep, rnbuy
- < 19021 g lex)) ebawo lexi] iy g [exil ™y
[ex1] L
az|[BuUUo 1930 <- avy —
1013 saifuy Jang I N [ex1] Bwiwes [ex1] 1 |t [ex1) ma™ L
E“ ' S

76|Page

Master’s Dissertation 2015

5.1.2 Demonstration of software adjustments

This demonstration is made in order to show the adjustability of the designed software. Three
types of software adjustments as mentioned in section 4.2.3 are demonstrated in this section.
Results of each adjustment is verified by looking at the debug screen on ground station side
(PC-2). When a software function is going to be executed, a message is displayed on PC-2 to
show ID of that function. For example, if isolation function 1 is executed, people on ground

station side can see the message “Isolation: function 1 is executed”.

FIR library is created and store in the USB drive which connected to Mbed (as shown in Figure

5.2) with following contents:

First demonstration is to verify that prototype software can find isolation and recovery
functions as they are already defined in library. Note that in this demonstration, failure
detection and identification are not going to be tested. Fault IDs are sent from ground station
PC-2 wusing a free software called Hercules terminal software (http://www.hw-

group.com/products/hercules/index_en.html). Figure 5.5 illustrates the result when fault 1D

number 1 is sent from ground station. The software first receives fault ID from ground station
then starts looking in FIR library for that ID. A “Found fault id message in library” is displayed
when fault ID is found. The software then starts finding corresponding isolation, recovery
functions in library, a message is displayed on debug screen for this action. As already defined

in

| FIR.txt - Notepad = | B i

File Edit Format View Help
FIR Tibrary:
1;1,2,3;1,4;

; 4,123

Figure 5.4 Original FIR library for demonstration

7T7|Page

http://www.hw-group.com/products/hercules/index_en.html
http://www.hw-group.com/products/hercules/index_en.html

Master’s Dissertation 2015

UDP Setup Serial | TCP Client | TCP Server | UDP | Test Made | About |
Received/Sent data

— = Serial
filFinding fault ID: 1
Found fault id in library!
Finding isolation, recowvery function in library! COM14 :]
Found Isolation func: 1,2,3
Found Recovery func: 1,4 9500
Execute Isclation, Recovery functions: 2

- [ata size
Isolation:
function 1 is executed a :l
function 2 iz executed
function 3 i=s executed MoRE
Recovery:
function 1 i= executed
function 4 is executed OFF
Free
Modem lines
@co @R @ DSR @CTs [DIR [RTS X Closs

Send

723 HE= Send

B ™ HEx_Send | HWsrous
|FI [~ HEX B wurw.HW-group.com

Hercules SETUP atility
[m15.47 [~ HEX Send Version 3.2.8
— —

Figure 5.5 Result of demonstration #1

FIR library, isolation functions 1, 2, 3 and recovery functions 1, 4 are found. The five messages
in the bottom of Figure 5.5 tell that those functions then are executed one by one. Process of

isolation and recovery is done at this point.

Result of this demonstration verify that the prototype software has ability to find appropriate

isolation and recovery functions in FIR library to execute onboard.

In second demonstration, the same fault ID which is fault ID number 1 is used. However, in
this scenario, isolation function is going to be changed. The type of change here is FIR library
modification. First, a command is sent from ground station computer to modify the library.
Software receives the command and call the function to change isolation id number 2 in line 2

(which corresponds to fault ID 1) to 4.

Now the same process as in the first demonstration is carried out. Result of this process is
shown in Figure 5.6. As seen in this figure, after modifying FIR library, the software was be
able to change the way it reacts to fault ID 1. Differences between Figure 5.5 and Figure 5.6

are

78|Page

Master’s Dissertation

Modern lines

Send

@co @ Rl

@ Dsh @ TS

[~ DTR [RTS

|a7;2:3

[HEX Send

|r

[HEX Send

EES

[~ HE¥X Send

-
% Hercules SETUP utility by HW-group.com = S
e - b L -

UDP Setup Serial | TCP Client | TCP Server | UDP | TestMode | About |
Received/Sent data .
A . Serial
filFinding fault ID: 1
Found fault id in library! Tona
Finding isolation SoOve function in library! :l
Found Isolati
Found Recovery func: 1,4 9600
Execute Isolation, Recovery functions: .
[ata size
I=ola
fnetion elecuted 8 :‘
fynction eyecuted
| | fumsL£d s-executed nare
Recowvery:
function 1 is executed
function 4 is executed OFF
Free

X Close

HWsrous

v .HW-group.com
Hercules SETUP wtility
Yersion 3.2.8

Figure 5.6 Result of demonstration #2

2015

represented by red line circles in Figure 5.6. Instead of executing isolation function number 1,

2, 3, the software did execute function 1, 4, 3 as they are defined in FIR library after the

modification was made.

The third demonstration is about adding new fault ID with isolation and recovery functions to

library. As in the original FIR library shown in Figure 5.4, there is no line start with number 7.

Therefore, when software received command to start looking for fault ID number 7, it could

not find it. Figure 5.7 a) shows the messages on debug screen. Safe Mode as initiated.

After FIR library is updated by adding new line to the end of this text file (“7;5,1;3”), the same

command was sent from ground station computer to let software know the current fault ID.

The software then started finding fault ID and the corresponded isolation, recovery functions

in library. As the result, it found the solutions. Then the functions could be executed

successfully.

79|Page

Master’s Dissertation

2015

80|Page

-
% Hercules SETUP utility by HW-group.com

[E=EE)

UDP Setup Serial | TCP Client | TCP Server | UDP | TestMode | about |

Received/Sent data

— Modem lines

@co @R @DsR @cCTS [DTR [RTS
— Send
|a751:3 [~ HE¥ Send |
|f? [T HEX Send |
|m1 8.4 [~ HEX %end |

A Serial
f7Finding fault ID: 7 N
- ame
Fault_id not found!
SafeMode is initiated I':D""14 :,’
Baud
ISBUU vl
Data size
IB vI
Farity
Inone vl
I Handshake
OFF hd
i Iode
IFlee VI
— Madem lines
@co @R @DsR @cCTs [DTR [RTS X Ciose |
h- Send
BEE [~ HEX Send | H I.UgrﬂUP
iz ™ HEX Send | _uruuHUl-group.com
Hercules SETUP utilivy
L' |m18,4* [T HEX Serd | Version 3.2.8
a) Result before software adjustment
r 3
#% Hercules SETUP utility by HW-group.com F. ==
UDP Setup Serial | TOP Client | TCP Server | UDP | TestMode | about |
Received/Sent data .
- Senal
f7Finding fault ID: 7 Mame
Found fault id in library!
Finding isolation, recovery function in library! IEDMM j'
Found Isclation fumc: 5,1 Blaud
Found Recovery func: 3 Iggnn vl
Execute Isolation, Recovery functions: .
_ Data size
Isclation:
function 5 is executed I8 jv
|||function 1 is executed Parity
Recovery: Ingne vI
function 3 is executed Handshake
OFF e
IMode

I Free e I

x Close |
HWsrous

veww.HW-group.com
Hercules SETUP stility
Verzion 3.2.8

b) Result after software adjustment

Figure 5.7 Result of demonstration #3

Master’s Dissertation 2015

Through results of three demonstrations above, the prototype software is verified that has
ability to be adjusted according to changes of FIR library save in the USB drive. In the next
section, this adjustability of software is going to be verified to support for fault detection,

isolation and recovery of ADCS.

5.1.3 Demonstration of FDIR
5.1.3.1 Predicted failure of ADCS

Failure scenario of ADCS is simulated for purpose of verification and results are shown in term
of attitude error (the gap between target attitude and true satellite attitude at a time) for both

situations when software is not adjusted and after adjusted.

In this simulation, a faulty gyroscope is simulated. As shown in Figure 5.8, a step function is
added to output of gyroscope sensor in y-axis. This step function produces an error value with
magnitude of 0.02 degree per second at the simulation time t = 200 seconds. Simulation is
running for 2000 seconds and gyro output is presented in Figure 5.9. The curve in purple color
shows the value of y-axis which is suddenly goes up at t = 200s and maintains till the end of

simulation time.

il

MNoise 1
+
D, o + EI
omega_t omega_m
il 1
| s
MNoise 2 Integrator > I I
Omega_m
Step1

Figure 5.8 Simulink model of a faulty gyroscope

8l|Page

Master’s Dissertation 2015

[v 06— ™ |- s

Figure 5.9 Output from faulty gyroscope (1)

This simulation demonstrated one of the most typical type of gyroscope failure modes. Result
of attitude control in form of three Euler angles errors (attitude error) is illustrated in Figure
5.10. Vertical axis shows attitude error in degree and horizontal axis shows simulation time.
Due to the introduced malfunction of gyroscope, satellite lost its attitude from the time t = 200

seconds and ADCS was not able to restore the target attitude.

In the next step of this simulation, FDIR library is enabled and after that, the same simulation
is conducted and result of satellite attitude control is shown in Figure 5.11. As seen clearly in

this figure, after FDIR mechanism is enabled, target attitude is achieved with acceptable error.

Result of this simulation verified that FDIR software was able to determine the appropriate
isolation and recovery functions from library and execute those functions. Once failure is
predicted and isolation and recovery functions are prepared, FDIR software can work to

prevent that failure.

82|Page

Master’s Dissertation 2015

J iuler Angles Error E |
2D QR HEE/REDE S g

150

200 0o E00 aaa 1000 1200 1400 1600 1800 2000

Figure 5.10 Attitude error when FDIR is disabled

F J Euler Anglés Error E |
IR RIS ~

100

400 g00 a0 1000 1200 1400 1600 1800 2000

Figure 5.11 Attitude error when FDIR is enabled

83|Page

Master’s Dissertation 2015

5.1.3.2 Unpredicted failure of ADCS

Simulation scenario and assumptions are shown in Figure 5.12. After 10 minutes from starting
time, fault occurred in gyroscope. Output of the faulty gyroscope is represented in Figure 5.13.
Ground station can receive telemetry (TLM) data from ADCS 5 minutes after fault occurred.
Then, 8 minutes later, operators can send uplink data to update FIR library in order to recover

ADCS.

@ Update FIR library

8 mins

@f/ Start receiving TLM

5 mins

Orbit A Gyro output error

o ! ' 10 mins
Simulation starts

Figure 5.12 Simulation scenario

EEIER SRR R
0.015
0.m

1000

Figure 5.13 Output from faulty gyroscope (2)

84|Page

Master’s Dissertation 2015

EREIEE RIEEEIEEE

1000

Figure 5.14 Simulation result

Result of this simulation is shown in Figure 5.14. As clearly seen in that figure, satellite attitude
was lost due to the fault in gyroscope. Satellite is fluctuated from t = 600s. Right after FIR
library was updated — 13 minutes after failure occurred, satellite attitude was starting to be

converged again.

Result of this simulation verified that the FDIR software is adjustable by updating FIR library
and also, that adjustability was able to support for FDIR of ADCS.

5.2 Interviews with Satellite Developers and Operators

Purposes of interview:

<> To evaluate the proposed FDIR mechanism and the design of adjustable software for FDIR
of ADCS base on experts’ opinions

<> To get feedbacks/comments to improve the design in future

Questions in the interviews include both closed and open-ended types. They are divided into
three groups. The first group is about general information about the interviewees including

name, organization, and their experiences in satellite development and operation. The second

85|Page

Master’s Dissertation 2015

group includes questions to collect interviewees’ opinions and experiences in safety operation
of satellite system both in general and in their particular projects they have joined. Experiences
of interviewees on failures of satellite system, subsystem and components after launch and their
countermeasures action as well as the effectiveness of each action are also gathered by those
questions. In addition, to answer questions in second group, interviewees also need to identify
difficulties when they was dealing with failures from ground station. The third group of
questions is where the proposed FDIR mechanism and the design of adjustable software for
FDIR of ADCS are explained and evaluated base on interviewees’ opinions and experiences.

Comments and feedbacks for design improvements (if any) are also required in this group.

The interviews are conducted with two people who have experiences in satellite development
and operation. Both of them have joined several satellite projects with different satellite size,
from pico satellite (SwampSat), to micro satellites (Hodoyoshi - 3, 4, UNIFORM, PROCYON)
and big satellites (such as EOS AURA, NPOESS, NIRCam, etc.) with several different roles
such as test engineer, member in subsystem team, project manager and advisor. Details of the

interviews are listed in following part.

Question 1: In your organization, or in the projects you have joined,

1. How do people think about safety of satellites?

a) Very important

b) Important

c) Not so important

d) Don’t care

e) Depend:

Answers: Both of interviewees chose the option a) which is very important.

2. How do people think about failures of satellite systems/ subsystems?

a) Acceptable

86|Page

Master’s Dissertation 2015
b) Unacceptable

C) Depend:

Answer 1: It depends. If there is redundant system or subsystem, it is acceptable.

Answer 2: We never say it is ok or not. Depends on what kind of failure occurred. For example,
if failure is temporary, and if there duration is short, we may accept. However if failure is
permanent, it is unacceptable. If there is redundancy or a mechanism to recover from that
failure mode.

Question 2: In your experienced projects, what are the ways (technique/ mechanism, etc.)
to handle failures and increase safety of satellites? What are the advantages/

disadvantage?

Answer 1: | worked for NASA when | was in United Sate. Usually, for big satellites, redundant
components are almost mandatory, we need to put other identical components to satellite and
if one of them fails the system switch to redundant component. By that way, failure can be
recovered 100%, that is the big advantage. However, disadvantages is the system becomes
complicated, heavier, and more expensive. That is reason why it is only available in big
satellites. For nano, micro satellite, size and mass are very limited to put redundant system in,
so usually, only very important components such as reaction wheel has redundancy. In many

cases, we do not have redundant for other components.

Answer 2: In my experience in microsatellite projects, we utilized one redundant reaction
wheel. At the same time, it was not intentional but we also used magnetic torque (MTQ) to
control attitude of satellite. In both ways, we can achieve attitude controlled. However, it does

not mean by using MTQ, we can achieve required accuracy, agility.

We also able to reprogram onboard computer by rewrite and compile it then break it into several
parts to upload to satellite via uplink commands. Once all binary file is uploaded, we send
another command to swap the existing flight software. By that way we can upload the whole
new software to deal with unpredicted or unexpected failures that occur in orbit. The only issue

is it take so long time. As we calculated, if we have to upload the same size of the binary file

87|Page

Master’s Dissertation 2015

of the whole software, it could take more than one week, even when we utilize both day and

night communication opportunities.

Question 3: Have you or your team ever experienced with any failure in satellite after

launch? (Any kind of failure such as components, subsystem, system, etc.)

a) No.
b) Yes. (Provide more details if possible)

Luckily, both answers for this question was “yes”. And more details about failure they have
experienced with are provided.

Answer 1: EOS AURA HIRDLS has failed just after launch

Answer 2: Under voltage controlled, unexpected attitude, loss of telemetry from attitude
control computer, and unexpected temperature increased.

1: What are the considerations when dealing with those failures?

a) Recovery time

b) Performance of the system after recovered
C) Ease of recovery process

d) Other:

Answer 1: chose a) and b)

Answer 2: chose d)

2: What did you or your team do to handle the failures? Effectiveness of countermeasure

actions?

Answer 1: We tried to recover functionality of instrument by spending couple of months using
every way to recover. However, at the end, we could not. Only 30% of performance was
recovered. Customer was unhappy because they are scientists and had been waiting for years

to get it launched.

88|Page

Master’s Dissertation 2015

Answer 2: One example is that, we realized it could be risky to turn on star tracker. Because it
could cause more problems. We were not able to get precise attitude control or determination.
We considered about how to still control satellite attitude without star tracker. Because of that,
we utilized MTQ which is not so complicated. About effectiveness of the countermeasure
action, as you know without star tracker, we cannot get precise attitude control. It is related to
mission success and the mission required pictures take of ground. The picture turned out to be
not so degraded in quality. However, it is difficult to utilize those pictures for scientific purpose
because of the lack or less accurate of housekeeping data added in the pictures. Scientists need

to come up with the way for image mapping.

3: Is there any difficulty when dealing with failures from ground station? What needed to
be improved? Is there any need to improve the way ground station interact with satellite in

case of failures?

Answer 1: The data we could have is very limited, we tried to gather both data before and after

launch. If we could have a camera inside it would be easy.

Answer 2: It is not really related, but we always need to improve communication link between

ground station and satellite.

4: Do you think using existing software functions onboard will help? Was the design of the

satellite enable this (using existing software functions to handle failures)?

Answer 1: In my case, since the failure occurred in one instrument, so it is not applicable.

Answer 2: I would say “half”, because in the case of failure | mentioned above, we decided not
to turn on star tracker, by sending command from ground. If there is no such kind of functions

onboard, we could not tell satellite to do so.

Question 4: We have proposed an FDIR mechanism and designed the software for FDIR
of ADCS in the way that enable operators on ground station to use existing functions

onboard to handle new failure mode. (Explain about the design).

89|Page

Master’s Dissertation 2015

1: How do you think about the proposal? (In term of recovery time, convenient for operators,

etc.)

Answer 1: Recovery time compared with the other way such as reprogramming onboard
software can be shorter. Because, we only need to upload small amount of data as a part of FIR

library.

Answer 2: | think the recovery time can be short enough and good. For second question, if you
only think about uploading library, it will be convenient for operators. However, we also need
to think about how easy is it to come up with alternatives combination of functions as a part of

FIR library. Overall, my expression is that it is more convenient for us.

2: If this FDIR mechanism was applied to the design of satellites you have developed, do you

think it would help when failures occur?

Answer 1: General speaking, it would be the good idea. But, it hard to answer in more detailed

since the failures | have experienced are about hardware which cannot be solved by software.

Answer 2: In the satellite that we have developed, having this kind of software would help in
certain kind of functions. We set several modes in software. In each mode, certain functions
are enabled and certain functions are disabled. If we have capability to have more flexibility in
choosing which function to enable in each mode, it could add more freedom in operation.
Probably the only tricky part is how to co-operate with existing mode and this kind of flexibility
because having mode which was very useful we did not have to worry about individual function.
Therefore, if there is a nice way of mixing software functions into existing control mode, that

would definitely, | believe, help to improve satellite performance.

Question 5: What could to be improved in the proposal?

Answer: If you can come up with the way or make the guide line to apply failure prediction or

failure analysis such as FTA or FMEA, it could be better. Currently, you have utilized FTA to

N|Page

Master’s Dissertation 2015

your project to analyze failure of ADCS, but if you can provide general guidance for apply the

design to other subsystem or other project, it could mean a lot.

Conclusions from results of interviews:

< Safety and reliability of satellites in orbit are considered as a very important aspect in every
satellite development project.

<> Various type of failures prevention, recovery was applied to satellites such as hardware
redundancy. However those techniques are not applicable for nano, micro satellite due to
limitations of size and mass. Failures still occurred when satellites are already in orbits.
There are the needs to improve the way people handle failures from ground station.

< Based on experts’ opinions, the proposed FDIR mechanism and design of the adjustable
software for FDIR of ADCS can be able improve the situation by shortening the time of
recovery and they are convenient for operators when dealing with failures.

<> The concept of proposal can be improved and apply in other subsystems as well as other

satellite projects.

91|Page

Master’s Dissertation 2015

Chapter 6. Conclusions and Future Works

6.1 Overall summary

In this research, the design of adjustable software for FDIR of ADCS was done using SysML
(System Modeling Language). The software was designed in the way so that operators on
ground can utilize existing isolation, recovery functions onboard to deal with failures occur to
ADCS in orbit. Also, a novel FDIR mechanism was proposed for ADCS of MDG satellite, by
using the design of adjustable software. Instead of spending a long time to reprogram onboard
computer, satellite operators only need to send one or two commands (depends on failure
mode) which consist of the combination of fault 1D, isolation function ID and recovery function
ID, to update the FIR library. The FDIR software then be adjusted according to changes in FIR
library to perform isolation and recovery functions. Recovery time can be shortened, and
effects of failures on ADCS as well as on satellite system can be reduced very much, thanks to
the adjustability of software. In addition, with the introduction of adjustable software for FDIR,
operators can have more freedoms when dealing with in-orbit failures, the recovery process

will become more convenient for operators on the ground.

To verify the design as well as software functionality, simulations are conducted. First, the
software is verified to be adjustable when operators send uplink data to update FIR library by
software functions demonstrations. Second, a hardware-in-the-loop simulation is conducted
with satellite dynamics in Simulink model and adjustable software is implemented in Mbed
board. The software is verified to be able to detect, isolate the fault of gyroscope and restore

ADCS performance after adjustments are made (by updating FIR library).

The proposed FDIR mechanism and design of adjustable software then be evaluated based on
experts’ opinions. Satellite developers and operators who have experiences in on-orbit failures
of satellites are interviewed. All the interviewees shared the same expression that the proposal
as well as the design of adjustable software would help to improve the effectiveness of recovery

process from ground station. Operators can have more freedoms when dealing with failures

92|Page

Master’s Dissertation 2015

and recovery time can be reduced (compare with the existing technique, such as

reprogramming onboard computer).

6.2 Future works

Further works should be conducted in order to improve and implement the design of adjustable
software during development phase of MDG satellite project. The design of FDIR software as
well as the proposed FDIR mechanism should be validated during development process and in

the future operation of satellite in orbit.

In this research, the proposed FDIR mechanism and the design of adjustable software for FDIR
only focus on ADCS of MDG satellite. Further researches could be done in order to apply for

FDIR of other subsystems and whole satellite system.

93|Page

Master’s Dissertation 2015

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

X. Olive, "FDI(R) for Satellite: How to Deal With High Availability and Robustness in
The Space Domain?," Int. J. Appl. Math. Comput. Sci, vol. 22, pp. 99-107, 2012.

Mak Tafazoli, "A study of on-orbit spacecraft failures," Science Direct, 2007.

David M. Hardland, Ralph D. Lorenz, Space system failures, Springer, 2006.

Shusaku Yamaura, Seiko Shirasaka, Takashi Hiramatsu, Miki Ito, Yuta Araki, Kikuko
Miyata, Tomomi Otani, "UNIFORM-1- First Micro-Satellite of Forest Fire Monitoring

Constellation project,” in Conference on Small Satellites, 2014.

F.N. Pirmoradi, F. Sassani, C.W. de Silva, "Fault detection and diagnosis in a spacecraft

attitude determination system," Acta Astronautica, vol. 65, pp. 710-729, 2009.

Mauricio N. Pontuschka, ljar M. da Fonseca, "FDIR for the IMU Component of AOCS

Systems," Mathematical Problems in Engineering, 2014.

Amitabh Barua, Purnendu Sinha, Kash Khorasani, "On the Fault Diagnosis and Failure

Analysis in the Satellite Attitude Control Subsystem," 2004.

Wilfried Ley, Klaus Wittmann, Willi Hallmann, Handbook of Space Technology, John
Wiley & Sons, 2009.

9 |Page

Master’s Dissertation 2015

[9] YONEZAWA Katsuo and HOMMA Masanori, "Overview of ETS-VIII Satellite,"
Journal of the National Institute of Information and Communications Technology, vol.

50, pp. 14-22, 2003.

[10] NASA Technique DFE-7, "Fault - Detection, Fault - Isolation and Recovery (FDIR)

Techniques".

[11] Isermann, Rolf., "Process fault detection based on modeling and estimation methods—a

survey," Automatica, vol. 20, no. 4, pp. 387-404, 1984.

[12] Frank, Paul M., and Xianchun Ding., "Survey of robust residual generation and
evaluation methods in observer-based fault detection systems,” Journal of process

control, vol. 7, no. 6, pp. 403-424, 1997.

[13] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault

Tolerance, Springer, 2006.

[14] Yvon THARRAULT, Gilles MOUROT, Jose” RAGOT, "Fault detection and isolation
with robust principal component analysis," in Mediterranean Conference on Control and

Automation, Ajaccio, France, 2008.

[15] Wallace R. Blischke, D. N. Prabhakar Murthy, Reliability: Modeling, Prediction, and

Optimization, Jonh Wiley and Sons, Inc, 2000.

9% |Page

Master’s Dissertation 2015

[16] Fatemeh SalarKaleji, Aboulfazl Dayyani, "A survey on Fault Detection, Isolation and
Recovery (FDIR) Module in Satellite Onboard Software,” Recent Advances in Space
Technologies (RAST), pp. 545 - 548, 2013 .

[17] Alexandra Wander, Roger Forstner, "Innovative Fault Detection, Isolation and Recovery
on-board Spacecraft: Study and Implementation using Cognitive Automation,” in 2013

Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, 2013.

[18] Vinod Kumar, A.K.Kulkarni, K.Parameshwaran, R. Pandiyan and N.K.Malik, "ON-
BOARD AUTONOMY FOR ISRO GEOSYNCHRONOUS SPACECRAFT," Advances
in the Astronautical Sciences, vol. 145, pp. 109-118, 2012.

[19] Walton R. Williamson, Jason L. Speyer, Vu T. Dang, and James Sharp, "Fault Detection
and Isolation for Deep Space Satellites,” JOURNAL OF GUIDANCE, CONTROL, AND
DYNAMICS, vol. 32, no. 5, pp. 1570-1584, 2009.

[20] G. N. Ashtiani, "Fault Detection and Isolation in Spacecraft Attitude Control System
Using Parity Equation Method," 2007.

[21] Hossein Bolandi, Mostafa Abedi and Mehran Haghparast, "Fault detection, isolation and
accommodation for attitude control system of a three - axis satellite using interval linear

parametric varying observers and fault tree analysis," Aerospace Engineering, 2014.

[22] MicroDragon Development team, "Mission Definition Doccumentation,” 2015.

% |Page

Master’s Dissertation 2015

[23] National Aeronautics and Space Administration, "Failure Modes, Effects and Criticality

Analysis (FMECA)," 2010.

[24] Michael Stamatelatos, William Vesely, Joanne Dugan, Joseph Fragola, Joseph Minarick,
Jan Railsback, Fault Tree Handbook with Aerospace Applications, 2002.

[25] Nadjim M. Horri, Phil Palmer, "Practical Implementation of Attitude-Control Algorithms
for an Underactuated Satellite,” Journal of Guidance, Control and Dynamics, vol. 35,

2012.

[26] ZHENG Min-jie, XU Shi-jie, "Backstepping Control for Attitude Control System of an

Underactuated Spacecraft,” Journal of Astronautics, 2006.

[27] N. G. Leveson, "Software Challenges in Achieving Space Safety," Journal of the British
Interplanetary Society, vol. 62, 20009.

[28] Ali Zolghadri, David Henry , Jer ~ ome Cieslak, Denis Efimov, Philippe Goupil, Fault
Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles: From

Theory to Application, London: Springer, 2014.

[29] Sanford Friedenthal, Alan Moore, Rick Steiner, A Practical Guide to SysML: The System

Modeling Language, Elsevier Inc., 2012.

[30] JR Wertz, DF Everett, JJ Puschell, Space mission engineering: The new SMAD,

Microcosm Press, 2011.

97|Page

Master’s Dissertation 2015

98|Page

Master’s Dissertation 2015

Appendix

Simulation source code

/et s st sk ste sk she sk sk steskeste st s sk st sk steste sk s ke skt st sk sk stestestesteste sk skt sk stestesteste s st steste st stk shestestestesteste sk stk ke sksteste stk st stk sk skttt sk sieloskeskokskolsiek sk

//

//

//

//

//

//

HEHHHAR AR AFIRFHF IR R RIA R RRR R HA AR R R RRA TR FRRARRRAA AR AR/
#include "mbed.h"

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "MSCFileSystem.h"

g
DigitalOut myled(LED1);

Serial sat(USBTX, USBRX); //satellite model

Serial com2(p9, p10);

Serial com3(p13,p14);

Serial com(p28,p27); //communication

//LocalFileSystem local("local");
MSCFileSystem msc("usb");

/et steskeste sk shesk sk stestesteste st sk stk st steste stk siestesteste stk sk stestestesteste sk stk st stestestestesesteskeste stk skttt sttt skt siestestestetoslekostetokest skelotstekosiolskeslokskolosiolskekor

// Reaction wheel
#define I_rw 0.0007

// OBC cycle time
#define obc_dt 0.1

//PD Control gains
#define Kp 1.0
#define Kd 30.0

#define fog_er 0.005

#define Ix 2.08
#define Iy 2.08
#define Iz 1.88

//Constants

#define pi 8.14159265359
#define rad2deg 180.0/pi
#define deg2rad pi/180.0

/R RA IR F AR AR AR AT IR IR FH AR IR R AR
FILE* tp;

char msg[207;

int pos[37;

char isolation[[207], recovery[207;

char * pch;

char d, comm, fault_id,;

int ¢, f_active;

9|Page

Master’s Dissertation 2015
int indicator, fun;

float q1, q2, q8, q4, q1_ref, q2_ref, q3_ref, q4_ref;
float phi, theta, psi, theta_ref, phi_ref, psi_ref;
float w1, w2, w3, wi1_dot, w2_dot, ws_dot;
float V1, V2, V3, V1_dot, V2_dot, V3_dot;
float p_w1, pl1_w1, p2_w1, p3_wl;

float p_w2, p1_w2, p2_w2, p3_wg;

float p_w3, p1_w3, p2_w3, p3_w3;

float T'1, T2, T3, T_rwl, T _rw2, T _rws;
float norm_q, h_rw1, h_rw2, h_rws;

float eql, eq2, eq3, eq4, Wrwl, wrw2, wrws;
float w1_est, w2_est, w3_est;

float w_rwl, w_rw2, w_rws;

float ph_rw1, ph_rw2, ph_rws;

int fault_flag;

float q1_e, q2_e, q3_e, q4_¢;

inti=o0;

float t = 0.0;
char msg1[2567;
int mode;

int t_count;

/e st s steskeste sk shesk sk stestesteste st sk stk st steste st siestesteste stk sk stestestesteste sk stk st stestesteste sttt stk sk skesiesteststesk skt skt stesteskekostestetosioksioloskelokosiol sielokeslkolsiolsiekok

int MidCopy(char* outString, char* inString, int startPos, int stopPos)

int index = 0;

int i;

for(i = startPos - 1; 1 < stopPos; i++) {
outString[index’ = inString[i7];
index++;

}

//NULL terminate it
outString[index’] = 0;
return O;

}

//isolation_ 1

int disable_fog_x()

{
wl =0;
return O;

//isolation_2
int disable_fog_y()

w2 = 0;
return O;

//isolation_3
int disable_fog_z()
{

w3 = 0;
return O;

H

//recovery_1
void get_est_value_fog_x()

{

w1l = wl_est;

100|Page

Master’s Dissertation

//return 0;
}
//recovery_2
void get_est_value_fog_y()
{
W2 = w2_est;
//return 0;
}
//recovery_3
void get_est_value_fog_z()
{
w3 = wd_est;
//return 0;

}

2015

/el st s st sk ste sk she sk sk stesteste st s sk st ske ket st s ke skt st sk sk stestestesteste sk skt sk stesteseste s st st st st stk sheskesteste st stk stk sk stestestestsek stk skekoskeskokstekosiok skelokestkolosiolskelkok

int find_fault_id(char fault_id)

{

int current_pos = 0;

//com.printf{"Finding fault ID: %c\n" fault_id);

//rewind (fp);

//fp = fopen("/IOCal/FIR.tXt", "I’");
fp = fopen("/usb/FIR.txt", "I‘");

d=o0;
¢ = fgetc(fp);
while (¢ |= EOF) {

//printf("On the way\r\n");

c= fgetc(fp);
if (¢ =="\n') {

//printf("start looking in a new line");

d = fgetc(fp);

}
if (d == fault_id) { //found fault ID that we are looking for

//printf{"Hello!");

current_pos = ftell(fp);

*msg = NULL;

//tsetpos(fp, ¤t_pos+1);
fseek (fp, current_pos -1, SEEK_SET);

tgets(msg,20,tp);
//printf("%s",msg);

//com.printf("Found fault id in library\n");

fclose (fp);
return (1);

H
H

//{_active = 0; ///temporary

fclose(fp);

//com.printt ("Fault_id not found!\n SateMode is initiated\n");
return (0); //fault ID not found

}

/e stk ke sk ke sk she sk sk ke sk st sk s sk sk ke sk shesk sk sk ke sk ke sk shesk sk sk sk ke sk s sk sk ke sk sheske s st s ke sk sk sk sk she sk sk sk sk sk sk sk sk sk sk skt sk sk sheske s sk sk sk sk sk stk she sk sk sk skeskeskoskeok

int find_IR_function()

{

//com.printf{"Finding isolation, recovery function in library!\n");
//looking for position of ;' in the line

intj =0

for (inti = 0;1 < 20; i++) {

if (msgli] == ") {

101|Page

Master’s Dissertation

//printf{"possition of ; %d",i);
pos[j] =1
J++

}

H
//printf{"possition of ; %d %d %d\n",pos[07], pos[17,pos[27]);

if(j < 2) {

//com.printf{"No existing solution is found in library\n");

f_active = 0;

return (1); //no existing solution is found in library

}

//split string msg to find isolation, recovery func
MidCopy(isolation,msg,pos[0]+2,pos[1]);
MidCopy(recovery,msg,pos[17]+2,pos[27]);

//com.printf{"Found Isolation func: %s\nFound Recovery func: %s\n" isolation, recovery);
//com.printf{"Execute Isolation, Recovery functions:\n");

return (0);

}

2015

/et sk steskeste sk shesk sk stesteste st st sk stk st steste stk s ke steste stk sk stestestesteste sk stk stestestestesteste skt st stesteste st skt stesteste stk skt sksteste skl sttt sk sieolostelotosiokosiolokeskoksioksiek sk

int perform_isolation()

//com.printf{"Isolation:\n");
pch = strtok(isolation,",");
while (pch |= NULL) {
//printf{("Func %s, ",pch);
char func = *pch;
switch (func) {
case '1":
//com.printf{"function 1 is executed\n");
disable_fog_x();
break;

case '2"
//com.printf{"function 2 is executed\n");
disable_fog_y();
break;

case '3"
//com.printf{"function 3 is executed\n");
disable_fog_z();
break;

case '4':
com.printf{"function 4 is executed\n");
break;

case '5"
com.printf{"function 5 is executed\n");
break;

case '6":
com.printf{"function 6 is executed\n");
break;

case '7":

com.printf{"function 7 is executed\n");
break;

102|Page

Master’s Dissertation

case '8':

com.printf{"function 8 is executed\n");

break;

case '9":

com.printf{"function 9 is executed\n");

break;

default:

com.printf{"No such isolation function is available\n");

break;

pch = strtok (NULL, ",");
H

return (0);

}

2015

/*******%k***********************************%k**************%é******%***********************

int perform_recovery()
{
//com.printf{"Recovery:\n");
pch = strtok(recovery,",");
while (pch = NULL) {
//printf{("Func %s, ",pch);
char func = *pch;
switch (func) {

case '1"
com.printf{"function 1 is executed\n");
get_est_value_fog_x();
break;

case '2"
com.printf{"function 2 is executed\n");
get_est_value_fog_y();
break;

case '3":
com.printf{"function 3 is executed\n");
get_est_value_fog_z();
break;

case '4":
com.printf{"function 4 is executed\n");
break;

case '5":
com.printf{"function 5 is executed\n");
break;

case '6"
com.printf{"function 6 is executed\n");
break;

case "T"
com.printf{"function 7 is executed\n");
break;

case '8"
com.printf{"function 8 is executed\n");
break;

103|Page

Master’s Dissertation

case '9":
com.printf{"function 9 is executed\n");
break;

default:

com.printf{"No such recovery function is available\n");

break;
H
pch = strtok (NULL, ",");
b

return (0);

}

2015

/et stk st ske ke sk sk sk kst ste sk st sk skt sk stesteseste s ke skt st sk sk stestestesteste sk skt sk stesteseste s st skt stk s ke steste st ste sk skt sk stestesteste sk sieste st st stk stttk kel skekokestkoksieok

// Function: modify_lib

// To modity the FIR library by replace existing id by new id

// Input: index - index (location) of id in FIR lib
// ¢ - new id want to put in lib
// Return; NONE
void modify_lib(int index, int ¢)
{
tp = fopen("/usb/FIR.txt", "r+");
fseek (fp, index, SEEK_SET);
fputc (c, fp);
fclose(fp);
b

//Function: add_new_line
// To add new line to FIR lib
//input: data in new line
//Return NONE
void add_new_line(char * data)
{
//tp = fopen("/local/FIR.txt", "a");
tp = fopen("/usb/FIR.txt", "a");
//tseek (tp, 0,SEEK_END);
tpute("\n',fp);
fputs (data,tp);
*msg = NULL;
fclose(fp);
H

/***

void getline()

for(int i=0; 1<20; i++) {
msg[i] = com.getc();
ifimsg[i] == ") {
msg[i] = 0;
return;

}

//error("Overflowed message limit");

}

void get_input() {
while(sat.getc() !1="$'); // wait for the start of a line
for(int i=0; 1<256; i++) {
msg1[i] = sat.getc();
iffmsg1[i] == ") {
msgl1[i] = 0;

104 |Page

Master’s Dissertation 2015

//pe.printf{"%s\r\n",stt_msg);
return;

}
H

//error("Overflowed message limit");

}

JEEEEHAFRRFAE AR HFF AR AA R AAE AR HAA A IR A AR AA R FF AR AR A AR A AN K
void RW_control()

sat.printf{"%f %f %t %d\n",T1,T2,T3,mode);

}
//
float sign(float value)
{
if (value >= 0)

return 1.0;
else return -1.0;

//end of sign

void omega2quat()

{
ql=ql+ 05%*(q2*w38-q3* w2+ q4*wl) *obc_dt;
q2=q2+ 0.5*(-ql*w3+q3*wl+ q4* w2) * obc_dt;
q3=q3+ 0.5*(ql*w2-q2*wl+q4*ws) *obc_dt;
q4=q4+ (-0.5)% ql*wl+q2*w2+q38*w3) *obc_dt;

norm_q = sqrt (q1 ¥ q1 +q2 *q2 + q3 ¥ q3 + q4 * q4) ;

ql =ql /norm_q; q2=q2/norm_q; q8=q38/ norm_q; q4 = q4 / norm_g;

}

/*** K 3Kk Sk Sk Sk Sk sk sk sk sk sk sk sk sk sk sk sk sk ke sk Sk Sk sk sk sk

int main()

com.baud(9600);
sat.baud(115200);

//init values

//

//Time count = 0 at the begining
t_count = 0;

//set fault flag = 0, since there is no dectected failure
fault_flag = 0;

//ADCS Default Mode
mode = 2;

//Initialization
//Omega satellite
wl=0; w2=0; WwW3=0

//Estimation of omega satellite
wl_est=0,; w2_est=0.,; w3_est=0,;

//No momentum at begining
ph_rwi =0; ph_rw2=0; ph_rws=0,;

//RW rotation speed

105|Page

Master’s Dissertation 2015
wW_rwl =0.; w_rw2=0.,; w_rw3 =0,

//Quaternion init
q1=0; q2=0; q3=0; //q4=1;

f_active = 1;

com.printf{"Connected!\r\n");

//tp = fopen("/local/FIR.txt", "r");

tp = fopen("/usb/FIR.txt", "r'");

//printf("File opened\r\n");

//fprintf(fp,"l;1,2,3;1;\n2;3;41~;\n");

//rewind (fp);

//tseek (1p, 16, SEEK_SET);

//tpute('s’ tp);

//modify_lib(16,'5");/ /¥#sssssssimsionsionkkkionkionrkrkrik CONFIRMED_OK
//add_new_line(""\n4;8;2;"); / /F#HFRddkdpsdkokbopdokokkok ok okt CONFIRMED _OK
fclose(fp);

//tind_fault_id('4");
//tind_IR_function();
//perform_isolation();
//perform_recovery()
while (1) {
if (com.readable()) {
comm = com.getc();
//com.putc(comm);

’

if (comm =="f') fault_id = com.getc();
if (comm =="a") {
getline();

add_new_line(msg);
//com.printf{"%s\r\n",msg);

}

if (comm == 'm") {
getline();
sscanf{msg,"%d,%s", &indicator, &fun);
modify_lib(indicator, fun);

// control functions

if (f_active == 1) {
//STT_get_output();
//FOG_get_output();
//ADS_get_ref();

//pS_w3 = p2_w3; p2_w3 = pl_w3; pl_w3 = p_w3; p_w3 = W3;
//pS_wW2 = p2_w2; p2_w2 = pl_w2; pl_W2 = p_W2; p_W2 = W2;
//p8_wl=p2_wl;p2_wl=pl_wl;pl_ wl=p_wlp_wl=wl;

//Information input from dynamics simulation computer

get_input();
sscanf{msg1,"D,%t,%t,%t,%f, %f, %f, %t, %t, %1, %1, %1, %, %1", &w1, &we2, &ws, &ql1, &q2, &q3,
&q4, &phi_ref, &theta_ref, &psi_ref, &w_rwl, &w_rw2, &w_rw3s);

//Detect,
if (t_count >= 5) {
if (abs(w1 - wl_est) > fog_er) {
//wW1 = wl_est;
fault_id = "1
//tault_flag = 1;

if (abs(w2 - w2_est) > fog_er) {

106 |Page

Master’s Dissertation 2015

//wW2 = w2_est;
fault_id ='2';
//fault_flag = 1;

if (abs(w3 - w3_est) > fog_er) {
//w$ = w8_est;
fault_id ="'3',
//fault_flag = 1;
}
}

// fault isolation, recovery
if (fault_id = 0) {
if (find_fault_id(fault_id)) {
find_IR_function();
perform_isolation();
perform_recovery();

*msg = NULL;
fault_id = 0;
} else {
fault_id = 0; //temporary///

H
}

// com2.printf{"%f,%£,%£,%,%F,%£,%f\r\n", w1, we, ws, q1, q2, q3, q4);

//sscanf{fog_msg,"D,%t,%t,%t", &w1, &w2, &w3);
//sscanf{stt_msg,"D,%f,%f,%f,%t", &q1, &q2, &q3, &q4);
//sscanf(stt_msg,"D,%f,%f,%f,%t", &q1_ref, &q2_ref, &q3_ret, &q4_ref);

//Target direction calculation
//quaternion target is calculated from set of Euler angle
//provided by ADS
q4_ref = cos (phi_ref / 2.0) * cos(theta_ref / 2.0) * cos (psi_ref / 2.0) +

sin (phi_retf / 2.0) *sin (theta_ref / 2.0) * sin (psi_ref/ 2.0);
q1_ref = sin (phi_ref / 2.0) * cos(theta_ret'/ 2.0) * cos (psi_ref / 2.0) —

cos (phi_ref / 2.0) *sin (theta_ref / 2.0) * sin (psi_ref / 2.0);
q2_ref = cos (phi_ref / 2.0) * sin(theta_ret / 2.0) * cos (psi_ref'/ 2.0) +

sin (phi_ref / 2.0) *cos (theta_ref / 2.0) * sin (psi_ref/ 2.0);
q3_ref = cos (phi_ref / 2.0) * cos(theta_ref / 2.0) * sin (psi_ref / 2.0) —

sin (phi_ref / 2.0) *sin (theta_ref / 2.0) * cos (psi_ref/ 2.0);

//Quaternion positive

it (q4_ref <=0) {
ql_ref = - ql_ref;
q2_ref = - q2_ref;
q8_ref = - q3_ref;
q4_ref = - q4_ref;

}

//PD controller

//Calculate quaternion error

//
eql = q4_ref * q1 + q3_ref * q2 - q2_ref * q3 - q1_ref * q4;
eq2 =-q3_ref * q1 + q4_ref * q2 + q1_ret* q3 - q2_ref * q4;

eq3 = q2_ref* q1 - q1_ref * q2 + q4_ref * q3 - q3_ref * q4;
eq4 = ql_ref* q1 + q2_ref * q2 + q3_ref * q3 + q4_ref * q4;

// tprintf (' % £ % t % £ %t\r\n', eql, eq2, eq3, eq4);

107 |Page

Master’s Dissertation 2015

//Define travel trajectory
eql = sign (eq4) * eql;
eq2 = sign (eq4) * eq2;
eq3 = sign (eq4) * eqs;

//Required torque need to be generated by actuators to achieve control target

T1=-Kp*eql-Kd*wl;
T2 =-Kp * eq2 - Kd * wg;
Ts =-Kp *eq3 - Kd * ws;

//Use required torque to control RWs
//Send control command to RW's

RW_control();
//Satellite dynamics simulation for FDIR purposes

//Reaction wheel model
//Angular momentum generated from RW
h_rwl =1Lrw* w_rwl;
h_rw2 =1_rw * w_rwg,
h_rws =1_rw * w_rws;

//Torque generated

T_rwl =-(h_rw1 - ph_rw1)/obc_dt;
T_rw2 = -(h_rw2 - ph_rw2)/obc_dt;
T_rws = -(h_rw3 - ph_rws)/obc_dt;

//Save it for the next cyle

//use previous value to calculate derivation
ph_rwl =h_rwi;

ph_rw2 = h_rwe;

ph_rws = h_rws;

// Satellite model

//

//Derivative of omega sat

wl_dot = (T_rwl + w3_est * (Iy * w2_est + h_rw2) - w2_est * (Iz * w3_est + h_rw3)) / Ix;
w2_dot = (T_rw2 - w3_est * (Ix * wl_est + h_rwl) + wi_est * (Iz * w3_est + h_rw3)) / Iy;
ws_dot = (T_rws + w2_est * (Ix * wl_est + h_rwl) - wil_est * (Iy * w2_est + h_rw2)) / Iz;

// Estimate next state of satellite omega
wl_est = wl_est + wi_dot * obc_dt;
w2_est = w2_est + w2_dot * obc_dt;
w$_est = ws_est + ws_dot * obc_dt;

// tprintt (' % £ % £ % £ \r\n', w1, w2, w3);

//Estimate next state of quaternion
//Estimate the normalize

ql_e=ql_e+ 0.5%*(q2_e* w3_est-q3_e* w2_est + q4_e * wl_est) * obc_dt;
q2_e=q2_e+ 0.5*(-ql_e* w3_est +q3_e* wl_est + q4_e * w2_est) * obc_dt;
q3_e=q3_e+ 0.5*(ql_e* w2 est-q2_e* wl_est + q4_e * w3_est) * obc_dt;
q4_e =q4_e + (-0.5)%(ql_e* wl_est + q2_e * w2_est + q3_e * w3_est) * obc_dt;

norm_q = sqrt (ql_e ¥ ql_e +q2_e * q2_e + q3_e * q3_e + q4_e * q4_e);
ql_e =ql_e / norm_g;
q2_e = q2_e / norm_g;
q8_e = q3_e / norm_g;

108 |Page

Master’s Dissertation 2015
q4_e = q4_e / norm_g;

//Telemetry

//com1.printf("%t %f %t %d\n",T1,T2,T3,mode);
//com8.printf{"%t %f %\r\n",w1-w1_est, w2-w2_est, w3-w3_est);
//com8.printf{"%f %f %\r\n", T1-T_rw1, T2-T_rwe, T8-T_rw3);

//TLM_CMD.printf{("%f %t %t %t %f %t %t %t %t %t %d\r\n",w1,w2,w3,q1,q2,93,q4,T1,T2, T
3 fault_flag);

//com8.printf{"%t %t %t %t %t %t %t %t %t %f %d\r\n",w1,w2,w3,q1,92,98,q4,T1,T2, T3, fault_{l
ag);
//com.printf("%d\r\n" fault_flag);

myled = !myled;

t_count = t_count + 1;
if (t_count > 254) t_count = 5;

H
H

return O;

/et steskeste sk shesk sk stestestesteste sk stk st steste st siestesteste stk sk stestestesteste sk stk sttt stestesie sttt stk siekesiestetstek skl sistotestek skokestetsiolsiolokeslolsiolsielokskolsiolskek /

109|Page

