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Abstract

Quantitative prediction of chemical reactions is still difficult task in systems with
considerable quantum effect. Specifically, if the non-adiabatic interaction is significant, the
quantum effect may have a large impact on the results. The author focused on ICI molecule, in
which numerous non-adiabatic transitions among the low-lying excited states exist, and analyzed
theoretically the quantum effects in its photodissociation process in detail.

In Chapter 1, the fundamentals of non-adiabatic interactions and their effects on
photodissociation process were described. The current status and the issues of the non-adiabatic
transition theory were summarized, and the purpose of this thesis was clarified.

In Chapter 2, the low-lying excited states of ICl, the linear response theory applied to the
calculations of transition dipole moments, the quantum information included in the
photofragment angular momentum polarization, and the semi-classical treatment of non-
adiabatic transitions were reviewed.

In Chapter 3, for the purpose of the accuracy assessment for transition dipole moments,
those of Cl,, whose spin-orbit effect is weaker than those of ICl, were examined in the length-
form and in the linear response treatment, including the electronic correlations at various
different levels. A significant dependence of the transition dipole moments on the one-electron
orbitals used in the calculation was clarified. The validity of the length-form was also discussed.

In Chapter 4, the photodissociation process of ICl in the first absorption band was
discussed. The photofragment angular momentum polarization, the anisotropy parameters, and
the product branching ratios were calculated with the wave packet propagation method, and were
examined in comparison with the experiments. The strong perpendicular component of the
product angular distribution in the shorter wavelength region was attributed to the domlnatlng
photoexcitation to the 1(II) state. The non-adiabatic transition between the X(0") and 0"(II) states
was found to be of Landau-Zener type without explicit avoided crossing, implying the
information of the potential energies alone is insufficient for calculating the non-adiabatic
transition probabilities.

In Chapter 5, the photodissociation process of ICl in the second absorption band was
discussed. The anisotropy parameters and the product branching ratios were calculated with three
methods, namely, the wave packet propagation method, the semi-classical method, and the
classical path method, and were examined in comparison with recent experiments. The parallel

component of the I+Cl channel products was significantly reduced by the destructive interference
effect between the 0' (111, IV) states. The mechanlsm for the 0"(IV) state, which is dominated by
the doubly excited conﬁguratlon from the X(0") state, to have a comparable transition dipole
moment magnitude with the 0" (III) state was discussed. Based upon the results, the author
clarified that the interference effect must always be considered whenever the relevant states have
comparable excitation energies and photoabsorption intensities, and exhibit non-adiabatic
transition. He also indicated the importance of conserving the phase information of the electronic
state in the assessment of interference effect. The characteristics of the interference effect were
examined from the potential energy curves of the 0"(II1,IV) states. The issues of the various
calculation methods of dynamics were discussed.

In Chapter 6, the author summarized the results and discussed the cases in which the
quantum interference can be effective.
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Chapter 1
General Introduction

In this chapter, the author explains the scope and the subject of this thesis. Firstly,
the importance of the non-adiabatic transition theory is explained in 1.1. Then the
fundamentals of non-adiabatic interactions and their effects on photodissociation process

are described in 1.2. Lastly, the concrete subject of this thesis is defined in 1.3.

1.1 Quantum effects in chemical reaction

The Born-Oppenheimer approximation [1] relies on the fact that the rest mass even
of the lightest proton m;, is significantly heavier than that of electron m, /m, ~1836, and
the motion of electrons could follow the slower movement of nuclei. This approximation
has been proven to be satisfied in predicting a chemical reaction within the region, where
the adiabatic electronic state is not degenerate with other states. However, in chemical
reactions of large systems or in highly excited electronic states, this approximation is
likely to break down and the non-adiabatic interaction must be considered. The author

would like to quote Felix T. Smith [2],
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“I believe that calculations based on a single-potential energy surface will be of
very limited usefulness in the real world of chemically reacting systems, and that
electronic transitions between a multiplicity of states are likely to play a very large role
in such events. Even where adiabatic calculations with a single potential surface are
valid, it is desirable to demonstrate their validity, and this can only be done in the
framework of a theory which takes proper account of all the couplings between states
that may exist, so that they can be evaluated and proved to be small. If these coupling are
strong, quantum effects associated with such nonadiabatic behavior may prove to be one
of the most important features of many chemical reaction processes. Probably such
quantum effects will turn out to be more important than the quantum effects associated
with barrier leakage and vibrational zero point energy that are often discussed in
connection with the movement of systems over adiabatic surfaces.”

Although properties of single adiabatic electronic state can often be chemically
interpreted with the help of theoretical quantum chemistry, quantum effect in the
chemical process may make it difficult to describe the state in a single electronic state.
The rapid development and application to large systems of computational chemistry has
led to an urgent need for the establishment of the methodology for the treatment of
quantum effect.

In this dissertation, the author focused on the photodissociation process of ICI

molecule, in which numerous non-adiabatic transitions among the low-lying excited
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states exist, and analyzed theoretically the quantum effects in its photodissociation

Process.
1.2 Photodissociation process of diatomic molecules

1.2.1 External field as an perturbation

"ol

Figure 1-1: Figure describing the laboratory frame (black), the center-of-mass frame (green), and the

molecular frame (red).

In order to explicitly describe how the photodissociation process is treated, this
section explains the theoretical framework, which has been applied to the calculation in
this thesis. We consider two eigenstates W; and W of the time-independent Hamiltonian
H? of the center-of-mass frame molecular system, with the center-of-mass position
vector defined with respect to the origin of the laboratory frame as R. Neglecting the

effect of the center-of-mass momentum, P, in the center-of-mass frame system, the two
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wave functions in the laboratory frame can be written as, A~ 2e“ﬁ’ &/ h‘I’, and
po3 2R "W, where h denotes Planck’s constant with the normalization factor of the
plane waves describing the translational motion being 1% [3], and ¥, and W denote the
wave functions of the internal degrees of freedom in the center-of-mass frame at ¢ = 0,
Wi(t=0), W(t = 0), respectively. With the laboratory frame time-dependent perturbation
H O (#) treated as a first-order perturbation to the initial wave function in the state 7 with
the translational momentum I:’, , BRI ", , the amplitude ap/(7) of the wave function
in the final state 2R "W (1) is given as,
A%t

S = g iy
aFl(t,})l,PF)=_h74£f<ePFR/TIPF(t)

eif’]i/hlpl (tv)>dﬁdf. In the classical electrodynamics,
if the plane polarized light with wavelength A, propagating along the laboratory X axis in
the vacuum with the field vector in the +Z direction, E(r) = &,E, sin(2nX/A - ax)), is
treated as the time-dependent perturbation to the laboratory frame molecular system, the
transition amplitude with the application of the dipole approximation is given as follows,

= = 2mE
aFl(t>PI’PF)=_ h40£<‘~IJF(t')

i, [, () fe*”l’fﬁ " SinQ2nX /A - ar')e ™ " dRdr

B (w0, [, e O~ - 2 - o(B — v [ (1D

“ond

i

Here, @, denotes the Z-component of the dipole operator. The first term in the
square brackets is for the case the associated translational momentum is increased by
hé, /A, then 13F = ]31 + hé, /A, hence corresponds to the light absorption of the molecule.

On the contrary, the second term is for the case the momentum is decreased by ke, /A,
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then IgF = ]:31 —hé, /A, hence corresponds to the light emission of the molecule.
Therefore, the transition amplitude for the light absorption and the total photoabsorption

cross-section is given as,

£ ) :
ay(t) = -2—;_1<11!F \a,|¥,) j;exp[% (E. -E, - hw)tv}dt., (12

o™ (@) = %Re[(‘l’, |, ) ﬁoexp(%(ha)+E, —EF)t)dt-<1IJF |,:¢Z|tp,>}. 1

0

Here, & and ¢ denote the vacuum permittivity and the speed of light, respectively.
Strictly, Er and E; are the energies of the final and initial states, respectively, hence their
energy difference includes the one due to the change of the translational kinetic energy.
The contribution of the translational momentum causes the broadening of the cross-
section, namely the Doppler broadening [4]. Here, the translational momentum is
considered to be narrowly-distributed and the Doppler effect on the parent molecule is
neglected. Therefore, Er and E; are taken as the eigenvalues of the Wy and ¥,
respectively. Applying the Born-Oppenheimer approximation, which hitherto was not
considered, the total wave function Wr is expanded in terms of nuclear wave function
Xm (R) for relative motions, which includes the phases of the matter waves, with

WF>=E}1

denote the set of position vectors of electrons and the relative position vectors of the

adiabatic electronic states wn(F;k) as,

ijn(E)wn(F;ﬁ)>. Here, 7 and R

nuclei, respectively. If the initial state is in the ground adiabatic state X,

lP1> =|X11/’x>’

and the electronic photoexcitation is considered, < Xr s

ﬂz|lp1> = <XF,Z U7 5x X1> )
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where u, ;y denotes the Z-component of the electronic transition dipole moment from
the ground adiabatic state X to the excited adiabatic state 7 , which is the Franck-Condon
electronic state, namely, the electronic state in the molecular region, the absorption cross-

section for the photodissociation process is given as [5],

o™ (w) = _2 [ Xi |sz;1 exp( (E, +hw-E )t)‘XFn><XFn Uz 5ix X1>dt

hso ERe

(1-4

0 exp 1Et / h)<§~

(1) dt]

E denotes the sum of the initial energy and the photoexcitation energy,
E=E, +hw, and &; denotes the initial Franck-Condon wave packet of the excited

adiabatic state 7n

;(1> , which propagates in time ¢ as

& > = |1//ﬁ >ﬂz,ﬁx

)= e 1 "|&). It should be noted that if the Hamiltonian H' includes the non-

adiabatic interaction, the Franck-Condon wave packet can be expressed as superposition

of multiple adiabatic electronic states,

> = E aﬁn(t}z//n>, and 7 only denotes the
initial electronic state.

If the parent molecule is considered to be randomly oriented with its total angular
momentum quantum number being J;, the cross-section for the parent molecule is
averaged over the states with those component quantum number M;. In this way, the

photoproduct differential cross-section can be expressed in terms of the scattering T

>, with & being the recoil vector of the

matrix elements <‘I’;(k) 2

1,J;.M;

photofragments, and the anisotropy parameter f, as follows [5-7],



2

Y

1,J;,M, >

—_ na) -
oF, = — 3w
( ) g,c(2J, +1) ;{ < G

3 (2,

n

2

(1-5)

X1, ,M,>

U7 mx

Tw
g,c(2J, +1) A;m
« 1+ SP,(cosB).

Here, P>(cos6) is the Legendre polynomial for cos6, P(cos#) = (3cos” 6 -1)/2,
where 6 is the angle between the recoil vector k and the field vector &,. In a classical
treatment, the angle between the initial molecular axis and the recoiling vector, y, can be
evaluated by the half-collision trajectory calculation on a single potential, V(R), from the

classical turning point, Rr, to the dissociation limit, as follows [4,8],

-1/2

dR

0] e
- R (1-6)

4 2[u J;?T

nJt( 1 1
v(R.)-V(R Ll — - —
()0

u denotes the reduced mass of the diatomic molecule. If the rotational motion of
the parent diatomic molecule is not highly excited, the linear momentum in the rotating
direction 7J,/R,, where R. is the equilibrium internuclear distance, is negligible

compared to the recoiling momentum h‘l; , the so-called axial recoil

, hJ, /R, <<h‘/€

approximation, which considers the molecular axis of the parent molecule, R, coincides

with the recoil vector £ , y=0, is valid [4].



Figure 1-2: Figure indicating the transition dipole moment in molecular frame (red box) and laboratory

frame.

Transforming the electronic dipole operator from the laboratory frame to the molecular
frame, &, = @1, cosB, + {1, sin B, where 6 being the angle between the molecular axis
R and the field vector ¢, as shown in Figure 1-2, with the application of the axial recoil
approximation, it is apparent from equation (1-5) that, if only the parallel transition is
permitted, w,;y = 0,1, ; =0, the corresponding differential cross section of the product
is given as, 0,(6) |/f¢z|2 =|[z//|2 cos® @, and the anisotropy parameter 8 equals 2, as
shown in Figure 1-3 (a). On the other hand, if only the perpendicular transition is

permitted, 5y #0,4,;5x =0 , the differential cross section is given as,

2

~

u,  sin’ @, and the anisotropy parameter f equals —1, as shown in

0,(0) « i,

Figure 1-3 (b). The respective selection rules for the parallel and perpendicular transition
are AQ = 0 and AQ = =1, where @ is the molecular axis component of the total

electronic angular momentum.



‘ AQ==1
| o(0)~sin~6

D
Y
L

AQ=0
o(@)xcos 6

-

T/

Ly

(a) Parallel transition (b) Perpendicular transition

Figure 1-3: Schematic figure of photoproduct distribution for (a) a parallel transition and (b) a

perpendicular transition of diatomic molecule.

The partial differential cross-sections of the channel n in the second line of

equation (1-5) are given in the summation as,

- TTW ~
o, (k,o)=————— 0
n,n( ) 800(2,]1 + 1) A/;ﬁ' <XF,n,n

Although, in the absence of the non-adiabatic interaction, only the T matrix elements

X1J,M, ><X1,J, M,

Mz 5x

AuZ,Xﬁ"XI;E;),n > (1_7)

Uy x| X1, J,,M,>’ whose electronic states in the Franck-Condon region and the

-(k)
<XF,ﬁ,n
dissociation limit are the same, 7,72'=n, would take non-zero value, the T matrix

elements with 72,71' = n must be taken into account if any non-adiabatic transitions may

take place during the dissociating process. Hence, the T matrix element of the state n,

A

<‘I’;ff) u, |, J,’M]> , 1s the superposition of the ones originating from all the Franck-
Condon states 7, and can be written as follows,
-(k) | - (k)
<IIIF,n Uy IPI,JI,M1> = E<XF,ﬁ,n Uz x| X101, > (1-8)

n



In the dissociation limit, suppose €24, 25, €2 are the good quantum numbers for the
electronic states of the two atoms, 4 and B, and the molecule, and the electronic state »
correlates to the atomic angular momentum J4 and Jp, the molecular electronic state
‘1//’1,Q> can then be expanded in terms of the electronic states of the two atoms as,
‘zpn’g> = EQA cn,Q’QA|JA,QA>A|JB,Q - QA>B , where ¢, ,, is the expansion coefficients.
On the other hand, the tensor product of the electronic states of the two atoms in the

dissociation limit is given as,

&
|JA’ QA>A| JB’ QB>B = E" Cn.0,+0,.0,

Y0o,40, > (1-9)
The summation over the molecular state n is performed selectively from the group of
states, correlating to the two atomic states in the lhs of equation (1-9), which are (2J4+1)
X(2Jp+1) in total. Similarly, the T matrix element for the corresponding atomic states is

_ . -(k)
W u, > = En Cr0,+9,.9, <1PF,11

element is considered as the coefficient of the two atoms dissociating with the

A

Uy

A

given as, <‘P’”€) Uy

FiJ Q2,305,925

‘PI,JI,MI>. This T matrix

momentum 7k . Let the T matrix element be expressed in terms of its amplitude Yo, 0,
and phase ¢, , . The wave function of the two atoms in the dissociation limit is given as,
eii'ﬁ‘wh >A‘1)UJB >B = EQA,QB To,.0, exp[i(l_é R+ ¢QA,QB )]|JA’QA>A|JB’QB>B' (1-10)
This expression elucidates the interpretation of the T matrix element as the amplitude
Iy, 0, and phase ¢, , of the matter wave for each of the corresponding atomic states
|JA,QA>A|JB,QB>B. It should be noted that the sum of €, and 5 is £, hence 2, + €2

satisfies the selection rule of the light absorption transition, and especially when the



initial molecular electronic state is 2=0", To, 0, takes non-zero value only for £ + €5=0,

*1 (Figure 1-4).

Y« .
Q) [ W L
‘,,‘ - - \ \J
0Q H H gz><0 H HQ Q=1
-VV'Q I\,I :"“ ‘}’Q =~

Q:
I ) =—O—> GD
Q=0 Q.+ Q2 Q H — Q Q=1
efc. AQ. =11 ei:c.
AQ=0

Figure 1-4: Schematic figure to explain the selection rule of the angular momenta.

Here, we define the molecular frame, whose z-axis is the recoil vector k and V-
axis is perpendicular to plane containing the field vector ¢, (Z-axis in the laboratory
frame) and the recoil vector k . The expectation value of the y-component of the atom
A’s angular momentum J ,.4» Which can be expressed in terms of the raising and lowering

A

operators (.} od J _4)/ 21, for the wave function in equation (1-10) is given as,
J+

e )

= E\/JA(JA +1)-9Q,(2, +1)FQA+1,QBFQA,QB Sin[¢QA,QB _¢QA+1,QB]

Q4,92

= ; \/JA (J,+D-9Q,(92,+ 1)”QA+1,-QA To,.-0, Sin[¢g_4,-gA = Po,41.-0, ]

- \/JA (S, +D)-Q,(Q, -Drg i _g,7a, -0, 8Py, o, —Po,i-0,] (1-11)

N sin #cosd /(l +8)2-p)
3 2

x;\/JA(JA +1)-Q,(2, +1)SQA+1,—.QASQA,—QA Sin[¢gA,-gA _¢QA+1,—QA]

- \/JA J,+D-9Q,(2,- I)SQA—I,—QA Sa,.-0, Sin[¢94,-gA ~Po,1-0, ]
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The summation over € is eliminated in the third line of equation (1-11) due to the
selection rule of light absorption transition, €4 + €23=0,=£ 1. In the fourth line, the angle
dependency of the amplitude 7, o , which is the amplitude of the product recoiling with
momentum 7k , has been separated. The amplitudes of the parallel components "o, -a,
are the ones from the parallel transition w«, = 0, hence they are proportional to cos@ and
the angular dependence can be separated as, r, , *s, , cos€. The angular
dependence of the perpendicular components 7, ., o ~are separated as,
Tos-0, €S04 0,806 . The newly introduced amplitudes s, , and s, ., o
represent the square root of the probability fraction among the parallel and the
perpendicular components, respectively, so that the sums of the probability densities of
the parallel and perpendicular components equal to unity,

E‘QA 5 N E‘QA ‘SQAH’_QA

It 1is apparent the expectation value <.}y, A> maximizes its amplitude

2 2

=1.

‘QA 7_‘QA

(1+ B)(2- ) when p=0, namely, the intensity of the parallel and perpendicular
transition is equal. This is due to the selection rule of the angular momentum operator
jy’ , for the molecular state is A€ == 1, and the electronic state must be some mixed
state consists of the parallel 2 =0" and the perpendicular 2 =1 components. Moreover,
the presence of the phase difference of the parallel and the perpendicular components,
=@y, -0, (nOte that =€0,+0p), indicates that this observable is

¢-Q.4 -2 ¢QA +,-0Q,

actually reflecting the quantum interference between the matter waves of the parallel and



the perpendicular components, which is the reminiscent of the Young’s double slit
experiment (Figure 1-5). The expectation value of the angular momentum <ij A> 1s
actually an expression of the first-rank angular momentum polarization parameter, which

is further discussed in 2.3.

]

Figure 1-5: Schematic figure of the interference effect in the Young’s double slit experiment.

1.2.2 Non-adiabatic transition in dissociation process

The matrix representation of the molecular frame Hamiltonian of a diatomic

molecule in the adiabatic electronic basis ‘wn,g (F;R)> is given as [9-11],



1 1 d .~ . 0 .3
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Here, €2 denotes the absolute value of the axis component of electronic total

2
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angular momentum, ¥, (R) is the adiabatic potential energy of the state

Vo) (R, 6. )

are the ordinary spherical coordinates, le,y,z are respectively the molecular frame x,y,z-
components of the total electronic orbital angular momentum. The radial non-adiabatic
interaction 1is characterized by the first-order non-adiabatic coupling terms,

az/jn,.Q a 1/}n,Q
6)R > <1)0n',Q

R2
-order non-adiabatic coupling terms, which could be expressed in terms of the first-order

azw;1,9> — agn',Q;n,Q

2

gn',.Q;n,.Q = <wn',Q

> in the last line of equation (1-12) is the second

E i Snoko8kona > where

n'\Q

non-adiabatic coupling terms as, -
pns <¢ OR’ OR

the effect of the second term is normally negligible [11]. In order to clarify the feature of
the radial non-adiabatic interaction, we consider a system consisting of two adiabatic
states. In this system, the adiabatic states, ¢ and ¢ _, can be converted to diabatic states
@, and @, with the angle of the transformation matrix being %, so as to diagonalize the

radial momentum - ii, as [2],
R
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AN i~ )0 — = (y_| 2= 1-14
aR> "OR 1<1//_‘ 8R> ok \V-| %R (1-19)

- i<(p2

The matrix representation of the electronic Hamiltonian in the adiabatic basis is

diagonal, hence the elements of the electronic Hamiltonian matrix in the diabatic basis

H\\, Hy», Hy; and conversion angle ¢ satisfy the following equation,

<1,/J_ |1:1|1,0+> = H, cos20+ %sm 29=0—=19= %arctan[i]

H, -H, (1-15)

Substituting (1-15) to (1-14) leads to the relationship of the non-adiabatic

coupling term and the diabatic basis Hamiltonian elements,

2H12i(H11 _1_122)4'26]—112 (H,-H))
" aw+>_ oR oR (1-16)
| OR 41_[122"'(1_122_1_[11)2

There are two well-known models for non-adiabatic transition: (1) the Landau-
Zener model, which considers the constant diabatic coupling, Hi,=4, and the linear
diabatic potentials, H,, =-F,R and H,, =-F,R, and (2) the Rosen-Zener-Demkov model,
which considers the constant diabatic potential difference H,,—H, =A and the
exponential diabatic coupling, H,, = Aexp(—aR). In the two models, one of the two
terms of the numerator in equation (1-16) is eliminated. For the Landau-Zener model, the

non-adiabatic coupling term has the peak value at the crossing points of diabatic



potentials, H,, = H,,. For the Rosen-Zener-Demkov model, the peak position is at the

point, where A=2H,,.

\\ |

\-\.\f\_; \3\\@ - FR — ;-;lﬁj_;;_;_:;T‘>>.~_~‘\

AB=2H.=2AN ™,

AE= \I:.A‘"-\l\;T

A .
HI 1= _FxR\ AE(R_}Q’) _A

Figure 1-6: Diabatic potential curves (dashed lines) and adiabatic potential curves (solid lines) of the
Landau-Zener model (left) and the Rosen-Zener-Demkov model (right). AE indicates the adiabatic potential

difference at the point the non-adiabatic coupling term has the peak value.

The outgoing semi-classical reduced scattering matrix of the Landau-Zener model,

is denoted as,

e ™ 11— exp(-ip)
mexp(ﬂp) e (1-17)

0=

2
HIZ

where 9§ is given from the Landau-Zener Formula [12-14], § = ——2
hv(F, - F3)

, with v and
@ being the velocity at the crossing point and the Stokes phase [7,15], respectively. The
Stokes phase g takes the value of ¢ =% for 6=0and ¢ = % for 6 >>1. The transition
probability from the diabatic state 1 to the diabatic state 2 can be interpreted from the

-27d

above matrix (1-17) as 1-e~™. Although this interpretation holds if the initial state

consists of a single pure diabatic state, either state 1 or 2 (Figure 1-7 (a) or (b)), the
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quantum interference effect must be taken into account if the initial state is a

superposition of multiple diabatic states (Figure 1-7 (c¢) and (d)).

VW :’;V\sz MV, sy
24><’\/WV\/1 P AVAVAYAVAYZANSVAVAVAVAYS
e A
T G Y,

P (b) (d)

Figure 1-7: Quantum interference scheme having the initial population in (a) diabatic state 1, (b) diabatic
state 2, (c) both diabatic states 1, 2 with the same phase, and (d) both diabatic states 1, 2 with phase

difference .

In a real system, the non-adiabatic couplings are seen among multiple states, thus
the classification of the non-adiabatic transitions is not straightforward. Moreover, the
treatment of non-adiabatic transition as a transition from a single state is not always valid,
in which case the proper treatment of the quantum effect and full information during the

dissociation process are required.

1.3 Concrete subject of this thesis

ICI molecule is a heteronuclear diatomic halogen molecule without g-u symmetry.
The low symmetry of the molecule introduces more avoided crossings among the

electronic states with same symmetry A£2=0, compared to molecules with g-u symmetry,
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where avoided crossing exhibits between the states with AQ2=0 and u<su/g<>g.
Moreover, the strong spin-orbit coupling of ICl molecule makes photoabsorption to more
excited states allowed. Hence, IC1 molecule has been a subject of great interest from both
experimental and theoretical points of view [16]. Therefore, this molecule is an ideal
target molecule for investigating the non-adiabatic transitions in the photodissociation
process.

Recent advances in the experimental techniques [17-30] has made it possible to
observe the angular momentum polarization of the photofragments, one of the properties
required for the ‘complete’ or ‘perfect’ experiment [31,32], which inherits the
information of the phases of the photofragments’ matter wave [33—39], which is much
shorter than the ones of electrons due to the heavy rest mass of nuclei. The ab initio
calculation with sufficient accuracy is required to compare the theory and experiments.
Therefore, the comparison of the theoretical angular momentum polarization, which is
described in 2.3, of the photofragments with the experimental ones demonstrates the
validity of applying ab initio calculation to evaluation of matter wave phases of the
photofragments.

In Chapter 2, the electronic properties of ICl, the linear response theory, the
photofragment angular momentum polarization, and the semi-classical treatment of non-
adiabatic transitions are reviewed. In Chapter 3, for the purpose of the accuracy

assessment for transition dipole moments, those of Cl,, whose spin-orbit effect is weaker
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than those of ICl, were examined in the length-form and in the linear response treatment,
including the electronic correlations at various different levels. In Chapter 4, the
photodissociation process of ICI in the first absorption band was discussed. The
photofragment angular momentum polarization, the anisotropy parameters, and the
product branching ratios were calculated with the wave packet propagation method, and
were examined in comparison with the experiments. In Chapter 5, the photodissociation
process of ICl in the second absorption band was discussed. The anisotropy parameters
and the product branching ratios were calculated with three methods, namely, the wave
packet propagation method, the semi-classical method, and the classical path method, and
were examined in comparison with recent experiments. The author summarizes the

results and concludes this thesis in Chapter 6.
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Chapter 2
Background of the Study

In this chapter, the author reports the recent studies and theories used in this thesis.
The known theoretical properties of the ICI molecule are reviewed in 2.1. A brief
explanation of linear response theory and its application is given in 2.2. The formulation
of the angular momentum polarization of photofragments is outlined in 2.3. A

reinterpretation of the semiclassical reduced scattering matrix is given in 2.4.

2.1 Excited states of ICl molecule

The six valence orbitals of the ICl are denoted o, m, n*, 0. Due to the larger
electronegativity of the Cl atom, the o and & orbitals correlate to the 3p atomic orbitals of
the Cl atom in the dissociation limit, and similarly o* and st* orbitals correlate to the 5p
atomic orbitals of the I atom (Figure 2-1). While the dominant electronic configuration of
the ground electronic state X(0") is (2440), where (pgrs) denotes the electron occupation
number of (o’ n? n*" o*"), the excited states, which are involved in the first absorption
band in the molecular region, have the dominant configuration of one-electron excitation

n*—0*, (2431). The excited states in the second absorption band mostly have the
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dominant configuration of one-electron excitation m— o0*, (2341). The correlation

diagram is shown in Figure 2-2.

oo g »5po(l) OO

8—8 4 p(I)
8—8 T »3pmt(Cl)

v
()]

a0 G »3pc(Cl) OO
I—Cl I—ClI
molecular region dissociation limit

Figure 2-1: Schematic figure of valence orbitals of ICl molecule.

. I*(ZPI:‘Z)'*_CI(ZPS:’Z)
0*(IV)

[ 0°(IV) 33, (2422) 7

(V) T, (2422) —1(V)
(V) T1, (0341) —1(IV) PI(Ps,)+CI*(P,,)
0°(IID) °IL,. (2341) —0*(III
1) oL (2341

(IIT) ;o (23 )\I(IH)\
1) I, (2431) —>1(I)

0°(I) “IL,. (2431) —>0°(I) »(3p,,)+CICP,,)
1(1) 31, (2431) —>1(D)

band

~nd
A

X(0%) X%, (2440) —>X(07)7

(pqrs)=(cPram*c*s)

Figure 2-2: Correlation diagram of the ground and excited states of IC] molecule.
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Absorption of ICI molecule peaks at 470 nm and 270 nm, in the regions of the first
and the second absorption bands, respectively [40]. It is generally believed that the
excited states 0'(IT) and 1(LII) are involved in the first absorption band and the states of
0'(IILIV) and 1(IIL,IV,V) are within the second absorption band in the Franck-Condon
region. The dissociation channels, whose calculated threshold energies AE are below the

peak energy of the second absorption band, are as follows:

ICl+ hv ——I1+Cl AE=2.17¢V,

—I+Cl" AE =2.29¢V,

—I"+Cl AE =3.10¢V,

—I"+Cl" AE=3.22¢V,

Hereafter, X(*P3) and X*(*Py,,) are simply denoted as X and X* for X=I, Cl. Let
us consider my, which is the axis component of electronic total angular momentum for I
and Cl. The electronic structure of a non-rotating linear molecule is characterized by €2
value, which is the absolute value of their sum, since €2 value is a conserved property
during the axial recoil dissociation. In the dissociation limit, both I and Cl have m, ==
3/2 and *1/2, there are two 2=0" and three =1 states that correlate to I+Cl, one 2=0"
and two Q=1 states to I+Cl*, one 2=0" and two ©=1 states to I*+Cl, and one 2=0" and

one =1 states to I*+C1*. Following the labeling of Tonokura et al. [41], the 2=0" and
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Q=1 states are denoted as 0" (ILIILIV,...) and 1(LILIIL...), respectively, where the state
number is included in the parentheses. The ground state is denoted as X(0") exceptionally.

The six valence orbitals o, 7, w*, 0* consist essentially of 5p atomic orbitals of I
atom and 3p atomic orbitals of Cl atom. In the Franck-Condon region, the 0'(I) and
1(LII) states whose dominant configurations are '“TI(2431), both of which are obtained
by a single excitation configuration from the ground configuration 'S7(2440), are
involved in the first absorption band. The states, which are involved in the second
absorption band, mainly consist of '“TI(2342) configurations and (2422, 2332)
configurations [42]. The large potential energy differences among the 0°(II) and 1(LII)
states and the wide width of the first absorption band are due to the large exchange
integral between the nn* and o* orbitals. For the states involved in the second absorption
band, the exchange integral between the m and o* orbitals is relatively small, hence the
potential energy differences among the states are rather small compared to the ones
among the states in the first absorption band (Figure 2-3).

In a previous theoretical calculation [42], the squared transition dipole moments
from the ground state X(0") to the 0°(IT) (with the dominant configuration *T1(2431)) and
1(I1) (with the dominant configuration 'TI(2431)) states were calculated as 0.0289 bohr?
and 0.0209 bohr?, respectively. The comparable magnitudes of these transition dipole
moments were explained with an intensity borrowing mechanism, namely the mixing of

the ground state X(0") with the spin-free *T1(2431) state and the 0(II) state with the spin-
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free 'S7(2440). The 07(IILIV) states and the 0"(ILIII) states exhibit the avoided crossings

Av-1 and Av-2 at the internuclear distances 5.38 bohr and 6.83 bohr, respectively.
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Figure 2-3: Potential energy curves of the X(0"), 0°(II-V), and 1(I-VI) states.

2.2 Linear response theory

Here, we consider a field oscillating with the field strength € and angular frequency
o in the direction of Z-axis to be applied to the molecule system. In analogy with

equation (1-1), the perturbation is given as, V(t)= feexp(—imt), where (1, denotes the
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Z-component of the dipole moment operator. The system is represented by the time-
independent Hamiltonian F[O with its eigenstates and eigenenergies denoted as ‘¢ﬁ°> and
E?, and ‘1//°> and E° for the ground state explicitly. The perturbation Hamiltonian
H =1 (t)V(t) includes the adiabatic switching function f; which is initially (¢ — —)
equal to zero f(¢t) — 0, and converges to unity f(¢) — 1 after the switching (t — +),
to insure the perturbed wave function changes continuously. Let |1p° (t)> = e‘iEO”‘|¢°>
denote the wave function of the time-dependent Schrodinger equation of the unperturbed
system, ih%y}o(t» - ﬁ°‘¢°(¢)>. The perturbed system, ih%w(z» - 131‘1/;(;)), is considered

to be initially in the unperturbed state,

Y(t) = ‘1//0(;)> (t = —). In the interaction picture
ih%\%(ﬂ) = Ay, (0) where the corresponding Hamiltonian and wave function are given

as, H' =" [ (1), w,(0) =™ |y(z)), the wave function can be expressed in

terms of first-order perturbation expansion as follows,

1 0)=lp" )~ I3 )2 o
= a,0)||v°) —%f}m v )y |H, (t)w°>dt']
-iH%/h 0 i 0 07 0 (2'1)
() =e"""a, (r)[w V= [ als s [H Ol ﬁt’]

)]

— e—iEO[/haO (t)ﬂw0> + Eﬁﬁoe>i(5"g’£0)t/hdﬁ (t)
=" ay (1)|g(0))-

ao(?) 1s the coefficient of the “intermediately normalized” wave function \¢(t)> [43],
hence can also be interpreted as a coefficient of the unperturbed state ‘1//°> The square of

the coefficient |q, (1)’ =‘<¢°‘¢(t)>‘2 gives the probability of finding the system in the
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unperturbed state ‘¢°> The coefficient 4_(r) is for each excited state ‘¢ﬁ°> The above
wave functions |y(r)) are given by perturbation expansion. Therefore, the wave function
|¢(1)) needs to be normalized with the coefficient ao(?).

The time-dependent Schrodinger equation for the coefficient is given as,

da, (1) _

” _%<1/;° ‘ F]l‘¢(¢)>a0 (¢)- By integrating both sides, the phase part of the coefficient

ao(?) is expressed in terms of the quasi-energy Q(¢) = <1/;° ‘ H 1\¢(z)> as follows,

i ( ' 1
-%_wa(z )de } 22)

a,(t)=exp

Since ao(?) is the coefficient of time-dependent wave function |y (7)), it is apparent

the wave function |())=exp

—%(E°t+fQ(t')dt')}|¢(t)> propagates in time with
E°t+]Q(t‘)dt' . Therefore, the quasi-energy Q(f¢) represents the energy shift from the
unperturbed state ‘1//°> [43—45]. If this wave function is the exact solution of the time-
dependent Schrodinger equation, ih%w(z» = 131‘1/;(;)), the Hellmann-Feynman theorem

for this wave function leads to the following relation [46],

aH(t) 90 |
de

WO = =Jp©) = Ol [p0)e" =

2o 220), s
Since the perturbation is periodic, V(t)=\7(t+2n/a)), the time-dependent expansion
coefficients d(¢), the quasi-energy Q(f) and the second term in equation (2-3) 5< ‘Z_¢>
also exhibit the periodicity of 27/ w. Therefore, the expansion coefficients and the quasi-
energy can be expressed in time-averaged manner as, dﬁ(w)=% f'/‘” d_(ndt >
{Q}T(w)=% ﬁ/:“wQ(t)dt. The second term in equation (2-3) is a derivative of periodic

function, hence the term becomes zero [45], { < # 8¢>} (w) = 0- The linear polarizability
ot )
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<<Z,Z>> is given as the field strength derivative of the dipole moment as,

< <Z,Z>> _ 8{<1/)(t)|ﬂz|1/)(t)>}r _ {32Q(1)} . The linear polarizability <<Z, Z>> is the
@ e dede |, @
expansion component of the expectation value of the Z-component of the dipole moment
operator Q, in the first-order perturbation as,
()i, |9(0)) = < w°|ﬁz|¢0> +<<Z, Z>>(u exp(ior). Hitherto, the wave function |1p(t)> and its

time-average have been considered to be the exact solution to the time-dependent

Schrodinger equation.

@ o), d, ()
<<Z’Z>>"’_Zasadﬁ(w) de (2-4)

In the spectral representation, the above linear response has a singularity for a

particular state fiw = Eﬁo in the summation, with the corresponding residue being the

0 2

vy

w-w,

transition dipole moment for the specific state 7, <<Z Z>>w =2‘<¢ [44,45].
Although the perturbation is essentially required to be Hermitia;, V =V" for the quasi-
energy Q(f) to be real, and the inclusion of complex conjugate perturbation
s = (1,¢" exp(iwt) introduces the corresponding terms in the general linear response
expression, those terms have been omitted in this section for simplicity.

The linear response theory can be applied to the energy functional of averaged
quadratic coupled-cluster method, which evaluates the correlation energy with high

accuracy by averaging the electron correlation to the extent of including up to quadruply

excited configurations [47-53]. The energy functional for the trial function ¢, which is
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in an intermediate normalized form, of the averaged quadratic coupled-cluster method is
given as [47,50]

<7/7D |(]:] B EO)|1/7D>

(=, =)oy 2.5
1+(1 S )<<%|%> ) @2-5)

Ecorr [1/7D ] =

Here, n. is the number of electrons. When #n. is below 4 the energy functional is
equivalent to the one for the doubly excited configuration interaction method. Ej is the
Hartree-Fock energy of the reference configuration v, and the trial function is expressed

as expansion in terms of the reference configuration 1w, and the doubly excited

configurations 9y, as [7,) = [, ) + Ec<d c 1,/122>. With the corresponding quasi-energy
t<u
for the averaged quadratic coupled cluster method, the singularity point can be found by

solving the eigenvalue problem, which is given as an equation for all pairs of doubly

excited configurations 7 and j, each of which stands for ¢, coefficients [45].

9’E 5
O ec. —wo..c =0.
E dc,dc; v v (2-6)

L]

Let the eigenvector matrix of equation (2-6) be U, and the spectral representation of the

A~ tu 2
linear response is given as [45], (z.2)) =Tt UK%'MZ %d>
L E,_ -ol

corr

y+|. The transition dipole
moment to the excited state 7 is given from the residue of the linear response at the
singularity point @ = @, . Hence by solving the above eigenvalue problem for the energy
functional of averaged quadratic coupled-cluster method, one obtains the excitation

energy w;, and the transition dipole moment u, ., considering the electron correlation to
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the extent of including quadruply excited configurations in the averaged quadratic

coupled-cluster linear response theory (AQCCLRT) scheme.

2.3 Angular momentum polarization of photofragments

The photofragment A or B of the randomly oriented diatomic molecules AB may
exhibit a distribution in its fine structure level population. The author will clarify the
connection between this distribution and the transition moment matrix and explain that
the transition moment matrix contains the information of the photodissociation process.
The angular momentum polarization parameter with rank K and component Q of the

photofragment 4 with momentum #k can be given as [35,36,39,54],

jéK)|jA>mA> Ja

O-mA'J”A (l;’ E)

<jA’mA'
semens {7, (DY
Ej m O-;Z””A (k’é)

C(K)E 27

(A0)h€) =

Here, C(K) denotes the normalization constant for each rank K, and alj;; o, (lg,é)
denotes the irreducible differential cross-section of the photofragments with light

polarization vector ¢ . The component 0=0 of the parameter <AK,Q=O

>(l€,é = ¢_) for linear
polarization vector in the +z direction can be interpreted classically as follows: (0) The
zeroth rank K=0 is the monopole and takes the value of 1 only, (1) the first rank K=1
parameter ranges from —1 to +1, where —1 and +1 indicates that the classical angular

momentum J , 1s antiparallel and parallel to the +z axis, respectively, (2) the second rank

K=2 parameter ranges from —1 to +2, where —1 indicates that /  1s perpendicular to the z
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axis, and +2 indicates that ]A is aligned parallel to the z axis, and so forth. The
irreducible differential cross-section of the photofragment A is given in terms of T

matrices <‘P *)

JasM 57 >Mp

u-é‘ ‘PJI,MI> as follows, where the J; and M; denote the initial total

angular momentum and the laboratory frame z-component of the J; vector, respectively,

- JTw
Ja 5) — -(k)
O'mA My (k e) n 2] 1 2 <1P/A RUNIEL
EOC( 1 + ) My, jg.mp

H e‘lpJI,MI><qJJIM a e‘IP;(I;f)A Jgomg > (2-8)

In the usual experiments, only one of the two photofragments is detected, hence the
observation does not yield simultaneous information regarding the both photofragments

and the quantum number of the photofragment B is traced out in equation (2-8). Here,

-(k)

JasMgjp.Mmp

denotes the scattering wave function, which satisfies the boundary condition
of ingoing spherical wave with various channels and outgoing plane wave with a specific
channel [7,9,55], namely, the state with asymptotic wavenumber k and electronic total

angular momentum of photofragments A and B | Jm A>| Jg.m B> , as,

NG (7 R)_u_) ‘kR|]A,mA>|JB’mB>

J4 Mg Jp My
1k ‘R‘

Jom, + mB>uj,)m.;j’mA+mB (E,/g ‘R‘ |] m> (2-9)

+ 2<jAsmA;jBamB

Jm
The partial-wave expansion of the asymptotic scattering wave function (2-9) leads

to the Legendre function expansion of the scattering amplitude u(R,IE) in the following

form,
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u(R, k) = 21‘1{‘2 (2J +1)e*" P,(cos )

(2-10)

1 k4 1 b4
i 1 o {20, -(J+5)0—} 120, +(J+5)0+}
Jsing>>1 f / e 2 4" _ e 2 4

‘Ig‘q/Znsin(H) 0
Here, 6 denotes the angle between R and k , J denotes the total angular
momentum of the dissociating molecule, and the corresponding phase shift is denoted as
nJ. The asymptotic form of the Legendre function [56],

P,(cos ) ~ 2 sin|| J + 1 g+= , in the limit of J sin(ﬁ) >>1, and subsequent
/ nJ sin 6 2 4

replacement of the summation of J with the integration of J lead to the second line of

equation (2-10). With application of the stationary phase approximation to the integration,
the classical recoiling angle y = 2% (equation (1-6)), in which the scattering
aJ
amplitude u(R k) has the largest amplitude, is given as, y = g— 5J i’ [7,9,57]. Here,
0y is the phase shift of the elastic scattering wave function in asymptotic region,
el nJ ,
sm(‘kHR‘ ey +0,), hence 27, = 5 0,. The total angular momenta J and J’ of the
final state are limited to the values J,J'=J,J, 1. Therefore, the separation of the phase
shift §, from the asymptotic wave function, which weakly depends on the quantum

number J,J°=J;= 1 under the condition, simplifies the treatment of the molecular rotation

in the dissociation process as [57],

<‘P IR £ > Qir- J><1p IR

\qf ><115] ji-é

J_A)> Q-11)

2|, (¥, -2

While the theoretical calculations are mainly done in the molecular frame, the

laboratory frame representation of the irreducible differential cross-section of the
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photofragments of equation (2-8) is difficult to evaluate. The dynamical function
1*(q,q"), which is the angular momentum polarization parameter represented in the

molecular frame, was given by Siebbeles et al. [36],

+Q+K+j ~Qp+q' jA jA K
(4.9 = Z (G , ,
Jasin Q5 Q' —Q-q+Qy Q+q-Qy q-q

q;(lc>>

n,Q+q

) ) (2-12)

Hy 1PJ, Q ><1PJ[ 2 M

n,Q+g n'Q+q' —(k)
JaS+q-Qp:jp.R5 " J 4,21+ -2 )5.925 n'+q'

and related to the irreducible differential cross-section with the application of the high-J

limit approximation (2-11) as follows [57],

] K
T =0 S IR D E @ )

" b _m’A m’A_mA
L P £ ' (2-13)
' m‘_m/‘ a-q' (k)Dg; -q' (k)dri—m 149" (7) 0 f (9.q ?) .
¢ 770,00+ 2/°(L1)

Here, g, g, € and €2z denotes the spherical components of the dipole moment operator
ft and the molecular frame Z-components of the angular momentum J; and jp,
respectively, £, ,(€) denotes the transformation matrix of the dipole moment operator
ft from the molecular frame to the laboratory frame [32,54]. The factor in the brackets
( ) is a 3-j symbol. There is a clear physical meaning to the dynamical functions
1%(q,q"): (0) The rank K=0 functions only have the diagonal elements, g=¢’, and is the
parallel and perpendicular excitation components of the photoproduct cross-section for
g=q =0 and g=q == 1, respectively, (1) the rank K=1 functions are the orientation of the
photoproduct, where the diagonal elements g=¢q’ are the coherent component and the off-

diagonal elements g # ¢’ are the incoherent component between the parallel and
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perpendicular excitation components, (2) and the rank K=2 functions are the alignment of

the photoproduct.

2.4 Non-adiabatic transition in semi-classical methods

The semi-classical treatment of the linear crossing problem, namely the Landau-
Zener model, without the assumption of constant velocity, gives the semi-classical
reduced scattering matrix [7,15], which connects the diabatic amplitudes at the turning

point 4; »(0) and the final (positive momentum) amplitudes 4; »(+°°) as follows,

(A1(+°°)) _ ( e™ N exp(—i¢))( AI(O))

A, (+) V1-e7™ exp(ip) e™ 4,(0) (2-14)
H2
where 0 is given as [12-14], § = ——2— with v, F; and H) being the velocity at the
nu(F, - F,)

crossing point, the slopes of the two linear potentials, and the diabatic coupling matrix
element, respectively, and the Stokes phase is denoted as ¢, However, the above
scattering matrix in equation (2-14) does not inherit the sign of the diabatic coupling H»,
since it has been explicitly derived for a positive diabatic coupling matrix element Hj,.
The sign of the diabatic coupling H, and the relative phases of the amplitudes A4,
contain ambiguity due to the arbitrary phases of the two diabatic states, hence the sign of
the diabatic coupling and the relative phases of the two diabatic states must be conserved
in the process of evaluating. The above scattering matrix (2-14) is not applicable to the

case, in which the relative phases of the two states are set so that the diabatic coupling
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H\, has a negative value. The scattering matrix for the negative diabatic coupling matrix
element, H;; < 0, is hereinafter derived following the same procedure as the one for the
positive diabatic coupling matrix element, H;, > 0 [15].

The momentum ( 7k ) representation of the equations for the linearly crossing two

diabatic states are given as,

O | B
[2u E-iF, aklul(k)— H o, (k),
(2-15)

(hk)? .0
-E-iF,— =-H .
[ 2 1 Zak]%(k) 1 (k)

Here, F'i, denotes the slope of the two linear potentials, V1, = —F R, with F; >
F>, and we consider the diabatic coupling H,; as a constant negative value. Elimination of
uy(k) in equation (2-15), in which we change the variables as in equation (2-16), leads to

the simplified differential equation (2-17) for the amplitude of the state 1.
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2H

(= -2y,
F b
» __W’FAF
16/‘}[132 ’
. EAF
| 2H,F’ (2-16)
2 . 2
u () = [T exp| L 1425 _(bt-d*[3) |B,(0),
uF, 12\ AF
F = EFz, AF = E _F27
d°B
atzl +K(t)B, =0,
| 1 (2-17)
K(t) =—+ia’t +—\a’t* = b*].
(=5 +iare (a0 -0
1

dr JK(1)

the semi-classical condition in ordinary position representation. Specifically, if

The asymptotic condition for the amplitude B;, <<, is analogous to

1
VK@)

varies slowly as the function of dimensionless variable, ¢, the asymptotic form of the
amplitude is given as, B « exp(iif \/Edt). In the high energy limit, 5> >> 1, the
condition is satisfied for # — +o and ¢ = 0, and the corresponding asymptotic forms are

given as,
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(e bla-t\" i(d
B ~ B (xo = — bt
L B )(b/a+t) eXp[ 2( 3 )
- _ i0 . 2.3
+ Bg(z_oo)z b/a t exp l at —bzt ,
2(a’t"=b" )\ b/a+t 2( 3
=0 t=bla\" i(a’t
B ~ B (0 -— -b’t
1~ Bl )(t+b/a) eXp[ 2( 3 )]

i0 . 2,3
N ?22(0) : t-bla expl a't Al
2at -b")\t+b/a 20 3
The given asymptotic forms break down at the singularity point,

+H12 81ME
- hF

t=zxb/a= , hence, in order to connect the asymptotic functions above, ¢ is
linearly expanded, ¢ = +b/a + 7, in the vicinity of the point. Here, we explicitly derive
the scattering matrix, which connects the turning point and outgoing amplitudes, 4;,(0)
and A4;(+°°), respectively. However, since the diabatic coupling is negative, the
approximate function, which connects the two amplitudes, is the one at the singularity

. H,.8 . . .
point, t = -b/a = —lz—ﬂE. Therefore, equation (2-17) is transformed into the form of

mF

the Weber equation [58], whose solution is given by the parabolic cylinder functions (or

the Weber functions), as,

2
%+(%—iab +a’b’ T’ )Bl =0, (2-19)
T

Upon connection of the general solution of equation (2-19) to the asymptotic

. 2,3
_Lfat -b’t||, the
20 3

reduced scattering matrix for the negative diabatic coupling H, is derived as,

forms (2-18) and substitution of the amplitude, B, = 4 exp
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(2-20)

( 4 (+°°)) _ e™ V-7 exp(ig) |( 4(0)
4, (+) —VJ1-¢7™ exp(-ig) e™ 4,(0) |

It is apparent from equations (2-14) and (2-20) that the off-diagonal element of the
reduced scattering matrix must be determined from the sign of the diabatic coupling H,.
If the diabatic coupling is negative, Hj; < 0, the transformation angle ¢ in equation
(1-13) is taken to be zero at the turning point, hence 4 (0) = 4,(0), 4, (0) = 4,(0) and
A (+0) = 4 (+0), 4, (+0) = —A4,(+) , the reduced scattering matrix in adiabatic
representation, where 4 and A+ denote the amplitudes of the lower and higher adiabatic

states, is given as,

(A_("'OO)) _ (V1= exp(ig) e™ (A_ (0))
—e™ VI-e?™ exp(-ig) )\ 4,(0) .

A,(+) (2-21)

The scattering matrix (2-21) is in analogy with the ones given by Nakamura
[10,59,60]. Although the inelastic transition probability, derived from the scattering
matrix for either positive or negative diabatic coupling, is given as [7,10],
4e7™(1-e7™)sin’> ¢, the author emphasizes that the arbitrariness of the diabatic
coupling sign is only valid for evaluation of transition probability in full collision
processes. For a half-collision process, specifically photodissociation process, the
reduced scattering matrix, which is consistent with the relative phase of the states, must

be chosen with a special care.
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Chapter 3
Calculation Method Dependence of
Transition Dipole Moments

3.1 Introduction

The numerical instability of the transition dipole moments calculated in a limited
configuration interaction scheme [61-63] has been an unresolved obstacle to theoretical
study of the photoexcitation process. Cl, molecule is one of the cases. In this chapter, the
author examines the theoretical transition dipole moment of Cl,, whose spin-orbit effect
1s weaker than those of ICl, in the length form and the linear response treatment,
including the electronic correlations at various different levels. A significant dependence
of the transition dipole moments on the one-electron orbitals used in the calculation was

clarified from the analysis.

3.2 Calculation method

The author used aug-ccpVQZ for the basis functions of Cl atom. Three types of
molecular orbitals were employed: (1) The ordinary closed shell (... 50g2 2’ 2ng4 50.))

self-consistent field molecular orbitals (denoted as SSSCF, the abbreviation of state
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specific self-consistent field), (2) the state-averaged self-consistent field (SASCF)
molecular orbitals, which are optimized for the ensemble average energy for all the
configurations derived from (50, 2m, 2m, 50,)'°, and (3) the state-averaged multi-
configuration self-consistent field (SAMCSCF) molecular orbitals for which the average
energy of the X12+g(50g2 2’ 2ng4 50,") and CIHU(SOg2 2, 2ng3 50,') states with equal
weight for each state (including the degeneracy factor of two for the C'TI, state). Here,
50, 2m,, 2m,, and 50, orbitals essentially consist of 3p atomic orbitals of Cl atoms. The
spin-orbit interaction was not included in this chapter’s calculation. For each type of
molecular orbitals, the SCI, SDCI and AQCCLRT calculations were carried out. The
singlet configuration state functions were generated with the reference of (50, 2m, 2w,
50,)"". For the SCI calculation, all the singly excited configuration state functions from
these reference configuration state functions were included in the first-order
configuration interaction scheme. Similarly for the SDCI calculation, all the singly and
doubly excited configuration state functions from the reference configuration state
functions were included in the second-order configuration interaction scheme. From the
multi-reference SCI, SDCI wave functions, the author calculated the excitation energy,
the transition density matrix and the transition dipole moment in the length form from the
ground state X12+g to the excited state C'II,. For the multi-reference AQCCLRT, the

excitation energy and the transition dipole moment were calculated. All the electronic
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state calculations were performed with the COLUMBUS program package (5.9.2) [64].

The internuclear distance was fixed at 3.76 bohr for all the calculation.

3.3 Results and discussion

3.3.1 Transition dipole moment in the length form

The transition dipole moments (TDMs) calculated (Table 3-1) in length form with
SSSCF-MRAQCCLRT, SASCF-MRSDCI, and SAMCSCF-MRSDCI were largely
underestimated compared to the experiment [65]. From the analysis of the weight of the
dominant CSF of the calculated X12+g and C'TI, state wave functions (Table 3-2), it is
apparent that the C'IT state has a low weight of the dominant CSF. Hence, the error of the
transition dipole moment and the excitation energy calculated with SSSCF-
MRAQCCLRT was due to the selection of the SSSCF-MO, which was not appropriate to

the C'II state.
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Table 3-1: Theoretical transition dipole moments from the X'Z+g state to the C'II state. LF: Calculation in

length form. R: Calculation in response treatment. * The experimental data was taken from [65].

AE/ Hartree TDM(LF)/ bohr TDM(R)/ bohr

Expt.” 0.1381 0.140
SSSCF-MRSCI 0.1402 0.146 0.102
SSSCF-MRSDCI 0.1885 0.149 0.164
SSSCF-MRAQCCLRT 0.1168 - 0.0287
SASCF-MRSCI 0.1408 0.132 0.0758
SASCF-MRSDCI 0.1456 0.0268 0.0851
SASCF-MRAQCCLRT 0.1411 - 0.119
SAMCSCF-MRSCI 0.1425 0.122 -
SAMCSCF-MRSDCI 0.1468 0.0235 -
SAMCSCF-MRAQCCLRT 0.1425 --- 0.114

Table 3-2: Weight of the dominant CSFs of the X]Z+g and C'II states.

X'z, c'n
SSSCF-MRSCI 0.958611 0.785843
SSSCF-MRSDCI 0.880977 0.831682
SSSCF-MRAQCCLRT 0.832253 0.446053
SASCF-MRSCI 0.931354 0.918410
SASCF-MRSDCI 0.869265 0.855501
SASCF-MRAQCCLRT 0.824969 0.805619
SAMCSCF-MRSCI 0.932687 0.918446
SAMCSCF-MRSDCI 0.870241 0.855766
SAMCSCF-MRAQCCLRT 0.825803 0.805485

The transition dipole moment u e in the length form is calculated using the
Tk S

,C'TI,

I+ il
dipole integrals (g, |x‘ (p].> and the transition density matrix % =™

2
i,j ?
X!s* clm,
. = ,x‘ .>F e,
‘ux,x‘zg,c‘nr 2<¢,| ¢] i,j (3_1)

For the SASCF-MRSDCI and SAMCSCF-MRSDCI calculations, the dipole integrals
<(pl. |x‘(p].> of equation (3-1) is the same as the ones for the SASCF-MRSCI and

SAMCSCF-MRSCI, respectively, thus the error of the transition dipole moments
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1 1
X'z, C'I,

originates from the transition density matrix I} . The molecular orbitals included in

the calculation consist of 168 orbitals (22X 0Ogu), 15Xy ygu » 11X 0

(.a-y ) gw)’
(p(x(3x2—y2),y(3y2—xz))(g,u))’ hence there are 1650 symmetrically allowed transition density
matrix elements for the dipole operator x (Bs,). Among those elements of the transition
density matrix of the SASCF-MRSDCI and SAMCSCF-MRSDCI calculations, the ones,

whose differences are larger than 0.01 from the matrix elements of the SASCF-MRSCI

and SAMCSCF-MRSCI, respectively, are tabulated in Table 3-3.

Table 3-3: Elements of transition density matrices whose differences between the matrices of MRSCI and

MRSDCI are larger than 0.01. The correlating atomic orbitals are indicated in the parentheses.

SASCF-MRSCI, MRSDCI SAMCSCF-MRSCI, MRSDCI
504(3p), 4m(3d) 504(3p), 4m(3d)
504(3p), 67 (4d) 504(3p), 67y(4d)
1204(4d), 2m(3p) 1204(4d), 2m(3p)
271,u(3p), 28:,6(4d) 50u(3p), 27(3p)

The element, whose corresponding dipole integral magnitude is the largest, is the
(504(3p), 4m,u(3d)) element. The dipole integrals of this element are 0.665 and 0.656 bohr
for the SASCF and SAMCSCEF, respectively.

In order to examine the effect of the 4w, orbital, the calculations with the
reference of (50, 2m, 2w, 50, 47,)"? were carried out (Table 3-4). The 4m,(3d) orbital can
be considered as an orbital, which polarizes the 2m,(3p) orbital. Hence, inclusion of this
one-electron orbital to the reference space improved the excitation energy and the

transition dipole moment of the SSSCF-MRAQCCLRT, as Table 3-4 shows closer
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agreement with the experiment than the ones in Table 3-1. Although the transition dipole
moments of the SASCF-MRSDCI and SAMCSCF-MRSDCI calculations have also been
improved, the ones of the SASCF-MRSCI and SAMCSCF-MRSCI showed better

agreement with the experiment and numerical stability.

Table 3-4: Theoretical transition dipole moments from the X12+g state to the C'II state with extended
reference space of (50, 2w, 2w, 50, 47,)". The values in the parentheses shows the difference from the

ones with reference space of (50, 2m, 2, 50,)"" (Table 3-1). * The experimental data was taken from [65].

AE/ Hartree

TDM/ bohr

Expt.”
SSSCF-MRSCI
SSSCF-MRSDCI

SSSCF-MRAQCCLRT

SASCF-MRSCI
SASCF-MRSDCI

0.1381
0.1541 (+0.0139)
0.1781 (-0.0104)
0.1504 (+0.0436)
0.1453 (+0.0045)
0.1484 (+0.0028)

0.140
0.150 (+0.004)
0.143 (-0.007)

0.0927 (+0.0640)
0.148 (+0.016)

0.0676 (+0.0408)

SASCF-MRAQCCLRT
SAMCSCF-MRSCI 0.1470 (+0.0045)

SAMCSCF-MRSDCI 0.1502 (+0.0034)
SAMCSCF-MRAQCCLRT 0.1478 (+0.0053)

0.1473 (+0.0062) 0.0992 (—0.020)
0.115 (-0.007)
0.0754 (+0.0519)

0.121 (+0.007)

3.3.2 Linear response treatment

The transition dipole moment can be approximately evaluated with the CI

coefficients Cy and the transition density matrix I} as
aCy, I
Ci —% 4 L.
Z K 9e E<¢' 85x> Y (3-2)

x i,]
The author notes that the equation (3-2) is only valid for the MCSCF wave

Uy = (E,-E)

function or complete CI wave function [44,61-63]. The theoretical transition dipole

3-47



moment in response treatment for SSSCF-MRSCI, SSSCF-MRSDCI, SASCF-MRSCI,
and SASCF-MRSDCI wave functions are given in Table 3-1. On the contrary to the ones
of the SSSCF calculations, the SASCF calculations have shown a stability in the
contributions of the first term, the Cl-term, and the second term, MO-term, in square
brackets of equation (3-2), in that the MRSCI and MRSDCI gave similar values (Table
3-5). It also shows the theoretical transition dipole moment approaches the experimental
value as the level of the electronic correlation taken into account becomes higher.
Although improvement in the theoretical transition dipole moment with SASCF was seen
as calculation level became higher, the results in length form with MRSCI calculation

remained to be in better agreement with the experiment.

Table 3-5: Contribution of the CI-term and MO-term of the transition dipole moment calculations.

Cl-term/ bohr MO-term/ bohr TDM/ bohr MO-term contribution

SSSCF-MRSCI 0.161 -0.0595 0.102 ~58.6 %
SSSCF-MRSDCI 0.0575 0.107 0.164 65.0 %
SSSCF-MRAQCCLRT (0.0287)
SASCF-MRSCI 0.0493 0.0265 0.0758 35.0 %
SASCF-MRSDCI 0.0552 0.0299 0.0851 352 %
SASCF-MRAQCCLRT (0.119)

3.4 Conclusion

The author examined the theoretical transition dipole moment of Cl, from the ground
state X12+g to the excited state CIHu calculated with various methods. The theoretical

transition dipole moment in linear response treatment exhibited numerical stability of the
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contribution from the Cl-term and MO-term for SASCF one-electron orbital. The
transition dipole moment in length form with MRSCI calculation showed better
agreement with the experiment than the ones of the MRAQCCLRT, which includes the

electronic correlation to the extent of including quadruply excited configurations.
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Chapter 4
Photodissociation Process of ICl
in the First Absorption Band

4.1 Introduction

Samartzis and Kitsopoulos observed the product fraction [C1*]/ ([CI]+[C1*]) and
the anisotropy parameter f in the almost entire wavelength region of 400-570 nm [66].
They considered the non-adiabatic transition probability p, between the 0 (II,III) states at
Av-2 is equivalent to the product fraction [CI*]/([Cl]+[C]*]) with the assumption that
dissociation process takes place only on the £=0" states. The product fraction
[CI*]/(CI]+[CI*]) they observed showed qualitative agreement with the theoretical
transition probability given by de Vries et al. [67] in the wavelength region of 480-530
nm. For the anisotropy parameter 8 of the I+Cl channel, they observed a sharp decrease
of the parameter in the wavelength region shorter than 480 nm. From the results, they
have suggested the contribution of a new state with €2=1 symmetry with its potential
energy higher than the 0"(II) state in the Franck-Condon region.

Rakitzis et al. observed the angular momentum polarization parameters in the

wavelength region of 490-560 nm [23]. They later analyzed the parameters, expressed in
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terms of (1-£;), (1-f»7), and f3, which are the branching fractions from the 0"(Il) to
X(0"), the one from the 1(I) state to the 1(II) state, and the one from 1(I) state to the 1(IIT)
state, respectively, and the anisotropy parameter 8 [68]. The parameter Im[a'"(//,L)] was

expressed as,

Im[al(l) /,L)]= % \/(/3) +1D(2 - ﬁ)[\/ﬁfz sin(@y. iy — by

- =) Sin(¢x<0+> - ¢1(III))

+ \/2(1 - fl)(13_ 2= S3) Sin(¢x(0+) - ¢1(H)) D

_\/Zfl(l—fz—ﬁ)
3

Sin(¢0+(n) - ¢l(ll))]'

They calculated the branching fractions f, from the angular momentum polarization
parameters obtained from the experiment, with an assumption that the potential energy
difference between the same 2 symmetry be negligibly small after the avoided crossings,
hence asymptotic phase differences (¢;—¢,) between the same € symmetry were
considered to be zero. The asymptotic phase differences between the different Q
symmetry were calculated with semi-classical equation using the ab initio potential
energy curves of reference [42]. For example, the asymptotic phase difference between

the X and Y states, whose avoided crossing is at Ry y, was evaluated as

b= = [, (R =k, (R)}dR. (4-2)
Here, kx(R) is the wavenumber of the X state. With the calculated branching fractions

£1=0.04, £,=0.12, and £;=0.49, they have concluded the ab initio potential energy curves

needs correction especially in the long-range. The author of this thesis notes, however,
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they have neglected the Stokes phase [7,10,15] upon evaluating the phase differences,
and the previous work [69] has shown the Stokes phase has significant influence on the
parameter Im[a'"1(//,1)]. In this chapter, the photofragment angular momentum
polarization, the anisotropy parameters, and the product branching ratios were calculated
with the wave packet propagation method, and were examined in comparison with the

experiments.

4.2 Computational methods

The relativistic effective core potentials, by Christiansen, Ermler and their co-
workers [70,71] with the valence shells being 5s5p for I atom and 3s3p for Cl atom, have
been used for the calculation. For the basis functions, cc-pVTZ by Peterson et al. [72] for
I atom and cc-pVTZ by Woon and Dunning [73] for Cl atom have been used. The sets of
five primitives (os(1)=0.02075, a,(1)=0.01344, 4(1)=0.03180, o{1)=0.08410, and
0,(1)=0.4739) and (as(C1)=0.02364, o,(C1)=0.01390, a4(C1)=0.04500, aCl1)=0.1380,
and ay(C1)=0.8270) were added to the I and Cl basis sets, respectively. The basis sets
have been optimized by Ohnishi [69] so as the dissociation energies of the X(0") and 1(I)
states show the best agreement with the spectroscopic data [74]. The state-averaged self-
consistent field molecular orbitals, which are optimized for the ensemble average energy
[75] for all the configurations derived from (o, &, ¥, 0*)'°, namely 10 electrons in the

six valence orbitals, which essentially consist of 5p atomic orbitals of I atom and 3p
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atomic orbitals of Cl atom, have been employed. For the spin-orbit configuration
interaction calculations, singlet and triplet configuration state functions (CSFs) were
generated with the reference of (o, 7, ¥, 0*)'°. All the singly and doubly excited CSFs
from these reference CSFs were included in the second-order configuration interaction
(CI) scheme. The continuities of the CI wave functions as functions of internuclear
distance R were kept throughout the whole region. From the CI wave functions, the
author calculated potential energy curves and non-adiabatic coupling terms taking into
account both CI and MO term contributions. The Davidson correction was included in the
CI energy. For the transition dipole moments, the spin-orbit CI method in the first-order
CI scheme was used. All the electronic state calculations were performed with the
COLUMBUS program package [76].

The wave packet method was used to study the dissociation dynamics. The time
propagations of the wave packets were carried out with Chebychev expansion method
[77-79]. The calculation was done for the bond distances of 3.00~27.20 bohr segmented
with 4096 grids. The first- and second-order non-adiabatic interactions were implemented
in the wave packet propagation program by the author of this thesis to perform
calculation including multiple electronic states (up to eight states). The second-order non-
adiabatic interaction was evaluated with the first-order non-adiabatic coupling terms [11].

The wave packet program has been modified from the original one [80], which was
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designed to calculate for single adiabatic excited state, written by Balint-Kurti et al. The
atomic masses employed were '*'I*>CL.

With a spin-orbit CI method, symmetry of the molecular electronic state is denoted
as ©, the absolute value of the molecular axis component of the total electronic angular
momentum. Radial non-adiabatic transition can occur only between electronic states with
same £2 (A2=0). Axial recoil approximation is generally valid for the photodissociation
of ICI in the first absorption band, since the recoil velocity of the direct dissociation is
much faster than the rotational speed. From this reason, the molecular rotation effect,
such as a Coriolis non-adiabatic transition during the dissociation process is not
considered, and the ground state molecules are assumed to be randomly oriented.

The angular momentum polarization parameter Im[a;'"(//, L)] of Cl, which
Rakitzis et al. observed [23], can be expressed in terms of the dynamical functions qu,q’ ,
which are defined as in equation (2-12), of rank K [37], introduced by Siebbeles et al. [36]

as

Im[a,"” (/,1)]=3(2j, + 1)Im—[f”)] (4-3)

Joo+2/f5
The total angular momentum j, of the photofragment Cl is 3/2, in this case. The
dynamical functions of zeroth rank (scalar quantity) in the denominator of the right hand
side of equation (4-3), is proportional to photofragment’s cross-section, hence the first
rank dynamical function in the numerator characterizes the essential part of this angular

momentum polarization parameter. The T matrix elements were calculated with time-
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dependent wave packet method [80]. When the T matrix element of the Franck-Condon
electronic state 7 and asymptotic electronic state n is written in terms of the amplitude
r; , and the asymptotic phase ¢, , as

<1I;:(J,>)

n,Q2+q,n

lu’ﬁ,q 1P§‘;:> = rﬂ,n eXp(i%,n)’ (4-4)

rﬁ,nz / Em rﬁ,mz (n = n) can be interpreted as the non-adiabatic transition probability from
the state 7 to the state n.

The zeroth rank dynamical functions joo,o and f° 1.1 1n equation (4-3) have only
contributions of the two T matrix elements with the same asymptotic electronic states
n=n’, and represent incoherent dissociation processes, whose values are actually
proportional to the photofragment cross-sections. On the other hand, the first rank
dynamical function f'1o has the contribution of the two T matrix elements of g=I
(perpendicular) and ¢g=0 (parallel). For example, when the contributions of the T matrix
elements of 0°(II)—0"(Il) and 1(I)=1(I) are dominant, the phase of the dynamical
function f'1o can be ultimately written as @owa.o-an — @i, which describes the
difference of quantum mechanical phase shifts between the states 0'(II) and 1(I). This
indicates that the angular momentum parameter Im[a;'"(//, L)] represents the coherence
of T matrix elements with electronic states of different 2.

The initial Franck-Condon wave packets were generated for the four excited
Q=0" states (0"(II), 0"(11T), 0°(IV), 07(V)) and the five excited =1 states (1(I), 1(II),

1(1M), 1(IV), 1(V)) with the corresponding transition dipole moments and the ground
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vibrational state of the parent molecule. The wave packets were propagated on these nine
excited states and the ground state X(0"), including the radial non-adiabatic interactions
among all the states, and the photofragmentation T matrix elements were obtained. Due
to the restricted numbers of grids, the calculated T matrix elements showed small
oscillation near thresholds (Figure 5, 7, 8). This oscillation is to be considered of

numerical error rather than of physical phenomena.

4.3 Results and discussion

4.3.1 Adiabatic potential energy curves of ICI

The calculated adiabatic potential energy curves are shown in Figure 2-3. Here, the
X(0M), 1(I), 0°(IT), and 1(II) states adiabatically correlate to I+Cl products. Spectroscopic
constants were determined using the Fourier grid Hamiltonian method by Balint-Kurti et
al. [5,80]. The calculation was done for the bond distances of 3.00~27.20 bohr segmented
with 4096 grids. For the X(0"), 1(I), and 0'(I) states, vibrational levels v>’=0~9,
v’’=0~35, and v’’=0~2 were included, respectively, for these calculations. These levels
were taken to match with experimental fitting procedure by Pardo et al. [74]. These
spectroscopic constants of the X(0"), 1(I), and 0"(II) states are shown in Table 1, and are
in reasonable agreement with the experimental values. The author thus expects that
quantitative results can be obtained for the photodissociation process in the Franck-

Condon region with these ab initio potential energy curves.
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Table 4-1: Spectroscopic constants of the X(0"), 1(I), and 0°(II) states. Experimental values are taken from

Pardo et al. [74].

re/ bohr  re(exp.2)/ bohr e/ cm’?

welexp.2)/ ecm?  wexe/ cml  weyelexp.2)/ cm

X(0+)  4.4106 4.3858 383.74
1(D) 5.0701 5.0877 212.0
0+dD)  5.0527 5.0267 216.3

384.30 1.307 1.501
210.3 1.06 1.50
211.4 5.34 7.98

4.3.2 Absorption spectra, polarization parameters, and non-adiabatic

transition probabilities

In the numerical calculation of the absorption cross sections, the author used the

program by Balint-Kurti et al. [5]. The calculated absorption spectra are shown in Figure

4-1, and are in fair agreement with experi

the transition dipole moments, used in this

mental data by Seery et al. [40], implying that

calculation, have reasonable accuracy.
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Figure 4-1: Absorption spectra in the first band. Thick red line for the absorption to the 07(II) state (denoted
as B(0")), thin black line for the 1(I) state (denoted as A(1)), and thin red line for the 1(II) state (denoted as

z(1)). Thick grey line shows total absorption spectrum.

Rakitzis et al. examined the polarization parameter in the 490 nm~560 nm region
[23]. In this region, parallel transition is dominated by the excitation to the 0'(II) state
and perpendicular one by the excitation to the 1(I) state. After a parallel transition to the
0°(I) state, the Franck-Condon wave packet will propagate to the dissociation limits of
the 0"(IIT) or X(0") state through non-adiabatic transitions, or to the dissociation limit of
the 0°(I) state adiabatically. In the case of a perpendicular transition to the 1(I) state, the
Franck-Condon wave packet will propagate to the dissociation limits of the 1(III) or 1(II)
state, or to the dissociation limit of the 1(I) state adiabatically. As shown in Figure 4-2,
non-adiabatic transition occur between the 0"(IT) and 0'(III) states at 6.8 bohr, between

the X(0") and 0"(II) states at 9.1 bohr, between the 1(II) and 1(III) states at 6.8 bohr, and
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between the 1(I) and 1(II) states at 8.6 bohr. Note that the non-adiabatic interactions of

X(0")/ 0°(II) and 1(I)/ 1(II) cannot be recognized from their potential energy curves alone.
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Figure 4-2: First-order non-adiabatic coupling terms between (a) X(0") and 0°(Il) states, (b) 0°(II) and

0"(III) states, (c) 1(I) and 1(II) states, and (d) 1(II) and 1(III) states.

The calculation of non-adiabatic transition probabilities after the parallel
transition is shown in Figure 4-3. The result was about 50%, while Alexander and
Rakitzis estimated that a large portion (96 %) of the wave packet will propagate to the
X(0") state. The 0'(III) state adiabatically correlates to the I+C1* products, and does not
contribute to the polarization parameter of Cl. The non-adiabatic transition probabilities
from the 1(I) state to the 1(II) and 1(III) states are shown in Figure 4-4. The results were
about 70% and 10% respectively, and show qualitative agreement with the result of

Alexander and Rakitzis (49 % and 12 %).
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remains on the 1(I) state. Blue lines: Transition probability from the 1(I) state to the 1(II) state. Green lines:

Transition probability from the 1(I) state to the 1(III) state.

Alexander and Rakitzis [68] estimated the non-adiabatic transition probabilities
from the angular momentum polarization data of Cl, which Rakitzis et al. [23] obtained
experimentally. When only the 1(I) and 0°(II) states dominantly contribute to this
parameter in the observed wavelength region, by separating the T matrix element into the
amplitude r; , and the phase ¢, as in (4-4), the polarization parameter can be
approximately given as [68]

Iml_al( ! (/ /, J—)J & Rorano+anlia, 1 Sin(%+(n),0+(u) @0 ) (4-5)
The amplitude of this parameter can be considered as the geometric average of 7’02+(u),0+(u)
and ’”1%1),1(1)' The square of 7,y o, 18 the probability of the 0'(Il) state Franck-Condon
wave packet that propagated to the dissociation limit without non-adiabatic transition,
while the square of 7, being the probability of the I(I) state Franck-Condon wave
packet that propagated to the dissociation limit without non-adiabatic transition. As the
amplitude in (4-5) is given as a geometric average of ’”02+(u),0+(u) and ’”1%1),1(1)’ it will be at
the largest when these two probabilities are approximately the same. The phase part in
equation (4-5) can be expressed as the difference of quantum mechanical phase shifts
between the 0°(I) and 1(I) states. These phase shifts are very sensitive to the potential
energy curves. The theoretical calculation of this polarization parameter is shown in

Figure 4-5 and is in quantitative agreement with the results of Rakatzis et al. implying

4-61



that the potential energy curves used in this calculation was in high accuracy. Note that

the envelope of the oscillation has a maximum around at 530-540 nm.
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Figure 4-5: First-rank angular momentum polarization parameter. Solid line: Wave packet method. Dots:

Experiment by Rakitzis et al. [23]. Correction of the data was made by Alexander and Rakitzis in [68].

Samartzis and Kitsopoulos examined the product fraction of CI* for each
wavelength between 400-570 nm [66]. The product fraction, which was called curve
crossing probability in their paper, was evaluated with following formula, regardless of

angular distribution,

P =[CI*]/([C]] +[CI*)). (4-6)
They first assumed the product fraction P defined above would represent the non-
adiabatic transition probability from the 0'(II) state to the 0'(IIl) state. Since both the
0°(II) and X(0") states correlate to Cl product and the 0'(III) state correlates to CI*
product, and the avoided crossing between the 0"(IT) and 0'(III) states exists before the
one between the 0'(IT) and X(0+) states, the product fraction can represent approximately

the non-adiabatic transition probability from the 0'(II) state to the 0" (III) state under axial
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recoil approximation. Strictly speaking, however, the product fraction could be expressed
in terms of photoabsorption cross sections o(1(I)), o(0"(1I)), and o(1(1I)) from the X(0")
state to the 1(I), 0°(I), and 1(II) states, respectively, and the non-adiabatic transition

probability p, from the 0"(II) state to the 0" (III) state, as

_ o(0" (1) p,
o(1(1)) + o(0* (1)) + o(1(11))

(4-7)

Therefore, their assumption holds and P=p,, only when o(1(I)) and o(1(II)) are negligibly
small. As Figure 4-1 indicates, however, photoproducts from perpendicular transition
would be observed in higher wavelengths and lower wavelengths due to the presence of
the 1(I) and 1(II) states, respectively. Hence, the product fraction is not equivalent to non-
adiabatic transition probability in this broad wavelength region, and the effect of the £2=1
states cannot be neglected, as Samartzis and Kitsopoulos finally concluded. In this study,
the author calculated the above product fraction theoretically from the
photofragmentation (not photoabsorption) cross sections for the respective product
channels using the wave packet method described above, including the five 2=0" states
and the five ©2=1 states. The photofragmentation cross sections for the respective product

channels are the absolute square of T matrix elements.
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The result of the product fraction in Figure 4-6, is in a quantitative agreement
with the result of Samartzis and Kitsopoulos [66]. The 1(I) and 1(II) states adiabatically
correlate to the asymptotic limit [+Cl and have negligible NACTs with the 1(IV) and
1(V) states correlating to I+CI*. Hence the decrease of product fraction P in the higher
energy region could be explained from the large absorption cross section of the 1(II) state.
Although the absorption cross section of the I(I) state is relatively small, it also

contributes to decrease of the product fraction P.
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Samartzis and Kitsopoulos also examined the anisotropy parameter S in the
region of 400-570 nm. In this wide wavelength region, photoabsorption to the 1(II) state,
as well as the 1(I), 0°(I) states can occur, therefore the B parameter for Cl changes
drastically. The calculation result in Figure 4-7 shows qualitative agreement with the
experimental data. They speculated that there exists an £2=1 state in the energy region
higher than the 0'(II) state, from the decrease in photodissociation product CI* and from
the S parameter in the higher energy region, and named the C state as a candidate. From
the theoretical calculations of this study, the author affirmed that, the known A(1) and
z(1) states [81,82] are the only possible £2=1 states, that are responsible for the first
absorption band, and from the above analysis, their speculated ©2=1 state turns out to be

the z(1) state.
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Figure 4-7: Anisotropy parameter of B photofragment Cl. Solid line: Wave packet method. Dots:

Experiment by Samartzis and Kitsopoulos [66].
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It is interesting to point out that at 530-540 nm (2.3-2.4 eV), the envelope of the
oscillation has a maximum (Figure 4-5), the product fraction of CI* becomes 1/2 (Figure
4-6), and the p parameter for Cl becomes 0 (no anisotropy, Figure 4-7). This is of course
not coincident, since the interference between the parallel and perpendicular components

is expected to be most significant when these two probabilities become identical.

4.3.3 Non-adiabatic transition between the X(0*) and 0*(ll) states

As shown in Figure 4-3, a significant non-adiabatic transition probability between
the X(0") and 0"(II) states was also estimated by Alexander and Rakitzis [68]. The NACT
between these states in Figure 4-2(a) shows a maximum value at 9.1 bohr, where a
hidden avoided crossing exists. When the electronic wave functions of the X(0") state are
expanded with CSFs and plotted as a function of the internuclear distance R as shown in
Figure 4-8, the most dominant CSFs are '3(1441) and '=%(2332), with the occupation
number notation of (pgrs)=(co’n’n* 0*'). These o, m, *, and o* orbitals are localized
respectively to o(Cl3p), n(Cl3p), n(I5p), and o(I5p) in these asymptotic regions. As R is
increased, the most dominant CSF for the X(0") state is switched from '37(1441) to
'3%(2332) at the avoided crossing region, suggesting the non-adiabatic transition between
the X(0") and 0"(II) states is of Landau-Zener type.

The PECs of the X(0") and 0"(Il) states in Figure 2-3 do not clearly exhibit the

avoided crossing, although its existence at 9.1 bohr can be confirmed from the maximum
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point of NACTs. Hence, inclusion of the NACTs is essential to the quantitative
calculation of non-adiabatic transition probabilities, especially at longer bond distance
regions. The quantum mechanical approach includes the effect of the NACTs and also the
quantum mechanical interference effects among the several dissociation paths. Although
the non-adiabatic transition probability from the 0"(II) state to the X(0") state does not
show a quantitative agreement with the simulated result of Alexander and Rakitzis [68],
the angular momentum parameter Im[a,"(//,L)] itself shows a qualitative agreement
with the experimental result of Rakitzis et al. [23]. Hence, the potential energy curves
obtained in this work were considered accurate enough to give the parameter Im[a;"(//,

)] with quantitative agreement with the experimental result of Rakitzis et al.
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4.4 Conclusions

The low-lying excited states of ICl, and calculated the product branching ratio, the
anisotropy parameter S, and the first-rank angular momentum parameter Im[al(1)(//, L )]
were obtained with ab initio method. The calculation result of the product fraction and
the p parameter supported the experimental analysis by Samartzis and Kitsopoulos [66],
and the indicated obscure state turned out to be the z(1) state. For the first-rank angular
momentum parameter Im[al(1)(//,_L)], the high accuracy of the potential energy curves,

obtained in this study, was affirmed from quantitative agreement of phase part with
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experimental data by Rakitzis et al. [23]. The non-adiabatic transitions between the X(0")
and 0'(II) states is of an Landau-Zener type without apparent avoided crossing between

the two potential energy curves.
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Chapter 5
Photodissociation Process of ICl
in the Second Absorption Band

5.1 Introduction

The branching ratios following the excitation to the second absorption band have
been investigated by Tonokura et al. by analyzing the Doppler profiles of the
photofragments [41]. In their theoretical study, they obtained the squared transition
dipole moments from the ground X(0") state to the 0"(III), 1(IV), and 0'(IV) states as
Woram=0.0220 bohr®, 1 1vj=0.0232 bohr?, and t£4+qvy=0.00696 bohr’, respectively, and
the non-adiabatic transition probabilities at the avoided crossings Av-1 and Av-2 as
1=0.77 and p,=0.90, respectively. The branching ratios of the I+Cl, I+CI*, and I*+Cl

channels were calculated as 18, 46, 36 %, respectively, using the equation

[T+ CI] _ (1- pl)p2ﬂ§+(lll) + p1p2/‘g+(w) (5-1)
[T+ CI]+[I+ Cl*] + [I* + Cl] ﬂ§+(111> + ﬂlz(w) + M§+(IV) ’
[1+Cl'] _ (1-p)d-p, )M§+(HI) +p(1- pz)ﬂ§+(IV) + fulz(IV) (5-2)
[T+ Cl]+[I+ Cl*] + [I* +Cl] ﬂ§+(111) + fulz(IV) + M§+(N) ’
[ +CI] _ PPatton *+ (= PPy (5-3)

[I+CI]+[I+CI']+[I" +C1] lu(i(m) + /“12(1\/) + M(i(w)
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The author notes that they have not included the contribution of the quantum interference
between the O'(IILIV) states in the above calculation. Although their experiment
indicated that the I+Cl channel products were dominated by parallel transition
components, later ion imaging experiment by Rogers et al. [83] showed their
contributions were negligibly small in the I+Cl channel. Moreover, two other
experiments by Jung et al. and Cheng et al. also indicated that the [+Cl channel products
were dominated by perpendicular transition components at the wavelength of 304.67 nm
[84,85]. However, since the theoretical transition dipole moment to the 0'(IV) state,
which diabatically correlates to the I+Cl channel, was calculated to have a comparable
magnitude to the one to the 0'(III) state, Rogers et al. considered that the theoretical
transition dipole moment to the O0'(II) state could be overestimated and they also
questioned the existence of the avoided crossing Av-1 [83].

Diamantopoulou et al. have also observed the fine structure branching ratio in a
wider region of the second absorption band [86]. Regarding the photoabsorption at
wavelength of 235 nm, their result of perpendicular transition component for dissociation
channel [+CI1* is similar to those of Rogers et al. [83]. Their study also indicates a very
small contribution of the dissociation channel I+Cl compared to the dissociation channel
[*+CI. More importantly, by analyzing the experimental results, the anisotropy parameter
[ of the I+Cl channel shows a strong photon energy dependence, which implies

comparable contribution of parallel and perpendicular transitions for this channel. For the
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perpendicular transition, the 1(III) state is the only state which adiabatically correlates to
the I+Cl channel, hence the contribution of the 0"(III,IV) states to this channel should be
comparable to the 1(III) state. In this chapter, the anisotropy parameters and the product
branching ratios were calculated with three methods, namely, the wave packet
propagation method, the semi-classical method, and the classical path method, and were

examined in comparison with recent experiments.

5.2 Computational methods

Most of the calculations were carried out with the same method as previous
Chapter 4, with the following exceptions. The calculations were carried out by the
‘contracted spin-orbit configuration interaction” method [87], where the total Hamiltonian
including the spin-orbit part is diagonalized in the basis of the lower-lying spin-free
configuration interaction eigenstates of *(2x3*,27,2xII,A), all of which correlate
with the ground state atomic dissociation limit of I(*P)+CI(*P). The phases of the
configuration interaction wave functions of the relevant states were fixed at the Franck-
Condon region, so that both of the transition dipole moments poam and to+av) from the
ground state X(0') have positive values. For the transition dipole moments, the
uncontracted SOCI method in the first-order CI scheme has been used. All the electronic

structure calculations were performed with the COLUMBUS program package [76].
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For the purpose of CI wave function analysis, the electronic structure calculation
with MOs transformed into atomic orbital (AO)-like orbitals [88] were also performed.
The unitary transformations were restricted for the pairs of the valence orbitals (o, 0*),
(7T, m,*), and (m,, m,*) within the reference orbital subspace, so that the overlaps of MO
with the one at dissociation limit become maximum. Note that the configuration space
formed from these transformed AO-like orbitals is identical to the one with the original

MOs.

5.3 Results and discussion

5.3.1 The second absorption band spectra

The present results for the transition dipole moments (Figure 5-1) were not
significantly different from those in the previous work [42]. The result of the total
absorption spectrum is in agreement with the one observed by Seery and Britton (Figure
5-2) [2]. The absorption cross section of the 1(IIl) state, which correlates to the

dissociation channel I+Cl, is very small compared to the ones of the 0"(III,IV) states.
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Figure 5-1 shows the magnitudes of the calculated transition dipole moments to

the 0'(II1,IV) states are in the same order. Due to the strong spin-orbit interaction, the
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spin-orbit coupled adiabatic states i are linear combinations of the spin-free states ¢.
With the ‘contracted SOCI’ method in the Franck-Condon region, each of the adiabatic
states of X(0"), and 0"(II,IV) was approximately described in terms of the dominant

spin-free states as

Yxos = 0.988x #('Z"(2440)) +0.143x p(°T1(2431)), (5-4)
Yoran = 0.967x¢(CTI(2341)) +0.227x p(°Z™(2422)), (5-5)
(5-6)

Youay, = 0.875x p(PE7(2422)) + 0.445x p('=* (2422)).

25+1

Here, the spin-free state A with dominant configuration (o’n/m* o*) is

285+1
denoted as *5

A (pgrs). These valence orbitals of o, m, n*, 0* denote the SA-SCF
orbitals. Since the dipole moment operator is a spin-free operator, the transition dipole
moment to the 0°(IIT) state has a contribution from the largest component *TI(2341) of the

state itself as shown in equation (5-7), while the one to the 0"(IV) state has a contribution

from the largest component 'S"(2440) of the ground state X(0") as in equation (5-8),

(W0 | [trouam ) = 0-138x (pC TT(2431)) || pCTT(2341))), (5-7)
(W0 [ [Wonavy) = 0440 (9 =7 (2440)) || (' = (2422))). (5-8)

Since an excitation from the spin-free state '3(2440) to the state 'X7(2422) is
approximately a two-electron process, the magnitude of the transition dipole moment

between these states is 0.095 bohr, which is about one tenth of 0.90 bohr, the transition
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dipole moment value between “I1(2431) and *T1(2341). The comparable magnitude of the
transition dipole moments to the 0"(IIT) and 0"(IV) states is a consequence of the strong
intensity borrowing of the 07(IV) state from the 'S"(2422) state and the large magnitude
of the transition dipole moment between the spin-free states *I1(2431) and *T1(2341). The
CI wave functions of this study yielded g, =0.0172 bohr® and g, =0.0091 bohr?,
which are similar to the old values [42] of g, ., =0.0179 bohr® and
u§+(lv) =0.0099 bohr”.

With AO-like orbitals, the dominant configurations of the 0'(II) state in the
Franck-Condon region are °T1(2341) and °TI(1432). Those for the 0°(IV) state are 3"
(2422), *27(2332), and '=7(2332). The interchange of these CSFs is clearly found at the
avoided crossing Av-1 (Figure 5-3), which suggests that non-adiabatic transition is of the
Landau-Zener type. In this calculation, the phases of the electronic wave functions were
fixed, so that the transition dipole moments from the ground state X(0") to both of the
0"(IIT) and 0" (IV) states become positive in the Franck-Condon region. It will be essential
in later discussion that the theoretical NACT between the 0°(III) and 0°(IV) states

gy = <1/’1u |6/ 8R|1//N> resulted in a positive value at the avoided crossing Av-1.
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5.3.2 Numerical calculation of the branching ratios and the

anisotropy parameters

Using the classical path method, R is treated classically, and the time-dependent
electronic wave function y(f) can be expressed in the form of an expansion of the

adiabatic basis i v(R), which evolves in time ¢, as [9,89]
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i N i N (5-9)
Y(t) = Cm(t)l/J,”(R(t))eXp[—%ﬁ E (R ]+ ¢ (D (R(t))exp[—%ﬁ E (R(1'))dr].

Substituting W into electronic time-dependent Schrodinger equation leads to
. o l 12 1A !
Cpp = _R(t)gm,lv (R(1))exp[- %J; (Ey (R(2)) = Ey(R(2)))dt Jeyy, (5-10)

. . i ’ ! !
Cy = _R(t)glv,m(R(t))eXp[_%j;(Em(R(t ) — Ey (R(2)))dt Jey, (5-11)
Here, R is considered to satisfy the classical equation of motion with the classical

Ehrenfest force expressed as F' = —6<H > / dR, where the averaged potential energy of the

0°(IIT) and 0" (IV) states is given as

(H) =l e [ Ey(RO | ey (1) [ Eyy (R(@)). (5-12)

The initial value of the internuclear distance R(#=0) is selected as the classical
turning point, where the averaged potential energy defined above equals to the sum of
each photon energy and the ground vibrational level of the X(0") state. There, the initial
values of the coefficients ¢y and ¢y are given by the normalized transition dipole
moments, g,/ tp, + tn, and w, /A, + i, . respectively, and the classical

internuclear velocity equals to zero R = 0.

5-78



1.4

1.0

0.8

0.6

Branching Ratios

0.4

0.2

0.0 l l 1 I l
220 230 240 250 260 270 280

Wavelength/ nm

Figure 5-4: Branching ratios [I+CI]/[I*+Cl] (blue) and [I+CI])/[I+C1*] (red). Solid curves are the
calculations of classical path method with quantum interference effect. Dashed curves are the calculations
without quantum interference effect. Cross markers represent the branching ratios observed by

Diamantopoulou et al. [86].

Figure 5-4 for the calculated branching ratios [I+Cl]/[I*+Cl] and [I+CI1]/[1+CI*]
shows that large discrepancies existed previously are now resolved by including the
quantum interference effect with which the present theoretical calculations are in good
agreement with the experiment [86]. As Figure 5-5 shows, without quantum interference
effect, the anisotropy parameter f for the I + CI channel is dominated by the parallel
component, in disagreement with experiment, especially on the longer wavelength side.
However, with quantum interference effect, theoretical f for that channel exhibits a sharp
decrease with an increasing wavelength, in general agreement with the experiment

behavior. Figure 2-3 and Figure 5-2 show that, among three perpendicular states in the
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second absorption band, only the 1(III) state correlates to the I + Cl product with a very
weak absorption peak around 260 nm. Therefore, the results suggest that the sharp
decrease in the experimental 5 parameter from 235 to 250 nm is caused by the switchover
of the dominating components, from those originated from the 0°(IIT) and 0" (IV) states
on the shorter wavelength side to those from the 1(III) state on the longer wavelength
side. Because both of these components are very weak, the theoretical results of this

study might slightly underestimate the perpendicular component at 250 and 265 nm.

2
et ! ; ; T T

Anisotropy parameter 3

220 230 240 250 260 270 280

Wavelength/ nm

Figure 5-5: Anisotropy parameter 8 of the [+Cl1* channel (blue) and the I+Cl channel (red). Solid curves are
the calculation of the classical path method with quantum interference effect. Dashed curves are the
calculations without quantum interference effect. Cross markers represent the anisotropy parameter f3

observed by Diamantopoulou et al. [86].

The norm of the 0"(I11,IV) states exhibits a drastic change at the avoided crossing

Av-1 (Figure 5-6). It is essential that, while the parallel contribution of the 1+Cl channel
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was overestimated in previous numerical estimation [41,86], the quantum interference
between the 0°(IIT) and 0'(IV) states included in the this calculation, contributes to the

norm of the 0"(III) state destructively, and to that of the 0"(IV) state constructively.
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0.6
0.4
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coefficients
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1
h

6.0

Internuclear distance/ bohr

Figure 5-6: (a) Norms of the state amplitudes of the 0°(IIT) and 0'(IV) states and (b) phase difference

between these states at 250 nm. Green vertical lines indicate the internuclear distance at Av-1.

5.3.3 Perturbation analysis of the non-adiabatic interaction

By treating the non-adiabatic interaction between the 0'(II) and 0°(IV) states as
time-dependent perturbation, the first-order perturbation coefficient Ky of the adiabatic

electronic 0'(I1I) state in the asymptotic limit can be written as
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KIII = }EE<¢111(R(t))|Z/J(t)>
. i ! !
= limexp[~— [,y (R())3d ey, (1)
e (5-13)
= exp[- hj‘; Ey (R(2))dt ey, (0)

_J:C R(t)guuv (R(t))exp[_ éj; EIV (R(tl))dt, - %Jjﬁ Elu(R(t,))dt,]dtclv (0)

Following the treatment by Miller and George [89], the integration of the above
second term can be evaluated with the stationary phase approximation, then expressed as
a proportional constant 4 times the integrand at the time #, at which the above phase
factor is the least varying, (d/df)(E}, — E};) =0, and also the magnitude of the integrand
Rgﬂuv is the most dominant [89]. Since the NACT gyi1v has a local maximum and the
PECs of the 0'(III,IV) states have the closest point at the avoided crossing Av-1, the two
conditions of the stationary phase are satisfied when R is at Av-1. The above proportional
constant 4 is positive and given by the asymptotic form of the Airy function as in
equation (3.26) in [89]. Therefore, equation (5-13) is given as

Ky = exp[—% [} En(R()dte,,(0)

: i i (5-14)
= AR() g (R()XPL= [ Eyy (ROME = [ Ey (RN (0).

Similarly, the first-order perturbation coefficient Ky of the electronic 0" (IV) state

in the asymptotic limit can be written as
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Ky, = exp[- %j: Ey (R(2))dt]ey, (0)

. i i e (5-15)
+ AR(ty) g1y (R(to))exp[—%ﬁ E (R(¢))dt - Eﬁo E (R(1))dt]c,, (0).

It is safe to proceed without taking care of the normalization of these coefficients
K, Ky, since this formulation is intended to clarify the characteristics of the quantum
interference in the 0'(III,IV) states. Although the mixing of the two adiabatic states was
not apparent from the coupled equations (5-9), (5-10), and (5-11), equations (5-14) and
(5-15) clarify Kypv are expressed in terms of the superposition of the two adiabatic
electronic states with the perturbative treatment. The norms of these Kij, Kjv for
evaluating the branching rations give rise to not only the incoherent terms which have
been evaluated in previous studies [86], but also the coherent term, which represents the

quantum interference between the 0'(III) and 0" (IV) states, as

2 .
|K111| = CIII(O)2 + AzR(to)ngI,IV (R(to))z Crv (0)2

B AR(tO)gHLIV (R(tO))CHI(O)CIV (0) COS[I / hj:() (EIV - EIII)dt] ’ (5_ I 6)

K| = e (00 + A2R(1,)? gy (R(1,)) ¢ (0)

+ AR(to )gm,{v (R(t)c(0)ey, (0) COS[I/hj;O (Ey - EHI)dt], (5-17)

The repulsive potential energy curves of the 0'(IILIV) states ensure that the
velocity R is positive when passing the avoided crossing Av-1. The remaining
coefficients g,y (R(%)))cy (0)cyy, (0) are all positive, since the transition dipole moments
to the 0"(I11,IV) states are both positive, and under the phase convention in this study, the

resulting NACT between the 0"(III) and 0'(IV) states is positive at the avoided crossing
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Av-1 (Figure 5-1). The common phase factor appearing in the coherent terms of
equations (5-16) and (5-17) is calculated from the phase difference between the 0'(III)
and 0'(IV) states at the avoided crossing Av-1 and is close to 2m, as Figure 5-6 shows.
Hence, the quantum interference term for the 0'(IIl) state shows destructive behavior,
while the one for the 0'(IV) state shows constructive behavior. Note that the integrand of
the quantum interference term depends on the internuclear distance R(¢) and the initial
internuclear distance R(=0) depends on the excitation energy, thus the phase difference
between the 0'(II) and 0'(IV) states depends on the excitation energy.

The expressions of equations (5-16) and (5-17) indicate that the characteristics of the
quantum interference terms are independent of the phase convention for the electronic
wave functions. If the phase of the electronic wave function of the 0'(III) state is reversed,
the signs of the initial coefficient c(+=0) and thus of the NACT g v(R(t)) are
simultaneously reversed, but the overall sign in the interference term remains the same.
In this way, the phases of the transition dipole moments and the NACTs must be
calculated with full care, so that the continuity of the electronic wave function is kept
consistent. Contrary to the previous suggestion [83], the comparable magnitudes of the
theoretically predicted transition dipole moments to the 0'(III,IV) states turn out to be
essential, because if either transition dipole moment is negligible, the quantum

interference effect would be negligible.
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5.3.4 Semi-classical treatment

The nonadiabatic dynamics of the 0 (IILIV) states were further investigated using
analytical scattering matrix for Landau-Zener type potential [7,90]. The adiabatic
representation of these electronic states 0'(IIL,IV) is transformed to the diabatic

representation ¢, by transformation angle %,
| ") > cost? —sin}
| @, > |sin®?  cos®?

By convention [2], the phases of these electronic states are fixed so as the

0*(IV))

0* (1)) | (5-18)

transformation angle ¢ would be positive. The amplitudes at the turning point in
adiabatic representation X, (in diabatic representation X ,) are connected to the
amplitudes at the dissociation limit in adiabatic representation 4, (+o0) (in diabatic

representation 4, , (+%)) with reduced scattering matrix as follows [7,10,15],
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A_(+0) ~ exp(ifk_dR) 0 me—iqﬁ _e ™
(A+(+°°)) o

explifkdR) || e NI
) exp(i fk_a’R + %’) 0 ( X_) (5-19)
0 exp(i f k.dR + %) X,
A(+)\ _ [exp(ifkdR) 0 ™ 1= i
(Az(+°°>) i 0 exp(iszdm](mew e ]
e [dR + %’) 0 | ( X ) (5-20)
0 exp(i f k,dR + %) X,

Here, subscripts +/ — represent the higher and lower adiabatic states, namely the

0°(IV), 0°(Ill) states, respectively, k.,k , in the action integrals are the respective

wavenumbers, defined as 7ik(R) = /2u(E - V(R)), and the Stokes phase ¢ is analytically

given as ¢ =90 —-0Ind +argl'(d) + %, where the parameter O is given in the reference

[7,90]. The normalized transition dipole moments in the corresponding representation

were used, as explained below equation (5-12), as the amplitudes at the turning point.

The branching ratio and the anisotropy parameter in the semi-classical method are

shown in Figure 5-7 and Figure 5-8, respectively. Although they are in overall agreement

with the experiment, there was a slight difference between the adiabatic and diabatic

representations. In the adiabatic representation, the norms at the dissociation limit are

given as,
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2 X X
|A111| = (l_p)X1211 +pXI2V -2X Xy pd-p COSUIJ; ky,dR _j:ﬂkde +¢], (5-21)

4| = (1= P) X2 + X2 +2X,, Xy [ p(1= p) cos] Jjw k. dR - ﬁ: e dR+gl. (5-22)
The third terms in equations (5-21) and (5-22) describe the contributions of the
quantum interference, where their phase parts consist of the action integral and the Stokes
phase. Although the Stokes phases in the adiabatic and diabatic representations were
consistent, the action integral part had a slight difference between the two representations
(Figure 5-9). Hence, the difference of the adiabatic and diabatic representations is due to
the difference between the adiabatic and diabatic potential energy curves. The author also
notes that the semi-classical phase differences in equations (5-21) and (5-22) are
approximately equal to 2r. Therefore the quantum interference term in equations (5-21)

and (5-22) has the effects on the norm of the two states at its largest.
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Figure 5-7: Branching Ratios [I+Cl)/[I*+Cl] (blue), [I+CI]/[I+C1*] (red). Dash-dot lines: Wave packet

calculation with the interference effect. Thin solid lines: Semi-classical calculation in diabatic form. Thin
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dashed lines: Semi-classical calculation in adiabatic form. Thick solid lines: Classical path method in

diabatic form. Thick dashed lines: Classical path method in adiabatic form. Cross marker: Experiment by

Diamantopoulou et al. [86]
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Figure 5-8: Anisotropy parameter S of the [+Cl* channel (blue) and the I+Cl channel (red). Dots: Wave
packet calculation without the interference effect. Dash-dot lines: Wave packet calculation with the
interference effect. Thin solid lines: Semi-classical calculation in diabatic form. Thin dashed lines: Semi-
classical calculation in adiabatic form. Thick solid lines: Classical path method in diabatic form. Thick
dashed lines: Classical path method in adiabatic form. Cross marker: Experiment by Diamantopoulou et al.

[86].
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Figure 5-9: The semi-classical phases in adiabatic representation (black) and diabatic representation (red).
Dashed lines: The Stokes phases ¢. Thin lines: The phases of the action integral. Thick lines: The total

phases.

5.4 Conclusions

The author studied the photodissociation process of ICI in the second absorption
band. The branching ratios and the anisotropy parameters were calculated including the
quantum interference effect between the 0'(III) and 0'(IV) states and the results are in
better agreement with the experiments [83,86] than before. The comparable magnitudes
of the transition dipole moments to the 0'(IIT) and 0"(IV) states are proved here to be
important factors for the strong quantum interference effect. The weak excitation energy
dependence of the quantum interference is one of the interesting features of this system.
The author also discussed how the signs of the transition dipole moments and non-

adiabatic coupling terms and the phase difference among the states affect the
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characteristics of the quantum interference. Finally the author notes that the quantum
interference effect may play an important role in a photodissociation process if the
absorption spectra of the excited states overlap and non-adiabatic interactions among

those states are non-negligible.
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Chapter 6
General Conclusions

First, the theoretical transition dipole moments are essential information in the
simulation of photodissociation process. Therefore, the author examined the theoretical
transition dipole moment of Cl, molecule with various methods, to examine the accuracy.
Although the calculation in the linear response treatment exhibited stability, the transition
dipole moment in length form with MRSCI calculation showed better agreement with the
experiment. Hence, the author employed the SASCF-MRSCI method for the transition
dipole moment of ICIl molecule.

Second, the product branching ratio, the anisotropy parameter f, and the first-rank
angular momentum parameter Im[a;"(//, 1)] in the first absorption band were calculated.
For the product fraction and the 8 parameter, the author obtained the result supporting the
experimental analysis by Samartzis and Kitsopoulos [66], and assigned that the obscure
state is the z(1) state. For the first-rank angular momentum parameter Im[a;'"(//, L )], the
theoretical results showed quantitative agreement with phase part of the experimental
data by Rakitzis et al. [23]. The disagreement with the simulation of Alexander and

Rakitzis [68] is likely to be associated with the lack of the Stokes phase in their semi-
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classical calculation. The non-adiabatic transition between the X(0") and 0"(II) states was
found to be of an Landau-Zener type without apparent avoided crossing between the two
potential energy curves. Hence, the information of the potential energies alone is
insufficient for calculating the non-adiabatic transition probabilities.

Third, the branching ratios and the anisotropy parameters in the second absorption
band were calculated including the quantum interference effect between the 0"(III) and
0°(IV) states and the results are in better agreement with the experiments than before.
The comparable magnitudes of the transition dipole moments to the 0"(III) and 0°(IV)
states are proved here to be an important factor for the strong quantum interference effect.
The calculation demonstrated how the signs of the transition dipole moments and non-
adiabatic coupling terms and the phase difference among the states affect the
characteristics of the quantum interference. Finally the author notes that the quantum
interference effect may play an important role in a photodissociation process if the
absorption spectra of the excited states overlap and non-adiabatic interactions among
those states are non-negligible.

Finally, the ab initio calculations have shown overall agreement with the
experiments and it has been demonstrated that the accuracy of the calculations is
sufficient for evaluating the matter wave phase of the photofragments. The molecular
dynamics calculations have been carried out with various methods, namely, the quantum

mechanical wavepacket method, the classical path method, and the semi-classical method.
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Among the three methods, the classical path method and the semi-classical method are
applicable to large systems. In this study, the author clarified the importance of the phase
consistency of the electronic state calculation and the necessity of calculating the non-
adiabatic coupling terms for investigating the existence of avoided crossings. These
findings hold for the molecular dynamics simulations not only for diatomic systems, but
also for large systems. The quantum interference effects, which were studied in this thesis,
are expected to play significant role in the molecular dynamics calculations of large

systems.

6-93



References

[1] M. Born, R. Oppenheimer, Ann. Phys. 389 (1927) 457.

[2] F.T. Smith, Phys. Rev. 179 (1969) 111.

[3] P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford University Press,
Oxford, 1981.

[4] R.N. Zare, D.R. Herschbach, Proc. IEEE 51 (1963) 173.

[5] G.G. Balint-Kurti, R.N. Dixon, C.C. Marston, J. Chem. Soc. Faraday Trans. 86
(1990) 1741.

[6] G.G. Balint-kurti, M. Shapiro, Chem. Phys. 61 (1981) 137.

[7] S. Child, Molecular Collision Theory, Dover, Mineola, 1974.

(8] R.N. Zare, Mol. Photochem. 4 (1972) 1.

[9] E.E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases,
Clarendon Press, Oxford, 1974.

[10] H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theories and
Applications, World Scientific, Singapore, 2012.

[11] H. Lefebvre-Brion, R.W. Field, Perturbations in the Spectra of Diatomic
Molecules, Academic Press, New York, 1986.

[12]  L.D. Landau, Phys Z Sowjetunion 1 (1932) 285.

[13] C. Zener, Proc. R. Soc. Lond. Ser. A 137 (1932) 696.

[14]  E.C.G. Stiickelberg, Helv Phys ActaBasel 5 (1932) 369.

94



[15] M.S. Child, Semiclassical Methods in Molecular Scattering and Spectroscopy,
Springer, New York, 1980.

[16] M.S. Child, R.B. Bernstein, J. Chem. Phys. 59 (1973) 5916.

[17]  D.V.Kupriyanov, O.S. Vasyutinskii, Chem. Phys. 171 (1993) 25.

[18] M.H. Alexander, B. Pouilly, T. Duhoo, J. Chem. Phys. 99 (1993) 1752.

[19]  T.P. Rakitzis, S.A. Kandel, R.N. Zare, J. Chem. Phys. 107 (1997) 9382.

[20]  T.P. Rakitzis, S.A. Kandel, T. Lev-On, R.N. Zare, J. Chem. Phys. 107 (1997)
9392.

[21]  T.P. Rakitzis, S.A. Kandel, A.J. Alexander, Z.H. Kim, R.N. Zare, Science 281
(1998) 1346.

[22]  A.S. Bracker, E.R. Wouters, A.G. Suits, O.S. Vasyutinskii, J. Chem. Phys. 110
(1999) 6749.

[23]  T.P. Rakitzis, S.A. Kandel, A.J. Alexander, Z.H. Kim, R.N. Zare, J. Chem. Phys.
110 (1999) 3351.

[24]  A.J. Alexander, R.N. Zare, Acc. Chem. Res. 33 (2000) 199.

[25]  A.J. Alexander, Z.H. Kim, S.A. Kandel, R.N. Zare, T.P. Rakitzis, Y. Asano, S.
Yabushita, J. Chem. Phys. 113 (2000) 9022.

[26] K.O. Korovin, B.V. Picheyev, O.S. Vasyutinskii, H. Valipour, D. Zimmermann, J.

Chem. Phys. 112 (2000) 2059.

95



[27]  T.P. Rakitzis, P.C. Samartzis, R.L. Toomes, T.N. Kitsopoulos, A. Brown, G.G.
Balint-Kurti, O.S. Vasyutinskii, J.A. Beswick, Science 300 (2003) 1936.

[28]  A.J. Alexander, J. Chem. Phys. 118 (2003) 6234.

[29] M.N.R. Ashfold, N.H. Nahler, A.J. Orr-Ewing, O.P.J. Vieuxmaire, R.L. Toomes,
T.N. Kitsopoulos, I.A. Garcia, D.A. Chestakov, S.-M. Wu, D.H. Parker, Phys. Chem.
Chem. Phys. 8 (2006) 26.

[30] M.L. Costen, G.E. Hall, Phys. Chem. Chem. Phys. 9 (2006) 272.

[31]  U. Fano, Rev. Mod. Phys. 29 (1957) 74.

[32]  W. Happer, Rev. Mod. Phys. 44 (1972) 169.

[33] R.N. Dixon, J. Chem. Phys. 85 (1986) 1866.

[34] G.E. Hall, P.L. Houston, Annu. Rev. Phys. Chem. 40 (1989) 375.

[35] A.J. Orr-Ewing, R.N. Zare, Annu. Rev. Phys. Chem. 45 (1994) 315.

[36] L.D.A. Siebbeles, M. Glass-Maujean, O.S. Vasyutinskii, J.A. Beswick, O.
Roncero, J. Chem. Phys. 100 (1994) 3610.

[37]  T.P. Rakitzis, R.N. Zare, J. Chem. Phys. 110 (1999) 3341.

[38] Y. Mo, T. Suzuki, J. Chem. Phys. 112 (2000) 3463.

[39]  A.G. Suits, O.S. Vasyutinskii, Chem. Rev. 108 (2008) 3706.

[40] D.J. Seery, D. Britton, J. Phys. Chem. 68 (1964) 2263.

[41] K. Tonokura, Y. Matsumi, M. Kawasaki, H.L. Kim, S. Yabushita, S. Fujimura, K.

Saito, J. Chem. Phys. 99 (1993) 3461.

96



[42]  S. Yabushita, J. Mol. Struct. THEOCHEM 461-462 (1999) 523.

[43] P.W. Langhoff, S.T. Epstein, M. Karplus, Rev. Mod. Phys. 44 (1972) 602.

[44] K. Sasagane, F. Aiga, R. Itoh, J. Chem. Phys. 99 (1993) 3738.

[45]  O. Christiansen, P. Jorgensen, C. Hittig, Int. J. Quantum Chem. 68 (1998) 1.

[46] E.F. Hayes, R.G. Parr, J. Chem. Phys. 43 (1965) 1831.

[47]  P.G. Szalay, R.J. Bartlett, J. Chem. Phys. 103 (1995) 3600.

[48]  R. Ahlrichs, P. Scharf, C. Ehrhardt, J. Chem. Phys. 82 (1985) 890.

[49] R.J. Gdanitz, R. Ahlrichs, Chem. Phys. Lett. 143 (1988) 413.

[50]  P.G. Szalay, R.J. Bartlett, Chem. Phys. Lett. 214 (1993) 481.

[51]  R. Ahlrichs, Comput. Phys. Commun. 17 (1979) 31.

[52] R. Ahlrichs, P. Scharf, in:, K.P. Lawley (Ed.), Adv. Chem. Phys., John Wiley &
Sons, Inc., Hoboken, 2007, pp. 501-537.

[53] R.J. Bartlett, Recent Advances in Coupled-Cluster Methods, World Scientific,
Singapore, 1997.

[54] R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and
Physics, John Wiley & Sons, Inc., Hoboken, 1988.

[55]  G. Breit, H.A. Bethe, Phys. Rev. 93 (1954) 888.

[56] M. Abramowitz, [.A. Stegun, Handbook of Mathematical Functions: With
Formulas, Graphs, and Mathematical Tables, Dover, London, 1965.

[57] V.V.Kuznetsov, O.S. Vasyutinskii, J. Chem. Phys. 123 (2005) 034307.

97



[58] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis: An Introduction to
the General Theory of Infinite Processes and of Analytic Functions; with an Account of
the Principal Transcendental Functions, Cambridge University Press, Cambridge, 1963.
[59] H. Nakamura, Int. Rev. Phys. Chem. 10 (1991) 123.

[60] H.Nakamura, J. Phys. Soc. Jpn. 41 (1986) 413.

[61] K. Raghavachari, J.A. Pople, Int. J. Quantum Chem. 20 (1981) 1067.

[62]  P.-O. Nerbrant, B. Roos, A.J. Sadlej, Int. J. Quantum Chem. 15 (1979) 135.

[63] G.H.F. Diercksen, B.O. Roos, A.J. Sadlej, Chem. Phys. 59 (1981) 29.

[64] H. Lischka, R. Shepard, R.M. Pitzer, 1. Shavitt, M. Dallos, T. Miiller, P.G. Szalay,
M. Seth, G.S. Kedziora, S. Yabushita, Z. Zhang, Phys. Chem. Chem. Phys. 3 (2001) 664.
[65] R.F. Barrow, D.A. Long, D.J. Millen, J.A. Coxon, in:, Mol. Spectrosc., The
Chemical Society, London, 1972.

[66] P.C.Samartzis, T.N. Kitsopoulos, J. Chem. Phys. 133 (2010) 014301.

[67] M.S. de Vries, N.J.A. van Veen, M. Hutchinson, A.E. de Vries, Chem. Phys. 51
(1980) 159.

[68] A.J. Alexander, T.P. Rakitzis, Mol. Phys. 103 (2005) 1665.

[69] S. Ohnishi, Theoretical Study on the Non-Adiabatic Photodissociation Processes
of ICl, Master’s Thesis, Keio University, 2007.

[70] L. Fernandez Pacios, P.A. Christiansen, J. Chem. Phys. 82 (1985) 2664.

98



[71] L.A. LaJohn, P.A. Christiansen, R.B. Ross, T. Atashroo, W.C. Ermler, J. Chem.
Phys. 87 (1987) 2812.

[72] K.A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 119 (2003)
11113.

[73] D.E. Woon, T.H. Dunning, J. Chem. Phys. 98 (1993) 1358.

[74]  A. Pardo, J.J. Camacho, J.M.L. Poyato, J. Chem. Soc. Faraday Trans. 87 (1991)
2529.

[75] R.McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, New
York, 1989.

[76] S. Yabushita, Z. Zhang, R.M. Pitzer, J. Phys. Chem. A 103 (1999) 5791.

[77]  D. Kosloff, R. Kosloff, J. Comput. Phys. 52 (1983) 35.

[78]  H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81 (1984) 3967.

[79]  R. Kosloff, J. Phys. Chem. 92 (1988) 2087.

[80] G.G. Balint-Kurti, A.J. Orr-Ewing, J.A. Beswick, A. Brown, O.S. Vasyutinskii, J.
Chem. Phys. 116 (2002) 10760.

[81] R.D. Gordon, K.K. Innes, J. Chem. Phys. 71 (1979) 2824.

[82] M. Siese, F. Bdssmann, E. Tiemann, Chem. Phys. 99 (1985) 467.

[83] L.J. Rogers, M.N.R. Ashfold, Y. Matsumi, M. Kawasaki, B.J. Whitaker, Chem.
Phys. Lett. 258 (1996) 159.

[84] K.-W.Jung, T.S. Ahmadi, M.A. El-Sayed, J. Phys. Chem. A 101 (1997) 6562.

99



[85] M. Cheng, Z. Yu, X. Xu, D. Yu, Y. Du, Q. Zhu, Sci. China Chem. 55 (2012)
1148.

[86]  N. Diamantopoulou, A. Kartakoulis, P. Glodic, T.N. Kitsopoulos, P.C. Samartzis,
J. Chem. Phys. 134 (2011) 194314.

[87] S. Yabushita, K. Morokuma, Chem. Phys. Lett. 175 (1990) 518.

[88] W. England, L.S. Salmon, K. Ruedenberg, in:, Mol. Orbitals, Springer Berlin
Heidelberg, Berlin, 1971, pp. 31-123.

[89] W.H. Miller, T.F. George, J. Chem. Phys. 56 (1972) 5637.

[90]  C. Zhu, H. Nakamura, J. Chem. Phys. 102 (1995) 7448.

100



