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Abstract

This dissertation explores how to classify various facial expressions of a person using

an eyewear device where an array of optical sensors are embedded. The sensors can

measure the movement of facial muscles through the reflected intensity since the

movement causes the skin deformation around eyes.

Facial expression recognition can be done automatically using computer-vision

based approaches. However, there are the limitations of using a physical camera in

the environment such as occlusion and trackability. These are critical in daily life

scenarios.

The first contribution of the dissertation is the development of the eyewear device

that is capable of classifying the posed facial expressions in a supervised manner. This

approach uses photo-reflective sensors and machine learning methods. The eyewear

system can recognize eight basic emotions from the posed facial expressions with the

accuracy of more than 90 percent regardless of facial direction and removal/remount.

The second contribution is the classification of spontaneous facial expressions. The

initial field study was undertaken to see how the user changes the facial expressions in

daily life settings. Then, the mapping of the spontaneous facial expressions in daily

conversations was done. The method visually summarized five user’s facial expressions

in an unsupervised manner. It revealed how similar the expressions of each user are.

Then, the analysis of reading jokes with the device has been investigated. The sensor

data could show the user’s blinks, the line breaks, and the facial response of the user.

Finally, further usage of the eyewear device has been demonstrated. The input

techniques by eye gestures (7 kinds, nine users, average 92.9%) in addition to facial ex-

pressions and by rubbing the face (10 areas, five users, average 88.7%) are developed.
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It can expand the possibility of the interaction in the era of wearable computing.

In summary, this work aims to make the grounds of eyewear computing for classi-

fying the information from the faces in daily life. To this end, the device is developed,

and the usability is validated by the classification of prototypic expressions, sponta-

neous expressions of the users and the detection of eye movements and the intentional

gestures.
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1.1 Nonverbal Communication, Faces, Facial Ex-

pressions

We communicate every day. We express ourselves, understand others, and help each

other to lead a life. Even sometimes we find ourselves among others who speak a

language that we do not understand, and we can still communicate. We use not only

languages but also boy gestures, audio tones, head movements and facial expressions

to understand each other. We, as humans, are made given the existence of other

human beings.

The nonverbal communication is one of the essential elements in daily life [47,65].

When we are born, we do not speak languages. We learn the nonverbal channels

faster than langauges to understand the intention and emotion. Among the nonver-

bal channels, a face is regarded as one of the most important channels. All of us can

recognize other people’s faces with little effort as we have the special mechanism to

process faces [78]. Face conveys biological information such as age, sex, and nation-

alities. Besides, face conveys cognitive states. McDuff et al. could predict the stress

condition from the face in the video with far better than random chance [64]. Facial

expressions convey various complex information by activating more than 20 kinds of

facial muscles. According to Fasel and Luettin, the sources of facial expressions are

mental states, non-verbal communication, physiological activities and vital commu-

nication [20]. People attach various meanings to faces [72], and facial expressions are

vital in communicating a person’s intention, agreements and emotional states [42].

Faial expression is a highly sophisticated signal shown as a result and process of

dealing with meta-information about our behavior such as thoughts, emotion, per-

ception, and cognition. It is influenced by not only our inner state but also by our

body movement and environment. It is related to our mind since Andy Clark as-

serts the mind as the interaction among our brain, body and the environment [8]. As

such, interrupting appropriate meanings from facial expressions is a challenging prob-

lem. According to the diagram of Fussel et al., facial expression changes for various

reasons [20]. Parkinson argued that the primary role of facial expressions is commu-
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nicating social motives rather than emotional expressions [72]. Still, the recognizing

affect from facial expressions is still active research domains. The concept of affect

is firstly defined by Tomkins [96] as a biological aspect of emotions. There are two

streams of the emotional theories. First one is the Cannon-Bard theory which argues

that bodily response and emotion comes together [5]. Another one is James-Lange

Theory [37]. The theory describes the emotion in secondary as physiological response

comes first. Facial feedback hypothesis follows the theory [96]. It proposes that facial

movement activates a related emotional experience. Overall, the facial expressions

have various roles and meanings in our life.

The technology of facial expression recognition automatically leads to practical ap-

plications in various fields. First, recognizing facial expressions would be an essential

step towards improving the user experience for Human-Computer Interaction (HCI).

As nonverbal clues play an essential role in our everyday interpersonal interactions,

it seems natural to incorporate them in the field of HCI. Computing systems become

increasingly ubiquitous and support us in everyday situations, and they need to be

able to process more contextual information such as user’s intention and emotion to

improve the quality of HCI such as social robots. This application is also related to

the area of Affective Computing [75]. Second, the technology can be used for market-

ing such as analyzing the contents based on facial expressions and for online tutoring

the learners by noticing when the user gets confused. Third, logging facial expression

for long-term makes possible to manage user’s daily satisfaction and mental health.

Keeping the users in good health is useful. From the doctor’s perspective, the data

can be useful for understanding patients, such as pain detection and the treatment

of patients’ depression. This application has the potential to impact the society, yet

this needs to keep track of facial expression activity for long, or in daily life.
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Figure 1-1: The examples of action units of the upper face in the Facial Action Coding
System. The image is retrieved from [95]

1.2 Method to Recognize Facial Expression Auto-

matically

The study of measuring facial expressions started with the work of Darwin [12].

He showed the universality of emotional facial expressions. To objectively describe

the facial behavior, Ekman and Friesen developed the Facial Action Coding System

(FACS) [18]. FACS uses 44 action units(see Figure 1-1) for the description. It does

not directly convey mental activities, but the scheme has been widely used for the

measurement because of its objectivity. However, the manual coding of facial behav-

ior is costly. To tackle the issue, automatic facial expression recognition has been

advanced mostly in the area of computer vision [95]. According to Fasel et al. [20],

the general approach to automatic facial expression analysis (AFEA) in early stages

consists of three steps: Face acquisition, facial data extraction and representation,

and facial expression classification. The classification was based on basic emotion cat-

egories, FACS, and the dimensional description of affect [80]. Even more recently, the

standard pipeline is similar: pre-processing, feature extraction, and machine learn-

ing [57].
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The computer vision method has still difficulties in real life setting, and there

is still relatively little research that tries to detect facial expressions in a daily life

scene. The challenges of real-life detection using computer vision include real-time

and robust detection, the non-frontal face pose handling, occlusion handling, illusion

changes, context awareness, subtle expressions and individual differences [9]. Most

of the researches focus on basic emotion classification, and recently classification of

more diverse expressions such as pain detection and subtle expression is tackled.

Besides camera-based methods, many researchers used Electromyography(EMG)-based

sensors to measure facial expression. EMG can measure a subtle movement of facial

muscles. It has been used in the field of psychology [13].

In recent years, due to the development of wearable technology, detection of a

subtle smile and long-term recording in a real environment [34, 73] are carried out.

Wearables have benefits to track the user’s behavior regardless of the occlusions and

head poses that were problematic to computer-vision based approach.These methods

both extracted the features using Independent Component Analysis(ICA) and clas-

sify smiles with either model-based or machine learning-based approach. However,

the EMG signal is measured through the electrodes attached to the skin that needs to

be cleaned beforehand. The process requires setup time. Besides, it may be uncom-

fortable for some people in daily life. Also, the measurement of each facial muscles

requires one electrode. This limitation leads to usually ad-hoc application. For exam-

ple, wearable EMG devices as mentioned above can only detect smile-related facial

behavior.

1.3 Goal

The goal of the dissertation is to classify people’s diverse facial expressions in everyday

life by making an unobtrusive and truly wearable device. Concretely, the dissertation

aims at classifying the emotion-related facial expression, communication-related facial

expression, and cognitive aspect of facial expressions (i.e., eye movement) regardless

of the daily body motion such as head-pose change, walking, and hand gestures. By
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Figure 1-2: The proposed method can classify facial expressions in daily scenes.

considering the various aspects of facial expressions, it is possible to understand the

user’s mind deeply. It leads to the practical applications that enrich the daily life

by extracting various meanings of minds. To this end, the wearable device has been

developed. It can classify facial expressions, specifically in the form of smart eyewear

(see Figure 1-2). The dissertation uses the word "smart" in the sense that shows

the function to support human by information processing with the form that fits to

use in daily life. "Wearability" is important for tracking users’ facial expressions for a

long-term as the context of facial expression matters. The dissertation focuses on skin

deformations around the eyes caused by the movement of facial muscles in order to

detect facial expressions in an efficient and minimally obtrusive way. The expression of

eyes is an important part of the user’s emotional expression [52]. The system uses the

arrays of photo-reflective sensors that are integrated into the front frame of the glasses

to detect the skin deformation around the eyes. The sensors used for the prototype

are small enough that they can be potentially integrated into glasses for everyday
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usage. The approach improves the usability in a daily life setting, compared to the

camera-based systems. The device is also "wearable" in terms of social acceptability

as the design follows that of conventional eyewear. The high wearability can, in

turn, translate into higher tracking ability. It is the kind of wearable device that

can provide an excellent vehicle for understanding the user’s affective patterns in

day-to-day scenarios, as discussed by Picard et al. [76].

To summarize, the dissertation investigates the following research questions(RQs):

• RQ1: What is an effective and appropriate technology to recognize facial ex-

pressions in daily life? It leads to the following subquestions. How can the

wearable device recognize facial expressions? How can a wearable device be

designed in a socially acceptable and comfortable fashion? How can the tech-

nology be designed for an extended usage time?

• RQ2: What is a subset of facial expressions that can be robustly recognized by

the new device?

• RQ3: How can spontaneous expressions be classified with the new device? This

question leads to the following sub-questions.

– 3-1: How can spontaneous facial expressions be captured using posed emo-

tion labels?

– 3-2: How can diverse expressions aside from basic emotion labels be cap-

tured by the new device?

– 3-3: How can the new device capture the information aside from facial

expressions?

• RQ4: How can this technology be used for interactions with a computer-

application using intentional gestures?

Accordingly, the contributions of the dissertation are

1. Designing a truly wearable device that is socially acceptable and can be used

in various situaions[RQ1]. The device is designed and implemented in the form
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of fully-packaged, conventional-looking eyewear, so the device comfortably fits

the context of daily usage. The arrays of photo-reflective sensors on the device

cover most movements of the facial muscles. To this end, the device used small

photo reflective sensors that are small and light enough to be integrated into

everyday glasses. The method is 10,000 times efficient for classifying basic facial

expressions than the camera-based methods.

2. Recognizing the user’s expressions in the eight universal categories (neutral,

happiness, disgust, anger, surprise, fear, sadness, and contempt) with the wear-

able device in a reliable and robust manner[RQ2]. The acquired data are applied

to SVM for robust classification. It evaluated the robustness towards usage in

a daily life setting: when the user changes the head direction; when the user

uses the device on different days; when the user walks; and when the device

slips down the nose. The averaged accuracy of classifying facial expressions is

92.8%. Among basic emotions, neutral, happiness, anger, contempt are rela-

tively classified with high accuracy, and the system achieved more than 80%

accuracy for all the expressions.

3. Classifying spontaneous facial expressions[RQ3]. The long-term distribution of

the user’s spontaneous facial expressions was captured in a daily life setting

using the posed emotion labels. Also, facial expressions in daily conversations

were mapped and summarized in an unsupervised manner. Moreover, the clus-

ters of smiles were made across individuals. In the reading activities, the device

could capture the facial response and the eye movement(blinks and line breaks)

using independent component analysis.

4. Developing gesture detection algorithms[RQ4]. The system can detect eye ges-

tures using a Dynamic Time Warping(DTW) and 1-Nearest Neighbor approach.

The averaged accuracy of classifying eye gestures is 92.9% per user-dependent

training with 9 participants. The system can also detect hand-over-face ges-

tures of rubbing to 10 areas with a Random Forest approach. The averaged

accuracy is 91.1% per user-dependent training with 5 participants.
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1.4 Organization

This dissertation investigates how to classify various facial gestures in everyday life

using smart eyewear. The second chapter makes clear the position of this disserta-

tion by comparing other measuring technology such as camera and EMG. The chapter

also describes the meaning of the facial expressions the dissertation aims to detect by

introducing its application and further possibilities. Chapter 3 introduces the core

technology of this dissertation: the eyewear device with embedded photo reflective

sensor arrays. Chapter 4 validates the eyewear device in terms of the basic emotions

of facial expressions. This chapter is mainly based on the work [58,59,60]. In Chapter

5, the detection of spontaneous expressions is discussed. The chapter includes sponta-

neous emotion-related facial expressions classification, facial expression classification

in daily communication, and reading activity analysis that includes cognition-related

behavior such as blink and eye movement. Chapter 6 focused on the further possi-

bility of the device for interaction related to face. This chapter is extended from the

work [62]. Chapter 7 concludes the dissertation.
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Chapter 2

Related Work
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Figure 2-1: The preprocessing consists of face tracking, the facial landmark detection
and normalization. The image is retrieved from [57]

This chapter summarizes the computer vision based approach. Then, the follow-

ing subsection introduces the other methods to recognize facial expressions and its

application. In the last section, the chapter explains the position of the dissertation.

2.1 Computer Vision Based

Facial Expression Analysis

There are three primary approaches to coding facial expressions. Sign-based approach

tries to associate Action Units of the face with the emotions. Message-based approach

directly interprets emotion from faces. Other is a dimensional approach. Overall,

these approaches focus on emotion interruption from facial expressions. According

to the survey papers [1, 9, 57, 83], the basic pipeline of facial expression recognition

consists of three steps. The first step is preprocessing(face tracking and detection,

see Figure 2-1). The second step is feature detection, and the third step is expression

classification. The first step of face detection can be done by detecting permanent

facial features such as eyes or the dense set of features such eye contour areas. For

the detection, active appearance models are the standard choice [11]. It detects the

face by matching the pre-trained statical model of face appearances. The current

state of the art algorithm uses Deep Neural Network (DeepFace) [92] or a Faster R-

CNN based approach [77]. The CNN-based model is available online [46]. This step

includes the registration of the faces, which deal with the normalization, resizing and
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rotation of the head-poses to the reference model. For the feature extraction, geomet-

ric features(eyes, mouth and so on) or appearance features such as skin texture are

mainly used. The geometric features can be referred to the facial landmark, which is

mostly detected by the Supervised Descent Method (SDM) nowadays. The appear-

ance features are extracted by such as Local Binary Patterns (LBP) features, His-

togram of Oriented Gradients (HoG) features, Gabor features, Non-Negative Matrix

Factorization (NMF) methods, Deep Convolutional Neural Networks-based features

and autoencoders-based features. The Gabor features are popular as it is similar to

a human visual system. The features are the combination of applying various Gabor

filters that detect the specific frequency patterns using convolution. To the extracted

features, machine learning is applied to interrupt facial expressions. Machine learn-

ing methods are mostly supervised methods. These approaches use extracted facial

features to associated categories such as emotions or action units. The methods

are divided into static modeling and Temporal modeling. The temporal model usu-

ally considers the four-time stages, neutral, onset(start), apex(peak) and offset(end).

These are done by the algorithms such as Artificial Neural Network, Hidden Markov

Models, Support Vector Machines, Boosting and so on.

The datasets are essential to develop and evaluate the algorithm to detect fa-

cial expressions. In other words, the computer vision approach is advanced with the

datasets. There is a database that manually labeled the posed facial expression with

basic emotions such as Cohn-Kanade (CK) datasets [40, 55] and MMI dataset [99].

They label basic emotions because it was said to universal [16]. Those datasets made

the directions of many researchers. They have dedicated to raising the accuracy of the

classification in such datasets. However, the datasets differ from a naturalistic envi-

ronment where the illumination condition and head-pose changes. Besides, in real life,

people do not make an exaggerated posed expressions [83]. More recently, researchers

explored to gain the meaningful information from facial expressions rather than basic

emotions. To detect spontaneous facial expressions, Wan and Aggarwal developed

the robust metric learning approach [102]. Girard et al. measured spontaneous fa-

cial expressions in unscripted communications [25]. Aside from spontaneous facial
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expressions, Researchers investigated the estimation of the expression intensity [108],

the detection of micro-expression that suggests real human feeling [49].

The current state of the art achieves high performance in the experimental condi-

tion. For example, Shan et al. [87] achieved 95.1% with the LBP features and SVMs

using the CK datasets. Jeni et al. [38] used the SVMs with the NMF methods and

achieved 99.0% in recognizing basic emotions using the CK datasets.

2.2 Sensing Facial Expressions

with Wearable Devices

One of the first attempts to detect facial expressions with a wearable device was

Expression Glasses [84], which can recognize specific facial expressions (confusion/in-

terest) by measuring facial muscle movement with piezoelectric sensors. Gruebler

and Suzuki designed a wearable device that can read positive facial expressions using

facial EMG signals [30]. Their device has to be attached to the side of a face, but

it can record the user’s affective state for more than four hours with high accuracy.

These prior works used contact-base sensors. Inzelberg et al. used dry, soft elec-

trodes array attached to the cheek area to detect various kinds of smiles [34]. While

they performed well, the measurement processes require continuous physical contact,

meaning that the sensors/electrodes need to be attached to the user the whole time.

This need for physical contact can make the user experience rather uncomfortable,

especially over a more extended period of time.

Kimura et al. presented an eyeglass-based hands-free video-phone. The glasses

have multiple fish-eye cameras to capture a wearer’s face and can yield his/her self-

portrait facial expression image [45]. Although it can reconstruct facial images of

the wearer, the powerful processor to process the images were required. It made the

device bulky and not suitable for daily use.

Fukumoto et al. used photo-reflective sensors attached to the glasses to capture

skin deformations at the corners of eyes and cheeks that occur with happy facial ex-
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pressions [23]. They then used threshold-based clustering to distinguish smiles from

laughs. While efficient, this method does not scale well for multiple users because of

the individual variations in determining the appropriate threshold (i.e., How much

the skin around the eyes moves while smiling or laughing varies from person to per-

son). Besides, due to the limited number of sensors, it can miscategorize other facial

expressions as the target ones. There are some other exciting applications involving

a limited number of photo-reflective sensors. For instance, Nakamura et al. proposed

a device with one photo reflective sensor to detect the natural movement of eyebrows

when users try to focus and stare at something [66].

2.3 HCI Application

Using Facial Expression Recogniton

The two main roles of facial expressions are affect and communication. First, the

section focuses on the application related to the affect. Then, the communication-

related application was described.

A device that recognizes facial expressions may open up new opportunities for

more naturalistic user experience in human-computer interactions since facial expres-

sions provide rich information about our emotional states [42]. It is related to the area

of Affective Computing that explores the possibility of incorporating human affection

in computing [4,75]. The applications of the affective computing can be divided into

three areas: 1)Affect detection, 2)Affect expression, 3) Emotional computers. This

section mainly focuses the works of the affect detection from human face and interac-

tion techniques based on it. Many of the works can be described from the perspective

of Cannon-Bard theory. First one is marketing. It tries to improve the contents based

on the associated affect. McDuff et al. applied automated facial coding for media

measurement [94]. By using the web camera, they analyzed the facial responses to

the media at scale. These data can be used in market research such as testing video

advertising contents or tagging emotions to the contents. The second application is
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information retrieval based on facial expressions. Fukumoto et al. ’s work enhanced

the interesting memory by retrieving the picture from the life-logging camera only

when the wearer of the device smiled [23]. The third application is therapeutic in-

terventions and support for medical professionals. Gruebler and Suzuki developed

wearable EMG device that can be attached to the sides of the face. The device

could quantify the smiles and frown faces of the wearer so that the human coders can

objectively measure the affect.

On the other hand, some applications are based on James-Lange theory and the

facial-feedback hypothesis [37, 96]. The main idea is to regulate or enhance the

emotional experience by activating facial expressions. Tsujita and Rekimoto out-

lined a primary example: We can increase people’s happiness by making them smile

more [98]. They made the controlling system for home appliances by smiles. For

example, the user had to smile to unlock the refrigerator. Yoshida et al. developed

an emotion-evoking system [106]. This mirror system changes facial expressions ar-

tificially. Their experiment revealed that the artificial facial expression could change

the user’s emotion. Their work shows the high-level concept of the hypothesis: by

perceiving the user’s smile, the user can feel the associated emotions.

The other applications based on the communicative roles of facial expressions.

One of the major application is the facial performance capture system. It is popular

for animating CG avatars in video games and movies. The system used the faces

as the communicative medium to the audiences or the players. The marker-based

system is commercially available such as Expression by OptiTrack Ltd and CARA by

VICON. The markerless approach is also explored with an RGB monocular camera [6].

Recently, automatic face reenactment method became possible with realistic images

in real time [94]. Li et al. used a depth camera to capture expressions on the

lower half of the face, and eight strain gauges to capture expressions on the upper

half of the face inside a head-mounted display [54]. They also mapped the input

signals to a 3D face model. This method can make social interaction in virtual world

smooth. Another application is FaceShare [91] and Smart Face [67]. The systems

artificially can modify the facial appearance of the people in videos to smiles. With
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the system, the users during a video conference or chatting can communicate smoothly

and enhance creativity.

It is worth noting that most of the applications described above rely on smiles

among various facial expressions. It is because smiles are connected to positive emo-

tions, and varies in different contexts, and shows different meanings.

The applications based on the cognitive aspect of facial behavior were explored.

Nakamura developed a photo-reflective sensor-attached glass [66]. The attached photo

reflective sensor detects the natural movement of the eyebrow for controlling amount

of augmented reality information. It enables natural interaction because we narrow

eyebrows when we focus and stare at an object. The pain estimation from facial

expressions is another example [79]. They estimated the pain of patients using neural

networks. Fatigue detection gains researchers’ interest. Yao et al. developed the

automatic driver’s fatigue/drowsiness detection system from the facial features and

head motion from input videos [105]. The other application is a tutoring system. The

facial behavior from videos could be used to estimate the difficulty level of a video

lecture [103].

2.4 Position

Based on the discussions in the previous sections, the section describes the disser-

tation position. Figure 2-2 shows the mapping of the dissertation and its related

works from the viewpoint of (horizontal-axis) "The number of facial expressions that

can be classified (information amount of facial expression)," and (vertical-axis) "The

number of facial expressions divided by the amount of data (information density of

facial expressions)." The former notion describes how diverse facial expressions can

be detected. For this axis, the computer vision based method is superior as it can

capture the geometry of facial expressions [6]. Facial performance capture has more

information about the user’s face than just recognizing facial action units from the

same video inputs. On the other hand, the previous wearable sensing based methods

can only specific facial expressions. For example, Fukumoto et al [23]’s method can
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Figure 2-2: The positioning of the dissertation comparing to its related work.

Figure 2-3: The comparision of the computer vision-based method, EMG-based
method, photo-reflective sensor-based method and the dissertation.
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only detect smile and laughter. The wearable EMG-based method can capture a cou-

ple of expressions [30,34]. The latter axis suggests how much processing is required to

get the information of facial expression. It can refer to the density (see Figure 2-3). It

is the vital aspect of wearable devices because mobile devices cannot process a signifi-

cant amount of data like PCs. The high density of information can make the wearable

devices compact, small,lightweight and comfortable to wear. The comparison of the

three methods can be seen in Figure 2-3. For the camera based methods, they require

the preprocessing and feature extraction as they usually have high-dimensional data.

For example, the camera based method for classifying six basic emotions requires 640

x 480 x 3 pixels x 8-bit inputs (7372800). EMG-based methods require less processing

cost than camera-based method. However, the methods still require high sampling

data and feature extraction using mainly ICA. Gruebler and Suzuki’s method used

2 x 100 x 16 bits (3200) for classifying positive expressions. Photo-reflective sensor-

based methods such as Nakamura et al. and Fukumoto et al. works did not require

feature selection, and the processing cost is low [23, 66]. Fukumoto et al.’s method

uses 2 x 8 bits (16) for classifying smiles. As such, the photo reflective sensor method

requires the amount of data 10,000 times less than the camera-based methods.

Considering the two perspectives of the facial expression recognition technology,

the proposed method in the dissertation has novel positioning as the method can clas-

sify various facial expressions using low-processing sensor array that have abundant

information about facial expressions. On the other hand, the dissertation’s method

has other advantages such as contact-less and small energy consumption.

17



Chapter 3

Smart Eyewear for Facial

Expression Classification
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The dissertation aims at classifying various facial expressions in daily life. As

such, the technology needs to measure various facial expressions for a long time and

with little demands. The demand includes the physical demand, the social weight,

and the energy demand. Therefore, the technology should always be available to the

user, and comfortable to wear, socially acceptable, and consume small energy.

The dissertation designs the technology in the form of eyewear in the research.

Eyewear computing is a promising technology for facial expression and affects recogni-

tion in real life. Since the head is the primary location for most of the human senses,

eyewear computing can gain access to a variety of physiological signals by placing

sensors in the head area. There remains a design problem as anything worn on the

head is quite noticeable, yet with increasingly smaller Printed Circuit Boards (PCB),

sensors, and actuators, it is possible to now build smart glasses that are similar in

appearance from ordinary eyewear, making them socially acceptable concerning both

appearance and comfort. The form of the eyewear is essential criteria as its shape is

already standard in daily life.

As a proof of the concept, the dissertation has developed the two prototypes in

the form of eyewear. For sensing modalities, the prototype devices made use of the

arrays of photo-reflective sensors. The second prototype was designed based on the

first prototype, so the basic structure is the same.

3.1 Photo Reflective Sensor

Photo-reflective sensors are sometimes used in the field of Human-Computer Interac-

tion to measure human skin deformations [23,66,70,71]. The prototypes use infrared

(IR) reflective sensors. The sensors are composed of an IR LED and IR phototran-

sistor.

To establish the fundamental characteristics of skin surface reflection captured by

an IR photo reflective sensor, the experimenter measured the voltage from the sensor

(SG-105 by Kodenshi) (see Figure 3-1). The sensor value changes by the distance

between the sensor and the skin surface. The experimenter collected 30 samples at
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distance

Figure 3-1: (a)The experimenter measured the distance between a photo reflective
sensor and skin surface. (b)PCB used for this experiment.

Figure 3-2: The voltage change of the photo reflective sensors related to skin surface
distance.

each position. Figure 3-2 shows the average and standard deviation at each distance.

The standard deviation is quite small (at most 0.014 V). The correspondence is not

linear. The sensor can obtain the proximity to the skin. For closer distances, the

photo-reflective sensor has a higher resolution.

3.2 Principles

The optical sensor measures the depth change between the sensor and the skin surface

of the wearer.

To capture facial expressions, the system leverage skin deformations caused by the

movement of facial muscles (see Figure 3-3). When users move their facial muscles,

three-dimensional deformations occur on the skin surface. With the depth informa-
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Figure 3-3: Skin deformations change the distances between the sensors and the skin
surface. The deformations occur when the facial expression changes.

tion, the sensor can measure the movement of facial muscles since the movement of

facial muscles causes the skin deformation around eyes. Since the photo reflective sen-

sors are embedded in the various spots of the eyewear device, it is possible to detect

various movements of the facial muscles of the wearer. Each facial expression involves

different movements of facial muscles. The movements of the eyelids, the eyebrows,

the nose, and the cheeks all cause three-dimensional skin deformations around the

eyes. The movement of the mouth also causes the skin deformation under the eyes

because the muscle movement around the mouth causes a cheek deformation that ex-

tends to the area below the eyes. According to [18], these movements are the greater

parts of Action Units (AUs) with which the Facial Action Coding System codes hu-

man facial expressions. Therefore, placing sensors to capture the skin deformations

around the eyes makes it possible to detect most muscle movements related to the

target facial expressions.

3.3 Prototypes

Through the dissertation, two prototypes were developped.

3.3.1 First Prototype

Figure 3-4 shows the components of the first prototype. The prototype incorpo-

rates 17 photo reflective sensors (SG-105 by Kodenshi, the placement can be seen
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Figure 3-4: System components of the first prototype

Figure 3-5: The placement of photo-reflective sensors for the first prototype
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in Figure 3-5), a 16-channel multiplexer (CD74HC4067 by Sparkfun), a transistor

(IRLU3410PBF by International Rectifier), Arduino Fio, Xbee, and lithium polymer

battery. The weight of the prototype is around 60g. The front frame is 3D printed,

and the temple tips are taken from regular commercial eyewear. An eyewear band

is added to stabilize the position of the eyewear. The transistor is used to modulate

the LED of the photo reflective sensors because the sensors are easily influenced by

ambient light such as the fluorescent lighting in the environment. The measure the

difference between the values with LED on and off. The switching frequency is around

80 Hz. With this method, it is possible to reduce the influence of ambient light. Xbee

enables serial communication via ZigBee at 57600 bits per second. This device was

used for recognizing basic emotions in Chapter 4.

3.3.2 Second Prototype

Figure 3-6 shows the second prototype. PCBs for sensor units (the front frame) and

microcomputer units (temples) were custom-made. Temple tips were chosen from

the commercially available goods. The other parts such as nose pad, hinges between

PCBs were printed with a 3D printer (Form 2 from Form Lab). The nose pad can be

replaced to fit the shapes of users’ noses. A strap fastening tool was used to stabilize

the position of the devices.

The 16 photo reflective sensors (NJL5901AR-1-TE1 produced by New Japan Ra-

dio Co., Ltd.) were placed on the front frame of the eyewear prototype. Figure 3-7

shows the sensor layout. The system used different resistant values to the phototran-

sistors because the curvature of a face changes the distance range measured by the

sensors. The system used the lower register values for the phototransistors of the

sensors that measure close distance, i.e., the sensors close to the center of the front

frame than the ones in the end.

The prototype measures the skin deformation around eyes. The difference from

the first prototype is that the prototype can measure the eye movements in addition

to facial expressions. It measures the area close to eyelids instead of eyebrows because

the position of the nose pad is different. Since the movements of eyeballs cause the
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Figure 3-6: The appearance of the second prototype. It includes 16 photo reflective
sensors on the front frame. On each side, microcontrollers are placed.

Figure 3-7: The layout of the sensors on the second prototype. The sensors are
distributed into the area all around eyes.
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Figure 3-8: The standard deviation of AD conversion for each time

deformation around the eyes and eyelids, the values from the sensors change according

to the eye movements. Like the first prototype, the change of facial expressions causes

skin deformation to the area measured by the sensors on the device.

One PIC microcontroller(16F1827) was placed on each temple. Each PIC converts

the voltage from each of the eight sensors to 10-bit digital value. For every PIC, one

transistor is placed to turn the infrared LED of the sensors on and off (it reduces

the influence of the ambient light). XBee transmits a data sample wirelessly to a

laptop. The 3.7v lipo battery powers the microcontroller after the regulator controls

the voltage to 3.3v. The weight of the device is around 70 g. This device was used

for the Chapter 5 and the Chapter 6.

There are two gimmicks to reduce the noise of AD conversion: reduction of am-

bient light effect based on the characteristics of a phototransistor and faster AD

conversion using two PIC microcomputers (16f1827).

The transistors turn off the LEDs first and convert the signals from all the sensors

to 10-bit values. Then, they turn on the LEDs and perform AD conversion for all the

sensors. Since AD conversion is executed in parallel using two microcomputers, the

time required for AD conversion of all the sensors became a half compared to the use

of only one microcomputer. After turning off the LEDs, the system calculates the

subtraction between the data when LEDs are on and off. If the value got negative,

the system changed the value to zero. Then, it sends the data to the laptop where
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the data is stored using serial communication (XBee).

This process creates enough time for leaving off the effect of the storage time

when the influence of the reflected light remains. It takes longer if the resistance

of the phototransistor is large. Even if the LEDs of the sensors are turned off, it

cannot measure the effect of the ambient light immediately. The second prototype

used 39k - 68K resistors. To investigate how long it takes to get rid of the effect,

the experimenter measured the intensity to phototransistor while the experimenter

randomly changed the distance between the sensor and a small object. The experi-

menter kept the condition of ambient light during the experiment. Figure 3-8 shows

the AD-converted values when the system turned on the LEDs, then the system made

two AD conversions, turned off the LEDs and made 14 AD conversions. One AD con-

version took approximately 40 microseconds, and the system took 20 microseconds

interval between each AD conversion. This figure shows that 11th AD conversion

does not get influenced by the storage time. At that time, the standard deviation

was less than 4. The second reading has a more relevant to the distance than first.

For acquiring 16 sensor data, it takes (30 + 40) x (16/2) = 560 microseconds since it

takes 30 microseconds to determine the sensor for AD conversion. For when LEDs is

on, it takes (30 + 40 + 20 + 40) x (16/2) = 1040 microseconds because the system

made two AD conversion for each sensor signal. Overall, it takes 1600 microseconds

to obtain sensor data. Since serial communication takes more than 1.0 milliseconds,

the system can cut the time to wait for a storage time by obtaining the data when

LEDs are off first. Also, faster conversion using two microcomputers reduces any

temporal noise from ambient light.

3.4 The Advantages

The system uses a large number of photo-reflective sensors and applies a machine

learning method for measuring facial expressions. This approach has the following

advantages: (1) An adaptive and robust facial expression classification that works

with a variety of users, enabled by the richness of the sensor information and the
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machine learning framework. (2) Non-contact measurement: The sensors are unob-

trusive and do not require physical contact, which improves the wearability of the

device. (3) Smart appearance: The sensors are small enough to be integrated into

everyday glasses (e.g., NJL5908AR by New Japan Radio Co., Ltd: 1.06 x 1.46 x 0.5

mm), making the device suitable for everyday usage. (4) Simplicity: The processing

required to interpret the sensor readings is minimal as face recognition, facial fea-

tures extraction are not required, so no elaborate feature extraction is necessary. The

system can, therefore, keep the processing cost and energy consumption little, which

is crucial for practical real-time classification for long-term use. (5) Affordability:

The device only uses photo-reflective sensors with a microprocessing unit and can be

manufactured at a low cost.

3.5 Usage Scenarios

This section introduces various scenarios using the device in daily life. There are

five scenarios to implicate the future direction. The first scenario is relatively easy

to implement with the current system. Next two scenarios assume everyday use of

the system. Those scenarios require further evaluations in more realistic situations

for a long time. Last two scenarios show the potential of the devices assuming the

system could capture subtle expressions and used by many people. The first scenario is

"Collaborative Media Tagging." Facial expressions or emotions can be used to evaluate

contents. If many people read a book or watch a video with their facial expressions

recorded, the content can be indexed and made searchable.Also, content creators could

obtain a better grasp on their techniques, making their storytelling more effective

(e.g., what surprises a reader/watcher and what does not).

The second is "Care System for Older Adults." The system can provide how a user

changes facial expressions in daily life. In other words, the system can quantify facial

activities. This information can be used for a care system for older adults. They can

get an overview of their situation (and potential deterioration of the mood). Since

more and more seniors live away from their children, they tend to feel lonely more
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easily than before. The system can help them and their children to take appropriate

and productive care of both (e.g., the system notifies the children of the appropriate

times to give their parents a call and talk to them when the system detects they are

feeling sad and smiling less).

The third is "Supporting System for People with Autism Spectrum Disorders."

People with autism have difficulty in creating facial expressions of emotion. As facial

expression is an important source of social interaction, the system can be useful for

them. The system can help them to create facial expressions by giving them a moti-

vation to intentionally express their emotion with feedback if they could successfully

make the expressions or not. Also, According to [107], "impairment in overt facial

mimicry in response to others’ dynamic facial expressions may underlie difficulties in

reciprocal social interaction among individuals with ASD." Suppose that encouraging

them the facial mimicry could improve their social interaction skill, the system used

by multiple users can notify them when they can successfully achieve the mimicry

and so help them to understand and encourage the mimicry.

The fourth is "Happiness Map." Given the system can achieve facial expression

classification in daily life, a straightforward way to apply it is to combine facial

expressions with location and demography. People can search for the place where

the users smile and laugh frequently. It can be used to choose where to live or work.

They can also obtain an overview of how events and policies change the affect state

of a region or country. It can be a measure of the wellbeing of the places.

Finally, the device can be used for emotion regulation. The emotional impact is a

very delicate problem, as people should feel empowered by technology not influenced

or even oppressed. Positive emotion can have a positive effect on decision making

and facilitate social interactions while negative emotion can do harm [29]. We reg-

ulate emotion to accomplish some specific goals because emotion sometimes induces

an unwanted behavior. One of the emotion regulation strategies is to alter the situ-

ation people are in [28], but to do so, people have to monitor their behavior. This

monitoring skill reduces when people are in negative affect(e.g., [32]). Therefore, in

negative affective states, they might not regulate emotion effectively. In these cases,
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monitoring facial expressions with the device can help them to look back and alter

their situation as emotion, and facial expression is linked to each other. Given the rise

of depression and other mental illnesses related to emotional imbalances, people can

benefit from devices that can help them monitor and motivate to alter their emotional

state. For example, a depressed person usually talks little with others and stays in

bed longer (i.e., is less physically active). If a system successfully encourages this per-

son to be more social and active with the assistance of caring people who got his/her

information of facial expressions, the work might help medical doctors to deal with

his/her mental illnesses. These influences should be aligned with the user’s long-term

goals (not influencing them in "unwanted ways"). Of course, the proposed solution

may not work in every case (e.g., when personalization is needed) and depend on the

severeness.
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Chapter 4

Classification of Posed Facial

Expressions into Basic Emotion

Categories

30



Figure 4-1: The smart eyewear classifies eight universal facial expressions

This chapter focuses on classifying eight universal facial expressions (see Figure

4-1). In addition to the universal six facial expressions (happiness, disgust, anger,

surprise, fear, and sadness) defined by Ekman [16], the chapter includes contempt,

which is sometimes considered as a universal facial expression [63] and "neutral" as

a baseline for detection. The universality of the basic emotions of facial expressions

is discussed by Ekman et al. [16]. Although some research argues the reliability of

basic emotions, it is still the common framework for classifying facial expressions.

For computer-vision based methods, there are various datasets that label facial ex-

pressions with the basic emotions [40, 55]. Using those datasets, many researchers

improved the accuracy of classifying basic emotions. As a first step to validate the

eyewear device, this chapter runs through the user study of classifying eight expres-

sions in various situations. More complex facial expressions such as a fake smile or

a "happy surprise" are out of the scope of this section. This chapter is based on the

work [58,59,60].
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Figure 4-2: The data processing pipeline for classifying basic emotions.

4.1 Software Implementation

Figure 4-2 shows the data processing pipeline of the system. This section describes

the Software details of using the first prototype.

In an Arduino environment, input from each sensor is converted into a 10-bit

value. To take the difference of sensor values between LED is on and off, it multiplies

minus one to the value when LED is off. The value is smoothed out by applying a

moving average to five pairs(LED is on/off) of each sensor values in a row to reduce

noises. One data sample is a collection of 17 elements from the sensors. Each element

of the data sample is the average of 10 sensor values. The data sample is then sent

to Java/Processing. In the Processing environment, the system normalized the data

sample and recorded the normalized data sample with a desired facial expression label

as a training set. With the training set, a Support Vector Machine algorithm (SVM)

with a radial basis function (rbf) kernel (C = 10, gamma = 1.0) is applied to classify

facial expressions in real time. SVM is commonly used for classification task as it

learns effectively. Figure 4-3 shows the user interface of the system. The emoticon

shows the classification result. The bar graph represents the raw data. The yellow

dots correspond to the positions of the sensors, and the size of the dot is correlated

with the normalized value of each sensor. The SVM use only one data sample for the

prediction of the basic emotions. For later experiments, recorded data samples were

normalized in the way described in this section.
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Figure 4-3: The user interface

Preprocessing for Machine Learning

1. When the user makes a neutral expression with the device on, the baseline of

the elements was set in the data sample (BLV ) as 0.5.

2. In this stage, the user dynamically moves his/her facial muscles. For each sen-

sor, the range of each sensor value (Range) in the data sample is determined

during this calibration process. Based on these values, the normalized sen-

sor value (NSV ) for each sensor is calculated as follows. An element of the

data sample, which is the moving average in each time frame, is defined as

SensorInput. Tolerance is chosen as 40 experimentally.

Range = (Max−Min) + Tolerance (4.1)


NSV = 0.5 + (SensorInput−BLV )/Range

if NSV > 1, then NSV = 1

if NSV < 0, then NSV = 0

(4.2)

Range includes Tolerance since there is a trade-off with relying only on the

acquired data.

• Advantage: Normalization can set the appropriate range for each sensor by
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measuring the range of SensorInput that varies depending on the geom-

etry of each user’s face and the position of the sensor. The normalization

can improve robustness because it can accommodate the weight of each

SensorInput.

• Disadvantage: The position of the device during the calibration phase is

not always stable. The user may move his/her facial muscles too dynam-

ically and cause the eyewear to dislocate, resulting in inaccurate mea-

surement of the Max and Min values. On the other hand, if the facial

movement during calibration is not dynamic enough, it may reduce the

amount of information that can be obtained. Therefore, it is not always

possible to normalize the data sample in an optimal manner.

3. During the learning phase, normalized data samples are stored with facial ex-

pression labels that are selected as the desired outputs. A label is attached to

each data sample.

4. For real-time classification, the normalized data sample is applied to SVM that

is trained with the normalized data samples with the labels.

Algorithm

In addition to the training set that includes the output labels and the normalized

data samples, the calculated values (CV ) from two different sensors are also used for

SVM. The calculation formula for (Si,Sj | 1 ≤ i, j ≤ 17 ) is shown below



CV = (Si − Sj)/2 + 0.5

if CV > 1, then CV = 1

if CV < 0, then CV = 0

(4.3)
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Sensor placement is shown in Figure 3-5. The values from adjacent sensors located

in the bottom part of the front frame as well as the values from the sensors that

have a vertical relationship are calculated vertically. The calculated values from

adjacent sensors in the bottom part are important because the surface is smooth

and the skin is considered as an elastic model, thus they correlate with each other

as discussed by Ogata et al. [70]. The data from the sensors that have a vertical

relationship can partially inform the position of the eyewear and the face. In total,

33 dimensions were used (normalized input: 17 + adjacent data: 7 [(10,11), (11,12),

(12,13), (13,14), (14,15), (15,16), (16,17)] + vertical data: 9 [(1,10), (2,11), (3,12),

(4,13), (5,14), (6,15), (7,16), (8,17), (9,17)]).

4.2 System Evaluation

For the system evaluation, four experiments were conducted. The first experiment

evaluated the recorded data of the test dataset immediately after user dependent

training. The results suggested the user dependency of the system. Also, the dataset

was evaluated for the trade-off between the number of sensors and accuracy, the ro-

bustness to changes in head direction as well as to the removal and remount of the

device. The second experiment had three participants tried the first experiment for

multiple days to assess the possibility of long-term usage. The third experiment tested

the robustness of the system to the movement of a wearer by taking measurements

while walking. The final experiment evaluated the influence of the vertical displace-

ment of the device on recognition accuracy. The observations from a demonstration

at SIGGRAPH Emerging Technologies 2015 [61] were described.

4.2.1 Evaluation 1: Basic Setup

Eight users (four Japanese, one French, one Chinese, one Taiwanese, and one Sri

Lankan. Two of them female. Average age: 27.3) participated in the experiment.

They were asked to sit in a chair and mimic the pictures of an American male (re-
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Figure 4-4: Evaluation with different face directions

Figure 4-5: Experimental setting for basic emotion classification

trieved from the images of a man from a TV show "Lie to Me") making the universal

facial expressions based on Ekman et al. [16]. First, the users looked straight ahead

with a neutral facial expression, setting the baseline for the sensors. Then, they

moved the facial muscles for the calibration. Then, the system collected the data

samples of eight facial expressions in different poses: Looking straight ahead (three

times), looking up (three times), looking down (three times), looking left (two times),

looking right (two times), and taking off the device and putting it back on (two times)

(see Figure 4-4). The experimenter collected data samples with different head direc-

tions because the movement of the head alone causes skin deformations as a result

of the effects of gravity and the joint coupling of muscles. The experimenter manu-

ally recorded 10 data samples with facial expression labels at regular 50-millisecond

intervals in the middle of the time the user kept their maximum pose of each facial

expression. In other words, In one recording of each facial expression, it takes 10 data

samples for 1/2 seconds. Overall, each user’s dataset includes 1200 data samples (10

samples per expression per time x 8 facial expressions x 15 times in different poses.

All recordings were conducted indoors. (see Figure 4-5).
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Accuracy with User-Dependent Training

Figure 4-6 shows the distribution of data samples of each facial expression from User

A. The sensor numbers (1 through 17) corresponds with the numbers shown in Figure

3-5. It shows that the sensor distribution is different depending of each expression.

It suggests the validity of the sensor data for a classifier.

Figure 4-6: Distribution of sensor values changes for each facial expression.

First evaluation tested the accuracy in measuring each user’s performance with

user-dependent training. For each dataset, one recording (10 data samples) of each

facial expression was divided into two sets, with the former half as a training set (600

data samples: 5 data samples per expression per time 8 facial expressions 15 times

in different poses) and the latter half as a test set (600 data samples). The system

applied SVM with an rbf kernel (C = 10, gamma = 1.0) to the training set. SVM was

chosen among basic supervised learning algorithms such as AdaBoost, Random Forest

and Naive Bayes.considering the robust accuracy in the preliminary experiment. The

evaluation was done per individual. In other words, the system trained with user

A’s training set and tested with user A’s test set. It achieved 92.8% accuracy on

average (Facial-Expression-based result was 84.3% - 97.8%. User-based result: 84.8%

- 99.2%.) of classifying basic 8 expressions. By learning from the data samples

obtained with different head directions, the eyewear device was able to classify the

facial expressions correctly, regardless of where the head was directed at the time of

the measurement. Table 4.1 shows the confusion matrix of the results. As shown in

the matrix, disgust can be similar to anger or fear. Besides, surprise and fear are

37



close facial expressions with a 4.7% error to each other.

Classified Results
N H D A Su F Sa C

Neutral(N) 96.8% 0.7% 0.2% 0% 1.2% 1.0% 0.2% 0%
Happiness(H) 0.3% 98.3% 0.5% 0% 0% 0% 0% 0.8%

Actual Disgust(D) 1.7% 0.2% 84.3% 3.2% 0% 5.5% 3.7% 1.5%
Value Anger(A) 0.3% 0% 0.7% 96.5% 0.8% 0.3% 1.3% 0%

Surprise(Su) 2.0% 0% 1.2% 0.2% 91.2% 4.7% 0.8% 0%
Fear(F) 1.5% 0% 4.2% 0.8% 4.7% 87.5% 0% 1.3%

Sadness (Sa) 4.5% 0% 2.5% 1.8% 0.8% 4.7% 85.7% 0%
contempt(C) 1.5% 0.3% 0% 0% 0% 0.3% 0% 97.8%

Table 4.1: Confusion matrix (within subjects)

User Dependency

Second evaluation investigated user dependency by training with each user’s training

set and testing with all other users’ test sets. For example, the system trained with

User A’s training set and tested with User B, C,..., F’s test sets respectively. Table 4.2

shows the result. When the training set and the test set are taken from different users,

the accuracy scores drop significantly: Accuracy is 48.0% at best (using the training

set from User A and the test set from User G). This result indicates that, with the

current system, users need to calibrate the device and train individually for accurate

classification of their facial expressions.

Test Data
A B C D E F G H

User A 99.2% 36.8% 31.8% 34.5% 28.8% 40.5% 48.0% 28.3%
User B 39.2% 98.7% 23.3% 13.5% 30.0% 33.8% 32.8% 26.7%

Training User C 42.5% 22.3% 84.8% 37.7% 21.0% 37.3% 40.7% 22.2%
Data User D 19.8% 29.8% 33.5% 85.0% 32.0% 25.3% 30.5% 18.0%

User E 23.3% 27.3% 18.7% 20.8% 89.3% 17.3% 39.8% 39.5%
User F 44.3% 34.2% 28.2% 27.8% 27.7% 97.3% 35.0% 34.2%
User G 43.8% 31.0% 24.7% 20.0% 27.7% 28.8% 88.7% 28.5%
User H 12.5% 25.2% 15.7% 14.8% 26.2% 17.8% 29.8% 95.2%

Table 4.2: User dependency matrix
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Table 4.3 shows the confusion matrix of the result using the training set and test

set that are merged from all user’s datasets. Though there is user dependency, happy

expressions can be classified with relatively high accuracy (71.9%). The other facial

expressions were harder to be classified(e.g., sadness: 17.2%, contempt: 22.7%).

Classified Results
N H D A Su F Sa C

Neutral(N) 74.9% 1.1% 6.3% 1.3% 5.2% 3.2% 2.6% 5.3%
Happy(H) 5.3% 71.9% 2.6% 5.1% 0.4% 7.7% 2.8% 4.2%

Actual Disgust(D) 15.8% 7.5% 23.5% 12.2% 14.0% 17.5% 4.1% 5.2%
Value Angry(A) 14.9% 7.8% 13.4% 26.6% 13.8% 15.5% 4.9% 3.1%

Surprise(Su) 27.1% 3.2% 10.1% 4.1% 30.9% 11.7% 8.9% 4.2%
Fear(F) 14.5% 6.5% 11.4% 8.8% 17.3% 27.7% 5.5% 8.2%

Sad (Sa) 27.8% 8.6% 7.4% 6.4% 15.9% 13.6% 17.2% 3.1%
contempt(C) 29.5% 7.8% 8.6% 5.0% 11.7% 11.2% 3.7% 22.7%

Table 4.3: Confusion matrix(between subjects)

Number of Sensors

Next, the evaluation was done to see the trade-off between accuracy and the number

of sensors. This evaluation used the datasets from all eight users for this purpose.

The training datasets are made of eight users’ training sets, and the test set consists

of 4800 data samples merged respectively. As in 4.2.1, SVM was applied in the same

way. Using the training sets, the forwarding algorithm to pick out the sensor to be

used for SVM. The algorithm began by choosing the values from only one sensor that

had the best accuracy based on the result of SVM. Next, it added the values from

another sensor with the second-best accuracy. It repeated the process until all values

of 17 sensors were included. For this analysis, the subtraction of the adjacent data

cannot be considered. Only the normalized 17-dimensional data was applied to SVM.

As shown in Figure 4-7, the experiment yielded 84.1% accuracy with 17 sensor

values. The accuracy improved with the addition of values from more sensors. With

the values from 13 sensors, the system achieved more than 80% (81.0%) accuracy.

Sensors 1, 9, 12, and 15 were left out. Sensors 1 and 9, as well as 12 and 15, are
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symmetrically located at the opposite ends of the frame. The further the sensors

are from the center of the face, the greater the distance between the eyewear frame

and the skin surface on the face becomes. The greater distance results in the sensors

having less information because they are more vulnerable to the noise of ambient

light. Photo-reflective sensors work well when the distance between the sensor and

the target is less than 10.00 mm.

Figure 4-7: Trade-off between recognition accuracy and number of sensors

Accuracy when User Changes their Head Direction and Removes/Re-

mounts the Device

The previous evaluations have already shown that the system can classify facial ex-

pressions even when there are changes in head direction and when the user removes

and remounts the device by obtaining data samples at those conditions in the train-

ing phase. This evaluation shows how those conditions influence accuracy using the

same dataset as before. The system was trained with the data samples obtained when

the user looked straight ahead and tested with the data samples obtained in other

conditions. The result is shown in Table 4.4. Accuracy varies among the users, but

mostly it is between 50% - 60%, indicating the relative robustness of the recognition

system.
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Condition
Upwards Down Left Right Take Off&ON Average

User A 86.7% 72.9% 84.4% 93.8% 79.4% 83.4%
User B 67.5% 50.4% 48.1% 56.9% 45.6% 53.7%
User C 35.4% 66.7% 56.9% 46.2% 53.1% 51.7%
User D 24.6% 32.1% 65.6% 28.1% 64.4% 43.0%
User E 44.2% 47.9% 63.1% 58.1% 68.1% 56.3%
User F 50.0% 58.8% 59.4% 66.9% 40.0% 55.0%
User G 40.4% 45.8% 61.9% 43.8% 53.8% 49.1%
User H 81.7% 37.5% 46.9% 29.4% 55.0% 50.1%

Average 53.8% 51.5% 60.8% 52.9% 57.4%

Table 4.4: Accuracy by different conditions compared to looking straight ahead

4.2.2 Evaluation 2: Reliability over Time

The second experiment collected data samples from three of the participants in the

first experiment on different days (The data samples were obtained in the looking-

straight position only). Users were asked to sit in a chair and put on the device.

After the calibration, the experimenter collected data samples of the eight facial

expressions three times each (240 data samples: 10 samples per expression per time

x 8 expressions x 3 times) on each day. Like Evaluation 1, the experimenter recorded

manually while the user kept their maximum pose of each facial expression at regular

50-millisecond intervals. The experimenter conducted the procedure on three different

days, and so the system acquired 720 data samples with facial expression labels from

each user. The classifier (SVM in the same way as 4.2.1) used the data obtained on

two of the three days as a training set (480 data samples) and the data samples from

the remaining day as a test set (240 data samples). The results are shown in Table

4.5. The averaged accuracy for the three users was 78.1%. By making bigger the

size of the training set, the repeatability can be ensured. It suggests the possibility

of long-term usage. In the confusion matrix, the most dominant error was classifying

33.3% of the anger cases and 23.3% of fear cases as disgust.
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Day1 Day2 Day3 Average
User A 83.8% 91.7% 90.4% 88.6%
User E 72.9% 70.8% 69.2% 71.0%
User F 86.3% 69.6% 68.8% 74.9%

Table 4.5: Accuracy on different days

4.2.3 Evaluation 3: Usage during Walking

This experiment evaluated the effect of walking on the recognition of facial expres-

sions because the activity may cause changes in the position of the eyewear, which

influence sensor values slightly. The experimenter collected 480 data samples with

facial expression labels from each user. Four users participated (two males and two

females; two Japanese, one Chinese, and one German. Age range: 25-59). The

experimenter collected 10 data samples for the eight facial expressions in the looking-

straight position. The experimenter repeated the process three times (Dataset A:

240 data samples). After the data samples had been collected in the stable position,

users were asked to walk along a corridor at a natural speed. The experimenter man-

ually collected 10 data samples at regular 50-millisecond intervals for the eight facial

expressions three times each while they were walking and holding their maximum

pose for each facial expression (Dataset B: 240 data samples). Carrying a laptop, the

experimenter walked along with each participant. The experimenter asked him/her

to make all facial expressions one by one. Soon after recognizing his/her maximum

pose of each facial expression, the experimenter recorded data samples with a laptop.

The system used Dataset A as a training set and Dataset B as a test set. SVM in

the same way as 4.2.1 was applied. The result was an average accuracy of 73.2%,

which is slightly worse than the result found in the evaluation ref4-evaluation2. This

is because walking caused the device to shift its position, which leads to the noise for

the system.

42



4.2.4 Evaluation 4: Robustness to Positional Drift

To make the system robust, the noise by the positional drift of the eyewear should

be considered as shown in the last evaluation. The fourth experiment evaluated the

robustness to the slipping of the device down the nose. The experiment did not

consider the slip to the side because it should not be a significant issue if the eyewear

is appropriately fitted to the user. On the other hand, the downward slip of the

glasses is a common occurrence.

In this evaluation, sensor value distribution is different from other experiments as

the system collected data samples on various levels of the positional drift (Levels).

Hence the dataset was normalized based on the average and standard deviation of

training datasets.

First, to examine the relationship between the distance and the sensor values, the

experimenter measured the distance d between the yellow mark and the base of the

wearer’s ear shown in Figure 4-8 in seven different positions. The distance corresponds

to the degree of the positional drift. At the same time, the experimenter measured the

sensor values of neutral expression in each position. Principal Component Analysis

(PCA) was applied to reduce the 17-dimensional sensor data to the one-dimensional

data. The result can be seen in Figure 4-9 ( top: raw data, bottom: PCA value). It

shows a linear relationship between the distance and the first principal compontent

of the sensor values.

Figure 4-8: The distance between the end of the yellow part and the base of the ear
were measured
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Figure 4-9: The distance and sensor values (neutral) change depending on the level
of positional drift. left: raw data, right: PCA

Next, the evaluation was performed to see the effect of the slippage on the ro-

bustness of classifying eight facial expressions. The experimenter collected 960 data

samples with facial expression labels in total (10 data samples per expression per

time x 8 facial expressions x 3 trials x 4 positional drift levels) from five participants

(four male and one female). They are all Japanese graduate students aged 22 - 27.

The evaluation followed the procedure as Evaluation 1 except that the experimenter

collected data samples at different levels instead of different poses. Level 1 is the base

state where there is no slippage. The bigger the number of the Level is, the greater

the degree of positional drift. The Figure 4-10 shows the snapshots of User B with

different Levels.

The Figure 4-11 and Figure 4-12 show the averaged sensor values of all facial

expressions at different Levels of Users A and B respectively. The sensor numbers

correspond to the ones shown in Figure 3-5. Each color shows the corresponding

Levels. As the degree of the slip is user-dependent, the Levels are defined relatively

for each user. Sensor value distributions for Users C, D and E are shown in Figure

4-13 - Figure 4-16. These figures focus on particular expressions at different Levels

(neutral, happy, angry, surprise) from different users. Two expressions (anger and

surprise) from user E are included to show how the sensor value distributions differ

by expressions.
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Figure 4-10: The positional drift level of the eyewear (Left: Level1, Right: Level4)

The evaluation was done to see the possibility of predicting facial expressions at

one positional drift level using the data samples taken at another Level. The training

set includes data samples from two trials at one certain Level (160 data samples:

10 data samples per expression per trial x 8 expressions x 2 trials) while the test

set includes data samples from another trial (80 data samples: 10 data samples x 8

expressions x 1 trial) at one Level. The cross-validation method was applied: 3 test

sets were evaluated from 3 trials at each Level. The classifier was trained with the

training set of Level 1 and tested with the test set of Level 1-4 respectively. The

process is repeated for the training sets from each Level and each user. The SVM

applied was different from the one previously used (linear kernel, C = 500) because

the SVM with rbf kernel did not perform well. The result was then averaged for all

users. The matrix can be seen in Table 4.6. At all Levels, the accuracy of facial

expression recognition was best when the training set and the test set on the same

Level was used (78.0% - 87.8%). The further the distance between the Levels for

the training set and the test set become, the worse the accuracy. The experiment

concludes that it is hard for the current algorithms to predict facial expressions when

the slip of the glasses happens without the dataset that includes the data samples at

the level of the slip.

Level 1 Level 2 level 3 level 4
Level 1 83.7% 39.6% 23.7% 21.8%
Level 2 46.5% 79.6% 45.9% 22.0%
Level 3 25.2% 42.9% 87.8% 38.7%
Level 4 23.0% 26.0% 44.6% 78.0%

Table 4.6: Accuracy of facial expression recognition using training set and test set on
different Levels
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Figure 4-11: Facial expression distribution
on each Level(User A)

Figure 4-12: Facial expression distribution
on each Level(User B)

Figure 4-13: Sensor value distribution on
each Level (User C, Neutral)

Figure 4-14: Sensor value distribution on
each Level (User D, Happy)

Figure 4-15: Sensor value distribution on
each Level (User E, Angry)

Figure 4-16: Sensor value distribution on
each Level (User E, Surprise)
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The other evaluation was done to show the accuracy of facial expression recog-

nition with the data samples of all Levels. For each participant’s dataset, the data

samples were taken in two of the three trials (640 data samples: 10 data samples per

expression x 8 facial expressions x 2 trials x 4 Levels) were merged as a training set

and the data samples from the remaining trial was used (320 data samples) as a test

set. Cross-validation method with SVM (linear kernel, C = 500) was applied to the

datasets. The result is shown in Table 4.7. The average recognition rate was 86.8%.

PCA was also applied to the training sets. Averaged accuracy of facial expression

recognition slightly improved to 87.7%. The best results are shown with (User A:12,

User B:13, User C:12, User D:15, User E:16) principal components respectively. Even

when the positional drift of the glasses happens, the system can classify facial expres-

sions with robustness by learning the data samples taken at different positional drift

levels.

User a User b User c User d User e Average
Result with 17 Sensors 89.3% 85.5% 84.2% 82.1% 92.8% 86.8%

Best result(PCA) 91.0% 86.7% 82.3% 83.5% 94.9% 87.7%

Table 4.7: Accuracy of facial expression recognition using the datasets that includes
all Levels

4.2.5 Demonstration at SIGGRAPH Emerging Technologies

2015

The eyewear device has been demonstrated at SIGGRAPH Emerging Technologies

2015. During the demonstration, There were more than 200 users from various inter-

national backgrounds, and they tried on the device. As the demonstration proceeded,

the observations have emerged that the size and shape of the eyewear had to be ad-

justed to each user for accurate recognition. Three major issues were present: (1) The

device sometimes slipped out of place when some users changed facial expressions.

The slippage changed the accuracy of the recognition because the device relies on

the proximity sensing between the front frame of the eyewear and the skin surface

on the face. (2) For those who had high nose bridges, some of the sensors positioned
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between users’ eyebrows saturated and did not work well. This problem could occur

even with the neutral expression. 3) The sensors placed on the top can measure

the distance to the eyelid or the eyebrows depending on the shape of the users’ face

or the position of the eyewear. Therefore, the sensor data can be different for each

user, requiring individual training and calibration. Due to these reasons, the eyewear

should be customized to each user. There was also the observation that the eyewear

seemed to work better for Caucasians compared to Asians as Caucasians tend to be

more expressive.

4.3 Discussion

This chapter presented a smart eyewear prototype that can classify the wearer’s facial

expressions with 92.8% accuracy using user-dependent training in the experimental

setting. This result is promising, showing the potential of the proposed approach.

Though many of the users remarked that they did not see clear differences between

surprise and fear, fear and disgust, and disgust and anger when they looked at the

pictures presented for instruction, it was still possible to classify those expressions.

The subtlety of differences between some expressions such as anger and disgust may

lead to miscategorization. However, this owes more to the ambiguous nature of human

facial expressions than to the design of the recognition system. This issue may be

one of the reasons that the system require the individual training as it means they

showed a slightly different expression for those labels. It is worth noting that there is

some empirical evidence that challenges the universality of basic emotions (See [81]

for a discussion on cross-cultural recognition of facial expressions).

The analysis using the user dependency matrix showed the need for user-dependent

training. It does not pose a significant problem with the device since eyewear is a

personalized item as pointed out by Scheirer et al. [84]. The device can be designed as

personalized eyewear, intended to be used by a single user. However, having external

datasets may help reduce the cost of the learning phase and improve the accuracy

of recognition. Ideally, such external datasets should consist of data samples from
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a large number of users rather than a large volume of samples from a few users as

suggested by Girard et al. [24].

The evaluation of the system found that accuracy was reduced in the case of long-

term usage and walking. This reduction is due to the physical condition difference of

the device such as the effects of ambient light and positional drift. Another factor for

the reduction in accuracy was the difficulty of reproducing the same facial expressions

across different times and conditions. It was challenging for the users to try to repeat

the exact same facial expression. They made slightly different facial expressions with

varying intensities. Accommodating the changes is an inherent problem in developing

a facial recognition system. However, the findings suggest that it may be made less of a

problem by increasing the size of training sets with more trials. In the experiment that

measured the effects of positional drift, the accuracy of 87.7% achieved by learning

the data samples at different levels of positional drift. Requiring the users to conduct

extensive and repetitive training would probably be unrealistic for real-life usage, but

creating a new system that utilizes external training datasets may mitigate the issue.

The chapter focused on classifying the wearer’s facial expressions by basic emotion

categories using the eyewear device. However, our facial expressions may not represent

our inner emotions. Our face may reflect mental effort or convey a communication

signal. Information other than basic emotions was not considered in this chapter.

4.4 Limitations

In this study, it was assumed that skin deformations around the eyes indicate changes

in facial expression. However, other behaviors such as yawning, rubbing one’s eyes,

and resting one’s cheek in one’s hand can also cause skin deformation. These normal

behaviors can affect the system of facial expression recognition. Moreover, readings

from the photo reflective sensors are affected by the condition of the facial skin.

Factors such as tanning, sweat, makeup, and facial swelling may require users to do

calibration and training again.

The eyewear device only collects data from the sensors around the eyes. Although
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movements of the mouth are partly detectable, there are several mouth movements

the system cannot detect because mouth movements and cheek deformations do not

have a one-to-one correspondence. For instance, the action of opening a mouth lowers

the cheeks slightly, which makes the distance between the eyewear frame and the skin

surface greater. Therefore, when the sensor values on the lower part changed, the

system cannot determine either movement of mouth or cheek deformation cause the

changes.

During the experiments, the participants made facial expressions intentionally.

The posed and natural expressions are similar to a certain extent, but there is no

doubt some differences exist between them. Such differences can have an adverse

influence on the accuracy of natural facial expression recognition, mainly because our

natural facial expressions are more subtle than posed ones.

4.5 Summary and Future Work

This chapter presented the evaluation of the eyewear that classifies a wearer’s facial

expressions. The conducted series of evaluations focused on classifying eight universal

facial expressions. The experimental results showed recognition rates of 92.8% for

one-time use regardless of facial direction or removal/remount of the device; 78.1 %

for repeatability and multiple-day usage after a training process; and 87.7% if the

positional drift of the glasses was taken into account. The robustness in daily scenes

can be achieved by learning more data. The system still has room for improvement

regarding calibration and accuracy, yet it is a significant step in quantifying the flow

of facial expressions in daily life.

The following issues are the future work.

Firstly, it would be better to design a natural learning process to capture natural

facial expressions. To this end, the automation of the learning process using the

emotion-evoking stimuli can be one option.

Secondly, designing an optical filter to reduce the influence of ambient light, es-

pecially sunlight can improve the recognition accuracy. The prototype used photo-
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reflective sensors that function on the basis of IR reflection. Because sunlight contains

enormous amounts of IR light, sensor data saturates when the sensors are exposed to

direct sunlight. With the current system, the sensors are not covered by anything and

are easily influenced by an intense ambient light even though the system applied light

modulation to the LED of the photo reflective sensors. The filter can be designed by

considering the directional light.

Thirdly, the calibration process needs to be improved. For robust recognition,

the prototype requires each user to calibrate under various situations. Generating an

additional dataset based on already trained data can reduce this process. Transferring

learning method should be explored so that the system can make use of other users’

datasets to calibrate another’s effectively.
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Chapter 5

Recognition of Spontaneous

Expressions in Daily Conversation
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In the previous chapter, the focus was on classifying basic emotion categories

in the laboratory setting. All of the recorded expressions were posed. However, in

real life, people do not make such exaggerated expressions frequently. This chapter

introduces the three attempts to capture spontaneous expressions. The first section

introduces the prediction of the daily activities recording from pre-training basic

emotion categories. The second section describes the summarization and mapping

of spontaneous expressions in daily conversations in an unsupervised manner. The

last section explains the spontaneous expression detection while reading. It shows

the device can consider the eye movement, which leads to the potential of quantifying

reading activity that is related to the cognitive process of the human brain. The First

section uses the first prototype, and the other sections use the second generation of

the prototype. This chapter is also based on the work [58,59,60].

5.1 Initial Field Trials

Figure 5-1: Distribution of predicted result of facial expressions based on recorded
sensor values for a long time

This section aims at recognizing spontaneous expressions based on pre-trained

posed labels. Although there is a discussion that the posed expression and sponta-

neous one was different, it does not limit to capture spontaneous expressions with

pre-trained posed labels.

Initial field trials were conducted for daily life by recording facial expressions
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of a user in daily living or home scenario. The recording was a 90 minutes time

series consisting of four activities: (1) playing Go game with a computer for 32

minutes (a board game involving two players originated in China) (2)playing with

a dog for 16 minutes (3) watching an episode of "Friends" for 22 minutes and (4)

programming on a computer for 20 minutes. Additionally, playing a shooting game

with friends (won and lost: 10 minutes) and watching an episode of a crime drama

"Crime Scene Investigation (CSI)" for 45 minutes were recorded on the following day.

The aim was to compare (1) the activities that include social interactions (human-

human and human-animal) as well as individual activities, and (2) the same activities

in a different context (e.g., winning vs. losing games, watching comedy vs. drama

series). Figure 5-1 shows the frequency distribution of recognized facial expressions

during the recording period. The figure presents a normalized distribution for every

2 minutes with a logarithm contrast enhancement. The enhancement makes less

frequent expressions easy to see since sometimes neutral expression was mostly shown

during the activities.

The distribution of facial expressions varied depending on the activities. For in-

stance, happy expressions were mostly observed while interacting with the dog. The

sitcom also produced happy expressions between intervals of neutral ones. While

playing the Go Game, negative expressions sometimes occurred, but they were even-

tually replaced with a happy expression reflecting the progression of the game (from

facing challenges to winning the game). During individual activities, the user tended

to show fewer facial expressions. For example, while programming induced some an-

gry expressions, the dominant expression was neutral. On the other hand, the user

showed more various facial expressions (other than neutral) while interacting with

the dog. The user also showed various facial expressions while playing the shooting

game with a friend. The results are shown in Figure 5-2. During the game, the user

displayed more various facial expressions such as happy and angry while playing with

another person, compared to when the user played alone with the computer (the Go

game). It suggests that social interactions induce more different facial expressions.

Although this is only a preliminary field trial, it is tempting to speculate that facial
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expressions can be used as an indication of communication between people. This

result is consistent with the work by [33].

The distribution of facial expressions may also be influenced by the nature of the

interactions as seen in the case of gaming in the trial (see Figure 5-3). When the

user won, he showed more happy expressions, especially in the latter half of playing.

When the user lost, negative expressions were displayed, the dominant expression

being anger. However, the user frequently displayed happy expressions during the

gameplay even when he eventually lost.

While watching the episode of the sitcom "Friends," the user sometimes showed

happy expressions. When the user watched an episode of the drama "CSI" that

included some graphic scenes such as murder, dissection of the human body and

bleeding, disgust and surprise were detected. While this is an unsurprising result,

it is once again tempting to speculate whether analyzing the distribution of facial

expressions may be able to provide some feedback on the user experience.

Figure 5-2: Facial epression ratio during the activities

5.1.1 Discussion

Although the ground truth was not recorded, the device could capture the character-

istics of each activity. However, some of the results may have been better understood

if combined with non-emotional signals or physiological signals. For example, in the

field trials, "angry" facial expressions were recognized during computer programming

or Go game. It is not difficult to imagine that this was more a reflection of mental ef-

fort, confusion or frustration rather than an expression of anger. However, considering

the common aspect of anger and concentration which try to avoid the other’s inter-
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Figure 5-3: Comparison of facial expression distribution between the activities

vention, it is obvious that the basic emotion labels are not the only way to interrupt

the facial expressions. Du et al. suggested the existence of 21 expressions [14]. The

information provided by complex facial expressions would be useful for understanding

the user experience in depth. This evaluation is a first step towards classifying more

complicated facial expressions in daily life.

In the field trial, the device classified the expressions that were high in intensity,

which suggests that the system trained with the posed expressions were unable to pick

up less intense expressions. It means the system could only provide an approximate

picture of the pattern of facial expressions in a daily life setting.

5.2 Spontaneous Expressions in Daily Conversa-

tions

In the previous section, the classification was based on basic emotion labels. This sec-

tion shows the way to capture facial expressions differently based on sensor data. The

section focuses on the spontaneous expressions in daily conversations where people

show diverse expressions as the previous section suggested.
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Figure 5-4: People show different kinds of spontaneous expressions in daily conver-
sations. The method maps the similar expressions using the wearable sensors in an
unsupervised manner.

5.2.1 Introduction

Humans are inherently social and exchange information with others through multiple

channels such as languages, body gestures, audio tones, and facial expressions [22].

According to Frith et al., facial expressions play a dominant role in our daily interac-

tion compared to other nonverbal clues [21,65]. We can often recognize the intentions

and emotions unconsciously from facial expressions. Moreover, facial expressions de-

termine our subjective impression of a person. We tend to show facial expressions

deliberately in situations in face-to-face communication [33]. Especially we smile more

in conversations with friends [36]. The smiles vary in different contexts. For example,

we show social smiles for efficient communication while we show smiles after feeling

a positive emotion. To analyze the different expressions people convey, this section

measures facial expressions during daily conversations.

The most of the facial expression classification methods use the labels of cate-

gorical frameworks beforehand. While it allows objective interpretation by labels, it

is necessary to record facial expressions with associated labels such as smile, anger

and so on. Also, it is difficult to take into account the facial expressions that are
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not included in the labels. They may reflect the vital information to understand

personal differences in facial expressions that are stable over time [10]. For exam-

ple, it may be different between a smile made by those who often laugh and the

smile of another who rarely laugh. One approach to tackle this issue is unsupervised

learning that can identify the structure of the data. It makes possible to classify

according to individual expression patterns. It is useful for human behavior analysis.

For the camera-based approach, there are a few works that applied an unsupervised

classification such as [109]. Unsupervised classification of facial expressions using a

sensor-based method has not been explored yet.

The purpose of this section is to map and classify natural facial expressions in

daily communication, especially that are subtle and typical of each person using a

wearable sensor and unsupervised learning method(Figure 5-4). By doing so, it is

possible to see the potentially detectable expressions with the device. The five users’

facial expressions were recorded for five to ten minutes in daily conversations. In

such an unscripted communication, the users showed their spontaneous and subtle

expressions. For the recording, a camera captured the facial images, and the device

captured the sensor data. For the analysis, the Self-Organizing Map(SOM) [48] was

used to visualize and summarize facial expressions in an unsupervised manner.

It is necessary for the smooth and natural interaction between human and com-

puter, and a talking agent to understand the personal difference of their facial expres-

sions. Besides, if the system can correctly detect the communicative signal, the social

assistant robot can help with appropriate timing. It is also useful for human behavior

analysis. The method can be used to improve communication skills by knowing the

personal habit of making facial expressions. For example, the user can get feedback

on how to make facial expressions in job interviews or business presentations where

the impressions are essential to be successful.

The main contributions of the section are the following:

1. Data collection of facial expressions in daily conversations using the eyewear

device and a camera. The data was used to visualize and map the facial ex-

pressions of the participants using an unsupervised learning method.
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2. Description of summarizing natural facial expressions in each cluster of the map.

The frequency information could show characteristic facial expressions for each

person.

3. Creation of the map by learning the sensor dataset of multiple users. The

method could construct common or similar expression classes among users con-

sidering the distribution of facial expressions in daily conversations. It could

also capture diverse expressions of the users.

5.2.2 Unsupervised Mapping Using the Eyewear Device

This subsection explains how to process the data from the device and how to make

sensor data-driven maps using an unsupervised learning method. For the system, the

sensors located at both ends of the upper part were used for measuring the ambient

light. The information of these two sensors reflects on the movement of head direction

since it does not get influenced by the change of facial expressions.

There are three main advantages to using the eyewear device in combination with

a camera to measure spontaneous facial expressions in daily conversations. First, it

is wearable. It can measure facial behaviors regardless of the optical occlusion by the

hand gesture, directional change of the faces, and the user’s body movement. Second,

the device is eyewear. It is comfortable to wear. Additionally, it does not disturb

the camera-based facial expression recognition as algorithms are already trained to

deal with glasses. Third, the device uses optical sensors. The sensors can measure

subtle differences in distances. The sensors have the potential to measure even minute

changes in facial expressions.

5.2.3 Data Processing Pipeline

The device acquired the sensor data that consists of a 16-dimensional 10 bits values(

see Figure 3-7 for the layout of the sensors). The built-in camera also recorded a se-

quence of pictures. Those two data are synchronized using the attached timestamps.

The sampling frequency is about 30 Hz for both. The algorithm applied a five se-
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quences simple moving average filter to each dimension of sensor data in order to

reduce the noise. Then outliers were eliminated using the following formula from the

acquired dataset. If the sensor data included an outlier in any dimension, the data

were excluded. outliers = (data − mean) > 4xstd After the exclusion, the dataset

was normalized so that the time-series data points in each sensor dimension have zero

mean and unit variance.

Creating facial expression maps

SOM [48] was used for unsupervised classification of the sensor data. SOM is an arti-

ficial neural network of unsupervised learning that does not require labels beforehand.

It can summarize the non-linear data by preserving the topological properties of the

inputs. It is one of the most standard methods that can visualize high-dimensional

data into 2D map. The proposed method made use of MiniSom [101]. It mapped the

sensor data into a 2-dimensional space with 7 X 7 neurons. For the hyperparameters,

sigma was set to determine the range to update the weights of the neurons to 1.0,

and a learning rate was set to 0.4. The initial value of the weight for each neuron

was set randomly from one of the sensor data in the dataset. SOM was trained with

all data in the dataset. The order of the data for the training was randomized, and

training had 1500 iterations.

There were many data in one cluster. To determine the facial expression regarded

as representative of the cluster (representative facial expression), the following three

approaches were taken.

Average Expression

The pictures were processed in the clusters with the following steps. The approach

used the face morpher library1 and dlib library [46]. First, the method found the

face areas in the photos of one cluster. This localization used convolutional neural

networks based face detector in the dlib library. Then, it extracted the 68 facial
1https://github.com/alyssaq/face_morpher
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landmarks. It aligned and warped the faces in the cluster using the points. After

that, it averaged facial expressions using the extracted feature points.

Facial Landmarks Median

This approach used the facial landmarks extracted in Average Expression method.

After normalizing the landmarks in the range of 0-1, it calculated the median values of

all the landmark points in each cluster. As a representative facial expression, it picked

out the picture that corresponds to the landmarks that have the closest Euclidean

distance to the median values of the cluster.

Sensor Data Median

The method chooses the sensor data that is closest to the medians of sensor data in

one cluster. Then it regards the corresponding picture as the representative expression

of that cluster.

5.2.4 Case Studies of Daily Conversations

The case studies were undertaken to see the potential of the approach to classifying

various facial expressions. The experimenter recorded five users’ facial behaviors in

daily conversations with the eyewear device and a built-in camera on MacBook Pro

2016. They sat down at the one place and talked about what random topics such

as the holiday experiences, their favorite sites and so on. They talked with two or

three friends including the observer. The experimenter did not limit the topics and

any head movement of the user. They sometimes spoke, sometimes listened. The

size of a recorded picture is 360 X 640 pixels. All of the recordings have been done

indoors at the similar location with a similar ambient light condition. The individual

user case studies explore each a specific theme: the User 1 case focuses on a reliable,

continuous usage scenario, the User 2 case focuses on variation in facial expressions

(especially smile), the User 3 on how interruptible the expressions are.
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User 1: Reliability

Figure 5-5: Averaged Expression Map Figure 5-6: Facial Landmarks Median Map

Figure 5-7: Sensor Data Median Map Figure 5-8: Mapped with another dataset

The experimenter recorded the 5 minutes conversation of the first user two times.

Between the recordings, the user had a short break for about 30 seconds. For each

recording, the experimenter asked the user to start with a neutral face. The experi-

menter trained the SOM using a dataset from the first conversation.

Figures 5-5,5-6,5-7 show the visualized maps of the first user’s dataset of the for-

mer conversation using the above methods (Average Face, Landmark Median, Sensor

Median). All of three maps show similar expressions in nearby areas. SOM was able

to map similar facial expressions to the same or near clusters using the sensor data

from the eyewear device. In other words, the sensor data has correspondence with
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various facial behavior. It summarized the main expressions of the first user. The first

method (Average face) could show the impression of facial expressions in each cluster.

However, if the landmarks of faces were not accurate, the averaged expression was

easily blurred, and difficult to interrupt the meaning of faces. The second method

made use of the landmarks. It enabled to pick out the picture that corresponded

to the median data of the landmarks. These two methods take time because they

require processing all of the pictures to detect faces. The last method picked out the

representative facial expression corresponding to the median of the sensor data in the

cluster. The result is competitive with the other methods. This method is faster since

there is no need to apply face recognition to all the pictures. Also, the method can

consider all of the data even when the frontal face is not available in the pictures.

For the first user, there were two main expression clusters. The first cluster is

a laugh that appeared on the top three rows. The other cluster is a neutral face.

Also, The clusters were made by left-right face direction. It is because the ambient

light came from the left direction of the user. Also, the clusters correspond to the

up-down face direction. Since people look at the eyes when they have confidence and

look down when they have vague feelings in mind, the face direction reflects on the

communicational intention. Figure 5-8 shows the result of mapping the dataset of the

second conversation to the trained SOM. Each dataset was normalized to 0 mean and

unit variance previously as the facial expression appeared on the two conversations

were not so different. The blank cluster means no sensor data was assigned. From

the map, almost every cluster has a similar representative expression, yet there were

different expressions in the same place (for example, the first row and second column).

This result suggests the potential to use the method for a semi-supervised approach.

For example, measuring the expressions first with the camera and the device, then

the user measure using only the eyewear device. If the clusters are made in an

unsupervised manner, the labeling to all the sensor data is not necessary as long as

some of the data in the cluster have its facial expression labels. It is useful for long-

time recording to see how the frequency of the user’s facial expression changed based

on the user’s facial expressions that had already appeared.
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User2: SOM Resolution

The second user made a conversation with her friends and the experimenter with

everybody sitting. The experimenter recorded the 5 minutes conversation two times.

The experimenter has tried the Average Face method. However, the landmarks of

the facial features of the user 2 did not achieve good results. It is caused by the fact

that the face is not always facing front and her forelock hides the eyebrow. Therefore,

there is the result of Sensor Median map only(Figure 5-9).

The characteristics of user 2 are that several kinds of smiles have the different

clusters. For example, the right middle areas show the smile of enjoyment where the

corner of the eyes wrinkle while the bottom right areas show social smile that the

eyes are neutral [19]. Also, the map showed the intensity of the smiles as it can show

the transition.

By overlapping the frequency information as the transparency, it is possible to

know the typical expression in the recording(Figure 5-10). As for the user 2, the

most frequent expression is neutral or the face listening to others.

Moreover, by increasing the resolution of the SOM, it can show more diverse

expressions (Figure 5-11). It is also useful to know how well the SOM can visualize

the clusters with the sensor data. The similar expressions have its island. Since there

is a significant amount of information, the high-resolution map is not appropriate to

the summarization of the conversation. On the other hand, it is informative to know

the user’s trait about what kind of expressions are shown because the map showed

the various expressions the user made in order.

User 3: Interruptibility

The experimenter recorded the user 3’s facial behavior for ten minutes. Besides,

the experimenter recorded the posed facial expressions that relate to the eight basic

emotional states (neutral face, smile, disgust, anger, surprise, fear, sadness, contempt)

defined by Ekman [17](Figure 5-12). The user 3 made facial expressions for 3 seconds

each. The experimenter repeated five times. Figure 5-13 shows the Sensor Median
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Figure 5-9: The Sensor Median map of the
user 2

Figure 5-10: Overlapping the frequency in-
formation to the map of the user 2

Figure 5-11: The high-resolution map of the user 2
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map of the user 3. As similar to the user 2, the clusters of smiles were mapped

according to the intensity of the smiles. The enjoyment of the smile appeared on the

lower left areas. The smaller smile appeared on the middle right and bottom middle

areas.

The data with basic emotion labels were normalized using the mean and standard

deviation of the conversation dataset. Then, The data related to basic emotions

were mapped to the trained SOM (Figure 5-14). It helps to understand the map.

For example, the posed smiles were mapped to the clusters of the smaller smiles. It

means that the smaller smiles are similar to the posed one that did not appear as

an enjoyment. Another example is that the surprise arose on the first row, the fifth

column. It suggests that the expressions on that cluster have the faces with the raised

eyebrow. On the other hand, the other emotional states were mapped to the same

area as the neutral one. It is because the expressions were very different from the

ones shown in the conversation.

The Map Trained with Multiple Users

The map was trained using all five participants’ datasets trimmed to five minutes

conversation per each. Each dataset was normalized to mean 0 and unit variance

respectively and was merged into one dataset. Figure 5-15 shows the Sensor Median

expression of the dominant users in each cluster. The map shows the clusters only

when the number of one of the user’s data occupies the half in one cluster. From

the left bottom areas of the map, two users’ smiles are smaller than the others’

smiles of adjacent areas. Although they show different smiles, their smiles are similar

concerning the distribution of facial expressions in the conversations. In other words,

the method can compare how different smiles the users make in the same situation.

Figure 5-16 shows the result of applying each user’s dataset. The alpha value for

each cluster is the number of each person’s data divided by the sum of all users’ data

in the cluster. Each user’s data was distributed into various clusters. Regardless of

the users, the data of the neutral faces and the smiles are mapped into the same or

close clusters respectively. It means the map could make the clusters across the users.
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Figure 5-12: The posed basic emotions made by the user 3

Figure 5-13: The Sensor Median map of the user 3

Figure 5-14: The mapped amount of basic emotions data to the
clusters in Figure 5-13
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Figure 5-15: The map trained with multiple users’ data

Figure 5-16: The mapping result of each user’s data to the SOM trained with multiple
users data with frequency information overlapping
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5.2.5 Diverse Expressions of the Users

Up to this point, the maps showed the main expressions frequently appeared on the

dataset because all of the examples in the dataset have the same weights and the

outliers were eliminated. These maps can see what expressions dominate on the map.

On the other hand, there are the expressions that have characteristic of the user

expressions even if they appear less frequently. To see the diverse facial expressions

of the users, a map was trained with "diverse" dataset where the sensor data are

distributed far from the mean. It used the data that satisfies the following formula

in any sensor dimension.

diverse = (data−mean) > 3xstd

Figure 5-17 shows the result of the user 2. The map could show more diverse

expressions than the previous map while the similar expressions are still in the close

cluster. Figure 5-18 showed the map with all user’s "diverse" dataset. The map picked

out the expressions in the same way as All Data section. As the expression shown

have the characteristic sensor data, what it visualized is the characteristic expression

of each user in the datasets at one map.

5.2.6 Discussion and Future Work

In the case studies, the map showed the facial images based on the sensor data

structure using SOM. The device can map based on the face direction, the intensity

of smiles, various types of smiles. The method can visualize the main expressions the

users showed. Besides, the method can map the expressions across the users.

The method can help understand how the users make facial expressions. It is a

qualitative analysis by summarizing and visualizing the data. It needs to combine a

quantitative analysis for the better understanding of facial expressions in the conver-

sations. To this end, the annotation by human coders to the video is required in the

future work.

Only five students participated in the study. Further work includes examining

how the method can generalize with diverse nationalities, gender, and ages in different
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Figure 5-17: The Sensor Median map showing the diverse expression of
the user 2

Figure 5-18: The Sensor Median map showing the diverse expression of
multiple users
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ambient light conditions.

If the facial expressions in the test dataset are not similar to the ones in the

training dataset, they cannot be classified correctly. Also, the method needs to make

correspondence between training data and test data by calibration if those come from

the different distributions.

The SOM used the static sensor data. The data corresponds to the geometric

change. Time-series information was not considered although the dynamics of facial

expressions have abundant information about how the facial expressions of the user

change. The future work considers temporal features of facial expressions by using

such as recurrent neural networks.

The conversation was analyzed from one-side. However, the interaction is always

at least two-sided, and people affect each other’s expressions and (re-)actions. It

would be better to analyze conversations both-ways to understand social interactions

in greater detail.

5.3 Eye Movements and Reading Detection

Up to this point, the primary focus was facial gestures. This section focuses on eye

movements that are also important aspects of facial expressions. Some researchers

show that eye movements and blinks reveal about the mind of people [27,88]. There-

fore, facial expression and eye movements are both critical to understanding people’s

inner states and behavior.

Since the system can detect the skin deformation around the eyes, the system

can be used to measure the eye movements. This section investigates how accurate

the eye movement can be measured and potential of reading quantification. Mainly,

the experiments attempted to measure line breaks by the eyewear device. With the

information, the system can estimate how many words the user read [50]. Also, facial

responses caused by reading texts were analyzed.

71



Figure 5-19: The screen shown to the participants

5.3.1 Evaluation: Eye Gaze Position

The subsection evaluated the accuracy of estimating eye gaze position with the device.

The estimation of the position was done from the skin deformation caused by the

directional change of the eyeballs.

The experimenter had the five participants (all in the 20s, one female). Each of

the participants wore the device. They sat down at the distance of about 60 cm

from a 23 inches screen. In the screen, 5 x 5 matrix was shown (Figure 5-19). It

means each class has approximately 5 degrees (vertical) and 10 degrees (horizontal)

of the field of view. The experimenter asked the participants three things during the

experiment;(1) look at the colored rectangle on the screen. (2) hold neutral face and

blink only during the transition time to reduce the artifacts of the user’s behavior

(including facial expression change) to the sensor values. (3) follow the colored place

with eyes only and not move their head.

After the participants started the software, the colored place changed in order

from (X1, Y1), (X2, Y1),...,(X5, Y1),(X1, Y2),..., to (X5, Y5). Whenever the position

changed, the color of the rectangle turned to gray for the first 500 ms as the transition.
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Figure 5-20: Confusion matrix of estimat-
ing horizontal gaze direction.

Figure 5-21: Confusion matrix of estimat-
ing vertical gaze direction.

In the meantime, the participants changed the gaze position to the gray rectangle.

After the color changed to white from gray, the software recorded the sensor data

samples(1000ms). This process is to record when the participant gazed at the correct

position. Each person repeated the process of looking at 25 positions eight times. It

means the dataset of each participant includes the data samples of 8 seconds for all

of 25 positions. The data samples from 25 position are labeled based on the position.

Since some of the participants blinked during the recording time, the outliers of

each position class were rejected from the acquired dataset. The outlier rejection used

the following formula. D is the data samples in each class. d is a data sample that

belongs to D. mu and std are 16-dimensional values(average and standard deviation)

calculated for each dimension of sensors within the class.

outliers = abs(d−mean(D)) < 2xstd(D) ∀d ⊂ D (5.1)

Later, each dimension of the datasets was normalized to zero mean and unit

variance. Then, 25 classes of the data samples were categorized into five classes in

two ways: horizontally and vertically (the five classes in each column or row made a

new class). Then 5-fold cross-validation was applied using an SVM classifier (kernel
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= rbf, C = 1000) to each dataset. The experimenter repeated the process for every

participant.

5.3.2 Results

Figure 5-20 and Figure 5-21 show the average accuracy of each participant’s result

with individual training. The figures indicate that the sensor data and eye gaze posi-

tion are correlated. Especially, the vertical movements show a higher correlation(av-

erage accuracy 82.4%) than the horizontal movements(average accuracy 58.8%). It

means that the vertical movements of eyes cause more skin deformation around the

area measured by the device than the horizontal ones. Most of the false predictions

are classified as the area next to the True classes. The accuracy is higher on the

corner comparing to the central area. It is hard to identify the exact position be-

cause the approach only estimated based on the skin deformation measured by the

device. The direction change of eyes caused the deformation. However, the device

can approximately measure where the user looks at in an experimental condition.

5.3.3 Feasibility Study: Reading Detection

To demonstrate the potential of the device for the analysis of facial expression and

eye movements in daily contexts, the feasibility study of reading detection was done.

Since reading is essential for learning, reading detection is useful for quantifying and

managing the activity to let users read more [50]. Implicit tagging of the facial

expressions to the contents can help users to search their potentially favorite contents.

It is also beneficial to analyze the contents and to make the contents recommendation.

Advantages of using the device for the purpose instead of wearable eye trackers

is that it is possible to consider the information of facial behavior to estimate the

emotional response and cognitive states. On the other hand, if the aim is just to

quantify reading, the information is noise, which means the accuracy of detecting line

break would be worse than the eye trackers.

One participant (a male in the 20s) wearing the device read 10 English jokes.
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Jokes were chosen to induce non-neutral facial expression (positive). The jokes are

retrieved based on [15]. The lengths of the jokes are from 2 lines to 11 lines. He read

the texts shown on the screen in the text box of 900-pixel width on a 23-inch screen

(1920 x 1080 p). Soon after he finished reading each joke, he pressed the keyboard in

order to record the sensor data samples of the only reading activity. Then, the user

also evaluated each of the jokes by 1) how well the user understood the joke (1: not

wholly understand - 9: completely understand) 2) how funny it was (1: not funny -

9: very funny) with the 1 - 9 Likert scale. The experimenter also recorded the videos

of the wearer’s face in the study. It was used to check and count his eye movements

and the facial expression change manually.

To the recorded data samples, the system applied a simple moving average of

5 sequences. Later, FastICA from SciKit-learn library was used to process the data

samples into 4-dimensional time-series data. To detect independent components (skin

deformation caused by facial muscle activity and the skin deformation caused by eye

movements are assumed independent), ICA is chosen as it is the standard statisti-

cal method for general-purpose. Among the four dimensions, Each dimension of the

data corresponds with 1) facial expression change 2) horizontal eye movements 3)

blinks and the user’s behavior and 4)the other factors such as ambient light noise.

The experimenter manually categorized the data. The system applied a moving av-

erage of 2-40 sequences depending on the category and the amount of the noise (for

blinks: 2-5 sequences, for line breaks: 10 - 20 sequences, and for facial expression:

20 sequences). The peak detection algorithm was used (the Python version of "find-

peaks function" from MATLAB Signal Processing Toolbox). The parameter of peak

detection algorithm was manually adjusted for each result.

From the recordings, the section introduces three specific examples. The one

shows the data of reading activity only when the user kept a neutral face; another

one indicates the data with the facial expression change (neutral to positive); the

other one illustrates the data with facial expression change, head motion, and body

movements. Note that the time scale of each figure is different depending on the

length of the jokes.

75



Figure 5-22: The time-series data after applied FastICA to sensor data samples while
the user read with a neutral face. Top: line breaks, Bottom: blinks

The first example is the data of 9.5 line joke that the user understood (8 points),

and he evaluated as little funny (6 points)(Figure 5-22). From the video, there was

no facial expression change. The above figure shows the data of horizontal eye move-

ments. Each peak corresponded with the eye movement that went from the end of a

line to the new line. The red dots in the bottom figure show the blinks of the user. All

blinks except the last one were successfully detected. The last blink was not detected

because the recording ended in the middle of the blink. This example demonstrates

the potential of quantifying how many lines or the words the user read [50] using the

device.

The second example is the data of 2.5 line joke that the user understood (9

points) and he evaluated as funny (8 points)(Figure 5-23). From the video, the false

positives (blue dots, 5 seconds and 18 seconds) on the line break figure were actually

backward saccades: the behavior of looking back a couple of words behind. The

system successfully detected all of the blinks rather than the last blink since the
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Figure 5-23: The time-series data after applied FastICA to sensor data samples while
the user read and smiled in the end. Top: line breaks, Middle: blinks, Bottom: Facial
expressions

recording ended in the middle of the last one. The bottom figure shows that one of

the ICA time-series data correlated with the actual facial expression change. This

example could demonstrate it is still possible to detect line breaks and blinks while

detecting the change in facial expressions.

The last example is the data of 3.5 line joke that the user understood(9 points)

and he evaluated as funny(8 points)(Figure 5-24). In the above figure, there was the

influence of the user’s behavior of moving forward to the screen and of looking down

on the keyboard. The system detected all of the line breaks, but the influence of

the blink caused the wrong line break detection(false positive). If blinks happened
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Figure 5-24: The time-series data after applied FastICA to sensor data samples while
the user moved, read and smiled . Top: line breaks, Middle: blinks, Bottom: Facial
expressions

in the middle of the user’s behavior, the blink was not detected. The user’s action

also caused the wrong detection of the blink. It means the ICA algorithm could not

separate all the factors correctly for this example. The figure of the blinks shows that

the time-series data included the blinks, the movement of the line break and facial

expression change. However, the bottom figure demonstrates the successful detection

of the facial response.
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5.3.4 Discussion

Although the proposed device can estimate approximate gaze position, it is hard to

recognize the exact position of the user’s gaze. It means the device cannot be used

for eye pointing. However, the information from the device can be combined with an

existing eye tracker information. It may improve the accuracy of eye pointing with

the eye tracker.

Also, the feasibility study of reading detection showed a potential for implicit

tagging and content analysis. The current reading detection can work with stable

head positions. To measure correctly, the preprocessing is required to separate facial

and eye behaviors from other noises. The future work investigates to tackle the issue

and have a large number of the participants with more extended and various contents.

The gaze information is one of the critical aspects of facial expression. People com-

municate their intention by looking at a talking partner or by avoiding eye contacts.

In this sense, combining facial behavior with gaze information could help analyze

social interaction deeply.

5.4 Summary

This chapter first proposed the field trials using the posed expression labels. It showed

that the device could capture the pattern of the daily activities. Also, the potential of

capturing the cognitive load was suggested. Secondly, the chapter showed a method to

visualize and summarize facial expression information in a conversation by combining

the eyewear device with the array of photo-reflective sensors and image information

from the camera. The SOM could map facial expression clusters of individuals in

order. With the five to ten minutes of case studies of five users, the section could

show that the method could visualize the main expressions and diverse expressions

the users showed. The map trained with multiple people showed the clusters shared

among the users. The map could show the characteristic expressions of the users and

also allow to compare how one user’s expression corresponded to the others’. Finally,

the chapter showed the potential of detecting eye movements with the device. The
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experiment demonstrated the possibility of estimating approximately gaze positions in

an experiment condition. Another experiment investigated the potential application

case of reading detection. Although a user’s behavior caused the false positives, the

system could detect the blinks and line breaks in addition to facial expression change

by applying FastICA.
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Chapter 6

Input from Face:

Eye Gesture Detection and Hand

Over Face Gesture Detection
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Figure 6-1: The user wears the prototype. The system can detect facial expression
and eye gestures

This chapter introduces two input techniques using smart eyewear. The first sec-

tion describes eye gestures with facial expression recognition. Next section describes

the input technique by rubbing face that can be recognized independent from facial

expression.

6.1 Eye Gesture Detection

In the field of Affective Computing [75], nonverbal information such as facial expres-

sion obtains a great interest to improve the system that detects the emotion of the

user. For example, Pham and Wang proposed AttentiveVideo to understand emo-

tional responses to mobile video using physiological signal and facial expressions [74].

They used two cameras on a cell phone. Also, nonverbal information can facilitate

efficient and natural interaction between human and computer. Chao et al. pro-
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posed a stroke grouping method in sketch recognition using eye gaze information [7].

They showed eye gaze information improved the efficiency of stroke grouping. On

the other hand, researchers used information from faces as an input modality. For

example, Face typing is a vision-based interface for hands-free text entry that utilizes

face detection and facial gesture recognition [26]. These examples suggest that fa-

cial expressions and eye gestures have potential as an input interface by providing a

command or its context. Most of the previous works used the camera-based method.

However, it requires high processing cost and not suitable to use in everyday’s life

contexts because of mobility limitation. Furthermore, no single wearable device can

simultaneously detect both facial expressions and eye movements without cameras.

This section presents eye gesture detection pipeline as well as detecting the facial

expression states (neutral/positive/negative) of the wearer and his/her eye gestures

(up, down, left, and right, wink (left and right), blink) with embedded optical sensors

(Figure 6-1) on the device. Both the eye movements and facial expression changes

cause the skin deformation around the eyes that the embedded optical sensors mea-

sure. The detection algorithms were Support Vector Machine (SVM) and Dynamic

Time Warping (DTW) respectively.

The system allows the user to input information to a computer naturally and

intuitively with eye gestures because the system can reflect on the user’s condition

through facial expressions. Since the system is wearable, the users do not need to

install any setting in their environments. They just wear the devices to input a

command to the computer. The input using face information from the wearable

device allows hands-free interaction to the users. It is effective for people who are

hand caught or who can not move their hands like people who are driving a car or

using the wheelchair. Also, the processing cost is much smaller than the camera since

the data from the sensors have lower dimensions (16-dimensional 10-bit values per

readings).

The contribution of this section is

1. Development of the algorithms that can detect eye movements with facial ex-

pression state.
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2. Technical evaluation of detecting eye gestures and facial expressions. The ex-

perimenter recorded 210 gestures (The seven kinds of the gestures on three

different facial expression condition, ten times) from each of nine people partic-

ipated in the experiment. The accuracy of detecting seven kinds of the gestures

are 92.9% with the user-dependent templates.

6.1.1 Related Work

The proposed work is based on the works from the field of a wearable eye tracker

system and the interaction based on information from faces.

A wearable eye tracker such as Pupil [41] can measure eye movements robustly.

However, as visual information from a built-in camera requires processing cost, the

system needs to have appropriate processors. To overcome this limitation, Invisible-

Eye uses four low pixel cameras for gaze estimation [97]. This research shows the

potential for mobile eye tracking in daily life. JINS MEME is commercial eyewear

that measures electrooculogram (EOG) signals and detects eye movements and blinks.

The appearance is almost the same as regular glasses. Ishiguro et al. proposed Aided

Eyes for human memory enhancement in daily life [35]. Their prototype sensed eye

activities using small phototransistors and infrared LEDs. The entire system can be

attached to the glasses. However, their system has to be in front of the eyes. It

occluded the wearer’s vision. While those researchers showed the possibility to detect

eye movements in daily life, they do not measure facial expressions. The photosensors

on the proposed device are capable of estimating the eye movements. It measures

the skin deformation around eyes for estimating the eye movements. The proposed

method is also capable of measuring facial expressions.

There are the works using information from the eyes as an interaction technique.

Jota and Wigdor explored the design space of eyelid gestures using a commodity

camera. They proposed various application cases [39]. A wearable EOG glasses

proposed by Bulling et al. allowed the wearer to play a desktop computer game

using eye movements [3]. Manabe presented the earphone based interface to detect

eye gestures by EOG measurement [56]. They considered the usage in daily life and
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developed a music player application. Špakov and Majaranta proposed the hands-

free interaction system combining gaze pointing and head gestures [89]. Face typing

utilized face detection and visual gesture detection to manipulate a scrollable virtual

keyboard [26]. Surakka combined the use of two modalities, voluntary gaze direction

and facial muscle activation for object pointing and selection [90]. They attached

EMG electrodes to the user’s face. Their works consider facial and head gestures

using cameras and electrodes. Their researchers suggest that the interaction has

the potential for hands-free interaction. Cameras require high processing cost while

electrodes on face do not fit everyday usage as the appearance is not okay and it

is not comfortable to wear for a long time. Besides, Considering the mobility of the

device and daily-usage, low signal sensors were preferred. The method considers facial

expression and eye gestures in an unobtrusive way.

From related work, the system is the first wearable prototype that has the function

of detecting eye gestures and facial expression states while keeping the form factor of

ordinary eyewear.

6.1.2 Application Scenario

The advantages of using the system as an interaction technique are 1) hands-free

control, and 2)context-based input. The system is suited for a simple interface such

as turning on/off the lights, turning the page of e-books, and playing or stopping

the music. For example, while streaming a random music playlist, the user can skip

to happy music with winks if the user holds a happy face. Also, the combination of

eye movement inputs can also be used for a command input like the application of

Manabe et al. [56]. Another simple application is inserting emoticon while texting on

a mobile phone. The user can input by making a smile and a wink. Since the verbal

information sometimes communicates emotions improperly, the emoticon insertion

can contribute to smooth communication.
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Figure 6-2: The set of gestures. All gestures start and end at neutral eye position on
the top left.

6.1.3 Gesture Set

For facial expression states, this section considered three states for simplicity’s sake:

positive (smile), neutral and negative (frown). When the positive expression is rec-

ognized, zygomatic major muscle is activated while negative emotion activates the

corrugator supercilii muscles [51]. As such, the experimenter asked the users to acti-

vate those muscles in the experiment.

Figure 6-2 shows the gestures to detect with the device. All of the seven kinds of

the gestures are temporal gestures, starting from and ending at neutral eye position

shown on the top left of the figure. Among the gestures, people make winks only

explicitly. It is the advantage of using as an input because it is possible to avoid

unconscious inputs. Basic four directions of eye gestures are used for simplicity. For

these four gestures, the system considers when the user moves his eyes to specific

direction as much as the user can. This assumption can clarify the difference between

the four directional gestures.

Blink Detection

Blinks happen involuntary or voluntary. It is better to differentiate between them if

the users input by blink in order to avoid an unexpected input. The system makes
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Figure 6-3: The sensor recordings of involuntary blinks (top) and strong voluntary
blinks (bottom).

use of voluntary blinks because people can make stronger than involuntary ones.

To see the difference between the sensor data of both, the experimenter made two

recordings with one participant as a preliminary experiment. He held a neutral face

during this study. For involuntary blinks, the experimenter recorded 35 seconds of

the data samples while the user watched a neutral video. For voluntary stronger

blinks, the experimenter recorded the 20 blinks for 35 seconds. For both recordings,

the experimenter recorded videos of the user wearing the glasses. Figure 6-3 shows

the heatmap of the results. In the figure, the experimenter annotated the blinks

manually by checking the video. The values on the heat maps are the subtraction of

the raw data samples in time series and initial raw data sample. The figure shows

that the sensor data and the blinks have corresponded. Strong voluntary blinks cause

the more significant change to the values from the sensors located in the different

places. Moreover, the values of some sensors only change for voluntary blinks. It

is because a stronger blink causes the deformation of the upper cheeks. Therefore,

strong voluntary blinks can be differentiated from involuntary blinks.
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Figure 6-4: The overview of the system. The data samples from the sensors are
applied to detect eye gestures with DTW and facial expressions with SVM.

6.1.4 Algorithm

Figure 6-4 describes the overview of the system. The process of eye gesture clas-

sification algorithm consists of two stages: data acquisition and preprocessing, and

template matching.

Data Acquisition and Preprocessing

The device acquires a 16-dimensional data sample per reading. The sampling fre-

quency is around 30 Hz. From the data streaming, the system read in the latest

sample into a buffer. The size of the buffer is for 70 data samples. The system

calculates the standard deviation of the data samples for each sensor in the buffer.

If the summation of the standard deviation is lower than a threshold, it classifies

as no gesture. Otherwise, it regards a gesture in the buffer. Then, it makes a new

array that is a simple moving average of 10 sequences to the buffer. It smoothes out

the noise. Then, the algorithm normalizes each sensor dimension of the time-series

samples in the array separately to a zero mean and unit variance.
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Template Matching

If the gesture is detected, the system compares the time-series with matching tem-

plates of all of the seven gestures. If there is the template that is similar enough to

the array, the system regards the array as one of the seven gestures. The core of this

algorithm is template matching.

The system used one of the most standard time-series similarity measures: Dy-

namic Time Warping (DTW). This algorithm calculates the distance between two

different time-series. The shorter distance means the two are similar. Considering

the possibility of real-time detection, the system applied a FastDTW [82]. This algo-

rithm is an approximation of DTW that has a linear time and space complexity. As

the signals are multi-dimensional, the system used a distance measure as the summa-

tion of absolute difference in all sensor dimensions [93]. The formula for calculating

the distance(D) between two K-dimensional time-series, i-th sample of A and j-th

sample of B is as follows.

D =
K∑
k=1

|Ai(k)−Bj(k)| (6.1)

By performing DTW on the first-order derivatives of the feature values, it is possible

to consider the high-level feature of the shape of the time-series [43]. In this case,

the system used the derivatives because the data sample at the starting point of

the wave differs depending on the position of the device and facial expression states,

but how the data samples change over time is consistent to some extent. Therefore,

the algorithm compared the similarities between the derivatives of the buffer with

the derivatives of all matching templates. The system used 7 matching templates

by averaging the resized buffer to 70 samples for each kind of the gestures in the

experiment. Through the comparison, the system calculated cost matrix(CS) of the

seven calculated distances. The templates are used to classify the buffer signals as

the closest gesture template(argMin(CS)) if (1) Min(CS) is lower than a threshold

(2) the relative similarity(RS) is bigger than similarity threshold th. RS is calculated
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Figure 6-5: (left) The user interface used for the recording in the experiment. (right)
The experiment setup.

with the following formula.

RS = (Min(CS)− SecondMin(CS))/Average(CS) (6.2)

The thresholds reject possible confusing gestures or different gestures. The bigger th

helps to improve the accuracy of classification. However if the threshold it too big,

the correctly classified gesture can also be rejected.

6.1.5 Evaluation

The goal of this study is to evaluate the accuracy of detecting eye gestures while users

keep three facial expression states. The nine users( eight users are male. They are

all in the 20s.) participated in the study. The experimenter recorded the sensor data

samples of the gestures with Processing language. To avoid the influence of intense

ambient light, the study was run in a quiet room far from windows(Figure 6-5). The

following analysis was done in Python environment.

Procedure

Figure 6-6 shows the summary of the procedure in the study. The experimenter

recorded 210 gestures (7 kinds of the gestures x 3 facial expression condition x 10

times) for each participant.
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Figure 6-6: The summary of the experi-
ment procedure.

Figure 6-7: The averaged eye gesture tem-
plates of all 9 users

The recording of each gesture was divided into two phases. In the preparation

phase, the software instructed the user’s next gesture and facial expression. In the

action phase, the software told to start the gesture. The use of two phrases allowed the

participants to start almost the same timing during the recording. It helps to make

matching templates. The software recorded the sensor data samples with around 30

Hz only during the action phase.

Firstly, each participant was asked to sit on a chair in front of the laptop on the

desk. They wore the prototype with eyewear band strap for stability. The observer

introduced the software for the experiment to the participant. The observer explained

that the participants make seven different eye gestures ten times each on three differ-

ent facial expression conditions(neutral, positive and negative) and it took around 20

to 30 minutes in total. The observer told them that each gesture should start and end

on neutral eye position(starting at the center of computer screen) and the order of

the gesture was periodic so as the participants not to make the wrong gesture. After

the general instruction, the observer repeated the following process.

1. The observer start the software for the experiment and remind the participant

to keep specific expression in the action phase.
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2. The software instruct which kind of gesture and facial expression the partici-

pants do during the preparation phase (1800 ms) with the text and the images.

Figure 6-5(left) shows the screenshot of the software. In this phase, the user

holds the instructed facial expression until the next preparation phase.

3. The software asks the participants to make the instructed gesture in the action

phase (3000 ms). The software records the data samples from the sensors in

the phase.

4. The process of (3) and (4) are repeated for seven gestures five times each.

5. After the software stops, the observer gave a short break, and go back to the

process (1). he observer repeats the process (1) to (5) twice in total.

The observer recorded the video with the built-in camera of the laptop during the

experiment. This recording was used to check manually if the participant held a right

facial expression and made a right gesture. From the recordings, some participants

held the wrong facial expressions when they needed to change. Therefore, the data

of the first gesture after the user changed facial expressions was removed from the

dataset for facial expression classification. For the one user, the device temporally

didn’t work in the middle of the recording, and the dataset included 203 gesture

data. Therefore, The data for the eye gesture classification come from 1883 (210 x

9 - 7) gestures with 9 participants. For the experiment, těthe standard deviation

threshold and similarity threshold was not used since all of the recordings include

specific gestures.

Result:Facial Expression

For the classification of facial expressions, SVM (linear kernel, C = 100) was used

as a classifier. SVM was trained with the dataset acquired from each participant

separately. Each dimension (it includes the time-series sensor values of one sensor

from one participant’s recorded gestures) from the experiment is normalized to zero

mean and unit variance. Then, 10-fold cross-validation was applied to the dataset with
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Figure 6-8: Confusion matrix of the accu-
racy when the system classified seven ges-
tures using the user-dependent templates.

Figure 6-9: Confusion matrix of the accu-
racy when the system classified seven ges-
tures using the averaged templates of all
users.

the SVM classifier. The average accuracy of classifying three facial expression states

are 90.9% with individual training. The robustness of facial expression classification

regardless of the eye gestures with the proposed eyewear.

Result:Eye Gesture

Templates matching used first 70 data samples of each gesture. Matching templates

consisted of all of the recorded gestures and averaged for each kind of the gestures.

The average accuracy of classifying seven gestures from 9 participants are 92.9% with

user-dependent templates. Figure 6-8 shows the confusion matrix of the accuracy

of classifying the seven kinds of the gestures. Among the seven kinds, the system

recognized blinks least robustly. The French male showed the lowest accuracy that

is 75.2%. It is because when he winks, he tended to close both eyes. 43% of the left

eye winks are classified as either the right eye wink or blink. 33% of the blinks are

classified as a right eye wink. Also, the experimenter could not control the starting

timing of the gesture for him. Every time he made the gestures, he started on his

arbitrary timing. It made the features of the templates weak as the templates were

the average of the gesture data samples in time series for each kind.
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The average templates were made for all kinds of the gestures using the data

samples of all the participants (Figure 6-7). The sensor number corresponds to Fig-

ure 3-7. The different sensors on both upper and lower side of the frame react to the

different gestures. With the templates, the average accuracy is 75.7%. Figure 6-9

shows the confusion matrix. Compared to the individual template, the accuracy gets

lower, especially blinks. A part of the reason for this is that the strength of the blinks

was not stable within the trial and among the users. However, right eye wink, left eye

movement, and down movement are recognized with more than 80%. The average

processing time is 63.6 milliseconds per gesture with MacBook Pro (2.9 GHz Intel

Core i7).

6.1.6 Discussion

As eyes move implicitly to look at people or the surroundings, the proposed system

could not recognize whether the gesture input is intentional or not. It is a common

problem in using eye gesture as an interaction technique. This issue can be solved by

using an explicit gesture (e.g., wink) as a trigger command. From another perspective,

detecting implicit eye gestures opens up the possibility of an ambient interface that

understands people. It can facilitate natural interaction with the environments or

robots.

The set of the gestures was chosen by focusing on the eye movement-related ones.

However, the device has the possibility to recognize facial gesture as well since the

device was able to measure the skin deformation caused by facial expressions like [104].

As a trigger command mentioned above, the system can consider the other gestures

rather than the set of the gestures since winks are the only explicit gestures in the

sets. The winks may not be suitable for some users since, in the experiment, they are

not good at winking their eyes.

The demographics of the experiment is biased. Most of the participants are male.

Although the shape and features of a face are different depending on the nationality,

gender, and ages, the method can work as long as it can measure skin deformation

around eyes with close distance. It is possible to adjust the register values for the
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phototransistors of the sensors. Also, another way is to control the distance by

changing the design of the nose pad since the nose pad of the device can be replaced.

Considering those factors, the system can work for various people.

6.1.7 Limitation and Future Work

The eye gestures only change a subtle amount of sensor values. The system works

with only a stable condition. It means if there are other influences during the gesture,

the system may not work well. Possible influences are head motions, facial expression

change, the device displacement, and ambient lights.

With the proposed algorithm, there is a risk of classifying non-defined gestures as

a target gesture. For future work, it would be better to record other gestures that

mostly could happen implicitly such as squinting, and identify what feature should

be used to avoid the risk.

The system could classify four directions of eye gestures. In future work, the pos-

sibility of classifying diagonal eye gestures such as top-left or bottom-right direction

would be explored.

Head motion is also related to non-verbal communication and can be detected with

IMU. Besides, IMU can be useful to compensate the sensor value because the head

motion and the user’s behavior changed the sensor values. With the sensor fusion,

the device enables to detect facial expression, eye movement, and head motion at the

same time with the form of the everyday glasses.

6.1.8 Summary

This section presented the system to detect eye gestures and facial expressions. The

system used DTW for classifying eye gestures and SVM for classifying facial expres-

sions. The average accuracy of detecting seven different eye gestures and classifying

three facial expression states are 92.9% and 90.9% respectively with user-dependent

training.

95



Figure 6-10: Left: the eyewear device used for the recognition. Right: the user makes
a rubbing gesture on face.

6.2 FaceRubbing

The focus of this section is hand over face gesture using the smart eyewear. This

section is based on the work [62]

6.2.1 Introduction

In recent years, various wearable devices became available such as smart watches,

smart headsets, smart clothes and so on. Among wearable devices, smart glasses

are attracting attention [2]. Many companies develop optical see-through displays

(OST) for augmented reality application such as Hololens developed by Microsoft,

MOVERIO BT-300 by Epson and so on. JINS made smart eyewear (JINS MEME)

that can measure the physical condition of the user. Due to the development of the

MEMS technology, these devices become almost same as ordinary glasses. It allows

people to wear such devices in public places (meetings, parties, academic conferences

and so on) more often. However, the wearable devices have only the limited input

space because of the small size. Operating the device from additional devices is

cumbersome. Also, in the situations where OST is used, it is preferable for the user to

control the information without being noticed by the other party. For example, people
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would like to cut off unexpected notifications during meetings or access manuscripts

during a presentation while keeping eye contacts on the audiences. However, current

input technologies like tapping or flicks use only a limited input space and mid-air

gestures are noticeable and not subtle.

This section introduces a new input method of hand-to-face gesture using optical

sensors on the smart eyewear (Figure 6-10). Although the device is developed for facial

expression recognition, the sensors data information can be used as an input method

to a computer. This method allows users to input various commands by rubbing

the different areas of the facial surface. The technology can be integrated not only

into the proposed device but more general eyewear computing devices such as OSTs

because of the small factor of the optical sensors. The advantages of adopting the

rubbing gesture are as follows. First, the system can recognize the rubbing gestures

independent from facial expression because there is no periodic motion change in facial

expression change. It means the gesture recognition method can be used while the

system measures facial expressions with the device. Although a directional touch on

the face could be recognized using optical sensors on the device, there has the risk of

misclassification as a facial expression change. Second, it allows a subtle interaction.

The gesture is less obvious than a mid-air gesture or touching gesture to a device

since rubbing a face is one of the physiological behaviors that can occur in daily life.

The contributions of this section are 1) Algorithm development for recognizing

rubbing gestures on the face. The gesture recognition pipeline consists of three phases

for the recognition of the rubbing gesture: pre-processing, gesture detection and ges-

ture classification. 2) Technical Evaluation of the gesture recognition. The study

was run with five participants. Then, the section describes the results and the im-

plications. The accuracy of detecting rubbing gesture is 97.5%. The classification

accuracy of 10 gesture input spaces is 88.7% with user-independent datasets, 91.7%

with user-dependent datasets.
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6.2.2 Related Work

Researchers proposed the interaction methods to overcome the limited input space

of the devices with a small factor. Harrison et al. presented Skinput that uses

the skin on the arm and hand for an input surface [31]. SkinWatch enabled an

interaction modality for a smart watch [69]. GestureSleeve is capable of detecting

different gestures on touch-enabled sleeves [85]. It allowed the user to control a

smartwatch without touching it.

Not only the input method on arms, but many researchers also explored the

hand-to-face input method. Serrano et al. investigated facial surface as an input for

Head-worn displays [86]. They showed the cheek is a natural surface for the input.

They explored the design space for input gestures to faces. They used an infrared

optical tracking system with six cameras and a proximity sensor to detect the gestures.

Kikuchi et al. proposed EarTouch [44]. The device is a sensor-equipped earphone to

enable input to a computer by touching ear. They used photo reflective sensors to

recognize the directional touch to the ear. A similar input method of directional

touch on cheek surface is developed by Yamashita et al [104]. It made use of photo

reflectors to detect the cheek deformation of the user. Hairware is a capacitive touch

sensor integrated into a hair extension [100]. It detected a variety of touches to the

hair extension for the triggering of different devices. Itchy Nose [53] detected various

finger movements to a nose using EOG sensors in smart eyewear. These researchers

showed that the facial surface has a potential for input to a computer. In the gesture

set of Itchy Nose, rubbing is included. This section focuses on rubbing gestures and

consider various areas rather than the nose.

6.2.3 System

The sensors on the device collect the information about periodic skin deformation

caused by rubbing gestures. Since the sensors are scattered on the front frame, the

system can distinguish the rubbing gestures among different areas on the face. The

input space considered in this work is shown in Figure 6-11.
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Figure 6-11: The input space for rubbing gestures

Figure 6-12: The sensor recordings of 1)Top: when rubbing various areas on facial
surface 2)Bottom: when moving the facial muscles randomly
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6.2.4 Algorithm

Firstly the user recorded the sensor data from the device to see the difference between

the changes caused by rubbing gestures and facial gestures (Figure 6-12). The top

figure shows sensors values changed while the user rubbed various areas on the facial

surface. The bottom figure displays when the user made facial gestures randomly.

The figures show normalized each sensor value in the range from 0 to 1 for better

visualization. The rubbing gestures caused the periodic sensor value changes in a

short period while the facial gesture changed sensor values with low frequency. Based

on the characteristics, this section proposes a gesture recognition algorithm as follows.

The algorithm consists of three phases; pre-processing, gesture detection, and gesture

classification. The algorithm did not misdetect any rubbing gesture from the recording

of facial gestures in Figure 6-12 despite the various change of sensor values. The

implementation of the algorithm was done in Python.

Pre-Processing

The device acquires a 16-dimensional data sample per reading. The data sample is

a subtraction of the sensor values when the infrared LEDs of the sensors are on and

off. All the sensors are actuated at the same time. The sampling frequency is around

30 Hz. The system applies a simple moving average of three sequences to the data

samples. The system uses a sliding window of 40 samples (i.e., around 1.3 seconds).

The algorithm is run every ten frames for the gesture detection.

Gesture Detection

The system applies PCA to the data samples. PCA reduces the dimensions to one-

dimensional time-series data. It includes the most dominant trend from the data

samples. After normalizing the time-series data to fit in the range from 0 to 1,

the system applies peak detection algorithm (the python version of MATLAB peak

detection algorithm). It used the threshold determination to detect the rubbing

gestures. The system counts the number of upper and lower peaks. If there are more
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than five peaks in the data, the system regards the data as the rubbing gesture to

a particular area. It means the algorithm detects the gesture if there are the three

rubbings in the time window. Since there is a slight chance that the noise from

ambient light can also cause many small peaks when the user does not move and

make any gesture, the method excluded the data from the detection algorithm if the

summation of absolute values of the derivative of the data samples in the window is

less than a threshold.

Gesture Classification

If the rubbing gesture is detected, the system extracts the features from the data

samples in the window. The features are 16-dimensional: the summation of the

absolute values of the derivatives of each dimension of the data samples. It normalizes

the features so that the summation of the feature values is 1. Then, the system applies

a random forest classifier(max-depth is 10) to the features in order to classify which

area on the face is rubbed. For the machine learning algorithm, the most important

issue is robust recognition. Therefore, by comparing the basic algorithms such as

SVM, adaBoost, a random forest classifier is choosen as it showed best accuracy in

the preliminary experiment.

6.2.5 Technical Evaluation

The goal of this evaluation is to investigate the accuracy of the proposed method.

The five users (all of them are male in the 20s) participated in the study. For this

evaluation, the experimenter recorded the sensor data samples of the rubbing ges-

tures. The recording was done using Processing language. To avoid the influence of

intense ambient light, the experimenter conducted the study in a quiet room far from

windows. The following analysis used Python environment. The system assumed the

user makes the gestures only with a neutral face. Therefore, the participants held

neutral face during the experiment.

Firstly, each participant sat on a chair in front of the laptop on the desk. They
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wore the prototype with an eyewear band strap for stability, and the observer started

the software after explaining the experiment detail.

In the first stage, the observer recorded 100 gestures (Rubbing gestures to 10

areas X 10 times) each by each from every participant. The numbers of the input

areas are corresponded to Figure 6-11. The order of the gestures the participants

make is periodic (1 to 10). The software showed the figure of the input space and the

number of the gesture area so as the participant can quickly understand which area

to rub. In order not to limit how to rub, the experimenter did not instruct which

hand the user should use for the rubbing, the speed, and direction of the rubbing

during the recordings. Each recording of the gesture is divided into two phases. In

the preparation phase (2000 ms), the users settled the rubbing position and started

rubbing on a particular area. In the recording phase (3000 ms), the software recorded

the sensor data samples while the users were rubbing.

In the second stage, the observer recorded 20 gestures (10 areas X 2 times) from

each participant. The recording was divided into four trials. The observer told each

participant to make the gestures in specific ways (the number of the gesture area:

1-2-3-4-5, 6-7-8-9-10, 9-10-1-2-3, 4-5-6-7-8). In one time of the trial, the users made

five gestures in 25 seconds. Every time the users made a gesture to a specific area,

the users put their hands on their kees. This procedure created "no detection time"

between the gestures. There were 5 seconds break between the trials.

Results

First, the analysis was done for the data from the first experiment. 80 data samples

from the recording of each gesture were extracted first. For the analysis, these sam-

ples were split into the two (first 40 samples and last 40 samples), i.e., two gesture

data from one rubbing gesture. After excluding the outliers due to a lack of enough

recording samples or a strong noise, the acquired dataset includes 937 gesture data

from the recordings of five participants in total. The dataset was shuffled randomly

and applied five cross-validation method. Overall, the accuracy of classifying ten

gestures is 88.7% with user-independent training. Figure 6-13 shows the confusion
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Figure 6-13: Confusion matrix of accuracy detecting rubbing gestures to ten different
spaces

matrix. Most of the false positives come from the adjacent areas of the true positives.

With user-dependent datasets, the average accuracy is 91.7%. Table 6.1 shows the

result of each user. The accuracy of user A and B are around 80% that is about

10 % lower than the accuracy of the others. It is because some specific areas of the

gestures of user A and B showed relatively less accuracy. For example, 38% of the

gestures of the User A to the area 2 is predicted as the gesture to area 3. Also, 41%

of the gestures of the User B to the area 4 is predicted as the gesture to area 3. In

order to hold higher accuracy, the system can make use of only the areas not close

to each other. For example, the accuracy of classifying five areas (1,3,5,7,9) is 95.6%

with user-independent datasets.

User A B C D E Average
Accuracy(%) 82.2 82.7 96.7 98.5 98.4 91.1

Table 6.1: The accuracy of classifying 10 gestures with user-dependent datasets

Regarding the dataset acquired in the second experiment, the recording of each

participant was merged into one time-series data. Then, the algorithm was applied to
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Figure 6-14: The time-series recordings

the dataset. The classifier was trained individually using each participant’s dataset

from the first experiment. Each detected gesture have the sequences of the predicted

results because the length of the gestures the users made is different every time. The

dominant prediction result in the sequences is used for estimating accuracy. The

dataset of User A was eliminated since the strong noise was measured. As the device

stopped for a short time while the user E used, the one gesture was not recorded.

Table 6.2 illuminates the summary of recordings from the second experiment. The

average accuracy of detecting the gesture is 97.5%. The F1-Score is 0.987. The

average accuracy of classifying the gestures of the true positives is 91.0%.

User B C D E ALL
Detection(TP) 20 20 20 18 78
Detection(FP) 1 0 0 0 1
Detection(FN) 0 0 0 1 1
Detection(F1-Score) 0.976 1.00 1.00 0.973 0.987
Classification Accuracy(%) 80.0 90.0 100 94.4 91.0

Table 6.2: The summary of recording from the second stage. TP:True Positive, FP:
False Positive, FN: False Negative.

Figure 6-14 shows the heatmap of the sensor data and the result of the gesture

recognition of User D who showed the best result among the users. To make better

visualization, the figure shows (all the data samples - the initial values of the time-

series data samples)/maximum absolute value for each sensor dimension. Although

the system detected all the gestures, there was an unrecognized gap in the series of

the gesture. This case was regarded as one gesture because the gap was short.
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6.2.6 Discussion and Limitation

This section focused on the area around eyes for the input since rubbing on the area

caused a significant change of sensor values. However, rubbing on the cheek can also

cause the skin deformation on the areas covered by the sensors. It means that the

system can use the broader area of the face. It can expand the input areas, but it

also could reduce the accuracy of the gesture recognition.

There is a trade-off between the length of rubbing and robustness of the gesture

recognition. The window size of 40 was used for the gesture recognition. If the size

is too big, the algorithm may not detect the gestures correctly. Also, the user has to

make rubbing for a long time to be detected. On the other hand, if the size is too

small, it causes false detections of the gesture. For example, when the user blinks

continuously in short time, the gesture detection may recognize as a gesture.

Ambient light may inhibit from detecting gestures because intense light makes

sensor values saturated. Therefore direct sunlight should be avoided when users use

the proposed method.

An intentional rubbing gesture may cause some problems. If the user rubs too

much on one particular area, this may lead to rough skin. Besides, the user with

makeup may hesitate to make a rubbing gesture because the makeup comes off by

the gesture.

6.2.7 Summary and Future Work

This section presented the input method by rubbing a facial surface using photo

reflective sensors on smart eyewear. The input is subtle since rubbing a facial surface

can occur as a physiological behavior in daily life. Although the system is developed

for facial expression recognition, the system can recognize rubbing gestures to various

areas independent of facial expression change. The accuracy of classifying rubbing

gestures in 10 different areas of the face is 88.7% with user-independent datasets and

91.7% with user-dependent datasets. F1-Score of the gesture detection is 0.987.

One of the future works is to make the applications based on the recognized gesture
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patterns. Simple aplication is to cut off an unexpected phone call during the meeting

with a subtle gesture. Another application is to measure human mind through the

hand-to-face implicit movements. Implicit movements are an effective means to know

the state of the person. According to [68], the hand-to-face gesture can reveal the

mind of the person such as. The knowledge is useful to analyze daily user behaviors.

Also, the hand-to-face gestures sometimes are not appropriate behavior in public.

The system can be applied to monitor those gestutes to improve a social manner.
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Chapter 7

Conclusion
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This dissertation presents novel smart eyewear that classifies the wearer’s facial

expressions in daily scenarios. The device can keep track of facial expressions in daily

life, and it considers socially acceptance because of its typical form of the glasses.

The device uses embedded photo reflective sensors and machine learning for the clas-

sification. The approach focuses on skin deformations around the eyes that occur

when the wearer changes their facial expressions. Small photo-reflective sensors on

the device measure the distances between the skin surface on the face and the array of

sensors embedded in the eyewear frame. The sensors can cover various facial muscle

movements with low processing cost. Also, they are small and light enough to be

integrated into daily-use glasses. The device can classify facial expressions regardless

of face directions and the occlusions such as hand gestures and hairs.

For basic emotion classification, a Support Vector Machine (SVM) algorithm is

applied to the information collected by the sensors. The evaluation of the device shows

the robustness to the noises from the wearer’s facial direction changes and the slight

changes in the glasses’ position, as well as the reliability of the device’s recognition

capacity. The recognition accuracy of classifying eight basic facial expressions in daily

scenes was 92.8% accuracy regardless of facial direction and removal/remount. The

device can classify eight basic facial expressions with 78.1% accuracy for repeatability

and 87.7% accuracy in case of its positional drift.

For spontaneous facial expression recognition, initial field trials in a daily life set-

ting were undertaken to test the usability of the device. Besides, the system was used

to detect facial expressions in daily conversations. It shows a novel unsupervised

way to summarize and visualize the individual spontaneous facial expressions using a

wearable device. The method synchronized the data with camera images to create the

visualization. Through the case studies of five minutes, unscripted communications of

the five to ten minutes each revealed the approach could map the main facial expres-

sions and the diverse expressions of the users in order. The study also demonstrated

that the map trained with the datasets of five users could categorize the similar ex-

pressions of each user into the shared clusters among the users. The map enabled

to compare the difference in each user’s distribution of facial expressions. Similar
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expressions of each user were mapped into the shared clusters among the users. Not

only facial expressions but also eye movements could be detected with the device.

The evaluation showed the accuracy of eye gaze position estimation with five users

holding a neutral face. The system showed higher accuracy to detect y position than

x position. The system was also capable of analyzing both facial expressions and eye

movements in daily contexts as the feasibility study of one user reading jokes while

wearing the device shown.

For the interaction purpose, the smart eyewear can input information by eye ges-

ture within the context of facial expressions. The system allows hands-free interaction

in many situations. The evaluation was done to see the accuracy of detecting the ges-

tures and facial expressions with 9 participants. The average accuracy of detecting

seven different eye gestures and classifying three facial expression states are 92.9%

and 90.9% respectively with user-dependent training. The method used Support Vec-

tor Machine (SVM) for facial expression classification and Dynamic Time Warping

(DTW) for gesture recognition. An input technique to a computer by rubbing face

was also proposed to make use of the limited input space. Since rubbing gesture occurs

in daily life, the system enables a subtle interaction between the user and a computer.

The embedded optical sensors measure the skin deformation caused by rubbing on

the face. The system detects the gestures using principal component analysis (PCA)

and peak detection. It classifies the area of the gesture with a random forest classifier.

The accuracy of detecting rubbing gesture is 97.5%. The classification accuracy of 10

gesture area is 88.7% with user-independent training.

The dissertation demonstrated the system that can measure various facial gestures

including eye gestures. It could open up the potential of quantifying diverse facial

expression activities in daily life and new interaction methods for smart glasses.

For the future work, the evaluation of the spontaneous emotional expression is

important. One possible evaluation is to associate the subjective rating of the emo-

tional stimuli video and the sensor data of facial behaviors while the user is watching

the video. In addition, the cognitive part of facial expression can be explored. For

example, fatigue detection for the patients, confusion detection in learning, or lie de-
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tection are an interesting direction. Besides, the dynamics of facial expression should

be considered by using the temporal features based learning algorithms.

Based on the dissertation, I would like to explore the wearable computing to

support to keep user fit and to acquire the new skills. As an ultimate goal, the use

of the computing will make people do what they intend to do eventually without

the power of the computing. It is because I believe that people feel joy in the sense

that they can do they want with their own ability. For this purpose, I believe the

embodiment of the device is important. It is necessary to consider both two aspects

of our body at the same time. First one is the senses. We measure the environmental

stimuli or inner state through the senses. Mainly I focus on the measurement of the

mind, which is the essence of our behavior. It does not mean that the body movement

is not the target, but I consider the movement as the embodied mind. The critical

step of the measurement is to make people aware of what they unconsciously do.

Second is the actuation. We actuate to the environment or other people mentally or

physically through the hands or facial expressions and so on. For example, we smile to

change the other’s social interaction. The key step of the actuation is to make people

do what they intend to do without consciousness. By considering both aspects, the

wearable device can naturally be a part of the body. The feedback from the device is

immediate based on the measurement, which can accelerate the learning. It can help

the user to change their behavior to achieve their goal.
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