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（内容の要旨） 
 
	
 量子論的効果が顕著な系にあって，その化学反応を定量的に予測することはいまでも困難

である．特に，非断熱相互作用が重要になるとき，量子効果がその結果に顕著に現われる．

筆者は，低励起状態において多くの非断熱相互作用の存在が分かっている ICl分子に焦点を
当て，その光解離過程において量子論的効果が及ぼす影響の詳細を理論的に解析した． 
	
 第一章では，非断熱相互作用に関する基礎事項とそれが光解離過程に及ぼす影響ついて説

明した．また，非断熱遷移の理論計算の現状および問題をまとめ，本論文の目的と背景を述

べた． 
	
 第二章では，ICl分子の低励起状態，遷移双極子モーメントの計算に用いた線形応答理論，
光解離生成物の角運動量分極が内包する量子論的情報，非断熱遷移の半古典論的取り扱い，

のそれぞれについて説明した． 
	
 第三章では，遷移双極子モーメントの定量性を検討するため，ICl分子よりもスピン軌道相
互作用の弱いCl2分子について，電子相関を異なるレベルで取り入れた計算方法を用いて
length-formの遷移双極子モーメントと線形応答理論による遷移双極子モーメントの比較と検
討を行った．遷移双極子モーメントが，計算に用いる一電子軌道に顕著に依存することを明

らかにした．また，length-formの遷移双極子モーメントの有効性について述べた． 
	
 第四章では，ICl分子の第１吸収帯の光解離過程について議論した．解離生成物の角運動量
分極，解離方向異方性，生成物分岐比を，波束伝搬法を用いて計算し，実験結果との比較検

討を行った．短波長領域においては 1(II)状態への光励起が支配的になるため，解離方向の異
方性には垂直成分が強くなることを明らかにした．X(0+)状態と 0+(II)状態間の非断熱遷移が，
顕わな回避交差を持たない状態間の非断熱遷移であることを明らかにした．非断熱遷移確率

を計算するためにはポテンシャルエネルギーの情報だけでは不十分であることを指摘した． 
	
 第五章では，ICl分子の第２吸収帯の光解離過程について議論した．解離方向異方性と生成
物分岐比について，波束伝搬法，半古典論, 古典軌跡法の３種類の方法で計算し，実験結果と
の比較検討を行った．0+(III)状態と 0+(IV)状態の間の量子干渉効果によって， I+Clチャネル
の平行成分が弱められることを明らかにした．基底状態X(0+)からの２電子励起配置を主配置
とする 0+(IV)状態が，0+(III)状態と同程度の光吸収強度を持つ機構について議論した．以上を
踏まえて，同程度の吸収強度と励起エネルギーを持つ状態間で非断熱遷移が起きる場合にお

いて量子干渉効果が無視できないことを明らかにし，量子干渉効果を計算するためには電子

状態の位相の情報を保持することの重要性について指摘した．ポテンシャルエネルギー曲線

の形状から，この量子干渉効果の特徴を考察した．また，種々の動力学計算方法について，

それぞれの問題点について議論した． 
	
 第六章では，本論文の統括を行い，量子干渉効果が影響しうる場合について議論した． 
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Chapter 1  
General Introduction 

In this chapter, the author explains the scope and the subject of this thesis. Firstly, 

the importance of the non-adiabatic transition theory is explained in 1.1. Then the 

fundamentals of non-adiabatic interactions and their effects on photodissociation process 

are described in 1.2. Lastly, the concrete subject of this thesis is defined in 1.3. 

1.1 Quantum effects in chemical reaction 

The Born-Oppenheimer approximation [1] relies on the fact that the rest mass even 

of the lightest proton mp is significantly heavier than that of electron 1836ep ≈mm , and 

the motion of electrons could follow the slower movement of nuclei. This approximation 

has been proven to be satisfied in predicting a chemical reaction within the region, where 

the adiabatic electronic state is not degenerate with other states. However, in chemical 

reactions of large systems or in highly excited electronic states, this approximation is 

likely to break down and the non-adiabatic interaction must be considered. The author 

would like to quote Felix T. Smith [2], 
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 “I believe that calculations based on a single-potential energy surface will be of 

very limited usefulness in the real world of chemically reacting systems, and that 

electronic transitions between a multiplicity of states are likely to play a very large role 

in such events. Even where adiabatic calculations with a single potential surface are 

valid, it is desirable to demonstrate their validity, and this can only be done in the 

framework of a theory which takes proper account of all the couplings between states 

that may exist, so that they can be evaluated and proved to be small. If these coupling are 

strong, quantum effects associated with such nonadiabatic behavior may prove to be one 

of the most important features of many chemical reaction processes. Probably such 

quantum effects will turn out to be more important than the quantum effects associated 

with barrier leakage and vibrational zero point energy that are often discussed in 

connection with the movement of systems over adiabatic surfaces.” 

 Although properties of single adiabatic electronic state can often be chemically 

interpreted with the help of theoretical quantum chemistry, quantum effect in the 

chemical process may make it difficult to describe the state in a single electronic state. 

The rapid development and application to large systems of computational chemistry has 

led to an urgent need for the establishment of the methodology for the treatment of 

quantum effect. 

 In this dissertation, the author focused on the photodissociation process of ICl 

molecule, in which numerous non-adiabatic transitions among the low-lying excited 



 1-7 

states exist, and analyzed theoretically the quantum effects in its photodissociation 

process.  

1.2 Photodissociation process of diatomic molecules 

1.2.1 External field as an perturbation 

 

Figure 1-1: Figure describing the laboratory frame (black), the center-of-mass frame (green), and the 

molecular frame (red).  

In order to explicitly describe how the photodissociation process is treated, this 

section explains the theoretical framework, which has been applied to the calculation in 

this thesis. We consider two eigenstates ΨI and ΨF of the time-independent Hamiltonian 

)0(Ĥ  of the center-of-mass frame molecular system, with the center-of-mass position 

vector defined with respect to the origin of the laboratory frame as R


. Neglecting the 

effect of the center-of-mass momentum, P


, in the center-of-mass frame system, the two 
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wave functions in the laboratory frame can be written as, I
RPIh Ψ⋅− 

/i2/3 e  and 

F
RPFh Ψ⋅− 

/i2/3 e , where h denotes Planck’s constant with the normalization factor of the 

plane waves describing the translational motion being h-3/2 [3], and ΨI and ΨF denote the 

wave functions of the internal degrees of freedom in the center-of-mass frame at t = 0, 

ΨI(t = 0), ΨF(t = 0), respectively. With the laboratory frame time-dependent perturbation 

)(ˆ )1( tH  treated as a first-order perturbation to the initial wave function in the state I with 

the translational momentum IP


, I
RPIh Ψ⋅− 

/i2/3 e , the amplitude aFI(t) of the wave function 

in the final state )(e /i2/3 th F
RPF Ψ⋅− 


 is given as, 

∫ ∫ ΨΨ−= ⋅⋅t

I
RP

F
RP

FIFI tRttHt
h

PPta IF

0

/i)1(/i
4 'dd)'(e)'(ˆ)'(ei2π),,(









. In the classical electrodynamics, 

if the plane polarized light with wavelength λ, propagating along the laboratory X axis in 

the vacuum with the field vector in the +Z direction, ))π2sin()( 0 tXEetE Z ωλ −=


, is 

treated as the time-dependent perturbation to the laboratory frame molecular system, the 

transition amplitude with the application of the dipole approximation is given as follows, 

[ ] .'d)(e)(e)'(ˆ)'(
2

'dde)'π2sin(e)'(ˆ)'(
i2π

),,(

0

'i'i0

0

/i/i
4
0

∫

∫ ∫

+−−−−ΨΨ−=

−ΨΨ−=

−

⋅⋅−

t

XIF
t

XIF
t

IZF

t RPRP
IZFFIFI

tehPPδehPPδtt
E

tRtXtt
h
E

PPta IF

λλµ

ωλµ

ωω 











 

(1-1) 

 Here, Zµ̂  denotes the Z-component of the dipole operator. The first term in the 

square brackets is for the case the associated translational momentum is increased by 

λXeh
 , then λXIF ehPP 

+= , hence corresponds to the light absorption of the molecule. 

On the contrary, the second term is for the case the momentum is decreased by λXeh
 , 
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then λXIF ehPP 
−= , hence corresponds to the light emission of the molecule. 

Therefore, the transition amplitude for the light absorption and the total photoabsorption 

cross-section is given as, 

,'d')(iexpˆ
2

)(
0

0 ∫ ⎥⎦

⎤
⎢⎣

⎡ −−ΨΨ−=
t

IFIZFFI ttEEEta ωµ 


 (1-2) 

.ˆd)(iexpˆRe)(
0

0

abs
⎥
⎦

⎤
⎢
⎣

⎡
ΨΨ⋅⎟

⎠

⎞
⎜
⎝

⎛ −+⋅ΨΨ= ∫
∞

IZFFIFZI ttEE
c

µωµ
ε
ω

ωσ 


 (1-3) 

Here, ε0 and c denote the vacuum permittivity and the speed of light, respectively. 

Strictly, EF and EI are the energies of the final and initial states, respectively, hence their 

energy difference includes the one due to the change of the translational kinetic energy. 

The contribution of the translational momentum causes the broadening of the cross-

section, namely the Doppler broadening [4]. Here, the translational momentum is 

considered to be narrowly-distributed and the Doppler effect on the parent molecule is 

neglected. Therefore, EF and EI are taken as the eigenvalues of the ΨF and ΨI, 

respectively. Applying the Born-Oppenheimer approximation, which hitherto was not 

considered, the total wave function ΨF is expanded in terms of nuclear wave function 

)(, RnF


χ  for relative motions, which includes the phases of the matter waves, with 

adiabatic electronic states );( Rrn


ψ  as, ∑=Ψ
n nnFF RrR );()(,


ψχ . Here, r  and R


 

denote the set of position vectors of electrons and the relative position vectors of the 

nuclei, respectively. If the initial state is in the ground adiabatic state X, XψχII =Ψ , 

and the electronic photoexcitation is considered, InZnFIZnnF χµχµψχ X~,~,~~, ˆ =Ψ , 
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where X~,nZµ  denotes the Z-component of the electronic transition dipole moment from 

the ground adiabatic state X to the excited adiabatic state n~ , which is the Franck-Condon 

electronic state, namely, the electronic state in the molecular region, the absorption cross-

section for the photodissociation process is given as [5], 

( ) .d)(/iexpRe

d)(expRe)(

~ 0
~~

0

~ 0 X~,~,~,~X,
0

abs

∑ ∫

∑ ∫

⎥⎦
⎤

⎢⎣
⎡=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −+=

∞

∞

n
nn

n
InZnFnFFInZI

ttEt
c

ttEEi
c

ξξ
ε
ω

χµχχωµχ
ε
ω

ωσ







 

(1-4

) 

 E denotes the sum of the initial energy and the photoexcitation energy, 

ω+= IEE , and n~ξ  denotes the initial Franck-Condon wave packet of the excited 

adiabatic state n~ , InZnn χµψξ X~,~~ = , which propagates in time t as 

n
tHi

n t ~
/ˆ

~
)0(

e)( ξξ −= . It should be noted that if the Hamiltonian )0(Ĥ  includes the non-

adiabatic interaction, the Franck-Condon wave packet can be expressed as superposition 

of multiple adiabatic electronic states, ( )∑= n nnnn tat ψξ ,~~ )( , and n~  only denotes the 

initial electronic state. 

 If the parent molecule is considered to be randomly oriented with its total angular 

momentum quantum number being JI, the cross-section for the parent molecule is 

averaged over the states with those component quantum number MI. In this way, the 

photoproduct differential cross-section can be expressed in terms of the scattering T 

matrix elements 
II MJIZ

k
F ,,

)( ˆ ΨΨ− µ


, with k


 being the recoil vector of the 

photofragments, and the anisotropy parameter β, as follows [5–7], 
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).(cos1
)12(

π

ˆ
)12(

π),(

2

,

2

~
,,X~,

)(
,~,

0

2

,,
)(

0

θβ

χµχ
ε

ω

µ
ε

ω
ωσ

P
Jc

Jc
k

nM n
MJInZ

k
nnF

I

M
MJIZ

k
F

I

I

II

I

II

+∝

+
=

ΨΨ
+

=

∑∑

∑

−

−





 (1-5) 

 Here, P2(cosθ) is the Legendre polynomial for cosθ, 2/)1cos3()(cos 2
2 −= θθP , 

where θ is the angle between the recoil vector k


 and the field vector Ze
 . In a classical 

treatment, the angle between the initial molecular axis and the recoiling vector, γ, can be 

evaluated by the half-collision trajectory calculation on a single potential, V(R), from the 

classical turning point, RT, to the dissociation limit, as follows [4,8], 

( ) ( ) .d11
22 2

2/1

22
T

22

T

22

T R
R

RR
JRVRVJ

R
II

−
∞

∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

µµ
γ


 (1-6) 

µ denotes the reduced mass of the diatomic molecule. If the rotational motion of 

the parent diatomic molecule is not highly excited, the linear momentum in the rotating 

direction e/ RJI , where Re is the equilibrium internuclear distance, is negligible 

compared to the recoiling momentum k

 , kRJI


 <<e/ , the so-called axial recoil 

approximation, which considers the molecular axis of the parent molecule, R


, coincides 

with the recoil vector k


, γ = 0, is valid [4]. 
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Figure 1-2: Figure indicating the transition dipole moment in molecular frame (red box) and laboratory 

frame. 

Transforming the electronic dipole operator from the laboratory frame to the molecular 

frame, RRZ θµθµµ sinˆcosˆˆ // ⊥+= , where θR being the angle between the molecular axis 

R


 and the field vector Ze
  as shown in Figure 1-2, with the application of the axial recoil 

approximation, it is apparent from equation (1-5) that, if only the parallel transition is 

permitted, 0,0 X~,X~//, =≠ ⊥ nn µµ , the corresponding differential cross section of the product 

is given as, θµµθσ 22
//

2
// cosˆˆ)( =∝ Z , and the anisotropy parameter β equals 2, as 

shown in Figure 1-3 (a). On the other hand, if only the perpendicular transition is 

permitted, 0,0 X~//,X~, =≠⊥ nn µµ , the differential cross section is given as, 

θµµθσ 222 sinˆˆ)( ⊥⊥ =∝ Z , and the anisotropy parameter β equals −1, as shown in 

Figure 1-3 (b). The respective selection rules for the parallel and perpendicular transition 

are ΔΩ = 0 and ΔΩ = ±1, where Ω is the molecular axis component of the total 

electronic angular momentum. 
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Figure 1-3: Schematic figure of photoproduct distribution for (a)  a parallel transition and (b) a 

perpendicular transition of diatomic molecule.  

 The partial differential cross-sections of the channel n in the second line of 

equation (1-5) are given in the summation as, 

.
)12(

π),(
'~,~,

)(
,'~,'~X,,,,,X~,

)(
,~,

0
, ∑ −−

+
=

nnM

k
nnFnZMJIMJInZ

k
nnF

I
nn

I

IIIIJc
k


χµχχµχ

ε
ω

ωσ  
(1-7) 

Although, in the absence of the non-adiabatic interaction, only the T matrix elements 

II MJInZ
k
nnF ,,X~,
)(
,~, χµχ


− , whose electronic states in the Franck-Condon region and the 

dissociation limit are the same, n, n ' = n , would take non-zero value, the T matrix 

elements with n, n ' ≠ n  must be taken into account if any non-adiabatic transitions may 

take place during the dissociating process. Hence, the T matrix element of the state n, 

II MJIZ
k
nF ,,
)(

, ˆ ΨΨ− µ


 , is the superposition of the ones originating from all the Franck-

Condon states n~ , and can be written as follows,  

.ˆ
~

,,X~,
)(
,~,,,

)(
, ∑ −− =ΨΨ

n
MJInZ

k
nnFMJIZ

k
nF IIII

χµχµ


 
(1-8) 
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In the dissociation limit, suppose ΩA, ΩB, Ω are the good quantum numbers for the 

electronic states of the two atoms, A and B, and the molecule, and the electronic state n 

correlates to the atomic angular momentum JA and JB, the molecular electronic state 

Ωn,ψ  can then be expanded in terms of the electronic states of the two atoms as, 

∑ −=
A AΩ BABAAAΩΩnΩn ΩΩJΩJc ,,,,,ψ , where 

AΩΩn
c ,, is the expansion coefficients. 

On the other hand, the tensor product of the electronic states of the two atoms in the 

dissociation limit is given as, 

.,, ,,,∑ +
∗

+=
n ΩΩnΩΩΩnBBBAAA BAABA
cΩJΩJ ψ  (1-9) 

The summation over the molecular state n is performed selectively from the group of 

states, correlating to the two atomic states in the lhs of equation (1-9), which are (2JA+1)

×(2JB+1) in total. Similarly, the T matrix element for the corresponding atomic states is 

given as, ∑ ΨΨ=ΨΨ −∗
ΩΩ+Ω

−

n MJIZ
k
nFnMJIZ

k
ΩJΩJF IIABAIIBBAA

c ,,
)(

,,,,,
)(

,;,; ˆˆ µµ


. This T matrix 

element is considered as the coefficient of the two atoms dissociating with the 

momentum k

 . Let the T matrix element be expressed in terms of its amplitude 

BA ΩΩr ,  

and phase 
BA ΩΩ ,φ . The wave function of the two atoms in the dissociation limit is given as, 

.,,)]i(exp[e
, ,,

i ∑ +⋅=⋅

BA BABABA ΩΩ BBBAAAΩΩΩΩBJAJ
Rk ΩJΩJRkr φψψ



 (1-10) 

This expression elucidates the interpretation of the T matrix element as the amplitude 

BA ΩΩr ,  and phase 
BA ΩΩ ,φ  of the matter wave for each of the corresponding atomic states 

BBBAAA ΩJΩJ ,, . It should be noted that the sum of ΩA and ΩB is Ω, hence ΩA + ΩB 

satisfies the selection rule of the light absorption transition, and especially when the 
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initial molecular electronic state is ΩΙ=0+,  takes non-zero value only for ΩA + ΩB=0,

±1 (Figure 1-4). 

 

Figure 1-4: Schematic figure to explain the selection rule of the angular momenta. 

 Here, we define the molecular frame, whose z-axis is the recoil vector k


 and y-

axis is perpendicular to plane containing the field vector Ze
  (Z-axis in the laboratory 

frame) and the recoil vector k


. The expectation value of the y-component of the atom 

A’s angular momentum AyJ ,
ˆ , which can be expressed in terms of the raising and lowering 

operators i2/)ˆˆ( ,, AA JJ −+ − , for the wave function in equation (1-10) is given as, 
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BA ΩΩr ,
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The summation over ΩB is eliminated in the third line of equation (1-11) due to the 

selection rule of light absorption transition, ΩA + ΩB=0,±1. In the fourth line, the angle 

dependency of the amplitude , which is the amplitude of the product recoiling with 

momentum k

 , has been separated. The amplitudes of the parallel components 

AA
r Ω−Ω ,  

are the ones from the parallel transition 0// ≠µ , hence they are proportional to cosθ and 

the angular dependence can be separated as, θcos,, AAAA ΩΩΩΩ sr −− ∝ . The angular 

dependence of the perpendicular components 
AA

r Ω−+Ω ,1  are separated as, 

θsin,1,1 AAAA ΩΩΩΩ sr −+−+ ∝ . The newly introduced amplitudes 
AA ΩΩs −,  and 

AA ΩΩs −+ ,1  

represent the square root of the probability fraction among the parallel and the 

perpendicular components, respectively, so that the sums of the probability densities of 

the parallel and perpendicular components equal to unity, 

1
2

,1

2

, ==∑∑ −+−
A AAA AA Ω ΩΩΩ ΩΩ ss . 

It is apparent the expectation value AyJ ,
ˆ  maximizes its amplitude 

)2)(1( ββ −+  when β=0, namely, the intensity of the parallel and perpendicular 

transition is equal. This is due to the selection rule of the angular momentum operator 

AyJ ,
ˆ  for the molecular state is ΔΩ =±1, and the electronic state must be some mixed 

state consists of the parallel Ω =0+ and the perpendicular Ω =1 components. Moreover, 

the presence of the phase difference of the parallel and the perpendicular components, 

10,1, =+=−+− −=− ΩΩΩΩΩΩ AAAA
φφφφ  (note that Ω=ΩA+ΩB), indicates that this observable is 

actually reflecting the quantum interference between the matter waves of the parallel and 

BA ΩΩr ,
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the perpendicular components, which is the reminiscent of the Young’s double slit 

experiment (Figure 1-5). The expectation value of the angular momentum AyJ ,
ˆ  is 

actually an expression of the first-rank angular momentum polarization parameter, which 

is further discussed in 2.3. 

 

Figure 1-5: Schematic figure of the interference effect in the Young’s double slit experiment. 

1.2.2 Non-adiabatic transition in dissociation process 

The matrix representation of the molecular frame Hamiltonian of a diatomic 

molecule in the adiabatic electronic basis );(, RrΩn


ψ  is given as [9–11], 
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 Here, Ω denotes the absolute value of the axis component of electronic total 

angular momentum, Vn,Ω(R) is the adiabatic potential energy of the state Ωn,ψ , (R, θ, φ) 

are the ordinary spherical coordinates, zyxl ,,
ˆ  are respectively the molecular frame x,y,z-

components of the total electronic orbital angular momentum. The radial non-adiabatic 

interaction is characterized by the first-order non-adiabatic coupling terms, 

. 2
,

2

,' R
Ωn

Ωn ∂

∂ ψ
ψ  in the last line of equation (1-12) is the second 

-order non-adiabatic coupling terms, which could be expressed in terms of the first-order 

non-adiabatic coupling terms as, ∑−∂

∂
=

∂

∂
k ΩnΩkΩkΩn

ΩnΩnΩn
Ωn gg

R
g

R ,;,,;,'
,;,'

2
,

2

,'

ψ
ψ , where 

the effect of the second term is normally negligible [11]. In order to clarify the feature of 

the radial non-adiabatic interaction, we consider a system consisting of two adiabatic 

states. In this system, the adiabatic states, +ψ  and −ψ , can be converted to diabatic states 

1ϕ  and 2ϕ  with the angle of the transformation matrix being ϑ , so as to diagonalize the 

radial momentum 
R∂
∂

− i , as [2], 

R
g Ωn

ΩnΩnΩn ∂

∂
≡ ,

,',;,'

ψ
ψ
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 The matrix representation of the electronic Hamiltonian in the adiabatic basis is 

diagonal, hence the elements of the electronic Hamiltonian matrix in the diabatic basis 

H11, H22, H12 and conversion angle ϑ  satisfy the following equation, 

⎥
⎦

⎤
⎢
⎣

⎡

−
=→=

−
+=+−

2211

121122
12

2arctan
2
102sin

2
2cosˆ

HH
HHHHH ϑϑϑψψ  (1-15) 

 Substituting (1-15) to (1-14) leads to the relationship of the non-adiabatic 

coupling term and the diabatic basis Hamiltonian elements, 

2
1122

2
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221112

)(4
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−
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∂

+−
∂
∂

=
∂
∂ +

−

ψ
ψ  (1-16) 

 There are two well-known models for non-adiabatic transition: (1) the Landau-

Zener model, which considers the constant diabatic coupling, H12=A, and the linear 

diabatic potentials, H11 = −F1R  and H22 = −F2R , and (2) the Rosen-Zener-Demkov model, 

which considers the constant diabatic potential difference Δ=− 1122 HH  and the 

exponential diabatic coupling, )exp(12 RAH α−= . In the two models, one of the two 

terms of the numerator in equation (1-16) is eliminated. For the Landau-Zener model, the 

non-adiabatic coupling term has the peak value at the crossing points of diabatic 
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potentials, H11 = H22 . For the Rosen-Zener-Demkov model, the peak position is at the 

point, where Δ = 2H12 . 

 

Figure 1-6: Diabatic potential curves (dashed lines) and adiabatic potential curves (solid lines) of the 

Landau-Zener model (left) and the Rosen-Zener-Demkov model (right). ΔE indicates the adiabatic potential 

difference at the point the non-adiabatic coupling term has the peak value. 

 The outgoing semi-classical reduced scattering matrix of the Landau-Zener model, 

is denoted as, 

O =
e−πδ − 1− e−2πδ exp(−iϕ )

1− e−2πδ exp(iϕ ) e−πδ

"

#

$
$$

%

&

'
''
.  (1-17) 

where δ is given from the Landau-Zener Formula [12–14], 
)( 21

2
12

FFv
H
−

=


δ , with v and 

ϕ being the velocity at the crossing point and the Stokes phase [7,15], respectively. The 

Stokes phase ϕ takes the value of 
4
π

=ϕ  for δ = 0 and 
12
δ

ϕ =  for δ >>1 . The transition 

probability from the diabatic state 1 to the diabatic state 2 can be interpreted from the 

above matrix (1-17) as 1− e−2πδ . Although this interpretation holds if the initial state 

consists of a single pure diabatic state, either state 1 or 2 (Figure 1-7 (a) or (b)), the 
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quantum interference effect must be taken into account if the initial state is a 

superposition of multiple diabatic states (Figure 1-7 (c) and (d)).  

 

Figure 1-7: Quantum interference scheme having the initial population in (a) diabatic state 1, (b) diabatic 

state 2, (c) both diabatic states 1, 2 with the same phase, and (d) both diabatic states 1, 2 with  phase 

difference π. 

 In a real system, the non-adiabatic couplings are seen among multiple states, thus 

the classification of the non-adiabatic transitions is not straightforward. Moreover, the 

treatment of non-adiabatic transition as a transition from a single state is not always valid, 

in which case the proper treatment of the quantum effect and full information during the 

dissociation process are required. 

1.3 Concrete subject of this thesis 

ICl molecule is a heteronuclear diatomic halogen molecule without g-u symmetry. 

The low symmetry of the molecule introduces more avoided crossings among the 

electronic states with same symmetry ΔΩ=0, compared to molecules with g-u symmetry, 
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where avoided crossing exhibits between the states with ΔΩ=0 and u↔ u/g↔g . 

Moreover, the strong spin-orbit coupling of ICl molecule makes photoabsorption to more 

excited states allowed. Hence, ICl molecule has been a subject of great interest from both 

experimental and theoretical points of view [16]. Therefore, this molecule is an ideal 

target molecule for investigating the non-adiabatic transitions in the photodissociation 

process. 

Recent advances in the experimental techniques [17–30] has made it possible to 

observe the angular momentum polarization of the photofragments, one of the properties 

required for the ‘complete’ or ‘perfect’ experiment [31,32], which inherits the 

information of the phases of the photofragments’ matter wave [33–39], which is much 

shorter than the ones of electrons due to the heavy rest mass of nuclei. The ab initio 

calculation with sufficient accuracy is required to compare the theory and experiments. 

Therefore, the comparison of the theoretical angular momentum polarization, which is 

described in 2.3, of the photofragments with the experimental ones demonstrates the 

validity of applying ab initio calculation to evaluation of matter wave phases of the 

photofragments. 

In Chapter 2, the electronic properties of ICl, the linear response theory, the 

photofragment angular momentum polarization, and the semi-classical treatment of non-

adiabatic transitions are reviewed. In Chapter 3, for the purpose of the accuracy 

assessment for transition dipole moments, those of Cl2, whose spin-orbit effect is weaker 
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than those of ICl, were examined in the length-form and in the linear response treatment, 

including the electronic correlations at various different levels. In Chapter 4, the 

photodissociation process of ICl in the first absorption band was discussed. The 

photofragment angular momentum polarization, the anisotropy parameters, and the 

product branching ratios were calculated with the wave packet propagation method, and 

were examined in comparison with the experiments. In Chapter 5, the photodissociation 

process of ICl in the second absorption band was discussed. The anisotropy parameters 

and the product branching ratios were calculated with three methods, namely, the wave 

packet propagation method, the semi-classical method, and the classical path method, and 

were examined in comparison with recent experiments. The author summarizes the 

results and concludes this thesis in Chapter 6. 
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Chapter 2  
Background of the Study 

In this chapter, the author reports the recent studies and theories used in this thesis. 

The known theoretical properties of the ICl molecule are reviewed in 2.1. A brief 

explanation of linear response theory and its application is given in 2.2. The formulation 

of the angular momentum polarization of photofragments is outlined in 2.3. A 

reinterpretation of the semiclassical reduced scattering matrix is given in 2.4. 

2.1 Excited states of ICl molecule 

The six valence orbitals of the ICl are denoted σ, π, π*, σ. Due to the larger 

electronegativity of the Cl atom, the σ and π orbitals correlate to the 3p atomic orbitals of 

the Cl atom in the dissociation limit, and similarly σ∗ and π∗ orbitals correlate to the 5p 

atomic orbitals of the I atom (Figure 2-1). While the dominant electronic configuration of 

the ground electronic state X(0+) is (2440), where (pqrs) denotes the electron occupation 

number of (σp πq π*r σ*s), the excited states, which are involved in the first absorption 

band in the molecular region, have the dominant configuration of one-electron excitation 

π*→σ*, (2431). The excited states in the second absorption band mostly have the 
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dominant configuration of one-electron excitation π→σ*, (2341). The correlation 

diagram is shown in Figure 2-2. 

 

Figure 2-1: Schematic figure of valence orbitals of ICl molecule. 

 

 

Figure 2-2: Correlation diagram of the ground and excited states of ICl molecule. 
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Absorption of ICl molecule peaks at 470 nm and 270 nm, in the regions of the first 

and the second absorption bands, respectively [40]. It is generally believed that the 

excited states 0+(II) and 1(I,II) are involved in the first absorption band and the states of 

0+(III,IV) and 1(III,IV,V) are within the second absorption band in the Franck-Condon 

region. The dissociation channels, whose calculated threshold energies ΔE are below the 

peak energy of the second absorption band, are as follows: 

νh+ICl  eV,17.2ClI =Δ+⎯→⎯ E   

 eV,29.2ClI =Δ+⎯→⎯ ∗ E   

 eV,10.3ClI =Δ+⎯→⎯ ∗ E   

 eV,22.3ClI =Δ+⎯→⎯ ∗∗ E   

Hereafter, X(2P3/2) and X*(2P1/2) are simply denoted as X and X* for X=I, Cl. Let 

us consider mJ, which is the axis component of electronic total angular momentum for I 

and Cl.  The electronic structure of a non-rotating linear molecule is characterized by Ω 

value, which is the absolute value of their sum, since Ω value is a conserved property 

during the axial recoil dissociation. In the dissociation limit, both I and Cl have mJ =±

3/2 and ±1/2, there are two Ω=0+ and three Ω=1 states that correlate to I+Cl, one Ω=0+ 

and two Ω=1 states to I+Cl*, one Ω=0+ and two Ω=1 states to I*+Cl, and one Ω=0+ and 

one Ω=1 states to I*+Cl*. Following the labeling of Tonokura et al. [41], the Ω=0+ and 
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Ω=1 states are denoted as 0+(II,III,IV,…) and 1(I,II,III,…), respectively, where the state 

number is included in the parentheses. The ground state is denoted as X(0+) exceptionally. 

The six valence orbitals σ, π, π*, σ* consist essentially of 5p atomic orbitals of I 

atom and 3p atomic orbitals of Cl atom. In the Franck-Condon region, the 0+(II) and 

1(I,II) states whose dominant configurations are 1,3Π(2431), both of which are obtained 

by a single excitation configuration from the ground configuration 1Σ+(2440), are 

involved in the first absorption band. The states, which are involved in the second 

absorption band, mainly consist of 1,3Π(2342) configurations and 3Σ-(2422, 2332) 

configurations [42]. The large potential energy differences among the 0+(II) and 1(I,II) 

states and the wide width of the first absorption band are due to the large exchange 

integral between the π* and σ* orbitals. For the states involved in the second absorption 

band, the exchange integral between the π and σ* orbitals is relatively small, hence the 

potential energy differences among the states are rather small compared to the ones 

among the states in the first absorption band (Figure 2-3). 

In a previous theoretical calculation [42], the squared transition dipole moments 

from the ground state X(0+) to the 0+(II) (with the dominant configuration 3Π(2431)) and 

1(II) (with the dominant configuration 1Π(2431)) states were calculated as 0.0289 bohr2 

and 0.0209 bohr2, respectively. The comparable magnitudes of these transition dipole 

moments were explained with an intensity borrowing mechanism, namely the mixing of 

the ground state X(0+) with the spin-free 3Π(2431) state and the 0+(II) state with the spin-
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free 1Σ+(2440). The 0+(III,IV) states and the 0+(II,III) states exhibit the avoided crossings 

Av-1 and Av-2 at the internuclear distances 5.38 bohr and 6.83 bohr, respectively.  

 

Figure 2-3: Potential energy curves of the X(0+), 0+(II-V), and 1(I-VI) states. 

2.2 Linear response theory 

Here, we consider a field oscillating with the field strength ε and angular frequency 

ω in the direction of Z-axis to be applied to the molecule system. In analogy with 

equation (1-1), the perturbation is given as, V̂ (t) = µ̂Zε exp(−iωt) , where µ̂Z  denotes the 
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Z-component of the dipole moment operator. The system is represented by the time-

independent Hamiltonian 0Ĥ  with its eigenstates and eigenenergies denoted as 0
~nψ  and 

0
~nE , and 0ψ  and 0E  for the ground state explicitly. The perturbation Hamiltonian 

Ĥ1(t) = f (t)V̂ (t)  includes the adiabatic switching function f, which is initially )( −∞→t  

equal to zero 0)( →tf , and converges to unity 1)( →tf  after the switching )( +∞→t , 

to insure the perturbed wave function changes continuously. Let ψ 0 (t) = e−iE
0 / ψ 0  

denote the wave function of the time-dependent Schrödinger equation of the unperturbed 

system, )(ˆ)(i 000 tHt
t

ψψ =
∂
∂
 . The perturbed system, )(ˆ)(i tHt

t
ψψ =

∂
∂
 , is considered 

to be initially in the unperturbed state, )()()( 0 −∞→= ttt ψψ . In the interaction picture 

)(ˆ)(i 1 tHt
t III ψψ =
∂
∂
 , where the corresponding Hamiltonian and wave function are given 

as,  /ˆ-i
1

/ˆi1 00

e)(ˆeˆ tHtH
I tHH = , )()( /ˆi 0

tet tH
I ψψ = , the wave function can be expressed in 

terms of first-order perturbation expansion as follows, 
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 (2-1) 

a0(t) is the coefficient of the “intermediately normalized” wave function )(tφ [43], 

hence can also be interpreted as a coefficient of the unperturbed state 0ψ . The square of 

the coefficient 202
0 )()( tta ψψ=  gives the probability of finding the system in the 
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unperturbed state 0ψ . The coefficient )(~ tdn  is for each excited state 0
~nψ . The above 

wave functions ψ(t)  are given by perturbation expansion. Therefore, the wave function 

)(tφ  needs to be normalized with the coefficient a0(t). 

The time-dependent Schrödinger equation for the coefficient is given as, 

)()(ˆi)(
0

100 tatH
t
ta

φψ


−=
∂

∂ . By integrating both sides, the phase part of the coefficient 

a0(t) is expressed in terms of the quasi-energy )(ˆ)( 10 tHtQ φψ≡  as follows, 

a0 (t) = exp −
i


Q(t ')dt '
−∞

t

∫
$

%
&

'

(
).  (2-2) 

 Since a0(t) is the coefficient of time-dependent wave function )(tψ , it is apparent 

the wave function ψ(t) = exp − i

E 0t + Q(t ')dt '

−∞

t

∫
$

%
&

'

(
)

*

+
,

-

.
/ φ(t)  propagates in time with 

E 0t + Q(t ')dt '
−∞

t

∫  . Therefore, the quasi-energy Q(t) represents the energy shift from the 

unperturbed state 0ψ  [43–45]. If this wave function is the exact solution of the time-

dependent Schrödinger equation, )(ˆ)(i tHt
t

ψψ =
∂
∂
 , the Hellmann-Feynman theorem 

for this wave function leads to the following relation [46], 
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∂ tt
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itQtetttHt t
Z
  (2-3) 

Since the perturbation is periodic, V̂ (t) = V̂ (t + 2π /ω) , the time-dependent expansion 

coefficients )(~ tdn , the quasi-energy Q(t) and the second term in equation (2-3) 
ε
φ

φ
∂
∂

∂
∂
t

 

also exhibit the periodicity of ω/π2 . Therefore, the expansion coefficients and the quasi-

energy can be expressed in time-averaged manner as, ∫=
ω

ω

ω
ω

π/

/π-
~~ )d(

π2
)( ttdd nn

, 

∫=
ω

ω

ω
ω

π/

/π-
)d(

π2
)(}{ ttQQ T

. The second term in equation (2-3) is a derivative of periodic 

function, hence the term becomes zero [45], 0)( =
⎭
⎬
⎫

⎩
⎨
⎧

∂

∂

∂

∂
ω

ε
φ

φ
Tt

. The linear polarizability 
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ω
ZZ, is given as the field strength derivative of the dipole moment as, 

Z,Z
ω
≡
∂ ψ(t) µ̂Z ψ(t){ }T

∂ε
=

∂2Q(t)
∂ε∂ε

#
$
%

&
'
(T

. The linear polarizability 
ω

ZZ,  is the 

expansion component of the expectation value of the Z-component of the dipole moment 

operator µ̂Z  in the first-order perturbation as, 

ψ(t) µ̂Z ψ(t) = ψ 0 µ̂Z ψ
0 + Z,Z

ω
exp(iωt) . Hitherto, the wave function )(tψ  and its 

time-average have been considered to be the exact solution to the time-dependent 

Schrödinger equation.  

{ } .)(
)(

,
~

~

~

2

∑ ∂

∂

∂∂

∂
=

n

n

n

T d
d
QZZ

ε
ω

ωεω
 (2-4) 

In the spectral representation, the above linear response has a singularity for a 

particular state 0
~nE=ω  in the summation, with the corresponding residue being the 

transition dipole moment for the specific state n~ , Z,Z
ω
=

ψ 0 µ̂Z ψ n
0 2

ω −ω nn
∑   [44,45]. 

Although the perturbation is essentially required to be Hermitian, +=VV  for the quasi-

energy Q(t) to be real, and the inclusion of complex conjugate perturbation 

V̂ + = µ̂Z
+ε∗ exp(iωt)  introduces the corresponding terms in the general linear response 

expression, those terms have been omitted in this section for simplicity. 

 The linear response theory can be applied to the energy functional of averaged 

quadratic coupled-cluster method, which evaluates the correlation energy with high 

accuracy by averaging the electron correlation to the extent of including up to quadruply 

excited configurations [47–53]. The energy functional for the trial function D
~ψ , which is 
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in an intermediate normalized form, of the averaged quadratic coupled-cluster method is 

given as [47,50] 

.
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(2-5) 

Here, ne is the number of electrons. When ne is below 4 the energy functional is 

equivalent to the one for the doubly excited configuration interaction method. E0 is the 

Hartree-Fock energy of the reference configuration ψ0, and the trial function is expressed 

as expansion in terms of the reference configuration ψ0 and the doubly excited 

configurations tu
cdψ , as ∑

<
<+=
ut
dc

tu
cd

tu
cdc ψψψ 0D

~ . With the corresponding quasi-energy 

for the averaged quadratic coupled cluster method, the singularity point can be found by 

solving the eigenvalue problem, which is given as an equation for all pairs of doubly 

excited configurations i and j, each of which stands for tu
cdc  coefficients [45]. 

.0
,
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=−
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∂
∑
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iijji
ji

ccc
cc
E

ωδ  (2-6) 

Let the eigenvector matrix of equation (2-6) be U, and the spectral representation of the 

linear response is given as [45], Z,Z
ω
= Tr U

ψ0 µ̂Z ψcd
tu 2

Ecorr −ω I1
U+

"

#

$
$
$

%

&

'
'
'

. The transition dipole 

moment to the excited state n~  is given from the residue of the linear response at the 

singularity point n~ωω = . Hence by solving the above eigenvalue problem for the energy 

functional of averaged quadratic coupled-cluster method, one obtains the excitation 

energy n~ω  and the transition dipole moment µZ ,X n , considering the electron correlation to 
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the extent of including quadruply excited configurations in the averaged quadratic 

coupled-cluster linear response theory (AQCCLRT) scheme. 

2.3 Angular momentum polarization of photofragments 

The photofragment A or B of the randomly oriented diatomic molecules AB may 

exhibit a distribution in its fine structure level population. The author will clarify the 

connection between this distribution and the transition moment matrix and explain that 

the transition moment matrix contains the information of the photodissociation process.  

The angular momentum polarization parameter with rank K and component Q of the 

photofragment A with momentum k

  can be given as [35,36,39,54], 

.
),(

),(
)}1({
,ˆ',

)(
),(

, ,

',, ',2/

)(

, ∑

∑ +
=

AA

A

AA

AAA

A

AA

mj
j
mm

mmj
j
mmK

AA

AA
K
QAA

QK ek
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mjjmj
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ekA 
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σ

σ
 (2-7) 

Here, C(K) denotes the normalization constant for each rank K, and ),(', ekA

AA

j
mm


σ  

denotes the irreducible differential cross-section of the photofragments with light 

polarization vector e . The component Q=0 of the parameter ),(0, zQK eekA 
==  for linear 

polarization vector in the +z direction can be interpreted classically as follows: (0) The 

zeroth rank K=0 is the monopole and takes the value of 1 only, (1) the first rank K=1 

parameter ranges from −1 to +1, where −1 and +1 indicates that the classical angular 

momentum Aj


 is antiparallel and parallel to the +z axis, respectively, (2) the second rank 

K=2 parameter ranges from −1 to +2, where −1 indicates that Aj


 is perpendicular to the z 
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axis, and +2 indicates that Aj


 is aligned parallel to the z axis, and so forth. The 

irreducible differential cross-section of the photofragment A is given in terms of T 

matrices 
II ,

)(
,,,
ˆ

MJ
k

mjmj e
BBAA

Ψ⋅Ψ− 

µ  as follows, where the JI and MI denote the initial total 

angular momentum and the laboratory frame z-component of the JI vector, respectively, 
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Jc
ek

 
µµ

ε
πω
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(2-8) 

In the usual experiments, only one of the two photofragments is detected, hence the 

observation does not yield simultaneous information regarding the both photofragments 

and the quantum number of the photofragment B is traced out in equation (2-8). Here, 

)(
,,,

k
mjmj BBAA


−Ψ  denotes the scattering wave function, which satisfies the boundary condition 

of ingoing spherical wave with various channels and outgoing plane wave with a specific 

channel [7,9,55], namely, the state with asymptotic wavenumber k


 and electronic total 

angular momentum of photofragments A and B BBAA mjmj ,, , as, 
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∑ +

⋅→∞−

++

⎯⎯ →⎯Ψ

 (2-9) 

 The partial-wave expansion of the asymptotic scattering wave function (2-9) leads 

to the Legendre function expansion of the scattering amplitude ),( kRu


 in the following 

form, 
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 Here, θ denotes the angle between R


 and k


, J denotes the total angular 

momentum of the dissociating molecule, and the corresponding phase shift is denoted as 

ηJ. The asymptotic form of the Legendre function [56], 

⎥
⎦

⎤
⎢
⎣
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⎝

⎛ +
4
π

2
1sin

sinπ
2~)(cos θ
θ

θ J
J

PJ , in the limit of ( ) 1sin >>θJ , and subsequent 

replacement of the summation of J with the integration of J lead to the second line of 

equation (2-10). With application of the stationary phase approximation to the integration, 

the classical recoiling angle 
J
J

∂
∂

=
η

γ 2  (equation (1-6)), in which the scattering 

amplitude ),( kRu


 has the largest amplitude, is given as, 
'2

π '

JJ
JJ

−
−

−=
δδ

γ  [7,9,57]. Here, 

δJ is the phase shift of the elastic scattering wave function in asymptotic region, 

)
2
πsin( J
JRk δ+−


, hence JJ

J
δη −=

2
π2 . The total angular momenta J and J’ of the 

final state are limited to the values 1,', II ±= JJJJ . Therefore, the separation of the phase 

shift δJ from the asymptotic wave function, which weakly depends on the quantum 

number J,J’=JI±1 under the condition, simplifies the treatment of the molecular rotation 

in the dissociation process as [57], 

)()()'(i)(
'
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IIIIII

ˆˆeˆˆ k
JJJ
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JJk
JJJ

k
J eeee

  −−−−− Ψ⋅ΨΨ⋅Ψ=Ψ⋅ΨΨ⋅Ψ µµµµ γ  (2-11) 

 While the theoretical calculations are mainly done in the molecular frame, the 

laboratory frame representation of the irreducible differential cross-section of the 
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photofragments of equation (2-8) is difficult to evaluate. The dynamical function 

)',( qqf K , which is the angular momentum polarization parameter represented in the 

molecular frame, was given by Siebbeles et al. [36], 
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and related to the irreducible differential cross-section with the application of the high-J 

limit approximation (2-11) as follows [57], 
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(2-13) 

Here, q, q’, ΩI and ΩB denotes the spherical components of the dipole moment operator 

µ̂
  and the molecular frame Z-components of the angular momentum JI and jB, 

respectively, )(, eE QD


 denotes the transformation matrix of the dipole moment operator 

µ̂
  from the molecular frame to the laboratory frame [32,54]. The factor in the brackets 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

•••

•••
 is a 3-j symbol. There is a clear physical meaning to the dynamical functions 

)',( qqf K : (0) The rank K=0 functions only have the diagonal elements, q=q’, and is the 

parallel and perpendicular excitation components of the photoproduct cross-section for 

q=q’=0 and q=q’=±1, respectively, (1) the rank K=1 functions are the orientation of the 

photoproduct, where the diagonal elements q=q’ are the coherent component and the off-

diagonal elements q≠q’ are the incoherent component between the parallel and 
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perpendicular excitation components, (2) and the rank K=2 functions are the alignment of 

the photoproduct. 

 

2.4 Non-adiabatic transition in semi-classical methods 

The semi-classical treatment of the linear crossing problem, namely the Landau-

Zener model, without the assumption of constant velocity, gives the semi-classical 

reduced scattering matrix [7,15], which connects the diabatic amplitudes at the turning 

point A1,2(0) and the final (positive momentum) amplitudes A1,2(+∞) as follows,  
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where δ is given as [12–14], 
)( 21

2
12

FFv
H
−

=


δ , with v, F1,2 and H12 being the velocity at the 

crossing point, the slopes of the two linear potentials, and the diabatic coupling matrix 

element, respectively, and the Stokes phase is denoted as φ, However, the above 

scattering matrix in equation (2-14) does not inherit the sign of the diabatic coupling H12, 

since it has been explicitly derived for a positive diabatic coupling matrix element H12. 

The sign of the diabatic coupling H12 and the relative phases of the amplitudes A1,2 

contain ambiguity due to the arbitrary phases of the two diabatic states, hence the sign of 

the diabatic coupling and the relative phases of the two diabatic states must be conserved 

in the process of evaluating. The above scattering matrix (2-14) is not applicable to the 

case, in which the relative phases of the two states are set so that the diabatic coupling 
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H12 has a negative value. The scattering matrix for the negative diabatic coupling matrix 

element, H12 < 0, is hereinafter derived following the same procedure as the one for the 

positive diabatic coupling matrix element, H12 > 0 [15]. 

The momentum (k ) representation of the equations for the linearly crossing two 

diabatic states are given as, 

(k)2

2µ
−E − iF1

∂
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#

$
%

&

'
(u1(k) = −H12u2 (k),

(k)2

2µ
−E − iF2

∂
∂k

#

$
%

&

'
(u2 (k) = −H12u1(k).

 (2-15) 

 Here, F1,2 denotes the slope of the two linear potentials, V1,2 = −F1,2R, with F1 > 

F2, and we consider the diabatic coupling H12 as a constant negative value. Elimination of 

u2(k) in equation (2-15), in which we change the variables as in equation (2-16), leads to 

the simplified differential equation (2-17) for the amplitude of the state 1. 
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 The asymptotic condition for the amplitude B1, 1
)(

1
d
d

<<
tKt

, is analogous to 

the semi-classical condition in ordinary position representation. Specifically, if 
)(

1
tK

 

varies slowly as the function of dimensionless variable, t, the asymptotic form of the 

amplitude is given as, )diexp(1 ∫±∝ tKB . In the high energy limit, b2 >> 1, the 

condition is satisfied for ±∞→t  and t = 0, and the corresponding asymptotic forms are 

given as, 
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 The given asymptotic forms break down at the singularity point, 

F
EHabt


µ8/ 12±=±= , hence, in order to connect the asymptotic functions above, t is 

linearly expanded, τ+±= abt / , in the vicinity of the point. Here, we explicitly derive 

the scattering matrix, which connects the turning point and outgoing amplitudes, A1,2(0) 

and A1,2(+∞), respectively. However, since the diabatic coupling is negative, the 

approximate function, which connects the two amplitudes, is the one at the singularity 

point, 
F
EHabt


µ8/ 12−=−= . Therefore, equation (2-17) is transformed into the form of 

the Weber equation [58], whose solution is given by the parabolic cylinder functions (or 

the Weber functions), as, 
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 Upon connection of the general solution of equation (2-19) to the asymptotic 

forms (2-18) and substitution of the amplitude, ⎥
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11 32
iexp , the 

reduced scattering matrix for the negative diabatic coupling H12 is derived as, 
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It is apparent from equations (2-14) and (2-20) that the off-diagonal element of the 

reduced scattering matrix must be determined from the sign of the diabatic coupling H12. 

If the diabatic coupling is negative, H12 < 0, the transformation angle ϑ  in equation 

(1-13) is taken to be zero at the turning point, hence )0()0(),0()0( 12 AAAA == +−  and 

)()(),()( 21 +∞−=+∞+∞=+∞ +− AAAA , the reduced scattering matrix in adiabatic 

representation, where A− and A+ denote the amplitudes of the lower and higher adiabatic 

states, is given as, 
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The scattering matrix (2-21) is in analogy with the ones given by Nakamura 

[10,59,60]. Although the inelastic transition probability, derived from the scattering 

matrix for either positive or negative diabatic coupling, is given as [7,10], 

φδδ 2π2π2 sin)e1(e4 −− − , the author emphasizes that the arbitrariness of the diabatic 

coupling sign is only valid for evaluation of transition probability in full collision 

processes. For a half-collision process, specifically photodissociation process, the 

reduced scattering matrix, which is consistent with the relative phase of the states, must 

be chosen with a special care. 
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Chapter 3  
Calculation Method Dependence of 
Transition Dipole Moments 

3.1 Introduction 

The numerical instability of the transition dipole moments calculated in a limited 

configuration interaction scheme [61–63] has been an unresolved obstacle to theoretical 

study of the photoexcitation process. Cl2 molecule is one of the cases. In this chapter, the 

author examines the theoretical transition dipole moment of Cl2, whose spin-orbit effect 

is weaker than those of ICl, in the length form and the linear response treatment, 

including the electronic correlations at various different levels. A significant dependence 

of the transition dipole moments on the one-electron orbitals used in the calculation was 

clarified from the analysis. 

3.2 Calculation method 

The author used aug-ccpVQZ for the basis functions of Cl atom. Three types of 

molecular orbitals were employed: (1) The ordinary closed shell (… 5σg
2 2πu

4 2πg
4 5σu

0) 

self-consistent field molecular orbitals (denoted as SSSCF, the abbreviation of state 
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specific self-consistent field), (2) the state-averaged self-consistent field (SASCF) 

molecular orbitals, which are optimized for the ensemble average energy for all the 

configurations derived from (5σg 2πu 2πg 5σu)10, and (3) the state-averaged multi-

configuration self-consistent field (SAMCSCF) molecular orbitals for which the average 

energy of the X1Σ+
g(5σg

2 2πu
4 2πg

4 5σu
0) and C1Πu(5σg

2 2πu
4 2πg

3 5σu
1) states with equal 

weight for each state (including the degeneracy factor of two for the C1Πu state). Here, 

5σg, 2πu, 2πg, and 5σu orbitals essentially consist of 3p atomic orbitals of Cl atoms. The 

spin-orbit interaction was not included in this chapter’s calculation. For each type of 

molecular orbitals, the SCI, SDCI and AQCCLRT calculations were carried out. The 

singlet configuration state functions were generated with the reference of (5σg 2πu 2πg 

5σu)10. For the SCI calculation, all the singly excited configuration state functions from 

these reference configuration state functions were included in the first-order 

configuration interaction scheme. Similarly for the SDCI calculation, all the singly and 

doubly excited configuration state functions from the reference configuration state 

functions were included in the second-order configuration interaction scheme. From the 

multi-reference SCI, SDCI wave functions, the author calculated the excitation energy, 

the transition density matrix and the transition dipole moment in the length form from the 

ground state X1Σ+
g to the excited state C1Πu. For the multi-reference AQCCLRT, the 

excitation energy and the transition dipole moment were calculated. All the electronic 
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state calculations were performed with the COLUMBUS program package (5.9.2) [64]. 

The internuclear distance was fixed at 3.76 bohr for all the calculation. 

3.3 Results and discussion 

3.3.1 Transition dipole moment in the length form 

The transition dipole moments (TDMs) calculated (Table 3-1) in length form with 

SSSCF-MRAQCCLRT, SASCF-MRSDCI, and SAMCSCF-MRSDCI were largely 

underestimated compared to the experiment [65]. From the analysis of the weight of the 

dominant CSF of the calculated X1Σ+
g and C1Πu state wave functions (Table 3-2), it is 

apparent that the C1Π state has a low weight of the dominant CSF. Hence, the error of the 

transition dipole moment and the excitation energy calculated with SSSCF-

MRAQCCLRT was due to the selection of the SSSCF-MO, which was not appropriate to 

the C1Π state.  
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Table 3-1: Theoretical transition dipole moments from the X1Σ+
g state to the C1Π state. LF: Calculation in 

length form. R: Calculation in response treatment. a The experimental data was taken from [65]. 

 ΔE/ Hartree TDM(LF)/ bohr TDM(R)/ bohr 
Expt.a 0.1381 0.140 
SSSCF-MRSCI 0.1402 0.146 0.102 
SSSCF-MRSDCI 0.1885 0.149 0.164 
SSSCF-MRAQCCLRT 0.1168 --- 0.0287 
SASCF-MRSCI 0.1408 0.132 0.0758 
SASCF-MRSDCI 0.1456 0.0268 0.0851 
SASCF-MRAQCCLRT 0.1411 --- 0.119 
SAMCSCF-MRSCI 0.1425 0.122 --- 
SAMCSCF-MRSDCI 0.1468 0.0235 --- 
SAMCSCF-MRAQCCLRT 0.1425 --- 0.114 

 

Table 3-2: Weight of the dominant CSFs of the X1Σ+
g and C1Π states. 

 X1Σ+
g C1Π 

SSSCF-MRSCI 0.958611 0.785843 
SSSCF-MRSDCI 0.880977 0.831682 
SSSCF-MRAQCCLRT 0.832253 0.446053 
SASCF-MRSCI 0.931354 0.918410 
SASCF-MRSDCI 0.869265 0.855501 
SASCF-MRAQCCLRT 0.824969 0.805619 
SAMCSCF-MRSCI 0.932687 0.918446 
SAMCSCF-MRSDCI 0.870241 0.855766 
SAMCSCF-MRAQCCLRT 0.825803 0.805485 

The transition dipole moment 
xx ΠΣ+ 1

g
1 C,,X

µ  in the length form is calculated using the 

dipole integrals ji xϕϕ  and the transition density matrix x
ji

ΠΣ+Γ
1

g
1 C,X
, , 

.
,

C,X
,C,,X

1
g

1

1
g

1 ∑ ΠΣ

ΠΣ

+

+ Γ=
ji

jijix
x

x
xϕϕµ  

(3-1) 

For the SASCF-MRSDCI and SAMCSCF-MRSDCI calculations, the dipole integrals 

ji xϕϕ  of equation (3-1) is the same as the ones for the SASCF-MRSCI and 

SAMCSCF-MRSCI, respectively, thus the error of the transition dipole moments 
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originates from the transition density matrix x
ji

ΠΣ+Γ
1

g
1 C,X
, . The molecular orbitals included in 

the calculation consist of 168 orbitals (22×σ(g,u), 15×π(x,y)(g,u) , 11×
)u,g)(,( 22δ yxxy −
, 5×

)u,g))(3(),3(( 2222φ xyyyxx −−
), hence there are 1650 symmetrically allowed transition density 

matrix elements for the dipole operator x (B3u). Among those elements of the transition 

density matrix of the SASCF-MRSDCI and SAMCSCF-MRSDCI calculations, the ones, 

whose differences are larger than 0.01 from the matrix elements of the SASCF-MRSCI 

and SAMCSCF-MRSCI, respectively, are tabulated in Table 3-3. 

Table 3-3: Elements of transition density matrices whose differences between the matrices of MRSCI and 

MRSDCI are larger than 0.01. The correlating atomic orbitals are indicated in the parentheses. 

SASCF-MRSCI, MRSDCI SAMCSCF-MRSCI, MRSDCI 
5σg(3p), 4πxu(3d) 5σg(3p), 4πxu(3d) 
5σg(3p), 6πxu(4d) 5σg(3p), 6πxu(4d) 
12σg(4d), 2πxu(3p) 12σg(4d), 2πxu(3p) 
2πyu(3p), 2δxyg(4d) 5σu(3p), 2πxu(3p) 

 The element, whose corresponding dipole integral magnitude is the largest, is the 

(5σg(3p), 4πxu(3d)) element. The dipole integrals of this element are 0.665 and 0.656 bohr 

for the SASCF and SAMCSCF, respectively. 

In order to examine the effect of the 4πu orbital, the calculations with the 

reference of (5σg 2πu 2πg 5σu 4πu)10 were carried out (Table 3-4). The 4πu(3d) orbital can 

be considered as an orbital, which polarizes the 2πu(3p) orbital. Hence, inclusion of this 

one-electron orbital to the reference space improved the excitation energy and the 

transition dipole moment of the SSSCF-MRAQCCLRT, as Table 3-4 shows closer 



 3-47 

agreement with the experiment than the ones in Table 3-1. Although the transition dipole 

moments of the SASCF-MRSDCI and SAMCSCF-MRSDCI calculations have also been 

improved, the ones of the SASCF-MRSCI and SAMCSCF-MRSCI showed better 

agreement with the experiment and numerical stability. 

Table 3-4: Theoretical transition dipole moments from the X1Σ+
g state to the C1Π state with extended 

reference space of (5σg 2πu 2πg 5σu 4πu)10. The values in the parentheses shows the difference from the 

ones with reference space of (5σg 2πu 2πg 5σu)10 (Table 3-1). a The experimental data was taken from [65]. 

 ΔE/ Hartree TDM/ bohr 
Expt.a 0.1381 0.140 
SSSCF-MRSCI 0.1541 (+0.0139) 0.150 (+0.004) 
SSSCF-MRSDCI 0.1781 (−0.0104) 0.143 (−0.007) 
SSSCF-MRAQCCLRT 0.1504 (+0.0436) 0.0927 (+0.0640) 
SASCF-MRSCI 0.1453 (+0.0045) 0.148 (+0.016) 
SASCF-MRSDCI 0.1484 (+0.0028) 0.0676 (+0.0408) 
SASCF-MRAQCCLRT 0.1473 (+0.0062) 0.0992 (−0.020) 
SAMCSCF-MRSCI 0.1470 (+0.0045) 0.115 (−0.007) 
SAMCSCF-MRSDCI 0.1502 (+0.0034) 0.0754 (+0.0519) 
SAMCSCF-MRAQCCLRT 0.1478 (+0.0053) 0.121 (+0.007) 

3.3.2 Linear response treatment 

The transition dipole moment can be approximately evaluated with the CI 

coefficients I
KC  and the transition density matrix IJ

ijΓ  as 

.)(
,

,, ⎥
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 The author notes that the equation (3-2) is only valid for the MCSCF wave 

function or complete CI wave function [44,61–63]. The theoretical transition dipole 
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moment in response treatment for SSSCF-MRSCI, SSSCF-MRSDCI, SASCF-MRSCI, 

and SASCF-MRSDCI wave functions are given in Table 3-1. On the contrary to the ones 

of the SSSCF calculations, the SASCF calculations have shown a stability in the 

contributions of the first term, the CI-term, and the second term, MO-term, in square 

brackets of equation (3-2), in that the MRSCI and MRSDCI gave similar values (Table 

3-5). It also shows the theoretical transition dipole moment approaches the experimental 

value as the level of the electronic correlation taken into account becomes higher. 

Although improvement in the theoretical transition dipole moment with SASCF was seen 

as calculation level became higher, the results in length form with MRSCI calculation 

remained to be in better agreement with the experiment. 

Table 3-5: Contribution of the CI-term and MO-term of the transition dipole moment calculations. 

 CI-term/ bohr MO-term/ bohr TDM/ bohr MO-term contribution 
SSSCF-MRSCI 0.161 −0.0595 0.102 −58.6 % 
SSSCF-MRSDCI 0.0575 0.107 0.164 65.0 % 
SSSCF-MRAQCCLRT --- --- (0.0287) --- 
SASCF-MRSCI 0.0493 0.0265 0.0758 35.0 % 
SASCF-MRSDCI 0.0552 0.0299 0.0851 35.2 % 
SASCF-MRAQCCLRT --- --- (0.119) --- 

 

3.4 Conclusion 

The author examined the theoretical transition dipole moment of Cl2 from the ground 

state X1Σ+
g to the excited state C1Πu calculated with various methods. The theoretical 

transition dipole moment in linear response treatment exhibited numerical stability of the 
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contribution from the CI-term and MO-term for SASCF one-electron orbital. The 

transition dipole moment in length form with MRSCI calculation showed better 

agreement with the experiment than the ones of the MRAQCCLRT, which includes the 

electronic correlation to the extent of including quadruply excited configurations. 
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Chapter 4  
Photodissociation Process of ICl 
 in the First Absorption Band 

4.1 Introduction 

Samartzis and Kitsopoulos observed the product fraction [Cl*]/ ([Cl]+[Cl*]) and 

the anisotropy parameter β in the almost entire wavelength region of 400-570 nm [66]. 

They considered the non-adiabatic transition probability p2 between the 0+(II,III) states at 

Av-2  is equivalent to the product fraction [Cl*]/([Cl]+[Cl*]) with the assumption that 

dissociation process takes place only on the Ω=0+ states. The product fraction 

[Cl*]/([Cl]+[Cl*]) they observed showed qualitative agreement with the theoretical 

transition probability given by de Vries et al. [67] in the wavelength region of 480-530 

nm. For the anisotropy parameter β of the I+Cl channel, they observed a sharp decrease 

of the parameter in the wavelength region shorter than 480 nm. From the results, they 

have suggested the contribution of a new state with Ω=1 symmetry with its potential 

energy higher than the 0+(II) state in the Franck-Condon region. 

Rakitzis et al. observed the angular momentum polarization parameters in the 

wavelength region of 490-560 nm [23]. They later analyzed the parameters, expressed in 
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terms of (1−f1), (1−f2−f3), and f3, which are the branching fractions from the 0+(II) to 

X(0+), the one from the 1(I) state to the 1(II) state, and the one from 1(I) state to the 1(III) 

state, respectively, and the anisotropy parameter β [68]. The parameter Im[a(1)
1(//,⊥)] was 

expressed as, 
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They calculated the branching fractions fn from the angular momentum polarization 

parameters obtained from the experiment, with an assumption that the potential energy 

difference between the same Ω symmetry be negligibly small after the avoided crossings, 

hence asymptotic phase differences (φI−φJ) between the same Ω symmetry were 

considered to be zero. The asymptotic phase differences between the different Ω 

symmetry were calculated with semi-classical equation using the ab initio potential 

energy curves of reference [42]. For example, the asymptotic phase difference between 

the X and Y states, whose avoided crossing is at RX,Y, was evaluated as 

{ } .d)()(∫
∞

−=−
X,YR YXYX RRkRkφφ  (4-2) 

Here, kX(R) is the wavenumber of the X state. With the calculated branching fractions 

f1=0.04, f2=0.12, and f3=0.49, they have concluded the ab initio potential energy curves 

needs correction especially in the long-range. The author of this thesis notes, however, 
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they have neglected the Stokes phase [7,10,15] upon evaluating the phase differences, 

and the previous work [69] has shown the Stokes phase has significant influence on the 

parameter Im[a(1)
1(//,⊥)]. In this chapter, the photofragment angular momentum 

polarization, the anisotropy parameters, and the product branching ratios were calculated 

with the wave packet propagation method, and were examined in comparison with the 

experiments. 

4.2 Computational methods 

The relativistic effective core potentials, by Christiansen, Ermler and their co-

workers [70,71] with the valence shells being 5s5p for I atom and 3s3p for Cl atom, have 

been used for the calculation. For the basis functions, cc-pVTZ by Peterson et al. [72] for 

I atom and cc-pVTZ by Woon and Dunning [73] for Cl atom have been used. The sets of 

five primitives (αs(I)=0.02075, αp(I)=0.01344, αd(I)=0.03180, αf(I)=0.08410, and 

αg(I)=0.4739) and (αs(Cl)=0.02364, αp(Cl)=0.01390, αd(Cl)=0.04500, αf(Cl)=0.1380, 

and αg(Cl)=0.8270) were added to the I and Cl basis sets, respectively. The basis sets 

have been optimized by Ohnishi [69] so as the dissociation energies of the X(0+) and 1(I) 

states show the best agreement with the spectroscopic data [74]. The state-averaged self-

consistent field molecular orbitals, which are optimized for the ensemble average energy 

[75] for all the configurations derived from (σ, π, π*, σ*)10, namely 10 electrons in the 

six valence orbitals, which essentially consist of 5p atomic orbitals of I atom and 3p 



 4-53 

atomic orbitals of Cl atom, have been employed. For the spin-orbit configuration 

interaction calculations, singlet and triplet configuration state functions (CSFs) were 

generated with the reference of (σ, π, π*, σ*)10. All the singly and doubly excited CSFs 

from these reference CSFs were included in the second-order configuration interaction 

(CI) scheme. The continuities of the CI wave functions as functions of internuclear 

distance R were kept throughout the whole region. From the CI wave functions, the 

author calculated potential energy curves and non-adiabatic coupling terms taking into 

account both CI and MO term contributions. The Davidson correction was included in the 

CI energy. For the transition dipole moments, the spin-orbit CI method in the first-order 

CI scheme was used. All the electronic state calculations were performed with the 

COLUMBUS program package [76]. 

 The wave packet method was used to study the dissociation dynamics. The time 

propagations of the wave packets were carried out with Chebychev expansion method 

[77–79]. The calculation was done for the bond distances of 3.00~27.20 bohr segmented 

with 4096 grids. The first- and second-order non-adiabatic interactions were implemented 

in the wave packet propagation program by the author of this thesis to perform 

calculation including multiple electronic states (up to eight states). The second-order non-

adiabatic interaction was evaluated with the first-order non-adiabatic coupling terms [11]. 

The wave packet program has been modified from the original one [80], which was 
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designed to calculate for single adiabatic excited state, written by Balint-Kurti et al. The 

atomic masses employed were 127I35Cl. 

With a spin-orbit CI method, symmetry of the molecular electronic state is denoted 

as Ω, the absolute value of the molecular axis component of the total electronic angular 

momentum. Radial non-adiabatic transition can occur only between electronic states with 

same Ω (ΔΩ=0). Axial recoil approximation is generally valid for the photodissociation 

of ICl in the first absorption band, since the recoil velocity of the direct dissociation is 

much faster than the rotational speed. From this reason, the molecular rotation effect, 

such as a Coriolis non-adiabatic transition during the dissociation process is not 

considered, and the ground state molecules are assumed to be randomly oriented. 

 The angular momentum polarization parameter Im[a1
(1)(//,⊥)] of Cl, which 

Rakitzis et al. observed [23], can be expressed in terms of the dynamical functions fK
q,q’ , 

which are defined as in equation (2-12), of rank K [37], introduced by Siebbeles et al. [36] 

as 

.
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1 ff
f
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The total angular momentum jA of the photofragment Cl is 3/2, in this case. The 

dynamical functions of zeroth rank (scalar quantity) in the denominator of the right hand 

side of equation (4-3), is proportional to photofragment’s cross-section, hence the first 

rank dynamical function in the numerator characterizes the essential part of this angular 

momentum polarization parameter. The T matrix elements were calculated with time-



 4-55 

dependent wave packet method [80]. When the T matrix element of the Franck-Condon 

electronic state n~  and asymptotic electronic state n is written in terms of the amplitude 

nnr ,~  and the asymptotic phase nn ,~φ  as 
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)~(2,~
2

,~ nnrr
m mnnn ≠∑  can be interpreted as the non-adiabatic transition probability from 

the state n~  to the state n. 

 The zeroth rank dynamical functions f0
0,0 and f0

1,1 in equation (4-3) have only 

contributions of the two T matrix elements with the same asymptotic electronic states 

n=n’, and represent incoherent dissociation processes, whose values are actually 

proportional to the photofragment cross-sections. On the other hand, the first rank 

dynamical function f1
1,0 has the contribution of the two T matrix elements of q=1 

(perpendicular) and q=0 (parallel). For example, when the contributions of the T matrix 

elements of 0+(II)→0+(II) and 1(I)→1(I) are dominant, the phase of the dynamical 

function f1
1,0 can be ultimately written as φ0+(II),0+(II) − φ1(I),1(I), which describes the 

difference of quantum mechanical phase shifts between the states 0+(II) and 1(I). This 

indicates that the angular momentum parameter Im[a1
(1)(//,⊥)] represents the coherence 

of T matrix elements with electronic states of different Ω. 

 The initial Franck-Condon wave packets were generated for the four excited 

Ω=0+ states (0+(II), 0+(III), 0+(IV), 0+(V)) and the five excited Ω=1 states (1(I), 1(II), 

1(III), 1(IV), 1(V)) with the corresponding transition dipole moments and the ground 
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vibrational state of the parent molecule. The wave packets were propagated on these nine 

excited states and the ground state X(0+), including the radial non-adiabatic interactions 

among all the states, and the photofragmentation T matrix elements were obtained. Due 

to the restricted numbers of grids, the calculated T matrix elements showed small 

oscillation near thresholds (Figure 5, 7, 8). This oscillation is to be considered of 

numerical error rather than of physical phenomena. 

4.3 Results and discussion 

4.3.1 Adiabatic potential energy curves of ICl 

The calculated adiabatic potential energy curves are shown in Figure 2-3. Here, the 

X(0+), 1(I), 0+(II), and 1(II) states adiabatically correlate to I+Cl products. Spectroscopic 

constants were determined using the Fourier grid Hamiltonian method by Balint-Kurti et 

al. [5,80]. The calculation was done for the bond distances of 3.00~27.20 bohr segmented 

with 4096 grids. For the X(0+), 1(I), and 0+(II) states, vibrational levels v’’=0~9, 

v’’=0~35, and v’’=0~2 were included, respectively, for these calculations. These levels 

were taken to match with experimental fitting procedure by Pardo et al. [74]. These 

spectroscopic constants of the X(0+), 1(I), and 0+(II) states are shown in Table 1, and are 

in reasonable agreement with the experimental values. The author thus expects that 

quantitative results can be obtained for the photodissociation process in the Franck-

Condon region with these ab initio potential energy curves. 
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Table 4-1: Spectroscopic constants of the X(0+), 1(I), and 0+(II) states. Experimental values are taken from 

Pardo et al. [74]. 

 re/ bohr re(exp.a)/ bohr ωe/ cm-1 ωe(exp.a)/ cm-1 ωeχe/ cm-1 ωeχe(exp.a)/ cm-1 

X(0+) 4.4106 4.3858 383.74 384.30 1.307 1.501 

1(I) 5.0701 5.0877 212.0 210.3 1.06 1.50 

0+(II) 5.0527 5.0267 216.3 211.4 5.34 7.98 

 

4.3.2 Absorption spectra, polarization parameters, and non-adiabatic 

transition probabilities 

In the numerical calculation of the absorption cross sections, the author used the 

program by Balint-Kurti et al. [5]. The calculated absorption spectra are shown in Figure 

4-1, and are in fair agreement with experimental data by Seery et al. [40], implying that 

the transition dipole moments, used in this calculation, have reasonable accuracy. 
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Figure 4-1: Absorption spectra in the first band. Thick red line for the absorption to the 0+(II) state (denoted 

as B(0+)), thin black line for the 1(I) state (denoted as A(1)), and thin red line for the 1(II) state (denoted as 

z(1)). Thick grey line shows total absorption spectrum. 

 Rakitzis et al. examined the polarization parameter in the 490 nm~560 nm region 

[23]. In this region, parallel transition is dominated by the excitation to the 0+(II) state 

and perpendicular one by the excitation to the 1(I) state. After a parallel transition to the 

0+(II) state, the Franck-Condon wave packet will propagate to the dissociation limits of 

the 0+(III) or X(0+) state through non-adiabatic transitions, or to the dissociation limit of 

the 0+(II) state adiabatically. In the case of a perpendicular transition to the 1(I) state, the 

Franck-Condon wave packet will propagate to the dissociation limits of the 1(III) or 1(II) 

state, or to the dissociation limit of the 1(I) state adiabatically. As shown in Figure 4-2, 

non-adiabatic transition occur between the 0+(II) and 0+(III) states at 6.8 bohr, between 

the X(0+) and 0+(II) states at 9.1 bohr, between the 1(II) and 1(III) states at 6.8 bohr, and 
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between the 1(I) and 1(II) states at 8.6 bohr. Note that the non-adiabatic interactions of 

X(0+)/ 0+(II) and 1(I)/ 1(II) cannot be recognized from their potential energy curves alone. 

 

Figure 4-2: First-order non-adiabatic coupling terms between (a) X(0+) and 0+(II) states, (b) 0+(II) and 

0+(III) states, (c) 1(I) and 1(II) states, and (d) 1(II) and 1(III) states. 

 The calculation of non-adiabatic transition probabilities after the parallel 

transition is shown in Figure 4-3. The result was about 50%, while Alexander and 

Rakitzis estimated that a large portion (96 %) of the wave packet will propagate to the 

X(0+) state. The 0+(III) state adiabatically correlates to the I+Cl* products, and does not 

contribute to the polarization parameter of Cl. The non-adiabatic transition probabilities 

from the 1(I) state to the 1(II) and 1(III) states are shown in Figure 4-4. The results were 

about 70% and 10% respectively, and show qualitative agreement with the result of 

Alexander and Rakitzis (49 % and 12 %). 
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Figure 4-3: Non-adiabatic transition probability from the 0+(II) state (denoted as B(0+)) to the X(0+) state. 

Thick lines: Wave packet method. Thin lines: Transition probability estimated by Alexander and Rakitzis 

[68]. Red lines: Probability which the electronic state remains on the 0+(II) state. Blue lines: Transition 

probability from the 0+(II) state to the X(0+) state. 

 

Figure 4-4: Non-adiabatic transition probability from the 1(I) state (denoted as A(1)) to the 1(II) and 1(III) 

states (denoted as z(1) and a(1), respectively). Thick lines: Wave packet method. Thin lines: Transition 

probability estimated by Alexander and Rakitzis [68]. Red lines: Probability which the electronic state 
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remains on the 1(I) state. Blue lines: Transition probability from the 1(I) state to the 1(II) state. Green lines: 

Transition probability from the 1(I) state to the 1(III) state. 

 Alexander and Rakitzis [68] estimated the non-adiabatic transition probabilities 

from the angular momentum polarization data of Cl, which Rakitzis et al. [23] obtained 

experimentally. When only the 1(I) and 0+(II) states dominantly contribute to this 

parameter in the observed wavelength region, by separating the T matrix element into the 

amplitude nnr ,~  and the phase nn ,~φ  as in (4-4), the polarization parameter can be 

approximately given as [68] 

( )[ ] ( ).sin//,Im 1(I),1(I)(II)(II),001(I),1(I)(II)(II),00
)1(

1 ϕϕ −∝⊥ ++++ rra  (4-5) 

The amplitude of this parameter can be considered as the geometric average of 2
)II(0),II(0 ++r  

and 2
)I(1),I(1r . The square of )II(0),II(0 ++r  is the probability of the 0+(II) state Franck-Condon 

wave packet that propagated to the dissociation limit without non-adiabatic transition, 

while the square of )I(1),I(1r  being the probability of the 1(I) state Franck-Condon wave 

packet that propagated to the dissociation limit without non-adiabatic transition. As the 

amplitude in (4-5) is given as a geometric average of 2
)II(0),II(0 ++r  and 2

)I(1),I(1r , it will be at 

the largest when these two probabilities are approximately the same. The phase part in 

equation (4-5) can be expressed as the difference of quantum mechanical phase shifts 

between the 0+(II) and 1(I) states. These phase shifts are very sensitive to the potential 

energy curves. The theoretical calculation of this polarization parameter is shown in 

Figure 4-5 and is in quantitative agreement with the results of Rakatzis et al. implying 
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that the potential energy curves used in this calculation was in high accuracy. Note that 

the envelope of the oscillation has a maximum around at 530-540 nm. 

 

Figure 4-5: First-rank angular momentum polarization parameter. Solid line: Wave packet method. Dots: 

Experiment by Rakitzis et al. [23]. Correction of the data was made by Alexander and Rakitzis in [68]. 

 Samartzis and Kitsopoulos examined the product fraction of Cl* for each 

wavelength between 400-570 nm [66]. The product fraction, which was called curve 

crossing probability in their paper, was evaluated with following formula, regardless of 

angular distribution, 
).Cl*][Cl]/([Cl*][ +=P  (4-6) 

They first assumed the product fraction P defined above would represent the non-

adiabatic transition probability from the 0+(II) state to the 0+(III) state. Since both the 

0+(II) and X(0+) states correlate to Cl product and the 0+(III) state correlates to Cl* 

product, and the avoided crossing between the 0+(II) and 0+(III) states exists before the 

one between the 0+(II) and X(0+) states, the product fraction can represent approximately 

the non-adiabatic transition probability from the 0+(II) state to the 0+(III) state under axial 



 4-63 

recoil approximation. Strictly speaking, however, the product fraction could be expressed 

in terms of photoabsorption cross sections σ(1(I)), σ(0+(II)), and σ(1(II)) from the X(0+) 

state to the 1(I), 0+(II), and 1(II) states, respectively, and the non-adiabatic transition 

probability p2 from the 0+(II) state to the 0+(III) state, as 

.
))II(1())II(0())I(1(

))II(0( 2

σσσ
σ

++
=

+

+ pP  (4-7) 

Therefore, their assumption holds and P=p2, only when σ(1(I)) and σ(1(II)) are negligibly 

small. As Figure 4-1 indicates, however, photoproducts from perpendicular transition 

would be observed in higher wavelengths and lower wavelengths due to the presence of 

the 1(I) and 1(II) states, respectively. Hence, the product fraction is not equivalent to non-

adiabatic transition probability in this broad wavelength region, and the effect of the Ω=1 

states cannot be neglected, as Samartzis and Kitsopoulos finally concluded. In this study, 

the author calculated the above product fraction theoretically from the 

photofragmentation (not photoabsorption) cross sections for the respective product 

channels using the wave packet method described above, including the five Ω=0+ states 

and the five Ω=1 states. The photofragmentation cross sections for the respective product 

channels are the absolute square of T matrix elements.  
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Figure 4-6: Product fraction of Cl*. Solid line: Wave packet method. Dots: Experiment by Samartzis and 

Kitsopoulos [66]. 

The result of the product fraction in Figure 4-6, is in a quantitative agreement 

with the result of Samartzis and Kitsopoulos [66]. The 1(I) and 1(II) states adiabatically 

correlate to the asymptotic limit I+Cl and have negligible NACTs with the 1(IV) and 

1(V) states correlating to I+Cl*. Hence the decrease of product fraction P in the higher 

energy region could be explained from the large absorption cross section of the 1(II) state. 

Although the absorption cross section of the 1(I) state is relatively small, it also 

contributes to decrease of the product fraction P. 
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Samartzis and Kitsopoulos also examined the anisotropy parameter β in the 

region of 400-570 nm. In this wide wavelength region, photoabsorption to the 1(II) state, 

as well as the 1(I), 0+(II) states can occur, therefore the β parameter for Cl changes 

drastically. The calculation result in Figure 4-7 shows qualitative agreement with the 

experimental data. They speculated that there exists an Ω=1 state in the energy region 

higher than the 0+(II) state, from the decrease in photodissociation product Cl* and from 

the β parameter in the higher energy region, and named the C state as a candidate. From 

the theoretical calculations of this study, the author affirmed that, the known A(1) and 

z(1) states [81,82] are the only possible Ω=1 states, that are responsible for the first 

absorption band, and from the above analysis, their speculated Ω=1 state turns out to be 

the z(1) state. 

 

Figure 4-7: Anisotropy parameter of β photofragment Cl. Solid line: Wave packet method. Dots: 

Experiment by Samartzis and Kitsopoulos [66]. 
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It is interesting to point out that at 530-540 nm (2.3-2.4 eV), the envelope of the 

oscillation has a maximum (Figure 4-5), the product fraction of Cl* becomes 1/2 (Figure 

4-6), and the β parameter for Cl becomes 0 (no anisotropy, Figure 4-7). This is of course 

not coincident, since the interference between the parallel and perpendicular components 

is expected to be most significant when these two probabilities become identical. 

4.3.3 Non-adiabatic transition between the X(0+) and 0+(II) states 

As shown in Figure 4-3, a significant non-adiabatic transition probability between 

the X(0+) and 0+(II) states was also estimated by Alexander and Rakitzis [68]. The NACT 

between these states in Figure 4-2(a) shows a maximum value at 9.1 bohr, where a 

hidden avoided crossing exists. When the electronic wave functions of the X(0+) state are 

expanded with CSFs and plotted as a function of the internuclear distance R as shown in 

Figure 4-8, the most dominant CSFs are 1Σ+(1441) and 1Σ+(2332), with the occupation 

number notation of (pqrs)≡(σpπqπ*rσ*s). These σ, π, π*, and σ* orbitals are localized 

respectively to σ(Cl3p), π(Cl3p), π(I5p), and σ(I5p) in these asymptotic regions. As R is 

increased, the most dominant CSF for the X(0+) state is switched from 1Σ+(1441) to 

1Σ+(2332) at the avoided crossing region, suggesting the non-adiabatic transition between 

the X(0+) and 0+(II) states is of Landau-Zener type. 

 The PECs of the X(0+) and 0+(II) states in Figure 2-3 do not clearly exhibit the 

avoided crossing, although its existence at 9.1 bohr can be confirmed from the maximum 
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point of NACTs. Hence, inclusion of the NACTs is essential to the quantitative 

calculation of non-adiabatic transition probabilities, especially at longer bond distance 

regions. The quantum mechanical approach includes the effect of the NACTs and also the 

quantum mechanical interference effects among the several dissociation paths. Although 

the non-adiabatic transition probability from the 0+(II) state to the X(0+) state does not 

show a quantitative agreement with the simulated result of Alexander and Rakitzis [68], 

the angular momentum parameter Im[a1
(1)(//,⊥)] itself shows a qualitative agreement 

with the experimental result of Rakitzis et al. [23]. Hence, the potential energy curves 

obtained in this work were considered accurate enough to give the parameter Im[a1
(1)(//,

⊥)] with quantitative agreement with the experimental result of Rakitzis et al. 
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Figure 4-8: Weight of configuration state functions (squared CI coefficients) of the X(0+) state. The 

interchange of the dominant configuration state functions could be found around the point where an 

avoided crossing between the X(0+) and 0+(II) states exists. 

4.4 Conclusions 

The low-lying excited states of ICl, and calculated the product branching ratio, the 

anisotropy parameter β, and the first-rank angular momentum parameter Im[a1(1)(//,⊥)] 

were obtained with ab initio method. The calculation result of the product fraction and 

the β parameter supported the experimental analysis by Samartzis and Kitsopoulos [66], 

and the indicated obscure state turned out to be the z(1) state. For the first-rank angular 

momentum parameter Im[a1(1)(//,⊥)], the high accuracy of the potential energy curves, 

obtained in this study, was affirmed from quantitative agreement of phase part with 
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experimental data by Rakitzis et al. [23]. The non-adiabatic transitions between the X(0+) 

and 0+(II) states is of an Landau-Zener type without apparent avoided crossing between 

the two potential energy curves. 
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Chapter 5  
Photodissociation Process of ICl 
 in the Second Absorption Band 

5.1 Introduction 

The branching ratios following the excitation to the second absorption band have 

been investigated by Tonokura et al. by analyzing the Doppler profiles of the 

photofragments [41]. In their theoretical study, they obtained the squared transition 

dipole moments from the ground X(0+) state to the 0+(III), 1(IV), and 0+(IV) states as 

µ2
0+(III)=0.0220 bohr2, µ2

1(IV)=0.0232 bohr2, and µ2
0+(IV)=0.00696 bohr2, respectively, and 

the non-adiabatic transition probabilities at the avoided crossings Av-1 and Av-2 as 

p1=0.77 and p2=0.90, respectively. The branching ratios of the I+Cl, I+Cl*, and I*+Cl 

channels were calculated as 18, 46, 36 %, respectively, using the equation 

,
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The author notes that they have not included the contribution of the quantum interference 

between the 0+(III,IV) states in the above calculation. Although their experiment 

indicated that the I+Cl channel products were dominated by parallel transition 

components, later ion imaging experiment by Rogers et al. [83] showed their 

contributions were negligibly small in the I+Cl channel. Moreover, two other 

experiments by Jung et al. and Cheng et al. also indicated that the I+Cl channel products 

were dominated by perpendicular transition components at the wavelength of 304.67 nm 

[84,85].  However, since the theoretical transition dipole moment to the 0+(IV) state, 

which diabatically correlates to the I+Cl channel, was calculated to have a comparable 

magnitude to the one to the 0+(III) state, Rogers et al. considered that the theoretical 

transition dipole moment to the 0+(III) state could be overestimated and they also 

questioned the existence of the avoided crossing Av-1 [83]. 

Diamantopoulou et al. have also observed the fine structure branching ratio in a 

wider region of the second absorption band [86]. Regarding the photoabsorption at 

wavelength of 235 nm, their result of perpendicular transition component for dissociation 

channel I+Cl* is similar to those of Rogers et al. [83]. Their study also indicates a very 

small contribution of the dissociation channel I+Cl compared to the dissociation channel 

I*+Cl. More importantly, by analyzing the experimental results, the anisotropy parameter 

β of the I+Cl channel shows a strong photon energy dependence, which implies 

comparable contribution of parallel and perpendicular transitions for this channel. For the 
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perpendicular transition, the 1(III) state is the only state which adiabatically correlates to 

the I+Cl channel, hence the contribution of the 0+(III,IV) states to this channel should be 

comparable to the 1(III) state. In this chapter, the anisotropy parameters and the product 

branching ratios were calculated with three methods, namely, the wave packet 

propagation method, the semi-classical method, and the classical path method, and were 

examined in comparison with recent experiments. 

5.2 Computational methods 

Most of the calculations were carried out with the same method as previous 

Chapter 4, with the following exceptions. The calculations were carried out by the 

‘contracted spin-orbit configuration interaction’ method [87], where the total Hamiltonian 

including the spin-orbit part is diagonalized in the basis of the lower-lying spin-free 

configuration interaction eigenstates of ),2,,2(3,1 ΔΠ×ΣΣ× −+ , all of which correlate 

with the ground state atomic dissociation limit of I(2P)+Cl(2P). The phases of the 

configuration interaction wave functions of the relevant states were fixed at the Franck-

Condon region, so that both of the transition dipole moments µ0+(III) and µ0+(IV) from the 

ground state X(0+) have positive values. For the transition dipole moments, the 

uncontracted SOCI method in the first-order CI scheme has been used. All the electronic 

structure calculations were performed with the COLUMBUS program package [76]. 
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 For the purpose of CI wave function analysis, the electronic structure calculation 

with MOs transformed into atomic orbital (AO)-like orbitals [88] were also performed. 

The unitary transformations were restricted for the pairs of the valence orbitals (σ, σ*), 

(πx, πx*), and (πy, πy*) within the reference orbital subspace, so that the overlaps of MO 

with the one at dissociation limit become maximum. Note that the configuration space 

formed from these transformed AO-like orbitals is identical to the one with the original 

MOs. 

5.3 Results and discussion 

5.3.1 The second absorption band spectra 

The present results for the transition dipole moments (Figure 5-1) were not 

significantly different from those in  the previous work [42]. The result of the total 

absorption spectrum is in agreement with the one observed by Seery and Britton (Figure 

5-2) [2]. The absorption cross section of the 1(III) state, which correlates to the 

dissociation channel I+Cl, is very small compared to the ones of the 0+(III,IV) states. 
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Figure 5-1: (a) Calculated transition dipole moments to the states 0+(III) and 0+(IV), and (b) non-adiabatic 

coupling terms between 0+(III,IV). 

 

Figure 5-2: Theoretical absorption spectra of the second absorption band. Thin solid lines represent Ω=0+ 

states, dashed lines Ω=1 states, and thick solid line total sum of the theoretical calculation. Dots represent 

experimental values by Seery and Britton [40]. 

 Figure 5-1 shows the magnitudes of the calculated transition dipole moments to 

the 0+(III,IV) states are in the same order. Due to the strong spin-orbit interaction, the 
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spin-orbit coupled adiabatic states ψ are linear combinations of the spin-free states φ. 

With the ‘contracted SOCI’ method in the Franck-Condon region, each of the adiabatic 

states of X(0+), and 0+(III,IV)  was approximately described in terms of the dominant 

spin-free states as 

)),2431((143.0))2440((988.0 31
)X(0 Π×+Σ×≈ +
+ φφψ  (5-4) 

)),2422((227.0))2341((967.0 33
(III)0

−
+ Σ×+Π×≈ φφψ  (5-5) 

)).2422((445.0))2422((875.0 13
(IV)0

+−
+ Σ×+Σ×≈ φφψ  (5-6) 

 Here, the spin-free state 2S+1Λ with dominant configuration (σpπqπ*rσ*s) is 

denoted as 2S+1Λ (pqrs). These valence orbitals of σ, π, π*, σ* denote the SA-SCF 

orbitals. Since the dipole moment operator is a spin-free operator, the transition dipole 

moment to the 0+(III) state has a contribution from the largest component 3Π(2341) of the 

state itself as shown in equation (5-7), while the one to the 0+(IV) state has a contribution 

from the largest component 1Σ+(2440) of the ground state X(0+) as in equation (5-8), 

,))2341((ˆ))2431((138.0ˆ 33
(III)0)X(0 ΠΠ×≈++ φµφψµψ zz  (5-7) 

.))2422((ˆ))2440((440.0ˆ 11
(IV)0)X(0

++
++ ΣΣ×≈ φµφψµψ zz  (5-8) 

 Since an excitation from the spin-free state 1Σ+(2440) to the state 1Σ+(2422) is 

approximately a two-electron process, the magnitude of the transition dipole moment 

between these states is 0.095 bohr, which is about one tenth of 0.90 bohr, the transition 
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dipole moment value between 3Π(2431) and 3Π(2341). The comparable magnitude of the 

transition dipole moments to the 0+(III) and 0+(IV) states is a consequence of the strong 

intensity borrowing of the 0+(IV) state from the 1Σ+(2422) state and the large magnitude 

of the transition dipole moment between the spin-free states 3Π(2431) and 3Π(2341). The 

CI wave functions of this study yielded 22
(III)0 bohr0172.0=+µ  and 22

(IV)0 bohr0091.0=+µ , 

which are similar to the old values [42] of 22
(III)0 bohr0179.0=+µ  and 

22
(IV)0 bohr0099.0=+µ . 

 With AO-like orbitals, the dominant configurations of the 0+(III) state in the 

Franck-Condon region are 3Π(2341) and 3Π(1432). Those for the 0+(IV) state are 3Σ-

(2422), 3Σ-(2332), and 1Σ+(2332). The interchange of these CSFs is clearly found at the 

avoided crossing Av-1 (Figure 5-3), which suggests that non-adiabatic transition is of the 

Landau-Zener type. In this calculation, the phases of the electronic wave functions were 

fixed, so that the transition dipole moments from the ground state X(0+) to both of the 

0+(III) and 0+(IV) states become positive in the Franck-Condon region. It will be essential 

in later discussion that the theoretical NACT between the 0+(III) and 0+(IV) states 

IVIIIIVIII, / ψψ Rg ∂∂=  resulted in a positive value at the avoided crossing Av-1. 



 5-77 

 

Figure 5-3: CI coefficients of (a) the 0+(III) state and (b) the 0+(IV) state in AO-like basis. Black curves are 

for 1Σ+(1441). Blue curves are for 1Σ+(2332). Red curves are for 3Σ-(2332). Green curves are for 3Σ-(2422). 

Light blue curves are for 3Π(2341). Yellow curves are for 3Π(1432). The numbers in parentheses represent 

the electronic configuration in AO-like basis. 

5.3.2 Numerical calculation of the branching ratios and the 

anisotropy parameters 

Using the classical path method, R is treated classically, and the time-dependent 

electronic wave function ψ(t) can be expressed in the form of an expansion of the 

adiabatic basis ψIII,IV(R), which evolves in time t, as [9,89] 
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].d))((exp[))(()(]d))((exp[))(()()(
0 IVIVIV0 IIIIIIIII ∫∫ ʹ′ʹ′−+ʹ′ʹ′−=
tt

ttREitRtcttREitRtct


ψψψ  (5-9) 

Substituting Ψ into electronic time-dependent Schrödinger equation leads to 

,]d)))(())(((exp[))(()( IV0 IIIIVIVIII,III cttREtREitRgtRc
t

∫ ʹ′ʹ′−ʹ′−−=


  (5-10) 

.]d)))(())(((exp[))(()( III0 IVIIIIIIIV,IV cttREtREitRgtRc
t

∫ ʹ′ʹ′−ʹ′−−=


  (5-11) 

Here, R is considered to satisfy the classical equation of motion with the classical 

Ehrenfest force expressed as RHF ∂−∂= / , where the averaged potential energy of the 

0+(III) and 0+(IV) states is given as 

)).((|)(|))((|)(| IV
2

IVIII
2

III tREtctREtcH +=  (5-12) 

The initial value of the internuclear distance R(t=0) is selected as the classical 

turning point, where the averaged  potential energy defined above equals to the sum of 

each photon energy and the ground vibrational level of the X(0+) state. There, the initial 

values of the coefficients cIII and cIV are given by the normalized transition dipole 

moments, 2
IV

2
IIIIII / µµµ +  and 2

IV
2
IIIIV / µµµ + , respectively, and the classical 

internuclear velocity equals to zero 0=R . 
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Figure 5-4: Branching ratios [I+Cl]/[I*+Cl] (blue) and [I+Cl]/[I+Cl*] (red). Solid curves are the 

calculations of classical path method with quantum interference effect. Dashed curves are the calculations 

without quantum interference effect. Cross markers represent the branching ratios observed by 

Diamantopoulou et al. [86]. 

 Figure 5-4 for the calculated branching ratios [I+Cl]/[I*+Cl] and [I+Cl]/[I+Cl*] 

shows that large discrepancies existed previously are now resolved by including  the 

quantum interference effect with which the present theoretical calculations are in good 

agreement with the experiment [86].  As Figure 5-5 shows, without quantum interference 

effect, the anisotropy parameter β for the I + Cl channel is dominated by the parallel 

component, in disagreement with experiment, especially on the longer wavelength side. 

However, with quantum interference effect, theoretical β for that channel exhibits a sharp 

decrease with an increasing wavelength, in general agreement with the experiment 

behavior. Figure 2-3 and Figure 5-2 show that, among three perpendicular states in the 
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second absorption band, only the 1(III) state correlates to the I + Cl product with a very 

weak absorption peak around 260 nm. Therefore, the results suggest that the sharp 

decrease in the experimental β parameter from 235 to 250 nm is caused by the switchover 

of the dominating components, from those originated from the 0+(III) and 0+(IV) states 

on the shorter wavelength side to those from the 1(III) state on the longer wavelength 

side.  Because both of these components are very weak, the theoretical results of this 

study might slightly underestimate the perpendicular component at 250 and 265 nm. 

 

Figure 5-5: Anisotropy parameter β of the I+Cl* channel (blue) and the I+Cl channel (red). Solid curves are 

the calculation of the classical path method with quantum interference effect. Dashed curves are the 

calculations without quantum interference effect. Cross markers represent the anisotropy parameter β 

observed by Diamantopoulou et al. [86]. 

 The norm of the 0+(III,IV) states exhibits a drastic change at the avoided crossing 

Av-1 (Figure 5-6). It is essential that, while the parallel contribution of the I+Cl channel 
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was overestimated in previous numerical estimation [41,86], the quantum interference 

between the 0+(III) and 0+(IV) states included in the this calculation, contributes to the 

norm of the 0+(III) state destructively, and to that of the 0+(IV) state constructively. 

 

Figure 5-6: (a) Norms of the state amplitudes of the 0+(III) and 0+(IV) states  and (b) phase difference 

between these states at 250 nm. Green vertical lines indicate the internuclear distance at Av-1. 

5.3.3 Perturbation analysis of the non-adiabatic interaction 

By treating the non-adiabatic interaction between the 0+(III) and 0+(IV) states as 

time-dependent perturbation, the first-order perturbation coefficient KIII of the adiabatic 

electronic 0+(III) state in the asymptotic limit can be written as 



 5-82 

).0(d]d))((d))((exp[))(()(

)0(]d))((exp[

)(]d))((exp[lim

)())((lim

IV0 III0 IVIVIII,

III0 III

III0 III

IIIIII

ctttREittREitRgtR

cttREi

tcttREi

ttRK

t

t

t

t

t

∫ ∫∫

∫

∫

∞ ∞

∞

∞→

∞→

ʹ′ʹ′−ʹ′ʹ′−−

−=

ʹ′ʹ′−=

=








ψψ

 (5-13) 

 Following the treatment by Miller and George [89], the integration of the above 

second term can be evaluated with the stationary phase approximation, then expressed as 

a  proportional constant A times the integrand at the time t0 at which the above phase 

factor is the least varying, 0))(d/d( IIIIV =− EEt , and also the magnitude of the integrand   

IVIII,gR  is the most dominant [89]. Since the NACT gIII,IV has a local maximum and the 

PECs of the 0+(III,IV) states have the closest point at the avoided crossing Av-1, the two 

conditions of the stationary phase are satisfied when R is at Av-1. The above proportional 

constant A is positive and given by the asymptotic form of the Airy function as in 

equation (3.26) in [89]. Therefore, equation (5-13) is given as 
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 Similarly, the first-order perturbation coefficient KIV of the electronic 0+(IV) state 

in the asymptotic limit can be written as 
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 It is safe to proceed without taking care of the normalization of these coefficients 

KIII, KIV, since this formulation is intended to clarify the characteristics of the quantum 

interference in the 0+(III,IV) states. Although the mixing of the two adiabatic states was 

not apparent from the coupled equations (5-9), (5-10), and (5-11), equations (5-14) and 

(5-15) clarify KIII,IV are expressed in terms of the superposition of the two adiabatic 

electronic states with the perturbative treatment. The norms of these KIII, KIV for 

evaluating the branching rations give rise to not only the incoherent terms which have 

been evaluated in previous studies [86], but also the coherent term, which represents the 

quantum interference between the 0+(III) and 0+(IV) states, as 
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 The repulsive potential energy curves of the 0+(III,IV) states ensure that the 

velocity R  is positive when passing the avoided crossing Av-1. The remaining 

coefficients )0()0())(( IVIII0IVIII, cctRg  are all positive, since the transition dipole moments 

to the 0+(III,IV) states are both positive, and under the phase convention in this study, the 

resulting NACT between the 0+(III) and 0+(IV) states is positive at the avoided crossing 
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Av-1 (Figure 5-1). The common phase factor appearing in the coherent terms of 

equations (5-16) and (5-17) is calculated from the phase difference between the 0+(III) 

and 0+(IV) states at the avoided crossing Av-1 and is close to 2π, as Figure 5-6 shows. 

Hence, the quantum interference term for the 0+(III) state shows destructive behavior, 

while the one for the 0+(IV) state shows constructive behavior. Note that the integrand of 

the quantum interference term depends on the internuclear distance R(t) and the initial 

internuclear distance R(t=0) depends on the excitation energy, thus the phase difference 

between the 0+(III) and 0+(IV) states depends on the excitation energy. 

The expressions of equations (5-16) and (5-17) indicate that the characteristics of the 

quantum interference terms are independent of the phase convention for the electronic 

wave functions. If the phase of the electronic wave function of the 0+(III) state is reversed, 

the signs of the initial coefficient cIII(t=0) and thus of the NACT gIII,IV(R(t0)) are 

simultaneously reversed, but the overall sign in the interference term remains the same. 

In this way, the phases of the transition dipole moments and the NACTs must be 

calculated with full care, so that the continuity of the electronic wave function is kept 

consistent. Contrary to the previous suggestion [83], the comparable magnitudes of the 

theoretically predicted transition dipole moments to the 0+(III,IV) states turn out to be 

essential, because if either transition dipole moment is negligible, the quantum 

interference effect would be negligible. 
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5.3.4 Semi-classical treatment 

The nonadiabatic dynamics of the 0+(III,IV) states were further investigated using 

analytical scattering matrix for Landau-Zener type potential [7,90]. The adiabatic 

representation of these electronic states 0+(III,IV) is transformed to the diabatic 

representation ϕ1,2 by transformation angle ϑ , 
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 By convention [2], the phases of these electronic states are fixed so as the 

transformation angle ϑ  would be positive. The amplitudes at the turning point in 

adiabatic representation ±X  (in diabatic representation 2,1X ) are connected to the 

amplitudes at the dissociation limit in adiabatic representation )(+∞±A   (in diabatic 

representation )(2,1 +∞A ) with reduced scattering matrix as follows [7,10,15], 
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 Here, subscripts +/ − represent the higher and lower adiabatic states, namely the 

0+(IV), 0+(III) states, respectively, 2,1,kk±  in the action integrals are the respective 

wavenumbers, defined as ))((2)( RVERk −= µ , and the Stokes phase φ is analytically 

given as 
4

)(argln π
δδδδφ +Γ+−= , where the parameter δ is given in the reference 

[7,90]. The normalized transition dipole moments in the corresponding representation 

were used, as explained below equation (5-12), as the amplitudes at the turning point. 

The branching ratio and the anisotropy parameter in the semi-classical method are 

shown in Figure 5-7 and Figure 5-8, respectively. Although they are in overall agreement 

with the experiment, there was a slight difference between the adiabatic and diabatic 

representations. In the adiabatic representation, the norms at the dissociation limit are 

given as, 
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 The third terms in equations (5-21) and (5-22) describe the contributions of the 

quantum interference, where their phase parts consist of the action integral and the Stokes 

phase. Although the Stokes phases in the adiabatic and diabatic representations were 

consistent, the action integral part had a slight difference between the two representations 

(Figure 5-9). Hence, the difference of the adiabatic and diabatic representations is due to 

the difference between the adiabatic and diabatic potential energy curves. The author also 

notes that the semi-classical phase differences in equations (5-21) and (5-22) are 

approximately equal to 2π. Therefore the quantum interference term in equations (5-21) 

and (5-22) has the effects on the norm of the two states at its largest. 

 

Figure 5-7: Branching Ratios [I+Cl]/[I*+Cl] (blue), [I+Cl]/[I+Cl*] (red). Dash-dot lines: Wave packet 

calculation with the interference effect. Thin solid lines: Semi-classical calculation in diabatic form. Thin 
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dashed lines: Semi-classical calculation in adiabatic form. Thick solid lines: Classical path method in 

diabatic form. Thick dashed lines: Classical path method in adiabatic form. Cross marker: Experiment by 

Diamantopoulou et al. [86] 

 

Figure 5-8: Anisotropy parameter β of the I+Cl* channel (blue) and the I+Cl channel (red). Dots: Wave 

packet calculation without the interference effect. Dash-dot lines: Wave packet calculation with the 

interference effect. Thin solid lines: Semi-classical calculation in diabatic form. Thin dashed lines: Semi-

classical calculation in adiabatic form. Thick solid lines: Classical path method in diabatic form. Thick 

dashed lines: Classical path method in adiabatic form. Cross marker: Experiment by Diamantopoulou et al. 

[86]. 
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Figure 5-9: The semi-classical phases in adiabatic representation (black) and diabatic representation (red). 

Dashed lines: The Stokes phases φ. Thin lines: The phases of the action integral. Thick lines: The total 

phases. 

5.4 Conclusions 

The author studied the photodissociation process of ICl in the second absorption 

band. The branching ratios and the anisotropy parameters were calculated including the 

quantum interference effect between the 0+(III) and 0+(IV) states and the results are in 

better agreement with the experiments [83,86] than before. The comparable magnitudes 

of the transition dipole moments to the 0+(III) and 0+(IV) states are proved here to be 

important factors for the strong quantum interference effect. The weak excitation energy 

dependence of the quantum interference is one of the interesting features of this system. 

The author also discussed how the signs of the transition dipole moments and non-

adiabatic coupling terms and the phase difference among the states affect the 
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characteristics of the quantum interference. Finally the author notes that the quantum 

interference effect may play an important role in a photodissociation process if the 

absorption spectra of the excited states overlap and non-adiabatic interactions among 

those states are non-negligible.  
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Chapter 6  
General Conclusions 

First, the theoretical transition dipole moments are essential information in the 

simulation of photodissociation process. Therefore, the author examined the theoretical 

transition dipole moment of Cl2 molecule with various methods, to examine the accuracy. 

Although the calculation in the linear response treatment exhibited stability, the transition 

dipole moment in length form with MRSCI calculation showed better agreement with the 

experiment. Hence, the author employed the SASCF-MRSCI method for the transition 

dipole moment of ICl molecule. 

Second, the product branching ratio, the anisotropy parameter β, and the first-rank 

angular momentum parameter Im[a1
(1)(//,⊥)] in the first absorption band were calculated. 

For the product fraction and the β parameter, the author obtained the result supporting the 

experimental analysis by Samartzis and Kitsopoulos [66], and assigned that the obscure 

state is the z(1) state. For the first-rank angular momentum parameter Im[a1
(1)(//,⊥)], the 

theoretical results showed quantitative agreement with phase part of the experimental 

data by Rakitzis et al. [23]. The disagreement with the simulation of Alexander and 

Rakitzis [68] is likely to be associated with the lack of the Stokes phase in their semi-
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classical calculation. The non-adiabatic transition between the X(0+) and 0+(II) states was 

found to be of an Landau-Zener type without apparent avoided crossing between the two 

potential energy curves. Hence, the information of the potential energies alone is 

insufficient for calculating the non-adiabatic transition probabilities. 

 Third, the branching ratios and the anisotropy parameters in the second absorption 

band were calculated including the quantum interference effect between the 0+(III) and 

0+(IV) states and the results are in better agreement with the experiments than before. 

The comparable magnitudes of the transition dipole moments to the 0+(III) and 0+(IV) 

states are proved here to be an important factor for the strong quantum interference effect. 

The calculation demonstrated how the signs of the transition dipole moments and non-

adiabatic coupling terms and the phase difference among the states affect the 

characteristics of the quantum interference. Finally the author notes that the quantum 

interference effect may play an important role in a photodissociation process if the 

absorption spectra of the excited states overlap and non-adiabatic interactions among 

those states are non-negligible.  

Finally, the ab initio calculations have shown overall agreement with the 

experiments and it has been demonstrated that the accuracy of the calculations is 

sufficient for evaluating the matter wave phase of the photofragments. The molecular 

dynamics calculations have been carried out with various methods, namely, the quantum 

mechanical wavepacket method, the classical path method, and the semi-classical method. 
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Among the three methods, the classical path method and the semi-classical method are 

applicable to large systems. In this study, the author clarified the importance of the phase 

consistency of the electronic state calculation and the necessity of calculating the non-

adiabatic coupling terms for investigating the existence of avoided crossings. These 

findings hold for the molecular dynamics simulations not only for diatomic systems, but 

also for large systems. The quantum interference effects, which were studied in this thesis, 

are expected to play significant role in the molecular dynamics calculations of large 

systems. 
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