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Chapter 1

Introduction

1.1 Background

In recent years, remarkable enhancement of radio frequency (RF) devices has been

seen with explosive popularization of communication systems [1]. Those technologies

can improve not only communication systems but also RF sensor systems, e.g., radar

systems, sonar systems, seismic systems, electronic surveillance systems, medical di-

agnosis, and treatment systems [2,3]. However, radio environments in real world are

very complicated and time-varying with increase in RF devices use [1, 2].

To realize high reliable RF sensor systems under the condition of the complicated

radio environments described above, it is an important task to estimate the number

and direction-of -arrival (DOA) of the incoming signal sources accurately without

time delay. In particular, it follows that classifying closely spaced signal sources is

the major work, to avoid interferences which cause negative effects on the performance

of the RF sensor systems [2]. In general, RF sensor systems consist of an antenna

(an array antenna or a single antenna), RF circuits, an analog-to-digital converter

and a signal processor, etc. From perspective of improvement of DOA estimation

performance, array signal processing is one of the most important research topics to

distinguish the incoming multiple signal sources.

Actually, an array antenna has been widely used to solve direction finding [1–3].

Therefore DOA estimation methods with array antenna have received a significant
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amount of attention for the decades, and many researches on DOA estimation have

been deeply investigated from various perspectives, e.g., improving the DOA esti-

mation accuracy, increasing degree-of-freedom (DOF), dealing with coherent signal

sources, and reducing computational complexity [4–8].

The well-known nonparametric DOA estimation methods are beamforming [4–6],

Capon [9], and subspace based approach e.g., multiple signal classification (MUSIC)

[10]. Root-MUSIC [11] and estimation of signal parameters via. rotational invariance

techniques (ESPRIT) [12], which require the assumption that the array is uniform

linear array (ULA), are low complexity methods. The parametric approach based on

maximum likelihood method [13, 14] shows higher estimation accuracy than that of

nonparametric methods, however, they require high computational complexity. For

each method, the lower bound of estimation accuracy has also been well investigated,

e.g., Cramér-Rao Bounds (CRB) [15,16].

In the radar community, multiple input multiple output (MIMO) array has re-

ceived much attention from the aspect of DOA estimation performance, because

MIMO radar presents several advantages compared to common phased array radars

[17–23]. In particular, one of the advantages of MIMO radar is that the DOF can be

greatly increased by the concept of virtual array [17,18]. The virtual array formed by

MIMO array where transmit antennas use orthogonal transmit waveforms can also

expand the aperture size. Therefore, MIMO radar can also provide high estimation

accuracy of the DOA owing to the virtual array [17,24].

Recently, a novel approach to estimate DOA of incoming signal sources by using

temporal spatial virtual array has been proposed with MIMO array [25]. Although

the method has some issues that need to be solved, it can generate additional virtual

array other than MIMO virtual array and improve DOA estimation performance.

Furthermore, to improve communication capacity, the communication devices

dealing with wideband signals are pervasive [1]. Of course, in RF sensor systems,

e.g., radar systems and electronic surveillance systems, wideband signals have been

also applied to improve system performance such as range resolution [26,27]. There-

fore, DOA estimation method for wideband signal sources should be in consideration

22



to realize performance improvement of RF sensor systems in the environment with

complex radio signals, which will behave as the interference signals for the user of the

sensor systems.

As described above, because of its wide-ranging applications and difficulty of re-

alizing an optimum estimator under the complex radio environment, researches on

DOA estimation method will continue in the future [8].

Based on the background, this dissertation focuses on the two topics related to

DOA estimation of multiple signal sources with an array antenna; The first topic is

DOA estimation by using temporal spatial virtual array. The second topic is DOA

estimation of wideband signal sources. The following subsection shows the detailed

objective of each research topic.

1.2 Objectives

1.2.1 DOA Estimation by Using Temporal Spatial Virtual

Array

As mentioned in Section 1.1, MIMO array has received much attention in recent years

because of its high estimation accuracy of DOA [17, 24]. Also, high-resolution DOA

estimation techniques for instance MUSIC [10], Root-MUSIC [11], and ESPRIT [12],

have been applied to various RF sensor systems including MIMO radar [28,29].

Researches on the optimization of array geometry have attracted attention to re-

alize improvement of DOA estimation performance. The ULA which is the simplest

and most-popular antenna array configuration has limitation of DOF which depends

on the number of antenna elements. Therefore, non-uniform linear array configu-

rations are proposed to increase DOF and improve DOA [30–33]. However, these

approaches use the fixed array configuration and the DOA estimation performance of

them depends on the configuration.

The limitation of resolution performance of MIMO radar with these high-resolution

methods and array configuration are also well investigated [33–35]. Based on the facts,
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the other approaches are required to realize further improvement of DOA estimation

performance.

Recently, a novel approach to improve DOA estimation accuracy by using an

additional virtual array which is referred to as temporal spatial virtual array was

proposed [25]. The method provides the further enhancement of the DOA estimation

accuracy. Temporal spatial virtual array is formed by using pulse responses received at

different time as if they are received at same time. This method generates additional

virtual arrays other than MIMO virtual array without modifying the actual array

structure. However, to form temporal spatial virtual array and estimate the DOA of

a target using it, the method requires the pre-estimated parameters of the target: its

velocity and its direction. This means that the arrangement of the temporal spatial

virtual array depends on the velocity and the direction of the single target on which we

focus. Therefore, it is difficult to implement the method if there are several targets

in the search space. There are other problems that remain to be solved. One is

interference from other targets. Another is a mismatch between the steering vectors

based on the pre-estimated target parameters and the received signal.

In this dissertation, to solve these problems, we propose a new DOA estimation

method by using the temporal spatial virtual array based on output signals of Doppler

filter with adaptive pulse repetition interval (PRI) control. The proposed method pro-

vides accurate DOA estimation by using output signals of Doppler filter with adaptive

PRI control technique. The performance of the proposed method is compared with

that of the conventional method via computer simulations with detailed performance

analysis. The simulation results show that the new DOA estimation method performs

better than the conventional method.

1.2.2 DOA Estimation for Wideband Signal Sources

DOA estimation for wideband signals has been also attracting much attention for

decades, because wideband signals are commonly used in real world for such as signal

source localization in wireless communication and radar systems [1, 3]. To improve

DOF and accuracy of DOA estimation, many researches on wideband DOA estimation
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have also been introduced over several decades [2]. DOA estimation methods for

narrowband signals cannot be applied directly to wideband signals, because the phase

difference between array antennas depends on not only the DOA of the signals but

also the temporal frequency. Thus, the common pre-processing for wideband signal

estimator decomposes a wideband signal into some narrowband signals using filter

banks or discrete Fourier transform (DFT). Based on the method, many algorithms

have been introduced and they are categorized into two groups: incoherent signal

subspace method (ISSM) [36,37] and coherent signal subspace method (CSSM) [38].

ISSM is one of the simplest wideband DOA estimation methods. ISSM uses several

narrowband signals decomposed from wideband signal incoherently [37]. In particu-

lar, the method applies narrowband DOA estimation techniques, such as MUSIC [10],

independently to the narrowband signals. Then, these results are averaged to esti-

mate the DOA of incoming wideband signal sources. Although ISSM provides better

estimation accuracy in high signal-to-noise ratio (SNR) regions, the performance de-

teriorates when the SNR of some frequency bands are low. In other words, the poor

estimates from some frequency bands will degrade the final estimation accuracy.

To overcome these disadvantages and to improve DOA estimation performance,

CSSM was proposed [38]. In CSSM processing, the correlation matrix of each fre-

quency band is focused by transformation matrices and the focused matrices are

averaged to generate a new correlation matrix. Then CSSM estimates the DOA of

incoming wideband signal sources by applying a DOA estimation method for narrow-

band signals. The key point of CSSM algorithm is how to focus correlation matrices.

Many techniques have been proposed to obtain a proper focusing matrix [39, 40].

However, each focusing technique requires the initial values, which means the pre-

estimated direction of incoming signal sources, and the performance of CSSM is sen-

sitive to the initial values [41]. Weighted average of signal subspaces (WAVES) [42]

is also a well-known DOA estimation method for wideband signal sources. However,

WAVES also needs the initial DOA estimates and its performance greatly depends

on the accuracy of the initial values.

A novel wideband DOA estimation method, which is named test of orthogonality

25



of projected subspaces (TOPS), was proposed [43]. TOPS uses the signal and noise

subspaces of several frequency bands and provides good DOA estimation performance

without requiring the initial values. However, the method has a drawback that the

spatial spectrum calculated by TOPS algorithm has some false peaks and they make

it difficult to estimate the true DOA of signal sources.

Squared TOPS was proposed as an improvement method of TOPS [44]. Squared

TOPS improves DOA estimation performance by using the squared matrix for or-

thogonality test instead of the matrix to be tested in the signal processing of TOPS.

The method provides higher DOA estimation accuracy and better resolution perfor-

mance than those of TOPS. However, the undesirable false peaks in spatial spectrum

remain.

Test of orthogonality of frequency subspaces (TOFS) was proposed as a new wide-

band DOA estimation method [45]. TOFS uses the noise subspaces of multiple fre-

quency bands with the steering vector and shows high estimation accuracy when SNR

is high. However, TOFS cannot resolve closely spaced signal sources when SNR is

low.

Recently, Khatri-Rao (KR) subspace approach was proposed as the method to ex-

pand the array structure and to increase DOF [46]. Applying KR subspace approach

to CSSM algorithm, some DOA estimation methods of wideband signal sources were

proposed [47]. The methods achieve higher DOA estimation accuracy and resolution

performance than the conventional CSSM even if there are fewer sensors or antennas

than the incoming signal sources. However, it also requires the initial DOA estimate

of each signal source.

Furthermore, sparse signal representation algorithms have also been received much

attention, which can provide new approaches for wideband DOA estimation [48–51].

These DOA estimation methods based on the sparse signal representation perform

higher resolution than the conventional methods without knowing the number of

sources. However, there are some difficulties in selecting parameters to calculate

optimal solutions.

In this dissertation, we propose a new DOA estimation method for wideband
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signals called weighted squared TOPS (WS-TOPS) based on Squared TOPS. WS-

TOPS also uses signal subspace and noise subspace of each frequency like Squared

TOPS and does not require any initial values. Using modified squared matrix and

selective weighted averaging process, WS-TOPS can suppress all false peaks in spatial

spectrum and improve DOA estimation accuracy of wideband signal sources and

also keep the same resolution performance as Squared TOPS. We also consider the

low complexity version of WS-TOPS. The performance of the proposed method is

compared with that of the conventional method via computer simulations. Simulation

results show that the proposed method can provide good resolution performance and

DOA estimation accuracy with low computational complexity.

1.3 Contribution of Dissertation

The contributions of this dissertation are summarized in Table 1.1. This dissertation

has contributions in DOA estimation by using temporal spatial virtual array and

DOA estimation of wideband signal sources.

For the DOA estimation by using temporal spatial virtual array, this dissertation

has two major contributions: The first contribution is the achievement of the stable

temporal spatial virtual array by using adaptive PRI control algorithm which takes

into account the target information to calculate the optimal virtual array position.

The algorithm can keep the optimal array arrangement of the temporal-spatial vir-

tual array without depending on target movement and realize stable performance of

DOA estimation. The second contribution is to realize the DOA estimation with

the temporal spatial virtual array in the situation where there are multiple targets.

The algorithm which uses output signals of Doppler filter with adaptive PRI con-

trol technique can eliminate the mismatches between the steering vectors based on

the pre-estimated target parameters and the received signal. Therefore, the proposed

method can provide accurate DOA of the focused target without deterioration caused

by the signals from the other targets.

For the DOA estimation of wideband signal sources, this dissertation has three

27



contributions: The first contribution is the DOA estimation with the complete sup-

pression of false peaks in spatial spectrum of the conventional methods. Unlike the

conventional methods based on TOPS which can estimate DOA of incoming signal

sources without requiring initial estimates, the proposed method, WS-TOPS, can

completely suppress the false peaks by modifying the orthogonality test matrix. The

second contribution is the improvement of DOA estimation performance in terms of

estimation accuracy and probability of resolution which denotes the probability that

all signal sources are resolved. By using all the signals in multiple frequency bands

with appropriate weight parameters, WS-TOPS can achieve the better DOA estima-

tion performances than those of the conventional methods. Moreover, as the third

contribution, this dissertation shows the low computational complexity approach of

the aforementioned WS-TOPS. While WS-TOPS can provide high DOA estimation

performance, it requires high computational costs. The proposed method can re-

duce computational complexity with minimizing deterioration on DOA estimation

performance.
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Table 1.1: Contribution of this dissertation.

Chapter 3

Purpose DOA estimation by using temporal spatial virtual array
with adaptive PRI control

Issue [25] Deterioration of the DOA estimation accuracy by using
temporal spatial virtual array based on the conventional
method, which is caused by the movement of the focused
target and the undesirable signals from the other targets.

Proposal [52,53] We propose two algorithms. The first one is the construc-
tion method of the stable temporal spatial virtual array with
PRI control algorithm which can calculate the optimal vir-
tual array adaptively. The second one is to use output sig-
nals of Doppler filter with adaptive PRI control technique,
which can eliminate the mismatches between the steering
vectors based on the pre-estimated target parameters and
the received signal.

Achievement Improvement of the DOA estimation accuracy of the mov-
ing targets with temporal spatial virtual array under the
condition that there are multiple targets simultaneously.

Chapter 4 & Chapter 5

Purpose DOA estimation of wideband signal sources by weighted
Squared TOPS

Issue [44] The conventional method has some false peaks which cause
miss estimation of signal source directions in spatial spec-
trum and suffers the DOA estimation accuracy.

Proposal [54,55] Chapter 4: We propose a weighted orthogonality test ma-
trix approach to prevent miss estimation due to false peaks
in spatial spectrum, and also the algorithm to improve the
DOA estimation accuracy by averaging output of each fre-
quency bins. Chapter 5: We consider a low complexity
signal processing approach based on modified orthogonality
test matrix with a little deterioration of the DOA estimation
performance in terms of estimation accuracy and probabil-
ity of resolution.

Achievement Chapter 4: Improvement of the DOA estimation perfor-
mance of incoming wideband signal sources without false
peaks in spatial spectrum. Chapter 5: Low computational
complexity version of WS-TOPS with minimizing deterio-
ration on DOA estimation performance.
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1.4 Outline of Dissertation

As discussed in the previous sections, this dissertation focuses on DOA estimation of

incoming RF signals sources using array antenna. The structure of this dissertation

is summarized in Fig. 1-1.

Chapter 2 deals with the related work and fundamental technologies of this dis-

sertation. Some DOA estimation methods related to this dissertation are introduced

in the chapter. We also show basic and principle techniques of processing for DOA

estimation as fundamental technologies. Moreover, we explain some DOA estimation

related researches which could be applied to the proposed methods.

Chapter 3 deals with a temporal spatial virtual array with adaptive PRI con-

trol method. The method is suppose to be applied to active sensor systems, e.g,

radar systems and sonar systems. The system model we assume in this chapter is

described in Section 3.2. The conventional method to form temporal spatial virtual

array is explained in Section 3.3. The proposed method is shown in Section 3.4. In

Section 3.5 and 3.6, the performance analysis and summarized signal processing pro-

cess are shown, respectively. In Section 3.7, simulation results are presented. The

conclusion of this chapter is presented in Section 3.8.

Chapter 4 deals with a DOA estimation method for wideband signal sources based

on Weighted Squared TOPS. The method is suppose to be applied to passive sen-

sor systems, e.g. electronic surveillance systems. The summary of the conventional

methods are shown in Section 4.2. The proposed method is described in Section 4.3.

Simulation results and detailed performance evaluation are discussed in Section 4.4

and Section 4.5, respectively. The conclusion of the chapter is presented in Section 4.6.

Chapter 5 considers a low complexity signal processing method for WS-TOPS.

The low complexity approach based on WS-TOPS is discussed in Section 5.2. Simu-

lation results of the low complexity method is described in Section 5.3. The conclusion

of the chapter is presented in Section 5.4.

Chapter 6 is the conclusion of this dissertation and summarizes the contribution

of this work.
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Chapter 3
DOA Estimation by Using

Temporal Spatial Virtual Array
with Adaptive PRI Control

Chapter4
DOA Estimation of Wide-
band Signal Sources by

Weighted Squared TOPS

Chapter 2
Related Work and Fun-
damental Technology

Chapter 1
Introduction

Chapter 5
Low Computational Com-

plexity DOA Estimation of
Wideband Signal Sources
Based on Squared TOPS

Chapter 6
Conclusion

Figure 1-1: Structure of Dissertation.
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Chapter 2

Related Work and Fundamental

Technology

This chapter shows the fundamental technologies and the researches related to this

dissertation. Section 2.1 starts with an introduction to array antenna. Section 2.2

overviews array configuration, including MIMO virtual array. Section 2.3 and 2.4

present DOA estimation method for narrowband signal sources and wideband signal

sources, respectively.

2.1 Array Antenna

The array antenna has been applied to various kinds of applications ranging from

military use to commercial use, e.g., ground based radar systems and airborne radar

systems, base stations for mobile communication and radio astronomy observatory,

etc [2]. Although the conventional phased array antenna in Fig. 2-1 (a) provides

only single synthesized signal at single observation, we can obtain the digital data of

received signals at every element antenna individually by using the adaptive array

antenna as shown in Fig. 2-1 (b) and arbitrarily control the received gain of the

array antenna [56]. Those are owing to the improvement of RF devices and electric

devices in recent year. In what follows, we call the adaptive array antenna which can

digitalize the received signal at every element antenna as simply “array antenna”.
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Figure 2-1: Phased array and adaptive array.

2.2 Array Configuration

Array antenna performs spatial sampling of incoming signal sources which are used to

estimate DOA of the signal sources and/or the number of signal sources [57]. DOA

estimation is one of the major applications of the array antenna. The number of

sources that can be resolved depends on the DOF of array antenna which is related

to array configuration. DOA estimation accuracy with array antenna also depends

on the array configuration. Therefore, it is important to understand the fundamental

relationship between array configuration and DOA estimation performance. In this

section, we show the array configurations to be used in this dissertation.

2.2.1 ULA

The simplest and most frequently applied array structure is ULA because of its use-

fulness and easiness to apply to any RF devices to be used for DOA estimation [8].

ULA is defined as the uniform structure which consists of arbitrary number of element

antennas where every spacing between each element is the same value d as shown in

Fig. 2-2. In general, the spacing is less than the half wavelength corresponding to the
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highest frequency of received or transmitting signal sources due to avoiding sidelobes

in the spatial spectrum calculated by DOA estimation methods, some of which are

described in section 2.3 and 2.4.

Both of DOF and DOA estimation accuracy have been mostly confined to the

case of ULA [57]. For example, the number of sources that can be resolved with ULA

where N element antennas with conventional subspace based method like MUSIC is

N − 1. The DOA estimation accuracy of a certain DOA estimation method can be

improved by using large aperture, in other words, the number of antennas in ULA

defines the DOA estimation performance.

Direction finding algorithms based on high-order statistics was proposed to remove

the effect of the Gaussian noise and provide good DOA estimation performance [58,

59]. Using the concept of KR product has been also proposed as a new way to expand

array structure, which can identify 2N −1 signal sources using N antennas [46]. These

methods, however, require certain signal characteristics e.g., Gaussian noise condition

and quasi stationary sources.

d d

(N-1)d

…

N antennas

Figure 2-2: ULA structure.

2.2.2 Non-ULA Array Structures

Regarding the restriction described in Section 2.2.1, the issue of detecting more signal

sources than the number of antennas has been addressed in some ways. To obtain

more DOF required for detection of more than N − 1 signal sources with N anten-

nas, the use of minimum redundancy arrays [60], a transformation of this augmented
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matrix into a suitable positive definite Toeplitz matrix [61, 62] was suggested. How-

ever, the optimum design of arrays is not an easy task and in most cases complicated

iterative processing is required [63,64], because there is no closed form expression for

the array geometry.

Nested array is a novel design of array structure which can greatly increase the

DOF in a completely passive scenario. The structure is obtained by systematically

nesting two or more uniform linear arrays and can provide O(N2) degrees of freedom

using only N actual antennas [31]. Although the nested array approach provides good

DOF, DOA estimation accuracy using nested array is almost same as that using ULA,

because DOA estimation accuracy mainly depends on array aperture size.

2.2.3 MIMO Array

MIMO array has some transmit antennas and receive antennas, where each transmit

antenna transmits the orthogonal signal to the signals used for the other antennas.

It is generally known that MIMO array produces the virtual array. Actually, we

should consider waveform correlation and optimization issues to use MIMO array

efficiently, because MIMO array requires high orthogonality of transmit signals [65–

67]. Assuming we can design the optimal orthogonal waveform, Fig. 2-3 shows that

the signal chain from transmission of signals to decoding of received signals. As we

can see in Fig. 2-3, the combined steering vector, hereafter we call it as “MIMO

steering vector”, has MN length. It means that the length of MIMO steering vector

M times bigger than that of the original received steering vector N .

The examples of some virtual array pattern are shown in Fig. 2-4. From Fig. 2-4,

it is found that the virtual array constructed by using MIMO array can expand array

structure in terms of the number of antennas and the aperture size. It means that

MIMO array can improve not only DOF but also DOA estimation accuracy.
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Figure 2-3: MIMO signal chain.

Tx Array Rx Array Virtual Array

Figure 2-4: Examples of virtual array.
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2.3 DOA Estimation Method for Narrowband Sig-

nal Sources

As mentioned earlier, DOA estimation method for narrowband signal sources has been

well researched in prior decades [1, 2, 8]. Based on these researches, DOA estimation

techniques can be classified into two main categories, non-parametric approaches and

parametric approaches. In this section, we introduce several major methods, some of

which are applied in this dissertation.

2.3.1 System Model

We assume that array antenna is an ULA with N antennas and antenna spacing d

is equal to λ/2, where λ is the wavelength of carrier frequency. Then, we consider

estimating the DOA of L incoming signal sources by using the ULA. Note that the

number of signal sources L (≤ N) is either known a priori or can be estimated [68–72].

The received signal at the mth antenna can be expressed as

x(t) = s(t)A(θ) + n(t), (2.1)

where, s(t) = [s0(t), s1(t), · · · , sl−1(t)]T denotes the signal source vector, n(t) denotes

additive white Gaussian noise, and A(θ) is the array manifold matrix which can be

expressed as

A(θ) = [a(θ0), a(θ1), · · · , a(θL−1)], (2.2)

a(θl) = [1, e−j 2π
λ

d sin θl , · · · , e−j 2π
λ

d(n−1) sin θl ]T . (2.3)

Then, the correlation matrix of x(t) is expressed as

Rxx = E[xxH ], (2.4)

= Ai(θ)RssA
H
i (θ) + σ2

nI, (2.5)
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where Rss = E[s(t)s(t)H ], σ2
n is noise power, where internal noises at all antennas are

assumed to be independent of each other, and I is an N × N unit matrix. Assuming

the L signal sources are uncorrelated, Rss(ωi) has full rank.

2.3.2 Non-parametric Methods 1: Beamforming Method

Beamformer

Beamformer is the most basic approaches of spectral based approaches, and beam-

former spectrum P (θ)bf is calculated by following equation.

P (θ)bf = aH
i (θ)Rxxai(θ)
aH

i (θ)ai(θ)
. (2.6)

Figure 2-5 shows the example of the spatial spectrum calculated by eq. (2.6), in

which some peaks can be found as the DOA of incoming signal sources. As we can

see from the figure, the conventional beamformer can not separate closely spaced sig-

nal sources. Therefore, to improve resolution performance, researchers have proposed

various modifications based on beamformer. A well-known methods are, for example,

Capon [9,56,73] and linear prediction (LP) method [74]. However, the DOA estima-

tion performance of them are lower than those of subspace based methods described

in the following section.

2.3.3 Non-parametric Methods 2: Subspace Based Method

MUSIC

As mentioned in the previous section, beamforming methods are basic techniques

to estimate the DOA of incoming signal sources. Subspace based methods which

have been proposed as super-resolution approach can provide better DOA estimation

accuracy than those of the conventional beamformer methods. In particular, Multiple

SIgnal Classification (MUSIC) algorithm is the most famous subspace based method

[10]. Root-MUSIC [11] which is polynomial-rooting version of MUSIC technique can

provide high resolution performance. ESPRIT [12] is a well-known subspace based
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Figure 2-5: Example of normalized beamforming spectra with ULA, where the num-
ber of antennas = 10, SNR = 0 dB, and snapshot = 100. Dotted lines are the true
direction of incoming signal sources. (a) The true direction of signal sources = {10
deg., 20 deg.} (b) The true direction of signal sources = {10 deg., 30 deg.}.

approach. However, the latter two techniques have require array structure to be ULA.

The detail of MUSIC is as follows.

Since the matrix Rxx is a Hermitian matrix, the eigenvalue decomposition (EVD)

of the matrix gives

Rxx = ESΛSEH
S + ENΛNEH

N , (2.7)

where ES and EN are the signal subspace matrix and the noise subspace matrix,

respectively. ΛS and ΛN are the diagonal matrices corresponding to ES and EN ,

respectively. These matrices are expressed as follows.
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ES = [e1, · · · , eL], (2.8)

EN = [eL+1, · · · , eN ], (2.9)

ΛS = diag(λ1, · · · , λL), (2.10)

ΛN = diag(λL+1, · · · , λN), (2.11)

where λk(k = 1, 2, · · · , N) are eigenvalues of Rxx, and they have the relation given

by

λ1 ≥ λ2 ≥ · · · ≥ λL > λL+1 = · · · = λN = σ2, (2.12)

also, ek(k = 1, 2, · · · , M) are corresponding eigenvectors orthogonal to each other as

shown below.

EEH = EHE = I, (2.13)

E ≡ [ESEN ]. (2.14)

Then, using the noise subspace matrix EN , the MUSIC spectrum Pmusic(θ) can

be expressed as

Pmusic(θ) = aH(θ)a(θ)
aH(θ)ENEH

Na(θ)
. (2.15)

Figure 2-6 shows the example of the spatial spectrum calculated by eq. (2.6) and

eq. (2.15). As we can see in the figure, MUSIC method can separate closely spaced

signal sources while the conventional beamforming technique can not. Therefore, in

this dissertation, we use MUSIC as the basic DOA estimation method.

Spatial Smoothing Processing (SSP)

If some of the received signals are coherent to each other, it causes a rank deficiency

in the source covariance matrix. Then, EH
Na ̸= 0 for any θ and MUSIC will fail to

detect accurate peak in spatial spectrum, which denotes the DOA of incoming signal

sources. Spatial smoothing processing (SSP) is the method to restore the rank of the

41



Angle (degree)
-80 -60 -40 -20 0 20 40 60 80

N
o

rm
a

liz
e

d
 s

p
e

c
tr

u
m

 (
d

B
)

-40

-30

-20

-10

0

Beamformer
MUSIC

Figure 2-6: Example of normalized spectrum of beamformer and MUSIC with ULA,
where the number of antennas = 10, SNR = 0 dB, and snapshot = 100. Dotted lines
are the true direction of incoming signal sources from {10 deg. and 20 deg.}.

signal covariance matrix [75] when we use ULA. The key idea of SSP is that phase

relationships among coherent signals are different from one element to another. First,

splitting the ULA into a number of overlapping subarrays. Then the steering vectors

of the subarrays are calculated and the subarray covariance matrices are averaged.

Finally, the process de-correlates the signals that caused the rank deficiency. We

assume that the ULA with N antennas is divided into P -elements subarrays and we

get M subarrays, where M = N − P + 1, as shown in Fig. 2-7. The received signal

vector of the mth subarrays can be expressed as

xf
m(t) = [xm(t), · · · , xm+P −1(t)]T . (2.16)

Then, the averaged correlation matrix can be calculated by the following equation.

Rf
ssp = 1

M

M∑
m=1

E[xf
m(t)xf

m(t)H ]. (2.17)

The basic approach described above has been extended [76,77], which is called the

forward-backward SSP (FB-SSP). Using these SSP techniques, we can estimate the

DOA of incoming signal sources even if there are coherent signals, while the process

reduces the number of efficient antenna elements from N to P .
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Figure 2-7: Original array structure and subarray structure.

2.3.4 Parametric Methods

Parametric based method can exploit underlying solution, which can handle coherent

signals without any pre-processing technique. The DOA estimation accuracy of the

method is much higher than that of the spectral based methods. The algorithms typ-

ically require solving a multidimensional non-linear optimization problem to find the

estimates. Although, some kinds of techniques have been proposed, e.g., Weighted

Subspace Fitting (WSF) [78,79], Deterministic Maximum Likelihood (DML) [80–82],

Stochastic Maximum Likelihood (SML) [83] and Method of Direction Estimation

(MODE) [84,85], the computational complexity of parametric DOA estimation meth-

ods is quit high.

Therefore, in this dissertation, we focus on the nonparametric methods shown in

Senction 2.3.3 to realize further improvement in terms of DOA estimation perfor-

mance.
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2.4 DOA Estimation Methods for Wideband Sig-

nal Sources

To estimate DOA of wideband signal sources, we should consider that the diversity of

frequency bands. In general, incoming signal sources are affected by the circumstance,

which is time-varying and of course spatially varying, then, the characteristic of signal

in each frequency bands is different from each other. Therefore, the key point of DOA

estimation methods of wideband signal sources is how to deal with the signals in each

frequency band. From the perspective, DOA estimation for wideband signal sources

has been investigated [1, 2, 8].

As mentioned in Introduction, the conventional DOA estimation methods for

wideband signal sources are categorized into two groups: incoherent signal subspace

method (ISSM) [36, 37] and coherent signal subspace method (CSSM) [38]. From a

different perspective, there are two types of DOA estimation methods: one requires

the initial estimate of the DOAs and the other does not. CSSM, which is categorized

in the former group, can provide higher estimation accuracy than that of the meth-

ods categorized in the latter group owing to use initial estimates. However, requiring

initial estimates is the serious drawback because the requirement limits range of ap-

plication. Therefore, in this dissertation, we focus on DOA estimation method which

can estimate DOA of incoming signal sources without any pre-information.

In this section, we introduce the some conventional DOA estimation methods,

some of which are compared to our proposed method described in Sections 4 and 5.

2.4.1 System Model

We consider estimating the DOA of L wideband signal sources using a uniform linear

array that consists of M antennas. Let us assume that the number of signal sources

L (≤ M) is either known or can be estimated [68–72]. We also assume that all signals

are uncorrelated with each other and exist in the bandwidth between wL and wH .
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Then, the received signal at the mth antenna can be expressed as

xm(t) =
L∑

l=1
sl(t − vm sin θl) + nm(t), (2.18)

where sl(t) is the lth signal source, nm(t) is additive white Gaussian noise at the mth

antenna, vm = (m − 1)d/c, where d is the distance between adjacent antennas, and

c is the speed of light. θl is the DOA to be estimated. Then, the received wideband

signals are decomposed into K narrowband signals. The DFT of the signal received

at the mth antenna is

xm(ω) =
L∑

l=1
sl(ω) exp(−jωvm sin θl) + nm(ω). (2.19)

Then, the output signals of the DFT can be written in vector form as follows.

x(ωi) = A(ωi, θ)s(ωi) + n(ωi), i = 1, 2, · · · , K, (2.20)

where ωL < ωi < ωH for i = 1, 2, · · · , K,

A(ωi, θ) =
[

a(ωi, θ1) a(ωi, θ2) · · · a(ωi, θL)
]

, (2.21)

a(ωi, θl) = [1, e−jωiv1 sin θl , · · · , e−jωivM−1 sin θl ]T . (2.22)

For simplicity, hereafter, A(ωi, θ) and a(ωi, θl) will be represented as Ai(θ) and ai(θl),

respectively. The correlation matrix is calculated as follows,

Rxx(ωi) = E[x(ωi)xH(ωi)], (2.23)

= Ai(θ)Rss(ωi)AH
i (θ) + σ2

nI, (2.24)

where Rss(ωi) = E[s(ωi)sH(ωi)], σ2
n is noise power and I is an M × M unit matrix.

Assuming the L signal sources are uncorrelated, Rss(ωi) has full rank, then the signal

subspace matrix F i and the noise subspace matrix W i at frequency ωi can be formed
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from the EVD of the correlation matrix as

F i = [ei,1, ei,2, · · · , ei,L], (2.25)

W i = [ei,L+1, ei,L+2, · · · , ei,M ], (2.26)

where ei,1, · · · , ei,M are the orthogonal eigenvectors of Rxx(ωi) indexed in descending

order with respect to their corresponding eigenvalues as follows.

λi,1 ≥ λi,2 ≥ · · · ≥ λi,L > λi,L+1 = · · · = λi,M = σ2
n. (2.27)

2.4.2 Incoherent Signal Subspace Method (ISSM)

IMUSIC, which is one of the simplest DOA estimation methods for wideband signals,

applies narrowband signal subspace methods (e.g., MUSIC) to each frequency band

independently [36,37]. Then, IMUSIC estimates the DOA of wideband signal sources

by using the following equation.

θ̂ = arg min
θ

K∑
i=1

aH
i (θ)W iW

H
i ai(θ). (2.28)

Since the DOAs estimated by eq. (2.28) are averages of the result of each frequency

band, the poor estimates from a single frequency band even degrades the final esti-

mation accuracy.

2.4.3 Test of Orthogonality Frequency Subspaces (TOFS)

TOFS uses the noise subspace obtained from EVD of the correlation matrix of each

frequency [45]. The DOA of each incoming wideband signal source is estimated by

testing the orthogonality between the steering vector and the noise subspaces. If θ is

the one DOA of incoming wideband signals, θ satisfies the following equation.

aH
i (θ)W iW

H
i ai(θ) = 0. (2.29)
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Here, we define the vector d(θ) as follows.

d(θ) = [aH
1 (θ)W 1W

H
1 a1(θ)

aH
2 (θ)W 2W

H
2 a2(θ)

· · · aH
K(θ)W KW H

KaK(θ)]. (2.30)

All elements of the vector d(θ) will be zero when θ is the DOA of incoming wideband

signal sources. Then, we can estimate the DOAs by using the following equation.

θ̂ = arg max
θ

1
||d(θ)||

. (2.31)

TOFS shows good DOA estimation accuracy in high SNR region by using the noise

subspaces obtained from the correlation matrix of received signals. However, TOFS

cannot resolve closely spaced signal sources when SNR is low.

2.4.4 Test of Orthogonality Projected Subspaces (TOPS)

TOPS uses both of the signal and noise subspaces of each frequency band to esti-

mate the DOA of incoming wideband signal sources [43]. First, we obtain the signal

subspace F i and the noise subspace W i from EVD of the correlation matrix of each

frequency band. Then, one frequency band ωi should be selected and the signal sub-

space F i of the selected frequency band is transformed into other frequencies. TOPS

uses a diagonal unitary transformation matrix. The mth term on the diagonal of the

frequency transform matrix Φ(ωi, θ) is

[Φ(ωi, θ)](m,m) = exp
(

−jωi
md

c
sin θ

)
. (2.32)

Using Φ(ωi, θ), the signal subspace F i of the frequency band ωi is transformed

into the other frequency band ωj, where we define the transformed signal subspace

U ij(θ), as follows.

U ij(θ) = Φ(∆ω, θ)F i, i ̸= j, (2.33)
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where ∆ω = ωj − ωi.

The subspace projection technique is applied to reduce the signal subspace compo-

nent leakage in the estimated noise subspace. The projection matrix P i(θ) is defined

as

P i(θ) = I − (aH
i (θ)ai(θ))−1ai(θ)aH

i (θ), (2.34)

where I is an M × M unit matrix. Then, we obtain the transformed signal subspace

matrix U ′
ij(θ).

U ′
ij(θ) = P j(θ)U ij(θ). (2.35)

Assuming that the selected frequency band is ω1, the matrix D(θ) is defined as

D(θ) = [ U
′H
12 (θ)W 2 · · · U

′H
1K(θ)W K ]. (2.36)

We can estimate the DOA of the incoming wideband signal sources from spatial

spectrum calculated by the following equation since the rank of the matrix D′(θ) also

decreases when θ is the one DOA of incoming wideband signal sources.

θ̂ = arg max
θ

1
σmin(θ)

, (2.37)

where σmin(θ) is a minimum singular value of D(θ).

2.4.5 Squared TOPS

Squared TOPS [44] uses the frequency band where the difference between the smallest

signal eigenvalue λi,L and the largest noise eigenvalue λi,L+1 is maximum. Hereafter

we call it as the reference frequency.

Then, the signal subspace of the reference frequency band is transformed into the

other frequency bands by eq. 4.6. Let us assume that the frequency band ωi is selected

and the signal subspace F i is transformed to the other frequency bands ωj. Using

U ′
ij(θ) and W j, we construct the squared matrix Zi(θ) for the test of orthogonality
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of projected subspaces as follows.

Zi(θ) = [ · · · U
′H
ij (θ)W jW

H
j U ′

ij(θ) · · · ], i ̸= j. (2.38)

Squared TOPS estimates the DOA of wideband signals using the minimum sin-

gular value σzimin
(θ) of Zi(θ).

θ̂ = arg max
θ

1
σzimin

(θ)
. (2.39)
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Chapter 3

DOA Estimation by Using

Temporal Spatial Virtual Array

with Adaptive PRI Control

3.1 Introduction

In Section 2.2, we have briefly reviewed array configuration including MIMO array.

Some of DOA estimation methods for narrowband signal sources have also been in-

troduced in Section 2.3. Although the conventional method in [25] can improve DOA

estimation performance using temporal spatial virtual array, its performance deteri-

orates with changing parameters of the target; velocity and direction. Moreover, the

conventional method can not address DOA estimation of the multiple targets, hence,

it is difficult to implement the method in actual situation.

In this chapter, we propose a new DOA estimation method by using the temporal-

spatial virtual array. The proposed method provides accurate DOA estimation by us-

ing output signals of Doppler filter with adaptive PRI control technique. The perfor-

mance of the proposed method is compared with that of the conventional method via

computer simulations. The simulations show that the new DOA estimation method

performs better than the conventional method.
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The rest of this chapter is organized as follows. In Section 3.2, the MIMO radar

model is described, and the DOA estimation method using MUSIC algorithm is ex-

plained. The conventional method to form temporal spatial virtual array is explained

in Section 3.3. In Section 3.4, the new method of DOA estimation using temporal

spatial virtual array based on Doppler shift with adaptive PRI control is proposed.

In Sections 3.5 and 3.6, the performance analysis and the signal processing process

are shown, respectively. In Section 3.7, simulation results are presented. Finally

conclusions are provided in Section 3.8.

3.2 System Model

We consider the MIMO radar model with N transmit antennas and M receive an-

tennas described in Fig. 3-1. dt and dr denote the spacing of the transmit antennas

and that of the receive antennas, respectively. We assume that Q (< MN) targets

are present in the search space. Let θq and vq represent the direction and the relative

velocity of the q th target, respectively. Here, we also assume that the direction and

the velocity of each target are constant within array signal processing period. The

received signal of the m th antenna can be expressed as

xm

(
pTP RI + τ + 2r

c

)

=
Q∑

q=1

N−1∑
n=0

βqan(θq)bm(θq)sn(τ)d(vq) + nawgn, (3.1)

an(θq) = exp
(

−j
2π

λ
ndt sin θq

)
, (3.2)

bm(θq) = exp
(

−j
2π

λ
mdr sin θq

)
, (3.3)

d(vq) = exp
(

−j
2π

λ
2vqpTP RI

)
, (3.4)

q = 1, · · · , Q, p = 1, · · · , P,

m = 0, · · · , M − 1, n = 0, · · · , N − 1,
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where p indicates the index of transmitting pulse, TP RI denotes PRI, r denotes the

distance of the range bin of interest, βq denotes the amplitude of the signal reflected

by the q th target and λ denotes the wavelength of the carrier frequency. sn(τ)

denotes the transmitting signal from the n th transmit antenna and τ denotes the

time length of transmitting signal. nawgn denotes the additive white Gaussian noise.

c is speed of light. In the MIMO radar, the transmitting signals sn(τ) satisfy the

following orthogonality. It means that N orthogonal signals are transmitted from Tx

antennas individually.

∫
si(τ)sH

j (τ)dτ =


δ, (i = j)

0, (i ̸= j)
, (3.5)

i = 0, · · · , N − 1, j = 0, · · · , N − 1.

We divide the received signal into N signals using matched filter and extract the

signal of the range of interest. The extracted signal is expressed as

xr,m,n(p) ≡
∫

xm(pTP RI + τ + 2r
c

)sH
n (τ)dτ

=
Q∑

q=1
βq exp

{
−j

2π

λ
(sin θq(ndt+mdr)+2vqpTP RI)

}
+nawgn. (3.6)

Stacking the received signal in eq. (3.6), we get the vector xr.

xr(p) = [xr,0,0(p), xr,1,0(p), · · · , xr,M−1,N−1(p)]T . (3.7)

The vector length of the signal xr(p) is MN . It shows that the convolution of real

arrays in MIMO radar produces a virtual array. Here, we refer to the virtual array

as the spatial virtual array to distinguish it from the temporal spatial virtual array

described in Sect. 3. The correlation matrix of xr is defined as

Rxx = E[xrx
H
r ], (3.8)
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θ

dt dt

dr dr

M Rx antennas
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Tx antennas
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Tx and Rx antennas

Wave front

Target direction

... ...

θ θ

Figure 3-1: Configuration of a MIMO radar model.

where E[·] denotes expectation.

Here, internal noises at all antennas are assumed to be independent of each other

with an equal power of σ2. Also, for simplicity, echo signal from each target is

assumed to be uncorrelated with each other, which means that every target has a

different relative velocity. Then, we obtain the noise subspace matrix EN by EVD as

shown in Section 2.3.3.

Using the noise subspace matrix EN , the MUSIC spectrum PMU(θ) with MIMO

array can be expressed as

PMU(θ) = zH(θ)z(θ)
zH(θ)ENEH

Nz(θ)
, (3.9)

where z(θ) denotes the steering vector which can be expressed as
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z(θ) = b(θ) ⊗ a(θ), (3.10)

a(θ) = [a0(θ), a1(θ), · · · , aN−1(θ)]T , (3.11)

b(θ) = [b0(θ), b1(θ), · · · , bM−1(θ)]T . (3.12)

Hereafter we refer the DOA estimation method using eq. (3.9) as the MUSIC.

3.3 Conventional Method to Form Temporal Spa-

tial Virtual Array

In this section, we explain the conventional method to form temporal spatial virtual

array [25]. First, we obtain the matrix X̃r combining the received signal vectors xr(p)

observed by transmitting P pulses. Then, the new echo signal vector x̃r is obtained

by vectorizing it as follows.

X̃r = [xr(1), xr(2), · · · , xr(P )], (3.13)

x̃r = vec(X̃r). (3.14)

As shown in eq. (3.14), the length of vector x̃r is MNP . It means that this process

expands the vector length P times the original size. The resulting new correlation

matrix R̃xx is defined as follows.

R̃xx = x̃rx̃
H
r . (3.15)

Next, the new steering vector corresponding to the vector x̃r and its correlation

matrix R̃xx is defined. Here, ṽq represents the relative velocity of the target of which

the DOA is to be estimated. Then, the distance that the target has traveled along

the line of sight during the period of time between the first and the p th pulse, dp,

can be expressed as

dp = 2ṽqTP RI(p − 1). (3.16)
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The m th Rx antennas
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  generated from the p th pulse

Wave front
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The origin
2vq TPRI

s in θq
(p − 1)

θ θ

Figure 3-2: Temporal spatial virtual antenna.

Figure 3-2 shows the temporal spatial virtual antenna generated by the received

signal of the existing antenna m at the pulse p. The position of the temporal spatial

virtual antenna dv(m, p) can be expressed as

dv(m, p) = dr(m − 1) + 2ṽqTP RI

sin θ̃q

(p − 1), (3.17)

where θ̃q and ṽq denote the pre-estimated direction and relative velocity of the target

calculated by the common radar signal processing. In particular, we obtain each

initial estimate θ̃q by using the received signal xr and the steering vector z̃ based

on the digital beam forming technique and also calculate each initial estimate ṽq by

using eq. (3.18) with the Doppler frequency of the target ω̃d,q, which is indicated as a

peak in the frequency spectrum obtained by digital Fourier transform of the received

signal xr [6].

ṽq = ω̃d,q

4π
λ. (3.18)

Then, we detect targets with pre-estimated target information; the direction θ̃q

and the relative velocity ṽq. As already mentioned in Section 3.2, θ and v are assumed
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to be constant within array signal processing period. Moreover the moving direction

of each target affects DOA estimation accuracy. Therefore, in this paper, we also

assume that the moving direction of each target is constant within the array signal

processing period and is not orthogonal to the direction of the target (it means ṽq ̸= 0).

Using eqs. (3.10) and (3.17), we can generate the temporal spatial steering vector

z̃(θ) corresponding to the received signal vector x̃r as follows.

z̃(θ) = [z1,1,1(θ), z1,1,2(θ), · · · , zm,n,p(θ), · · · , zM,N,P (θ)]T , (3.19)

zm,n,p(θ) =

exp
[
−j

2π sin θ

λ

{
dt(n−1)+dr(m−1)+ 2ṽqTP RI

sin θ̃q

(p−1)
}]

. (3.20)

Based on eqs. (3.15) and (3.20), the MUSIC spectrum PC(θ) using the temporal

spatial virtual array formed by conventional method is defined as follows.

PC(θ) = z̃H(θ)z̃(θ)
z̃H(θ)ẼNẼ

H

N z̃(θ)
, (3.21)

where ẼN is the noise subspace matrix of R̃xx.
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3.4 Proposed Method

Equation (3.20) shows that the steering vector z̃(θ) changes with the direction and

the relative velocity of the target on which we focus. Moreover, there are mismatches

between the steering vector z̃(θ) for each target and the echo signals from the other

targets. The mismatches cause the deterioration of the DOA estimation accuracy of

the conventional method.

To prevent the degradation, we propose the new method of DOA estimation using

the temporal spatial virtual array based on Doppler shift with adaptive PRI control as

follows. First, we transmit pulses at a certain PRI (TP RI_ob) and obtain the received

signals. Secondly, we detect targets with the pre-estimated direction and relative ve-

locity of each target by using the DBF technique and the Doppler analysis shown in

Section 3.3. If there are several targets that have different relative velocities in same

direction, they are associated with the same direction with different velocities. Then,

we determine the optimal PRI (TP RI_opt) for each target based on the pre-estimated

target parameters to form temporal spatial virtual array. Next, we reconstruct re-

ceived data matrix based on TP RI_opt and extract the signal of the focused target

by using Doppler filter. Finally, we estimate the direction of the target using the

temporal spatial virtual array. Details are described as follows.

Note that in this dissertation, we consider short range human detection. Therefore,

we assume that the maximum velocity and the maximum range of targets are 5 m/s

and several hundred meters, respectively. To prevent grating lobes, we also assume

that the original MIMO array is ULA and antenna spacing parameters are as follows:

dr = λ/2 and dt = Mdr.

3.4.1 Observation

First of all, we obtain the received data matrix X̃r transmitting pulses at TP RI_ob

interval. Then, we detect targets and obtain the initial estimates (θ̃q and ṽq) of targets

using the common radar signal processing. TP RI_ob is determined based on eqs. (3.22)

and (3.23), which are required to eliminate range ambiguity and velocity ambiguity,
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respectively.

TP RI_ob > 2Rmax/c, (3.22)

TP RI_ob < λ/(4|vmax|), (3.23)

where, Rmax and vmax denote the maximum range and the maximum velocity required

by the system to eliminate the mentioned ambiguities, respectively.

3.4.2 Determine Optimal PRI to Arrange Temporal Spatial

Virtual Array

For the arrangement of the temporal spatial virtual array, the parameters in eq. (3.20)

that we can control are TP RI and P . Therefore, we adjust the temporal spatial virtual

array arrangement by controlling these two parameters. To achieve stable and high

estimation accuracy of DOA, we need a constant array arrangement independent of

the movement of targets. Figure 3 shows the arrangement of the temporal spatial

virtual array generated by the received signals of P pulses. To keep constant array

structure consisting of the original MIMO array and the temporal spatial virtual array

without overlaps of them, we set da equal to dmin. Therefore, as shown in Fig. 3-3,

satisfying eq. (3.24) is required.

dmin =
∣∣∣∣∣2ṽqTP RI

sin θ̃q

∣∣∣∣∣− dmax, (3.24)

where dmin denotes the minimum distance between arbitrary existing antennas, and

dmax denotes the array length of the spatial virtual array as shown in Fig. 3-3. Here,

we set dr = λ/2 and dt = Mdr, T̂P RI_opt can be calculated by eq. (3.25).

T̂P RI_opt =
∣∣∣∣∣MNλ

4ṽq

sin θ̃q

∣∣∣∣∣ . (3.25)
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dmin = dr
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... ... ... ...

dmax
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P − 1
the received signal 
of the pulse 

Temporal spatial virtual antenna
generated by

Figure 3-3: Arrangement of the temporal spatial virtual array.

3.4.3 Reconstruct the Received Data Matrix Based on the

Optimal PRI

In this section, we explain how to obtain the data matrix to be used for adaptive

forming the temporal spatial virtual array based on T̂P RI_opt from the original received

data X̃r.

Figure 3-4 (a) shows the original received data matrix X̃r and Fig. 3-4 (b) shows

the reconstructed data matrix X̃
′
r based on T̂P RI_opt. Here, we define an MN × W

matrix described in Fig. 3-4 (a) as the signal processing matrix unit. First, we

extract P signal processing matrices at T̂P RI_opt interval from the original received

data matrix X̃r which is obtained by transmitting K(P −1)+W pulses, as described

in Fig. 3-4 (a). Then, we reconstruct the new received data matrix X̃
′
r by using P

signal processing matrices as shown in Fig. 3-4 (b). K denotes natural number that

satisfies

TP RI_obK ≈ T̂P RI_opt, (3.26)
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therefore we need to select the minimum TP RI_ob satisfying eq. (3.22) to reduce the

mismatch between X̃
′
r based on TP RI_obK and z̃(θ) based on T̂P RI_opt. W denotes

data length to be used for signal processing on each antenna.

Although large W provides high signal to noise ratio (SNR), the array signal

processing period {K(P − 1) + W}TP RI_ob should be less than the period in which

the focused target does not walk out of a range bin. Therefore, W should satisfy

eq. (3.27).

{K(P − 1) + W}TP RI_ob < Rbin/(2|ṽq|), (3.27)

where Rbin denotes size of a range bin which is expressed as

Rbin ≈ c/(2B), (3.28)

where B denotes the band width of transmitting signal.

Based on eqs. (3.25), (3.26), and (3.27), the relation between W , K, and P can

be described as follows.

W < K

(
2Rbin

MNλ| sin θ̃q|
+ 1 − P

)
. (3.29)

Since W and K should be natural numbers and the maximum value of | sin θ̃q| is

1, we set P to a natural number that satisfies

P <
2Rbin

MNλ
. (3.30)

In practical situations, we determine the parameter P based on eq. (3.30) consid-

ering the system parameters.

61



3.4.4 Temporal Spatial Virtual Array Based on Doppler Shift

with Adaptive PRI Control

After reconstructing received data matrix, we calculate digital Fourier transform of

pulse train of X̃
′
r ∈ CMNP ×W shown in Fig. 3-4 (b). The output signal of the u th

Doppler filter bank, yr(u), is given by

yr(u) =
W∑

h=1
x̃′

r(h) exp(−j2π(u − 1)(h − 1)/W ), (3.31)

u = 1, · · · , W,

where x̃′
r(h), (h = 1, · · · , W ), denotes the h th column of the matrix X̃

′
r.

Since we already know the pre-estimated Doppler frequency ω̃d,q as described in

Section 3.3, we can obtain the index of Doppler filter bank Dq which represents the

Doppler frequency of the q th target by using eq. (3.32). Finally, we extract the

output signal of the Dq th Doppler filter bank yr(Dq).

Dq = ⌈(ω̃d,qWTP RI_opt)/2π⌉, (3.32)

where ⌈·⌉ denotes the ceiling function.

yr(Dq) is the individual signal vector of the focused target unless there are multiple

targets in the same range bin and the same Doppler filter bank. Therefore, using

yr(Dq) instead of x̃r, we can obtain the new correlation matrix of echo signal from

the q th target. The resulting correlation matrix R̃yy of yr(Dq) is defined as follows.

R̃yy = yr(Dq)yH
r (Dq). (3.33)

Finally, the new spectrum function PP rop(θ) for each target is defined using the

temporal spatial virtual array based on Doppler shift with adaptive PRI control as

follows.

PP rop(θ) = z̃H(θ)z̃(θ)
z̃H(θ)Ẽ′

NẼ
′H

N z̃(θ)
, (3.34)
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Figure 3-4: Original data matrix X̃r and reconstructed data matrix X̃
′
r.

where Ẽ
′
N is the noise subspace matrix of R̃yy.

3.5 Analysis of DOA Estimation Accuracy

As mentioned in the previous section, the proposed method requires the pre-estimation

of the direction and the velocity of targets. These parameters are estimated by the

common radar signal processing and these parameters have some errors, hereinafter

we refer to the errors as the initial estimation error. Since T̂P RI_opt is calculated by

using the pre-estimated parameters that include initial estimation errors, T̂P RI_opt

obviously has some errors. Also, a reconstructed data matrix based on T̂P RI_opt us-

63



ing TP RI_ob as a minimal unit has offset error within TP RI_ob. Therefore, the initial

estimation error and the offset error cause the mismatches between the steering vec-

tors of the temporal spatial virtual array and the reconstructed data matrix. The

mismatches degrade the DOA estimation accuracy of the proposed method. Thus, in

this section, we clarify the impact of these errors on the DOA estimation accuracy of

the proposed method with error evaluation and discuss how to reduce the negative

effect.

For the error evaluation, we assume that ULA MIMO array consists of four Tx

antennas and four Rx antennas with the structure shown in Fig. 3-1. In addition,

we set the common parameters as follows; the carrier frequency is 24.1 GHz, the

bandwidth is 200 MHz, and the spacing of antennas is λ/2 where λ is the wavelength of

the carrier frequency. In this case, the range bin size can be calculated approximately

0.75 m by using eq. (3.28). Assuming 5 m/s for the maximum velocity of human

target, the array signal processing period {K(P − 1) + W}TP RI_ob should be less

than approximately 75 ms from eq. (3.27). Then, we set array signal processing

period is 50 ms considering the margin for the maximum velocity of human targets.

First, we evaluate the impact of the offset error on the DOA estimation accuracy

of the proposed method. In the analysis, to clarify the influence of the offset error,

we assume that there are no initial estimation errors. Note that the number of

transmit pulses will change depending on TP RI_ob, because the fixed array signal

processing period discussed above is applied to the simulation. Rmax is assumed to

be larger than several hundreds meters as mentioned previously, and it is determined

by TP RI_ob as shown in eq. (3.22) (for example, when TP RI_ob is 0.005 ms, Rmax is

750 m). Considering that the offset error depends on TP RI_ob, we use several TP RI_ob

of which the lowest value is 0.005 ms. Table 3.1 lists the parameters to be used for

the error evaluation.

Figures 3-5 and 3-6 show the root mean square error (RMSE) of the DOAs esti-

mated by eq. (3.34) on each TP RI_ob using P = 5 and P = 2, respectively. The RMSE

of the MUSIC is also shown in these figures for comparison. Since we set the signal

processing period to 50 ms and minimum TP RI_ob to 0.005 ms, the maximum number
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Table 3.1: Simulation parameters for the offset error evaluation.

Item Symbol Quantity
PRI for observation TP RI_ob 0.005, 0.01, 0.05, 0.1 ms
Direction of target θ 10 deg.
Velocity of target v 2.0 m/s

of transmitting pulses is 10000. Therefore, we also set the number of snapshots for

MUSIC to 10000, to compare the proposed method with the best performance of

MUSIC under the same condition. The parameter W of the proposed method for

each condition is set to the maximum value that satisfies eq. (3.29). Obviously, the

smaller the TP RI_ob is, the less the DOA estimation error becomes. Since the offset

error of T̂P RI_opt is subject to TP RI_ob as mentioned previously, using small TP RI_ob

improves the DOA estimation accuracy of the proposed method. Here, we should

mention that these results correspond to the lower bounds of RMSE of the proposed

method on each TP RI_ob, because they are calculated with no initial estimation errors.

Based on the results, hereafter we set TP RI_ob to 0.005 ms (in this case, Rmax = 750

m from eq. (3.22)), which realizes much higher DOA estimation accuracy than one of

the MUSIC as shown in Figs. 3-5 and 3-6.
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Figure 3-5: RMSE of the DOAs estimated by eq. (3.34) on each TP RI_ob without
initial estimation errors (P=5).
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Figure 3-6: RMSE of the DOAs estimated by eq. (3.34) on each TP RI_ob without
initial estimation errors (P=2).
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Table 3.2: Simulation parameters for the initial estimation error evaluation.

Item Symbol Quantity
PRI for observation TP RI_ob 0.005 ms

Variance of initial estimation
error of target direction σ2

θ 0.25, 1.0, 4.0
Variance of initial estimation

error of target velocity σ2
v 0.0025

Next, we evaluate the relation between the initial estimation errors and the DOA

estimation accuracy of the proposed method using TP RI_ob = 0.005 ms. We use several

values of variance of the initial estimation errors of directions for the simulation,

because the accuracy of the pre-estimated direction of targets depends on many kinds

of factors such as performance of element antennas, DOA estimation technique and so

on. Here, to analyze the performance of the proposed method with the large initial

estimation errors, we assume that the variances of the initial estimation errors of

target direction (σ2
θ) to be used in the simulation are 0.25, 1.0 and 4.0 degrees2 (σθ =

0.5, 1.0 and 2.0 deg.), of which the largest one is larger than the worst mean square

errors of the MUSIC shown in Figs. 3-5 and 3-6. Note that the accuracy of the pre-

estimated velocity of targets by Doppler analysis depends on array signal processing

period, TP RI_ob and carrier frequency. In this case, the variance of the error of the

pre-estimated velocity σ2
v is calculated to be approximately 0.0025 (m/s)2 (σv = 0.05

m/s) based on the parameters described above. Table 3.2 lists the parameters to be

used for the evaluation. The parameters of the target are the same values shown in

Table 3.1.

Figures 3-7 and 3-8 show the RMSE of the DOAs estimated by eq. (3.34) as a

function of SNR using P = 5 and P = 2, respectively. The mismatch of the steering

vector and reconstructed data matrix based on T̂P RI_opt causes degradations of the

DOA estimation accuracy. These results show that the low initial estimation error

yields the low RMSE of DOA estimation, vice versa. These figures also indicate that

RMSE degrades with increasing the number of P . Since P represents ratio of the

number of the temporal spatial virtual antennas to the number of the spatial virtual
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antennas, the temporal spatial virtual antennas have predominant influence on RMSE

in the case of using large P .

From the simulation results, the improvements of DOA estimation accuracy by

using the proposed method disappear due to the initial estimation errors. Thus, we

need to suppress the degradation caused by the initial estimation errors. Below we

present a scheme that improves DOA estimation accuracy of the proposed method

suppressing the negative effect of the initial estimation errors.

The weight w is used for compensation of errors of the 3rd term in eq. (3.20),

which is in charge of forming the temporal spatial virtual array. Here we obtain the

new steering vector z̃′(θ, w) and the spatial spectrum function P ′
P rop(θ, w) as shown

in eqs. (3.35) ∼ (3.37). Then, we search simultaneously θ̂ and ŵ which maximize

P ′
P rop(θ, w) as shown in eq. (3.38). The scheme suppresses influences of the mismatch

between the steering vector and the reconstructed data matrix caused by the initial

estimation errors and provides improved spatial spectra. Note that the process re-

quires |ṽq| − 3σv > 0 and |θ̃q| − 3σθ > 0.

z̃′(θ, w) =

[z′
1,1,1(θ,w),z′

1,1,2(θ,w),· · · ,z′
m,n,p(θ,w),· · · ,z′

M,N,P (θ,w)]T , (3.35)

z′
m,n,p(θ, w) =

exp
[
−j

2π sin θ

λ

{
dt(n−1)+dr(m−1)+w

MNλ

2
(p−1)

}]
, (3.36)

P ′
P rop(θ, w) = z̃

′H(θ, w)z̃′(θ, w)
z̃

′H(θ, w)Ẽ′
NẼ

′H

N z̃′(θ, w)
, (3.37)

{θ̂, ŵ} = arg max
θ,w

{max(P ′
P rop(θ, w))}, (3.38)

θ̂ ∈ {θ̃q − 3σθ ≤ θ̂ ≤ θ̃q + 3σθ},

ŵ ∈
{

|ṽq | sin(|θ̃q |−3σθ)
(|ṽq |+3σv) sin |θ̃q | ≤ ŵ ≤ |ṽq | sin(|θ̃q |+3σθ)

(|ṽq |−3σv) sin |θ̃q |

}
.
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Figure 3-7: RMSE of the DOAs estimated by eq. (3.34) with initial estimation errors
(P=5).
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Figure 3-8: RMSE of the DOAs estimated by eq. (3.34) with initial estimation errors
(P=2).
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3.6 Summarized Signal Processing Process

Figure 3-9 shows the summarized flowchart of the signal processing process of the

proposed method. As indicated in the flowchart, the steps from 5 to 8 are repeated

Q times, which is the number of targets.

2. Receive signals by M receive antennas

4. Detect targets with the initial estimates of direction and velocity 
   using common radar signal processing shown in Sect. 3.3

3. Obtain MN signals by using matched filter

1. Transmit signals from N transmit antennas
(PRI = T       )PRI_ob

5. Set T         based on  eq.(3.33) for the q th target   PRI_opt

6. Reconstruct data matrix X'  based on Tr PRI_opt

7. Extract the focused target signal using eqs. (3.39) and (3.40)

8. DOA estimation using eq. (3.46)

9. Finish DOA estimation of all targets
no

yes

End

vq θq

Figure 3-9: Signal processing flowchart of the proposed method.
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3.7 Numerical Results

In this section, we demonstrate that the proposed method achieves high estimation

accuracy of DOAs even if multiple targets exist in the search space. For this, we

run following two simulations; first one is the evaluation of the DOA estimation of

two targets which are close to each other in azimuth angle, and second one is the

evaluation of the DOA estimation accuracy of the proposed method.

3.7.1 Simulation Parameters

The MUSIC and the conventional method were tested for comparison. As described

previously, we consider the MIMO radar consisting of ULA with four transmit an-

tennas and four receive ones. We select 24 GHz as a carrier frequency which is the

commonly used frequency band in commercial based RF sensor systems. Since the

conventional method requires the fixed PRI (TP RI_c) to form temporal spatial virtual

array, we set TP RI_c equal to TP RI_ob. As described in the previous section, we also

set TP RI_ob to 0.005 ms and array signal processing period to 50 ms. Thus, the num-

ber of snapshots to be used for the MUSIC is set to 10000. Note that W is calculated

based on eq. (3.29). The parameters for each simulation are summarized in Table 3.3.

In the case of the system parameters shown in table 3.3, TP RI_opt is approx. tens of

milliseconds.

3.7.2 Simulation 1: DOA Estimation of Two Closely Spaced

Targets

In this simulation, we evaluate the performance of the DOA estimation of two closely

spaced targets listed in Table 4.

Figures 3-10 and 3-11 show the resulting spatial spectra, where SNR of the echo

signal from each target is 10 dB, calculated by focusing on the target A and calculated

by focusing on the target B, respectively. In general, the MUSIC spectrum has the

same number of peaks as the number of targets existing in the search space as far
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Table 3.3: Simulation parameters.

Item Symbol Quantity Remarks
Carrier frequency fc 24.1 GHz λ = 12.4 mm

Band width B 200 MHz Range bin = 0.75 m
Array signal

processing period - 50 ms
PRI for observation TP RI_ob 0.005 ms = TP RI_c

Number of snapshots - 10000 for MUSIC
Number of Tx antennas - 4
Number of Rx antennas - 4

Tx antenna spacing dt 2λ = 4dr

Rx antenna spacing dr λ/2

Table 3.4: Target parameters.

Item Symbol Quantity Remarks
Direction of Target A θa 10 deg. σ2

θ =4.0(simulation 1)
Velocity of Target A va 2.0 m/s σ2

v =0.0025(simulation 1)
Direction of Target B θb 11 deg. σ2

θ =4.0(simulation 1)
Velocity of Target B vb 1.0 m/s σ2

v =0.0025(simulation 1)
Range of both targets r 20 m

as echo signal from each target is uncorrelated to each other. We can see that the

MUSIC spectrum has two peaks in Figs. 3-10 and 3-11. These figures also show that

both the proposed method with P = 1 and the proposed method with P = 5, can

estimate the DOA of each target individually, while the conventional method with

P = 5 cannot estimate directions of two targets separately. It is also found that the

proposed method with P = 5 yields a sharp peak compared to other methods.

The improvements result from expansion of array structure by using the temporal

spatial virtual array. There are two reasons that the conventional method with P = 5

cannot provide the direction of each target. One reason is that the echo signal from

each target behaves like interference signal to each other. Another reason is that the

temporal spatial virtual antenna generated by the conventional method receives the

echo signal from the same target as if correlated signal from other direction. These
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factors cause the mismatches between the steering vector and the correlation matrix

R̃xx. Therefore, the conventional method cannot provide the direction of targets.

Figures 3-12 and 3-13 show the resulting spatial spectra, where SNR of the echo

signal from each target is 0 dB, calculated by focusing on the target A and calculated

by focusing on the target B, respectively. These figures also show that the proposed

method with P = 5 improves the performance of DOA estimation, while the MUSIC

and the conventional method cannot estimate the direction of two targets. In the

comparison between these simulations, it is found that the proposed method is more

effective to improve the spatial spectrum in the low SNR case. As already discussed,

the improvement is attributed to the expansion of array structure by using the tem-

poral spatial virtual array with Doppler filter and adaptive PRI control technique.

The simulation results show that the proposed method can estimate the direction

of targets accurately even if there are multiple targets. Moreover, it can clearly

separate two targets, while the MUSIC and the conventional method cannot provide

DOA of each target in the low SNR case.
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Figure 3-10: MUSIC spectrum focusing on the target A (true direction is 10 deg.),
where SNR of the echo signal from each target is 10 dB.

Angle (deg.)
8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

N
o

rm
a

liz
e

d
 S

p
e

c
tr

u
m

 (
d

B
)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

MUSIC (Snapshot = 10000)
Conventional method with P = 5
Proposed method with P = 1
Proposed method with P = 5

True direction

Figure 3-11: MUSIC spectrum focusing on the target B (true direction is 11 deg.),
where SNR of the echo signal from each target is 10 dB.

74



Angle (deg.)
8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

N
o

rm
a

liz
e

d
 S

p
e

c
tr

u
m

 (
d

B
)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

MUSIC (Snapshot = 10000)
Conventional method with P = 5
Proposed method with P = 1
Proposed method with P = 5

True direction

Figure 3-12: MUSIC spectrum focusing on the target A (true direction is 10 deg.),
where SNR of the echo signal from each target is 0 dB.
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Figure 3-13: MUSIC spectrum focusing on the target B (true direction is 11 deg.),
where SNR of the echo signal from each target is 0 dB.
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3.7.3 Simulation 2: DOA Estimation Accuracy

In this section, we evaluate the DOA estimation accuracy of the proposed method

with P = 5 using a single target. Two targets listed in Table 4 are used individually

with several variance parameters. Figures 3-14 and 3-15 show the RMSEs of the

estimated DOA of the target A and the target B, respectively.

These results show that the proposed method achieves higher accuracy of DOA

estimation than the MUSIC. In comparison with Fig. 3-7, it is found that the proposed

method can suppress the negative effect of the initial estimation errors and the RMSE

of the proposed method in each figure is close to the lower bound shown in Fig. 3-5.

The simulation results prove that the proposed method is effective to improve the

DOA estimation accuracy without dependence on the velocity and the direction of

targets even if the initial estimation errors exist.

76



SNR (dB)
-25 -20 -15 -10 -5 0

D
O

A
 e

s
ti
m

a
ti
o

n
 e

rr
o

r 
(R

M
S

E
 d

e
g

)

10-3

10-2

10-1

100

101

MUSIC (Snapshot = 10000)
2 2

v
 = 0.0025

2 2

v
 = 0.0025

2 2

v
 = 0.0025

Figure 3-14: The RMSE of the estimated DOA of the target A (θa=10 deg.,va=2.0
m/s ) versus SNR.
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Figure 3-15: The RMSE of the estimated DOA of the target B (θb=11 deg.,vb=1.0
m/s ) versus SNR.
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3.8 Conclusion

In this chapter, we have proposed a new DOA estimation method by using the tem-

poral spatial virtual array based on Doppler shift with adaptive PRI control. The

proposed method is effective for any sensor systems with an array antenna because

it is the basic approach to arrange the virtual array structure. The numerical re-

sults show that our proposed method can provide the improved spatial spectrum for

each target and estimate the DOA of target accurately even if multiple moving tar-

gets exist in the search area. The simulation results also prove that the proposed

method can achieve high accuracy of DOA estimation without dependence on the

target parameters even if the initial estimation errors exist.

78



Chapter 4

DOA Estimation of Wideband

Signal Sources by Weighted

Squared TOPS

4.1 Introduction

In the previous chapter, we have proposed a DOA estimation method for narrowband

signal sources. Next, we shift our research topic to wideband signal sources, as shown

in Fig. 1-1. In this chapter, we discuss a new DOA estimation method of wideband

signal sources based on Squared TOPS. As mentioned in section 2.4, Squared TOPS

can provide better DOA estimation accuracy and resolution performance than those

of the other conventional methods e.g. ISSM, TOPS. The method, however, has the

serious drawback: The spatial spectrum calculated by Squared TOPS has some false

peaks.

To overcome the shortcoming, we propose a new DOA estimation method for wide-

band signals called WS-TOPS to improve Squared TOPS by modifying the orthog-

onality test matrix in the conventional method. Moreover, the algorithm averaging

output of each frequency bin with appropriate weight is also applied to improve DOA

estimation accuracy. WS-TOPS can suppress all false peaks in spatial spectrum and
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improve DOA estimation performance of wideband signal sources. The performances

of the proposed method are compared with those of the conventional one via com-

puter simulation. From the simulation results, it is found that the proposed method

can achieve better resolution performance and DOA estimation accuracy than those

of the conventional one. Note that we consider the same system model described in

section 2.4.1.

The rest of chapter is organized as follows. The conventional DOA estimation

algorithms are explained in Section 4.2. In Section 4.3, WS-TOPS is proposed. Sim-

ulation results and detailed performance evaluation are discussed in Section 4.4 and

Section 4.5, respectively. Finally, conclusion of this chapter is presented in Section 4.6.

4.2 Summarization of Conventional Methods

In this section, we summarize the conventional methods for wideband DOA estimation

described in section 2.4, which are compared to our proposed method in the following

sections.

ISSM (IMUSIC)

IMUSIC, which is one of the simplest DOA estimation methods for wideband signals,

applies narrowband signal subspace methods, for example MUSIC, to each frequency

band independently [36, 37]. Then, IMUSIC estimates the DOA of wideband signal

sources by using the following equation.

θ̂ = arg min
θ

K∑
i=1

aH
i (θ)W iW

H
i ai(θ). (4.1)

TOFS

TOFS uses the noise subspace obtained from EVD of the correlation matrix of each

frequency [45]. The DOA of each incoming wideband signal source is estimated by

testing the orthogonality between the steering vector and the noise subspaces. If θ is
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the one DOA of incoming wideband signals, θ satisfies the following equation.

aH
i (θ)W iW

H
i ai(θ) = 0. (4.2)

Here, we define the vector d(θ) as follows.

d(θ) = [aH
1 (θ)W 1W

H
1 a1(θ) · · · aH

K(θ)W KW H
KaK(θ)]. (4.3)

All elements of the vector d(θ) will be zero when θ is the DOA of incoming wideband

signal sources. Then, we can estimate the DOAs by using the following equation.

θ̂ = arg max
θ

1
||d(θ)||

. (4.4)

TOFS shows good DOA estimation accuracy in high SNR region by using the noise

subspaces obtained from the correlation matrix of received signals. However, TOFS

cannot resolve closely spaced signal sources when SNR is low.

TOPS

TOPS uses both of the signal and noise subspaces of each frequency band to esti-

mate the DOA of incoming wideband signal sources [43]. First, we obtain the signal

subspace F i and the noise subspace W i from EVD of the correlation matrix of each

frequency band. Then, one frequency band ωi should be selected and the signal sub-

space F i of the selected frequency band is transformed into other frequencies. TOPS

uses a diagonal unitary transformation matrix. The mth term on the diagonal of the

frequency transform matrix Φ(ωi, θ) is

[Φ(ωi, θ)](m,m) = exp(−jωi
md

c
sin θ). (4.5)

Using Φ(ωi, θ), the signal subspace F i of the frequency band ωi is transformed

into the other frequency band ωj, where we define the transformed signal subspace

U ij(θ), as follows.

U ij(θ) = Φ(∆ω, θ)F i, i ̸= j, (4.6)
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where ∆ω = ωj − ωi.

The subspace projection technique is applied to reduce the signal subspace compo-

nent leakage in the estimated noise subspace. The projection matrix P i(θ) is defined

as

P i(θ) = I − (aH
i (θ)ai(θ))−1ai(θ)aH

i (θ), (4.7)

where I is an M × M unit matrix. Then, we obtain the transformed signal subspace

matrix U ′
ij(θ).

U ′
ij(θ) = P j(θ)U ij(θ). (4.8)

Assuming that the selected frequency band is ω1, the matrix D(θ) is defined as

D(θ) = [ U
′H
12 (θ)W 2 · · · U

′H
1K(θ)W K ]. (4.9)

We can estimate the DOA of the incoming wideband signal sources from spatial

spectrum calculated by the following equation since the rank of the matrix D′(θ) also

decreases when θ is the one DOA of incoming wideband signal sources.

θ̂ = arg max
θ

1
σmin(θ)

. (4.10)

where σmin(θ) is a minimum singular value of D(θ).

Squared TOPS

Squared TOPS [44] uses the frequency band where the difference between the smallest

signal eigenvalue λi,L and the largest noise eigenvalue λi,L+1 is maximum. Hereafter

we call it as the reference frequency.

Then, the signal subspace of the reference frequency band is transformed into

the other frequency bands by eq. (13). Let us assume that the frequency band ωi

is selected and the signal subspace F i is transformed to the other frequency bands
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ωj. Using U ′
ij(θ) and W j, we construct the squared matrix Zi(θ) for the test of

orthogonality of projected subspaces as follows.

Zi(θ) = [ · · · U
′H
ij (θ)W jW

H
j U ′

ij(θ) · · · ], i ̸= j, (4.11)

Squared TOPS estimates the DOA of wideband signals using the minimum sin-

gular value σzimin
(θ) of Zi(θ).

θ̂ = arg max
θ

1
σzimin

(θ)
. (4.12)

4.3 Proposed Method

In this section, we explain our proposed method named weighted squared TOPS (WS-

TOPS). WS-TOPS applies the following two approaches to Squared TOPS to improve

DOA estimation performance. One is the modified squared matrix method, which is

the algorithm to suppress the false peaks in the spatial spectrum of Squared TOPS.

To realize the suppression of false peaks, we consider avoiding the undesirable rank

decrease of Zi(θ) by adding the certain variable to diagonal elements of Zi(θ). The

other is the selective weighted averaging method, which is the algorithm to improve

the DOA estimation accuracy by using the signal subspaces of multiple frequency

bands. The details of these algorithms are shown in the following subsections.

4.3.1 Modified Squared Matrix (Algorithm 1)

Although Squared TOPS and TOPS use the projection matrix P i(θ) to reduce the

signal subspace component leakage in the estimated noise subspace, some false peaks

in the spatial spectrum remain. This is the serious disadvantage of TOPS and Squared

TOPS. The transformed signal subspace matrix U ′
ij(θ) has residual error and it causes

the undesirable rank decrease of the matrix Zi(θ). Thus, we propose the algorithm

to suppress these false peaks by modifying the component of the matrix Zi(θ). In

particular, we avoid the undesirable rank decrease of Zi(θ) by adding bj(θ) to diagonal

elements of Zi(θ).
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The steering vector ai(θ) is orthogonal to the noise subspaces only when θ is the

DOA of the incoming wideband signal sources. Here, we define bj(θ) = aH
j (θ)W jW

H
j aj(θ).

Then, we can avoid the undesirable rank decrease of the matrix Zi(θ) by adding the

square matrix of which the diagonal elements are bj(θ) of the frequency band ωj.

We, however, need to consider how we add bj(θ) to the components of the matrix

Zi(θ), because bj(θ) is similar to the components of TOFS and it would cause the

degradation of the resolution performance of closely spaced signal sources.

bj(θ) is calculated by using a steering vector and noise subspaces. As we can

see from eq. (2.22), aH
j (θ)aj(θ) is M that is the number of antennas. Therefore,

bj(θ) changes between 0 and M . If the steering vector is orthogonal to all of noise

subspaces, bj(θ) is 0. If the steering vector is not orthogonal to noise subspaces, bj(θ)

comes close to M . On the other hand, the elements of U
′H
ij (θ)W jW

H
j U

′

ij(θ) are

calculated by using the transformed signal subspaces and noise subspaces. Here, we

define the lth column of U
′

ij(θ) as u
′
ijl(θ), which is a transformed signal subspace.

As we can also see from eqs. (4.6) and (4.8), u
′H
ijl (θ)u′

ijl(θ) is 1, thus each element of

U
′H
ij (θ)W jW

H
j U

′

ij(θ) changes between 0 and 1. Therefore, we divide bj(θ) by M to

deal with the elements of U
′H
ij (θ)W jW

H
j U

′

ij(θ) and bj(θ) as the same range. Based

on the discussion, we modify the component of Zi(θ) as follows.

First, we obtain the matrix Cij(θ).

Cij(θ) = U
′H
ij (θ)W jW

H
j U ′

ij(θ) + Bj(θ), (4.13)

where Bj(θ) is an L × L diagonal matrix and it can be expressed as

Bj(θ) = bj(θ)
M

I, (4.14)

where I is an L × L unit matrix. The matrix Cij(θ) keeps the full rank except when

θ is the DOA of incoming wideband signal sources even if the rank of Zi(θ) decreases

undesirably. Thus, the algorithm can suppress false peaks in spatial spectrum. Then,
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we construct a new matrix Z ′
i(θ) using the matrix Cij(θ) as follows.

Z ′
i(θ) = [ · · · Cij(θ) · · · ], i ̸= j. (4.15)

Finally, we can estimate the DOA of incoming wideband signal sources using eq. (4.16).

θ̂ = arg max
θ

1
σ′

zimin
(θ)

, (4.16)

where σ′
zimin

(θ) is the minimum singular value of the matrix Z ′
i(θ).

4.3.2 Selective Weighted Averaging (Algorithm 2)

Squared TOPS uses only the single signal subspace F i of the reference frequency

band ωi, where the difference between the smallest signal eigenvalue λi,L and the

largest noise eigenvalue λi,L+1 is maximum. This approach is reasonable in terms of

computational complexity. However, there are signal subspaces of different frequency

bands which could be exploited for further improvement of DOA estimation accuracy.

In particular, using several frequency bands simultaneously where SNR are high can

improve the DOA estimation performance. Therefore, we introduce an algorithm

using the signal subspaces of multiple frequency bands with the consideration on SNR

of each frequency band. We define the weight αi using the smallest signal eigenvalue

λi,L and the largest noise eigenvalue λi,L+1 of the frequency band ωi as follows.

αi = λi,L/λi,L+1 = λi,L/σ2
n. (4.17)

The weight αi can indicate the reliability of the frequency band ωi because of the

same reason that Squared TOPS selects reference frequency. Then, using the weight

αi, the spatial spectrum of all frequency bands are combined as follows.

θ̂ = arg max
θ

1
1
K

∑K
i=1 αiσzimin

(θ)
. (4.18)

The spatial spectrum obtained from eq. (4.18) is averaged with the weights αi. There-

fore, the algorithm can improve the DOA estimation accuracy of signal sources in
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high SNR region. However, the algorithm causes deteriorations of sharpness of spec-

trum peaks when each frequency band shows different peaks to each other, e.g., in

low SNR region. Eventually, the algorithm degrades the resolution performance of

closely spaced signal sources in low SNR region.

To prevent the deterioration caused by the process, we propose a selective averaging

approach. The point of the approach is that the frequency bands which contain high

SNR signal are only used with a weight depending on SNR of its frequency band. By

using only the frequency bands ωi with weight αi larger than a certain threshold αth,

which is reliable frequency bands, we can improve DOA estimation performance and

also reduce computational cost.

Finally, we obtain the spatial spectrum based on the algorithm 2 as follows.

θ̂ = arg max
θ

K ′∑
i=1 αiσzimin

(θ)
, {i | αi > αth}, (4.19)

where K ′ is the number of frequency bands with the weight αi larger than the thresh-

old αth. If there is no frequency band with weight αi larger than the threshold αth,

we use the signal subspace of the frequency band with the largest weight αi. For

example, there are signal sources with low power and every αi is smaller than αth.

If we use only single frequency band, the proposed method keeps the same perfor-

mance as Squared TOPS. In other words, the algorithm can provide better perfor-

mance than that of Squared TOPS even in the case of all αi are smaller than the

threshold αth. In what follows, we set αth = 9, which implies that the signal power of

the frequency band is larger than (3σn)2 based on eq. (4.17). αth in the algorithm 2

determines the frequency bands of which spatial spectra are averaged based on SNR,

therefore, the performance of the algorithm 2 depends on SNR of each frequency

band.

4.3.3 Weighted Squared TOPS (WS-TOPS)

The algorithm 1 is effective to suppress the undesirable false peaks in the spatial spec-

trum. The algorithm 2 improves the DOA estimation accuracy in high SNR region.
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Table 4.1: Computational complexity.

Complexity
Algorithm Calculation for D, Z, and Z ′ Calculation for SVD

TOPS O(LM(M − L)(K − 1)) +O(L2(M − L)(K − 1))
Squared TOPS O({2LM(M − L) + L2(M − L)}(K − 1)) +O(L3(K − 1))

WS-TOPS O({2LM(M − L) + L2(M − L)}(K − 1)K ′) +O(L3(K − 1)K ′)

Therefore, we can achieve the further improvement of DOA estimation performance

using the two algorithms simultaneously as follows.

θ̂ = arg max
θ

K ′∑
i=1 αiσ′

zimin
(θ)

, {i | αi > αth}. (4.20)

4.4 Computational Complexity

The number of computations for an M ×M SVD is O(M3) [86], which is the dominant

factor of the computational complexity for the TOPS based method (TOPS, Squared

TOPS, and WS-TOPS). For example, the signal processing for TOPS requires an

SVD of an L × (K − 1)(M − L) matrix D′′(θ), where (K − 1)(M − L) > L2 because

2L ≤ M and K ≥ L + 1 [43]. The calculation of the evaluation matrix (D, Z, and

Z ′) for each method should also be in consideration. Table 4.1 lists the dominant

factors of the computational complexity of each method and Fig. 4-1 shows examples

of the computational cost vs. the system parameters (M , L, and K). The proposed

method, WS-TOPS, needs to repeat SVD calculations for several frequency bands.

Thus, as we can see in Fig. 4-1, it requires K ′ times signal processing cost than that

of Squared TOPS. However, considering the DOA estimation performance described

in the following section, the proposed method can provide enough improvement to be

applied.

4.5 Numerical Results

In this section, we evaluate the DOA estimation performance of the proposed method

with that of conventional methods described in Section 4.2.
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Figure 4-1: Computational complexity, (a) changing the number of waves L, where
M = 10 and K = 7, (b) changing the number of antennas M , where L = 3 and
K = 7, (c) changing the number of frequency bins K, where M = 10 and L = 3.

4.5.1 Simulation Parameters

The received signals are divided into Q blocks with the number of samples in one

block being equal to the number of DFT points. Here, we set Q to 100 and DFT

points to 256. We use the frequency bands which are equally spaced K frequency

bands between ωL and ωH from DFT output. We define the DFT output signal of

frequency band ωi is xq(ωi), {i ∈ 1 ∼ K} for the qth block. Then, the estimated
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Table 4.2: Simulation parameters.

Item Symbol Quantity Remarks
Antenna spacing d λ/2 Uniform linear array

Frequency ωL ωL π/3 The lowest frequency of signal
sources (ω domain)

Frequency ωH ωH 2π/3 The highest frequency of signal
sources (ω domain)

Parameter αth αth 9

correlation matrix of the frequency band ωi is

R̂(ωi) = 1
Q

Q−1∑
q=0

xq(ωi)xH
q (ωi). (4.21)

Then, we calculate the signal subspace matrix F i and the noise subspace matrix

W i from EVD of the correlation matrix R̂(ωi), and estimate the DOA of incoming

wideband signal sources by using WS-TOPS and each conventional method described

in Section 4.2.

The statistical performance was evaluated by performing 500 Monte Carlo runs

for each algorithm. The fixed simulation parameters to be used in the simulations are

shown in Table 4.2. The number of antennas (M), that of signal sources (L), and that

of frequency bands (K) are shown in the caption of each figure. λ is the wavelength

corresponding to the highest frequency component of the received wideband signals.

Note that the signal power on each frequency between ωL and ωH changes randomly

for each simulation. This means that the efficient frequency band of each signal

sources also changes randomly with each simulation.

4.5.2 Spatial Spectrum

Fig. 4-2 shows the spatial spectrum calculated by each method for four scenarios,

where SNR of each incoming signal source is 5 dB. The details of the scenarios are

described in the caption of the figure. The spatial spectrum of each method has some

sharp peaks at the true directions, which are indicated as dotted lines in the figures.
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Figure 4-2: Examples of spatial spectrum on (a) M = 10, K = 7, and L = 3 (8 deg.,
33 deg., and 37 deg.), (b) M = 10, K = 15, and L = 3 (8 deg., 33 deg., and 37 deg.),
(c) M = 6, K = 7, and L = 3 (8 deg., 33 deg., and 37 deg.), and (d) M = 10, K = 7,
and L = 5 (-20 deg, -10 deg, 8 deg., 33 deg., and 37 deg.).

We can see that WS-TOPS can suppress all undesirable false peaks in the spatial

spectrum, while the spatial spectrum of TOPS and Squared TOPS have some false

peaks. These false peaks in the spatial spectra of TOPS based methods have same

peak level as those of true peaks, therefore they cause false detections. From Fig. 4-2,

it is also found that WS-TOPS can detect closely spaced signal sources at 33 deg.

and 37 deg., while IMUSIC and TOFS cannot.

As shown in Fig. 4-2, WS-TOPS can hold the capability to suppress false peaks

for all scenarios. The results prove that the WS-TOPS is robust to the system pa-
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Figure 4-3: Examples of Resolution on (a) M = 10, K = 7, and L = 3 (8 deg., 33
deg., and 37 deg.), (b) M = 10, K = 15, and L = 3 (8 deg., 33 deg., and 37 deg.),
(c) M = 6, K = 7, and L = 3 (8 deg., 33 deg., and 37 deg.), and (d) M = 10, K = 7,
and L = 5 (-20 deg, -10 deg, 8 deg., 33 deg., and 37 deg.).

rameters, which are the number of antennas (M), that of sources (L), and that of

frequency bins (K).

Regarding the computational complexity of WS-TOPS and TOPS based methods,

we calculate the computational costs to obtain an inverse of the minimum singular

value of each direction by using MATLAB. In the case of M = 10, L = 3, and K = 7,

the averaged computation time of WS-TOPS(K ′ = 7) is 2.1 ms, that of WS-TOPS

(K ′ = 2) is 0.59 ms, that of Squared TOPS is 0.21 ms, and that of TOPS is 0.17

ms. In the case of M = 10, L = 3, and K = 15, the averaged computation time of
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Figure 4-4: Examples of RMSEs of estimated DOA of the signal source from 8 deg.
on (a) M = 10, K = 7, and L = 3 (8 deg., 33 deg., and 37 deg.), (b) M = 10, K = 15,
and L = 3 (8 deg., 33 deg., and 37 deg.), (c) M = 6, K = 7, and L = 3 (8 deg., 33
deg., and 37 deg.), and (d) M = 10, K = 7, and L = 5 (-20 deg, -10 deg, 8 deg., 33
deg., and 37 deg.).

WS-TOPS (K ′ = 7) is 5.1 ms, that of WS-TOPS (K ′ = 2) is 1.47 ms, that of Squared

TOPS is 0.44 ms, and that of TOPS is 0.42 ms. Although the actual computational

times depend on the calculation system, the results show that the effective costs

coincide with the computational complexity described in Fig. 4-1.
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Figure 4-5: Examples of RMSEs of estimated DOA of the signal source from 33 deg.
(a) M = 10, K = 7, and L = 3 (8 deg., 33 deg., and 37 deg.), (b) M = 10, K = 15,
and L = 3 (8 deg., 33 deg., and 37 deg.), (c) M = 6, K = 7, and L = 3 (8 deg., 33
deg., and 37 deg.), and (d) M = 10, K = 7, and L = 5 (-20 deg, -10 deg, 8 deg., 33
deg., and 37 deg.).

4.5.3 Probability of Resolution

Fig. 4-3 shows the probability of resolution of WS-TOPS and the conventional meth-

ods, where the simulation parameters are shown in the caption of the figure. The

probability of resolution denotes the probability of successful detection of all signal

sources. In other words, we consider a certain result as a successful detection only

when all signal sources are detected. If the number of signal sources we detect is

less than the actual number of incoming signal sources, we judge the result as a false
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one in terms of successful detection. As we can see from Fig. 4-3, the resolution per-

formance of WS-TOPS is between those of Squared TOPS and TOPS. The results

indicate that WS-TOPS can achieve better resolution than that of TOPS, TOFS,

and IMUSIC, without dependence on the system parameters.

4.5.4 Root Mean Square Error (RMSE) of Estimated DOA

The RMSEs of the estimated DOA of the signal sources calculated by WS-TOPS and

the conventional methods are shown in Figs. 4-4 and 4-5. For comparison purpose,

the Cramér-Rao bounds (CRB) [15,16] is also presented in each figure. Fig. 4-4 shows

DOA estimation accuracy of the signal source from 8 deg. where there is no closely

spaced wideband signal sources. As we can see in Fig. 4-4, WS-TOPS can provide

higher DOA estimation accuracy than that of TOPS and that of Squared TOPS in

the full range of SNR. It is also found that WS-TOPS shows similar performance

to TOFS and IMUSIC in high SNR region. The results that TOPS and Squared

TOPS show lower accuracy of DOA estimation than that of IMUSIC coincide with

the explanation in [43]. In contrast, the results show that WS-TOPS can improve

DOA estimation accuracy and it comes close to that of IMUSIC and TOFS methods

in high SNR region.

Fig. 4-5 shows DOA estimation accuracy of the signal source from 33 deg. where

there is the closely spaced wideband signal source. From Fig. 4-5, it is found that

WS-TOPS yields the best performance of DOA estimation accuracy for closely spaced

wideband signal sources in full range of SNR. The results prove that the DOA esti-

mation accuracy of WS-TOPS is better than the conventional methods and also show

that the performance of WS-TOPS is robust to the system parameters.

4.6 Conclusion

In this chapter, we have proposed a new DOA estimation method for wideband sig-

nals called WS-TOPS based on Squared TOPS. WS-TOPS uses the selective weighted

averaging method and the modified squared matrix method to improve DOA estima-

94



tion performance. The simulation results show that WS-TOPS can suppress all false

peaks in the spatial spectrum, while TOPS and Squared TOPS cannot. It is also

shown that the DOA estimation accuracy and the resolution performance of WS-

TOPS are better than those of the conventional methods. WS-TOPS can achieve the

performance without requiring initial estimates. These results prove that WS-TOPS

is effective in estimating the DOA of wideband signal sources.
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Chapter 5

Low Computational Complexity

DOA Estimation of Wideband

Signal Sources Based on Squared

TOPS

5.1 Introduction

In the previous chapter, we have proposed a DOA estimation method “WS-TOPS”

for wideband signal sources. While WS-TOPS can provide high DOA estimation

performance, it requires high computational costs. Therefore, in this chapter, we

focus on a low computational complexity DOA estimation method based on WS-

TOPS. The proposed method can reduce computational complexity with minimizing

deterioration on DOA estimation performance. In particular, the method selects two

frequency bands and uses the signal subspaces and the noise subspaces. Then, we

conduct the orthogonality test of new squared matrix consisting of the weighted signal

subspaces and the noise subspaces. Simulation results show that the proposed method

can provide good resolution performance and DOA estimation accuracy with low

computational complexity. Note that we consider the same system model described
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in section 2.4.1.

The rest of chapter is organized as follows. In Section 5.2, the low complexity

DOA estimation method for wideband signals is proposed. In Section 5.3, simulation

results are presented and conclusions are provided in Section 5.4.

5.2 Proposed Method

Although WS-TOPS can achieve high DOA estimation accuracy without false peaks

by using eq. (4.20), it requires high computationaal complexity which depends on the

signal processing for construction of the matrix Z ′
i and singular value decomposition

(SVD) of the matrix Z ′
i. Moreover, WS-TOPS repeats the construction of the ma-

trix Z ′
i and its SVD K ′ times, thus WS-TOPS should require high computational

complexity. In this chapter, we propose a method to realize high DOA estimation

performance with low computational complexity.

TOPS based algorithm requires two frequency bands at least, because the method

needs to transform the signal subspace of a frequency band to another frequency band

using eq. (4.6). The parameter K ′ in WS-TOPS changes with the SNR as shown in

eq. (4.20). Thus, the performance and the computational complexity of WS-TOPS

also change with SNR. We can consider, however, that the DOA estimation perfor-

mance of WS-TOPS mainly depends on the signal subspaces and noise subspaces of

the frequency bands with high αi. Therefore, to reduce the computational complexity

we propose the following algorithm. First, we select two frequency bands that have

top two αi defined by eq. (4.17), which are the reliable frequency bands. Let us define

them as k1 for the frequency band with maximum αi and k2 for the frequency band

with second αi.

Next, we obtain Ck1k2(θ) and Ck2k1(θ) using eq. (4.13) and construct the new

orthogonality evaluation matrix Q(θ) as follows.

Q(θ) = Ck1k2(θ)CH
k2k1(θ). (5.1)

In the case of K ′ = 2, WS-TOPS requires the construction of the matrix Z ′,
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which is an L × L(K − 1) matrix, and its SVD calculation two times as shown

in eqs. (4.15) and (4.20), because the signal subspaces of two different frequency

bands are selected (K ′ = 2). On the other hand, the proposed method can reduce

computational complexity to use only Ck1k2(θ) and Ck2k1(θ).

Although the proposed method uses only Ck1k2(θ) and Ck2k1(θ), both of the row

and column elements of the matrix Q(θ), which is obtained by multiplying Ck1k2(θ)

and Ck2k1(θ), are close to zero simultaneously when θ is one DOA of incoming wide-

band signal sources. Finally, we estimate the DOA of each wideband signal source as

follows.

θ̂ = arg max
θ

1
σQ(θ)

, (5.2)

where, σQ is the minimum singular value of the matrix Q(θ).

As we can see in eqs. (4.13) and (5.1), the multiplying process yields the terms

including Bk1(θ) and Bk2(θ) which are diagonal matrices. The TOPS based term

obtained by multiplying U
′H
k1k2(θ)W k2W H

k2U ′
k1k2(θ) and U

′H
k2k1(θ)W k1W H

k1U ′
k2k1(θ)

is also produced. The elements of the former terms can improve DOA estimation

accuracy of a single source in low SNR regions, because the elements are similar to

those of IMUSIC which shows better accuracy than TOPS based methods in low

SNR region. The latter one provides improved resolution performance, because the

row and column elements have sensitivity to detect the orthogonality of the signal

and noise subspaces. Eventually, the process can provide the resolution performance

similar to Squared TOPS with improved DOA estimation performance in low SNR

regions, although the DOA estimation performance slightly decreases compared to

WS-TOPS due to less use of the frequency bands.

Regarding the computational complexity, matrix multiplication operations for cal-

culation are considered. The computing process of the covariance matrix Rxx and

that of EVD are required for all the methods described in Section 2.4. It is also

obvious that the computational complexity of IMUSIC, which does not require the

SVD process, is lower than those of the other methods. Therefore, we focus on the
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computational complexity of TOPS, Squared TOPS, and WS-TOPS. The dominant

factors of the computational complexity of TOPS based algorithms are the comput-

ing processes of constructing the orthogonality evaluation matrices and SVD of them.

Since it is known that the number of computations for an M × M SVD is O(M3)

and that for multiplication of M × L matrix and L × K matrix is O(MLK) [86], the

computational complexity of each method is obtained as shown in Table 5.1. Fig-

ures 5-1 and 5-2 show the computational complexity vs. the number of signal sources

and the number of antennas, respectively. As we can see in Figs. 5-1 and 5-2, the pro-

posed method can reduce computational complexity considerably, in particular the

computational complexity of the proposed method is lower than that of the original

TOPS.

Table 5.1: Computational complexity.

Complexity
Algorithm Calculation for D, Z, Z ′ and Q Calculation for SVD

TOPS O(LM(M − L)(K − 1)) +O(L2(M − L)(K − 1))
Squared TOPS O({2LM(M − L) + L2(M − L)}(K − 1)) +O(L3(K − 1))

WS-TOPS O({2LM(M − L) + L2(M − L)}(K − 1)K ′) +O(L3(K − 1)K ′)
Proposed method O(2{2LM(M − L) + L2(M − L)} + 2M(M − L) + (M − L) + L3) +O(L3)
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Figure 5-1: Computational Complexity vs. the number of incoming waves L, where
M = 10 and K = 7.
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Number of antennas: M
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Figure 5-2: Computational Complexity vs. the number of antennas M , where L = 2
and K = 7.

5.3 Numerical Results

The proposed method has been evaluated through numerical simulation by performing

300 Monte Carlo runs with the other conventional methods described in Section 2.4.

Regarding WS-TOPS, we also calculated WS-TOPS with fixed K ′ to evaluate the

performance of proposed method with WS-TOPS in a certain K ′ condition.

5.3.1 Simulation Parameters

Here, we select WS-TOPS with K ′ = 2 for comparison, because the proposed method

uses two frequency bands. We consider uniform liner array with ten antennas. The

received signals are divided into Q blocks with the number of samples in one block

being equal to that of DFT points. In this chapter, we set Q to 100 and DFT

points to 256. We use the frequency bands which are equally spaced K frequency

bands between ωL and ωH from DFT output. We define the DFT output signal of

frequency band ωi as xq(ωi), {i ∈ 1 ∼ K} for the qth block. Then, the estimated
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Table 5.2: Simulation parameters.

Item Symbol Quantity Remarks
Number of antennas M 10 Uniform linear array

Antenna spacing d λ/2
Number of sources L 4

Direction of sources 1 θ1 −10 deg
Direction of sources 2 θ2 12 deg
Direction of sources 3 θ3 33 deg
Direction of sources 4 θ4 37 deg

Frequency ωL ωL π/3 The lowest frequency of signal
sources (ω domain)

Frequency ωH ωH 2π/3 The highest frequency of signal
sources (ω domain)

Bandwidth of each source Bw π/3 π/3 ∼ 2π/3 (ω domain)
Parameter αth αth 10 for WS-TOPS
Parameter β β 40 for WS-TOPS and the pro-

posed method
Number of frequency bands K 7

correlation matrix of the frequency band ωi is

R̂(ωi) = 1
Q

Q−1∑
q=0

xq(ωi)xH
q (ωi). (5.3)

Then, we calculate the signal subspace matrix F i and the noise subspace matrix

W i from EVD of the correlation matrix R̂(ωi), and estimate the DOA of incoming

wideband signal sources by using the proposed method and each conventional method

described in Section 2.4.

To demonstrate the DOA estimation accuracy and the resolution performance

of the proposed method, we assume that there are four wideband siganal sources.

The simulation parameters to be used in the simulations are listed in Table 5.1. λ

is the wavelength corresponding to the highest frequency component of the received

wideband signals. The parameters αth and β are determined based on pre-simulations.
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Figure 5-3: Examples of the spatial spectrum of the proposed method and the con-
ventional methods, where SNR of each incoming signal sources is 5 dB.

5.3.2 DOA Estimation Performance

Figure 5-3 shows the spatial spectrum of each method, where SNR of each incoming

signal source is 5 dB. The normalized inverse of the smallest singular value shows

that each spectrum has some sharp peaks at the true directions, which indicated as

dotted lines in the figure. It is found that the proposed method and WS-TOPS can

suppress all false peaks while TOPS and Squared TOPS have some false peaks. It

is also shown that the TOPS based method, the proposed method, WS-TOPS and

Squared TOPS, can detect closely spaced signal sources at 33 deg. and 37 deg., while

IMUSIC cannot. It means that the proposed method can keep resolution performance

with low computational complexity.

Figure 5-4 shows the resolution performances of each method. The probability

of resolution denotes the probability that all signal sources are resolved. As we can

see in the figure, the proposed method achieves the same resolution performance as

WS-TOPS, WS-TOPS (K ′ = 2), and Squared TOPS. The figure also shows that
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Figure 5-4: Resolution performance of the proposed method and the conventional
methods.

the resolution performance of the proposed method is better than those of the other

conventional methods: TOPS and IMUSIC.

Figures 5-5 and 5-6 show root mean square errors (RMSE) of the estimated DOA

of the signal sources 1 and 2, respectively. RMSEl which is the RMSE of the l th

signal source is calculated by the following equation.

RMSEl =

√√√√ 1
T

T∑
t=1

(θ̂l,t − θl)2, (5.4)

where T is the number of simulation runs and θl denotes the true direction of the l th

signal source, and θ̂l,t denotes the estimated one of the t th simulation run, which is

the direction of the nearest peak to the true direction. Even if we detect less signals

than the actual number of signal sources, we use the nearest direction as the estimated

one. This means that the calculations to obtain the RMSE of closely spaced signals

use the same direction when they cannot be resolved each other. As we can see in

Figs. 5-5 and 5-6, IMUSIC shows the best performance and WS-TOPS shows the
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second best in terms of DOA estimation accuracy. The performance of WS-TOPS

(K ′ = 2) is as good as that of WS-TOPS except for high SNR region. It indicates

that the DOA estimation performance of WS-TOPS mainly depends on the frequency

bands with high αi as we mentioned in Section 2.4. The DOA estimation accuracy

of the proposed method is almost same as that of WS-TOPS and WS-TOPS (K ′ =

2) except for high SNR region. In particular, the RMSEs of the proposed method at

low SNR region is lower than that of WS-TOPS owing to elements of Bk1(θ)BH
k2 .

Figures 5-7 and 5-8 show that the RMSEs of the estimated DOAs of signal sources

3 and 4, respectively. From these figures, it is found that the proposed method yields

the better performance of DOA estimation accuracy for closely spaced wideband

signal sources than those of Squared TOPS, TOPS, and IMUSIC. It is also found

that the DOA estimation accuracy of the proposed method deteriorates compared to

that of WS-TOPS, because the proposed method only uses two frequency bands to

reduce the computational complexity.

The simulation results prove that the proposed method can achieve good perfor-

mance of DOA estimation compared to those of other conventional methods with low

computational complexity.
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Figure 5-5: RMSEs of the estimated DOA of the signal source 1 (-10 deg.) calculated
by the proposed method and the conventional methods.
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Figure 5-6: RMSEs of the estimated DOA of the signal source 2 (12 deg.) calculated
by the proposed method and the conventional methods.
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Figure 5-7: RMSEs of the estimated DOA of the signal source 3 (33 deg.) calculated
by the proposed method and the conventional methods.
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Figure 5-8: RMSEs of the estimated DOA of the signal source 4 (37 deg.) calculated
by the proposed method and the conventional methods.
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5.4 Conclusion

In this chapter, we have proposed a new DOA estimation method for wideband sig-

nal sources. The proposed method employs the new orthogonality evaluation matrix

consisting of the signal subspaces and the noise subspaces of the two selected fre-

quency bands to reduce the computational complexity. The numerical results show

that our proposed method can provide the improved spatial spectrum without false

peaks and estimate DOA of each source accurately even if multiple signal are close

to each other. These results prove that the proposed method can provide high res-

olution performance and high accuracy of DOA estimation with low computational

complexity.
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Chapter 6

Conclusion

This dissertation has discussed a study on high-resolution DOA estimation method

for array antenna systems. With the emergence and improvement of RF sensor sys-

tems with array antennas e.g., communication system, radar systems and electronic

surveillance systems, these systems have provided remarkable improvement of perfor-

mance. Therefore, as we described in Introduction, the improvement of the RF sensor

systems have been attracting much attention for decades. Based on the background,

we focused on the improvement of the DOA estimation performance with array an-

tenna for multiple signal sources. In this dissertation, we proposed DOA estimation

methods which can achieve the better performance in terms of DOA estimation ac-

curacy than that of the conventional DOA estimation methods. The contribution of

this dissertation is summarized as follows:

In Chapter 3, we proposed a new DOA estimation method by using the temporal

spatial virtual array based on Doppler shift with adaptive PRI control. The numerical

results show that our proposed method can provide the improved spatial spectrum for

each target and estimate the DOA of each target accurately even if multiple moving

targets exist in the search area. The simulation results also prove that the proposed

method can achieve high accuracy of DOA estimation without dependence on the

parameters of the targets even if the initial estimation errors exist. Although the

proposed method can estimate the DOA of moving targets accurately, it requires

high computational complexity cased by the iteration of spatial spectrum calculation
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for each target. As a future work, we will consider the low complexity approach to

estimate the DOA of moving targets with the temporal spatial virtual array.

In Chapter 4, we proposed a new DOA estimation method for wideband signals

called WS-TOPS based on Squared TOPS. WS-TOPS uses the selective weighted

averaging method and the modified squared matrix method to improve DOA esti-

mation performance. The simulation results show that WS-TOPS can suppress all

false peaks in the spatial spectrum, while TOPS and Squared TOPS cannot. It is

also shown that the DOA estimation accuracy and the resolution performance of WS-

TOPS are better than those of the conventional methods. WS-TOPS can achieve the

performance without requiring initial estimates. These results prove that WS-TOPS

is effective in estimating the DOA of wideband signal sources. Since the proposed

method can detect any kinds of wideband signal sources, it can be applied to many

types of application. For example, we can avoid the wideband interference signal with

beam forming technique based on the accurate DOA of the signal source detected by

the proposed method.

In chapter 5, we proposed a low computational complexity DOA estimation

method for wideband signal sources. The method employs the new orthogonality

evaluation matrix consisting of the signal subspaces and the noise subspaces of the

two selected frequency bands to reduce the computational complexity. The numerical

results prove that the proposed method can provide high resolution performance and

high accuracy of DOA estimation with low computational complexity.
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