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Abstract: Assuming identical firms, a linear market demand function and a single 

factor of production, labour, we analyse the existence and stability of a 

homogeneous Cournot duopoly facing imperfect competition in both product and 

factor markets. We establish the possibility of antisymmetric equilibria separated 

by a unique symmetric equilibrium. Under certain assumptions on the wage 

function we are able to demonstrate local stability of the unique symmetric 

equilibrium, and its global stability under the assumption of a convex reaction 

function.

1. INTRODUCTION

 Since Theocharis (1959), many economists have analysed the stability of the 
Cournot oligopoly equilibrium under various assumptions. A summary of the 
main results up to 1976 has been given by Okuguchi (1976) and up to 1990 by 
Okuguchi and Szidarovszky (1990). All these results, however, have been obtained 
on the basis of cost functions for oligopolistic firms assumed to be facing perfect 
competition in factor markets. The cost function approach is appropriate only if 
firms engage in productive activities in perfectly competitive factor markets . 
Okuguchi (1993, 1995) was the first to formulate the Cournot Oligopoly model 
where product and factor markets are simultaneously imperfectly competitive and 
established the existence of a unique Cournot oligopoly—oligopsony equilibrium

1 Aknowledgement: The authors wish to thank an anonymous referee for many worth
wile comments 
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without recourse to the cost function approach. 
 In this paper we will examine the stability properties of the equilibrium for his 

model after preliminary analysis of its existence. In so doing we will assume that 
the number of firms is two and that there is one factor. We will furthermore 
assume that the firms are symmetric. Initially it might appear that our symmetric 
Cournot duopoly—duopsony has only a symmetric equilibrium but we will show 
that this is not the case. Indeed our model may have a symmetric equilibrium as 
well as multiple asymmetric ones. Novshek (1984), Okuguchi (1984) and De Fraja 

(1994) have pointed out the possibility of existence of asymmetric equilibria for 
the symmetric Cournot oligopoly where all firms have an identical cost function. 
Okuguchi and Chiarella (1994) have analysed the stability properties of asymmetric 
equilibria for symmetric Cournot oligopoly in perfectly competitive factor markets.

2. THE MODEL

 We adopt the framework of Okuguchi (1993) with the special case of identical 
firms, linear market demand function, and most importantly, we assume a single 
factor of production, namely labour. 

 Thus each firm has a production function given by 

 xi=Lc, 0<J3<1, i=1,2,(1) 

where xi and Li are respectively output of, and labour employed by, firm i. Setting 

Q = x 1 + x2 ,(2)

we assume a linear inverse demand function which we write as

p(Q) = a — bQ (a > 0, b > 0) .(3) 

We assume the wage rate is given by w(L), w'(L) > 0 where L--.1,i+  L2 and at 
subsequent points in our discussion we will invoke one or other of the following 
two assumptions about the wage function:— 

 ASSUMPTION W 1.

w'(L)+L1w"(L)>0 for 1=1, 2 . 

This assumption states that the marginal labour cost of each firm is a non-
decreasing function of the labour input of the rival firm. 

 ASSUMPTION W2. 

w(L) = yL8 , y>0  , 0�_1  . 

We observe that assumption wt is satisfied by this flexible functional form which 
imposes a convex wage function. 
The profit function of firm i is given by
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 hi  =  [a  —  b(xi + x2)]xi — w(L)Li , 

= [a — b(LI1 + L2)] Lf — w(L 1 + L2)Li , (i= 1, 2) . (4) 

Each firm seeks Li so as to maximise hi. However, since there is a 1-1 

correspondence between Li and xi we can equally allow xi to be the decision 

variable. We follow this latter choice as it simplifies slightly the algebra in the 

ensuing analysis. Thus in terms of output, the profit of firm i may be written 

il = [a — b(xi + x2)]xi — 4116 WOCll + xV) , (i = 1, 2) . (5) 

We note that 

    anili/~ -il/~i/~i/Qt/~          =a—b(2xi+x~)—xi[w(xi+ .4113)-Fxiw(xi+x2)] , 
axi 

(i 0j, i, j = 1, 2) .(6)

            3. REACTION FUNCTIONS AND EQUILIBRIUM ANALYSIS 

 Setting marginal profit of firm 1 to zero we obtain the equation that determines 

firm l's reaction function viz. 

       

a-2bxl—bx2+ 1 xllQ-i[w(xi/fl+xzlP)+xi/flw'(xl-lls+x2/Q)] . (7) 
fl 

Define the function 

        g(x, y)= by+ 1 x"-1 [w(xi/p+y')+xilfiw'(xi/a+ yilfi)] . (8) 

Then equation (7) may be written 

a — 2bx i = g(x i, x2) .(9a) 

Similarly firms 2's profit maximising condition may be rewritten 

a— 2bx2 = g(x2, xi) .(9b) 

Equations (9) determine each firm's reaction function, viz 

xi = G(x2) ,(lea) 

x2=G(xi) .(lob) 

We seek to determine the slope and convexity/concavity of the function G. The 
main properties of this function are stated as: 

PROPOSITION 1. Under assumption wt the function G has the properties 

 (i) G'<0, 
 (il) G(0)<a/2b,
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 (iii)  G(a/b)  =  0. 

 Proof From equation (8) we may calculate the partial derivatives (using 
subscripts 1, 2 to denote partial derivatives with respect to first and second 
arguments) 

gr(x,Y)=1 1---_1 X US-2[w(•)+xlIPw'(•)] 

                     +  l2xui,p-'[2w'(-)+xi//3w"(.)](11a) 

            g2(x, Y)=b+----12(xy)llfi-l[w'(.)+xi/aw„ (•)]. (lib) 

We note that under assumption wt we may assert 

gr(x,Y)>0, g2(x,Y)>0,(12) 

for all x >0, y > O. 
 Consider the equation 

a-2by=g(y, x) ,(13) 

which defines the reaction function 

y = G(x) .(14) 

Differentiating (13) implicitly and rearranging we find 

                     dy---=  —g2(Y, x)                                           (15) 
                   ox (2b + gr(y, x)) 

which in light of (12) implies that G' <0 under assumption wt i.e. the reaction 
function is downward sloping over its domain. 

 We then note that G(0) is given by the solution of 

a-2by=g(Y, 0)=---11 [w(yr/fl).~yr we(yr n 

By assumption wt and the further assumption on w'(•) that 

rim y2lls-lw"(ylifi)=0 
, y-+o 

the function g(y, 0) is increasing from the origin. Hence G(0) must satisfy 

G(0) <----.                 2b 
The value of x such that G(x) = 0 is given by the solution of
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 a  —  2b.0  =  g(0, x)=bx . 

Hence G(a/b) = 0.• 

 In order to investigate the concavity/convexity of G we calculate the second 
derivatives 

glt(x,y)=---1 1---—1 1  —2 xi/a-3[w(•)+xi/flw'(•)] (  
fl /3 fl 

              + 3-- 1                        —1)x2/°- 3 E2WV X" W"( 
                         /62 /l 

                  + lsxs/13-3 [3W"(')+xi/Qw"()], 

922(x, y)=-----121---—1 xi/~-1yl/Q-2[W'(.)+xi/~W"(•)] #1 

                  + 1 xl8s-ly2/13-2[W"(•)+X"Wm( )]                 $3 

912(x, y)—a-l —1)xi/P-2yl/Q-l[W'(.)+xi/Pw"(•)] 
            l~# 

+----lsx2/f2yl/13-1 [2W"(•)+xi/)W"(•)] .            f 

We note that under assumption W2 we may assert 

922(x, y) �0 , 912(x, Y)�0 , (16a) 

for all x>0, y>O. 
  Furthermore 

gi1(x,y)>0,(16b) 

under assumption W2 provided /3 < 1/2. However for 1/2 < /3 < 1, g 11(x, y) is difficult 
to sign in general. 
Differentiating implicitly once again we obtain 

           —(2b+91)d22=glldy2+2gl2----dy+922(17) 
        dxdx ox 

The coefficient of d2y/dx2 on the LHS is clearly negative, however from equations 

(13) we see that the term on the RHS is of indeterminate sign (even under 
assumption W2), so we need to consider the possibilities of G" > 0, G" < 0 and G" 
being of both signs over its domain. 

 Hence we can sketch in Fig. 1 all the possible configurations for the reaction 
function. The cases in which either G" > 0 or G"<0 clearly from geometrical
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Fig. 1(c). G" > 0 and <0 over its domain.
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considerations lead to a unique equilibrium point. However the case in which G" 
is both positive and negative over its domain raises the possibility of multiple 
equilibria. 
 Equilibrium points are given by the simultaneous solution of the equations 

 y  =  G(x)  , 

x = G(y) . 

Clearly symmetric equilibria (i.e. z = y) may exist. On the other hand if the pair 

(z, y)Q z) is an equilibrium solution then so is the pair (y, x). Such equilibria 
are antisymmetric and occur in pairs. No other type of equilibrium is possible. 

 Solutions for y satisfy 

y = G(G(y)) = H(y) •(18) 

We observe that 

H'(y) = G'(G(y))G'(y)> 0 .(19) 

We note also that 

                H(0) = G(G(0)) > 0 ,(20a) 

and that

H a= G G a ))=G(0)<   a<  a.(20b) 
b b2b b 

It follows that H(y) intersects y at least once from above as shown in Fig. 2. 
However multiple equilibria remain a possibility at this stage since we are not 
able to tie down the sign of H" without further restrictions. 
We first prove a proposition about symmetric equilibria: 

 PROPOSITION 2. There is a unique symmetric equilibrium (z, x) which is 
characterised by the property 

0 < H'(z) < 1 . 

 Proof. We note that a symmetric equilibrium point is determined by 

xi =HO 1) , X2=H(x2) 

We set 

xi =z2 -z •(21) 

Let w'(•), w"(•) represent the first and second derivatives of the wage function 
evaluated at the equilibrium point. 

 From equation (15) we can (after a slight rearrangement) write 

GN=  P+8(22)
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where

 pb+----l2z2tl~a-l'[w'(•)+z" w„(')],(23a) 

(5           btl —1 xi/P-2[w(.)+XI//3w'(.)]+ 1 Z2(1/fl-l)w'(').(23b) 

The assumption w' > 0 suffices to guarantee (5>  0, whilst assumption wt guarantees 

p>0. 
 It is then a simple matter to deduce that 

0501< 1(24) 

It follows from equation (19) that H'(x)< 1. It has already been demonstrated that 
H'(x) > 0. If follows that the equilibrium is unique. A consequence of proposition 
2 is that at a symmetric equilibrium H(y) cannot intersect the line y from below 
in Fig. 2 

 We note in order to obtain a pair of antisymmetric equilibria there will have 
to be multiple intersections of graphs of y and H(y). Given the properties of the 
function H already demonstrated multiple equilibria can only occur in odd numbers 

(we exclude consideration of tangency intersections which are structurally 
unstable). Fig. 2b shows the case of three equilibrium points. We state the following 

proposition concerning the disposition of symmetric and antisymmetric equilibria: 

 PROPOSITION 3. Antisymmetric equilibria (if they occur) are separated by the 
unique symmetric equilibrium. 

 Proof Our proof is based on geometric reasoning. 
 First we observe that the properties of the function G ensure that equilibrium 

points must lie within the square [0, a/2b] x [0, a/2b]. Secondly observe that 
antisymmetric equilibria by their definition lie on either side of the 45° line within 
this sequence. It follows that antisymmetric equilibria are separated by the unique 
symmetric equilibrium. 

 Thus in the case of these equilibrium points as in Fig. 2b, the pairs (xi, x3), 

(x3, xi) are the antisymmetric equilibria and the pair (x2, x2) is the symmetric 
equilibrium. For higher order multiple equilibria (i.e. 5, 7, 9 etc) the middle pair 
will always be the symmetric equilibrium, as illustrated in Fig. 2c for the case of 
5 equilibria. 

 We can assert the following proposition concerning multiple equilibria: 

PROPOSITION 4. Multiple equilibria of order 3, 7, 11, ... cannot occur. 

  Proof Suppose multiple equilibria of order 3 do occur. Then given the 

properties of the function H it must be the case that at the (middle) symmetric 
equilibrium H'> 1. This is so since at the middle equilibrium point the function
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H(y) intersects the line y from below in the hypothesised situation. 
 However we have shown in proposition 2 that at a symmetric equilibrium H' < 1. 

Hence equilibria of order 3 would imply a contradiction and cannot occur. 
 Similar reasoning applies to equilibria of order 7, 11 etc. 

 It does not seem possible to rule out multiple equilibria of order 5, 9, 13,  ... 
etc without imposing conditions on the function which are difficult to interpret 
economically. We leave as an open research question the conjecture that no multiple 
equilibria of any order can occur under the assumption  w'(L) > 0. We have not 
been able to generate any counter examples using graphical computer packages 
and the assumption W2. 

 Allowing increasing marginal product of labour would certainly introduce the 

possibility of multiple equilibria. This also remains a topic of future research.

                 4. DYNAMIC ADJUSTMENT AND STABILITY 

 We consider the adjustment process whereby each firm adjusts to desired output 
at some finite speed of adjustment i.e. 

=k[G(xz)—xi] ,(25a) 

5c2=k[G(xi)—x2] ,(25b) 

where k> O. 

 We consider here only the case satisfying; 

  ASSUMPTION W3. The function w(L) satisfies conditions guaranteeing that the 

function H only intersect the 45° line once. 

  Hence we are considering the case of a unique symmetric equilibrium. 
  In Fig. 3 we sketch the phase plane of the dynamical system (25), and its vector 

field. The direction arrows of the vector field suggest global stability of the 
equilibrium. We are able to prove some precise propositions about stability of 
the equilibrium. 

  PROPOSITION 5. Under assumption W3 the equilibrium point of the dynamical 
system (25) is locally asymptotically stable. 

Proof: The Jacobian of the dynamical system (25) at x is calculated as 

_ — k kG'(z) 
kG'(.) —k 

and we see that 

trace(f) = —2k<0, 

def(J) = k2 [ 1—[G'()]2]>0 [G'(50]2] (by equation 24) .
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Hence the result follows.• 

 PROPOSITION 6. Under the additional assumption that G"(x) > 0 for 0 < x < b/a, 
the equilibrium point of the dynamical system (25) is globally asymptotically stable. 

 Proof We note first that 

G'(0) = —---1, 
2 

which combined with the assumption G"(x) > 0 and the property G'(x) < 0 implies 

                      —1
2< G'(x) < 0 , 

for all x E (0, b/a). 
 The Jacobian of the dynamical system (25) at a general point (xi, x2) e (0, b/a) x 

(0, b/a) is given by 

                         —k kG'(x2)                   J _
kG'(xi) —k' 

from which

trace(J) = — 2k < 0 

def(J) = k2[1 — G'(x i)G'(x2)] > 0 . 

The result then follows by the Olech (1963) theorem. •
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5. CONCLUSION

 In Section 2 we have formulated the Cournot duopoly of identical firms facing 
imperfect competition in both the product and factor markets. In Section 3 we 
have established the possibility of the existence of both symmetric and asymmetric 
equilibria which exhaust the set of possible equilibria. We have further shown 
that the symmetric equilibrium is unique and will separate asymmetric equilibria 
if these occur. In Section 4, we have proven the local stability of this unique 
equilibrium assuming restrictions on the wage function which guarantee a unique 
symmetric equilibrium. Under the further restriction that the reaction function of 
each firm is convex we have established global stability of this equilibria. 

 Our analysis has been conducted using a linear inverse demand function, however 
we know that it is possible to obtain stability of the Cournot equilibrium under 

general demand functions containing the linear demand function as a special case, 
so we feel that this assumption may not be too restrictive. Furthermore, we have 
assumed away capital as a variable of the production function. In this sense what 
we have achieved in this paper is quite modest. However, we believe that we have 

provided a framework and useful reference point for further analysis of the dynamic 
properties of the Cournot equilibrium in imperfectly competitive product and 
factor markets. Further research should introduce the second factor of production, 
capital. It is also important to consider the effect on stability of the various 
expectational schemes discussed in Okuguchi (1976). We know from Chiarella 
and Khomin (1996) in the case of the standard (i.e. firms facing perfect competition 
in factor markets) Cournot model that this easily leads to the loss of local stability 
accompanied by Hopf bifurcations which indicate a fairly complex nonlinear 
dynamic behaviour.
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