<table>
<thead>
<tr>
<th>Title</th>
<th>経営過程のアナロガス・モデル : 予算モデルの拡張を中心ににして</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Title</td>
<td>Management Function and its Analogous Model : for comprehensive management system</td>
</tr>
<tr>
<td>Author</td>
<td>山本, 敬子(Yamamoto, Noriko)</td>
</tr>
<tr>
<td>Publisher</td>
<td></td>
</tr>
<tr>
<td>Publication year</td>
<td>1968</td>
</tr>
<tr>
<td>Jtitle</td>
<td>三田商学研究 (Mita business review). Vol.11, No.3 (1968. 8), p.155-176</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Genre</td>
<td>Journal Article</td>
</tr>
</tbody>
</table>
経営過程のアナロガス・モデル

——予算モデルの拡張を中心にして——

山本敬子

1 はじめに
2 経営の機能について
3 予算モデルの構造
4 Mattessich モデルの検討
5 むすび

1 はじめに

今日の我が国における企業の行動は、大型企業の合併にもみられるように、市場占有率の拡大に重点がおかれている。

なるほど、企業の目的が、売上高の増大を通じての事業地位の向上にあるとすれば、大型合併による企業のマーケット・シェアの拡大は、企業目的を達成するための最も安易な方法のように思われる。

しかし、企業目的の達成度を、経営管理の観点から評価する場合には、マーケット・シェアの基準にかえて経営効率が問われねばならない。

現代の経営学の課題が、企業における経営問題の矛盾を解決するための理論的基礎を提供するという点にあると考えると、今日の大規模化した企業が、経済的存在としての影響力のみならず、社会的な存在としても、ますますその影響力を増大させつつあるという情勢の下においては、経営の効率的運用は、従来の経済合理性の追求によってだけでは、むはや達成不可能なものになってきている。

そこでわれわれは、従来の経営合理性の概念を、さらに拡大して、経済合理
性と社会合理性を総合した概念としての経営合理性を、新しい経営評価のための概念として確立していくことを研究目的として、まず、第一段階としては、経済合理性の追求を目的とする管理論的アプローチについて批判的検討を加え、第二段階としては、社会合理性の追求に重点をおおく組織論的アプローチをとりあげて検討を加えていく。

次に、個別企業とこれをとりまく経営環境との相互依存的な性格に着目して、企業経営システムを社会システムの一環としてとらえるという観点から、経営の効率的運用のための基礎的理論の形成を行ってきたいと思う。

なお本稿では、上述の研究のうもの一端が段階である管理論的アプローチの検討が中心になる。

2 経営の機能について

現代の経済社会において経営機能が果す役割は、企業規模の拡大とともにますます重大なものになってきており、経営がその固有の機能を効率的に発揮することが、社会の合理的な発展のための基本的条件として不可欠になってきている。

われわれは、先に触れたように、経営活動を評価するための基準として、経営合理性の基準を採用することにしたが、ここでの経営合理性の概念は、従来の経済合理性の概念に加えて、社会合理性の基準をも含むから、このような経営合理性を測定するためには、これまで用いてきた経済合理性の測度のほかに新たに社会合理性の測度を確立しなければならない。いずれにせよ、われわれが経営の活動を評価するためには、経営力の測定と評価を可能にする新たな基礎的理論が準備されていなければならない。

経営機能が、企業の成長と存続を維持するという本来の機能を充分に発揮していくためには、実務界における経営努力だけでなく、学界における経営論の一層の深化が要求される。

経営評価のための理論の形成は、企業行動に対して経営学的側面から検討を加えることにより、企業の官僚化や固定化の傾向をチェックし、また個別企業
の創造的発展を促進することに役立つからである。

以上のようない経営評価理論を形成して、経営力の測定と評価を可能にするために、われわれはまず、測定の対象である経営のプロセスの明確化から始めることにする。

経営の機能を客観的に把握するために、われわれが一般に使用している概念は、経営過程思考に基づくものである。

経営過程の概念には、これに対するアプローチの方法の相違によって、大きく分けて二つの流派がある。

一つは、経営におけるプランニングとコントロールの機能に重点を置く学派であり、もう一方は、経営の組織的側面に重点を置く学派である。

まず、前者的管理論的アプローチをとる学派では、経営の過程を、次のようなプランニングおよびコントロールのプロセスとして認識している。

計画のためのプロセスでは、予測資料としてのデータの収集の段階とこれら

のデータに基づいて作成された代替案の選択の段階が中心になる。全ての経営

計画は、このようなプロセスを経て設定される。これには、長期計画や短期計

画という期間計画や、総合計画、個別計画、あるいは利益計画や資金計画とい

う目的別計画が、また、販売計画や製造計画という機能別計画が設定される。

次いでこれらの計画は、執行活動の指針となるように具体化される。この段階

のものが、執行計画とか業務計画あるいは予算とよばれる。

さて、次の統制の過程では、執行活動を統制するための管理標準の設定と、

実績との差異分析、および評価が中心的な仕事になる。

また必要があれば、目標値の修正活動も行う。このように統制の過程は、上

述の執行計画を摂り所にして行われ、一般には、統制の基準として予算や標準

原価が使用されている。

結局、統制の過程は、上述の執行計画を前提として展開される一連の管理過

程であるといえる。それ故、計画のプロセスと統制のプロセスを厳密に区別し

て論ずることは、概念上は可能であるが、その効果には一定の限界があること

を認識する必要がある。
さて、以上のように、経営の過程を計画および統制のプロセスと考える管理論的思考では、計画および統制をいかに効果的に行うかということに関心が向けられる。

これまでの管理論研究の大部分は、このような計画および統制のための管理技法の開発に重点がおかれていている。それは、たとえば、長期経営計画を設定するための科学的方法の研究や、執行活動を統制するための、より近代的な管理技法の研究等にみられる。

このように管理論の課題が、計画および統制過程における管理技法の開発を中心とする技術論的展開を指向するという傾向は、経営活動の目的を経済合理性の追求にあるとするがぎり、一つの合目的な発展方向を示しているということができるよう。

しかるに、もう一方の組織論的思考は、これらの管理論的思考方法に対する一つの批判としてあらわれてきている。

組織論的思考方法では、社会的立場としてますますその影響力を増やせつつある現代の大規模企業が、経営活動を効率的に行っていくためには、経済合理性よりも高次の概念である社会合理性の概念を導入して、現実の企業の行動を説明しうるような理論の形成を行っていくという意図に基づいて、経営活動の主体である組織を分析の対象としている。

組織論的アプローチでは、経営組織の構造を、顧客、株主、従業者、経営者、従業員、原材料供給者等の企業活動への参加者の一体化した集合体と見做して、これら各々の組織参加者から最大の貢献を引き出すには、いかなる条件の整備が必要であるかを究明することに研究の中心がある。C. I. バーナードは、経営職能における組織職能の役割を重視し、組織職能を中心にして経営職能論の体系化をはかってきた先駆者である。

バーナードはその主著“経営者の役割”において、組織の存続は、組織参加者の協同意志に根ざし、これは、組織参加者に対するプラスの誘因がマイナス

（注1）C. I. Barnard, “The Functions of the Executive”, 1938. 田杉競監訳、“経営者の役割” ダイヤモンド
経営過程のアナロガス・モデル

の誘因を超過して純満足が得られる場合にのみ成功すると述べている。組織参加者に分配される誘因は、組織参加者がなす貢献を源泉とするものであるから、経営職能の重点は、より多くの誘因を創出するように管理を効率化することにおかれる。この場合の経営効率の評価は、単に経済合理性基準だけでなく、より広い社会合理性の基準に照して判定されることになる。

さて、本稿では、経営の過程を計画のプロセスと統制のプロセスとして考察する管理論の立場から、経営過程のアナロガス・モデルを作成することを試みる。このためには、計画プロセスとコントロール・プロセスの橋渡しをしている予算に着目して、予算モデルの拡張という手続きによって、企業の計画プロセスと統制プロセスのモデル化を行うことが可能であると考える。

3 予算モデルの構造

企業における予算は、経営管理の合理化のための手法として、今日では多くの企業に取り入れられており、予算統制制度として定着している。

このような制度化された予算をコンピューターにのせるために、いくつかのコンピューター・プログラムが開発されているが、本稿では、かかる予算を管理システムとしての観点からとり上げて、予算システムとしてモデル化したR. Mattessich の予算モデルをとり上げることにする。

Mattessich の原著では、予算のコンピューター・プログラムに重点が置かれているが、ここでは、予算のモデル化を論じている第3章を中心にして、その概要を説明していく。

Mattessich の予算モデルは、一般の企業が採用している会計的構造を前提にして、予算編成のための公式的枠組を提供することを目的として開発されている。

このモデルは、会計数値だけでなく、それ以外の数個の次元に関係する変数

（注3） op. cit., pp. 11～19
や特殊な性格をもつパラメターを導入している。

総合原価計算を採用する製造企業を仮定しているが、間接費配賦などには個別原価計算を利用している。

インデックス変数としては、次の項目が使用されている。

<table>
<thead>
<tr>
<th>項目</th>
<th>インデックス変数</th>
</tr>
</thead>
<tbody>
<tr>
<td>製品</td>
<td>I=1,...,N</td>
</tr>
<tr>
<td>直接材料</td>
<td>J=1,...,JJ</td>
</tr>
<tr>
<td>製造部門（直接費項目）</td>
<td>KP\ K=1,...,KK</td>
</tr>
<tr>
<td>サービス部門</td>
<td>KS</td>
</tr>
<tr>
<td>工場間接費</td>
<td>L=1,...,LL</td>
</tr>
<tr>
<td>営業経費</td>
<td>M=1,...,MM</td>
</tr>
<tr>
<td>期間（月）</td>
<td>MO</td>
</tr>
</tbody>
</table>

なお期間については次のものを補助的に使用する。

LM=MO−1, MBL=MO−2, NM=MO+1

MO=13 \(\text{ストック変数} = \text{期末残高} \times \text{フロー変数} = \text{期中全体・平均変数} \times \\text{年平均を示す} \)

Mattessich のモデルは、製品が 10, 直接材料費が 3, 製造部門 4, サービス部門 2, 工場間接費 12, 営業経費 5, 期間 (月) 12 で組まれている。予算の構成は、9個で、売上高予算、製造予算、原材料予算、労務費予算、工場間接費予算、営業経費予算、現金予算、予定損益計算書、予定販売価格の情報表から成っている。

各予算の構成は次のとおりである。各変数が量的に表示されるか、貢献量で表示されるかを明かにする必要があるが、ここでは従属変数についてのみ示されている。

なお、Sub-budgets の 5 から 9 までの各従属変数は、貢献量表示である。

(1) 売上高予算

(1-1) 年間売上強数 = 前年度の販売強数 × 売上指数 (数量基準)

\[SQ(1,13) = PSQ(1) \times SI(1) \]

注 1 前年度あるいは過去数年間の平均値等をとる。
注2 PSQ(I), I = 1, \ldots, N を基準とする製品別の販売予測指数。

(1-2) 月次販売数量 = 年間販売数量 × 販売係数（数量基準）
\[SQ(I, MO) = SQ(I, 13) \ast SK(MO), \ MO = 1, \ldots, 12 \]

(1-3) 月次売上高 = 月次販売数量 × 販売価格（貨幣基準）
\[SV(I, MO) = SQ(I, MO) \ast SP(I) \]

(2) 製造予算

(2-1) 月次製造量 = 年間製造量 × 生産係数（数量基準）
\[PQ(I, MO) = PQ(I, 13) \ast PK(I, MO), \ MO = 1, \ldots, 12 \]

(2-2) 調整月次製造量 = 年間製造量 × 新生産係数（数量基準）
\[APQ(I, MO) = PQ(I, 13) \ast PKN(I, MO), \ MO = 1, \ldots, 12 \]

注1 PK(I, MO) によって与えられた計画生産量が, 最小在庫水準以上であるか否かをコンピューターがテストする。もし, 最小在庫水準に達しないと, 新生産係数によって最小在庫水準が維持されるように調整される。

注2 新生産係数はコンピューターによって自動的に計算される。

(2-3) 平均製品単位原価 = [前月の製造原価 + (前月の製品単位原価 × 月初在庫量)] / (調整生産数量 + 月初在庫量), (貨幣基準)
\[PUC(I, MO) = [PC(I, LM) + PUC(I, LM) \ast BI(I, MO)] / [APQ(I, MO) + BI(I, MO)] \]

PUC(I, MO), MO = 1, \ldots, 12 は期中貸借対照表を作成するために利用できる。

(2-4) 年間生産数量 = 期末在庫量 + 年間販売量 - 期首在庫量（数量基準）
\[PQ(I, 13) = BI(I, 13) + SQ(I, 13) - BI(I, 1) \]

(3) 原材料予算

(3-1) 原材料必要量 = 調整生産数量 × 原材料購入係数（製品項目毎の）
(数量基準)
\[RMR(I, J, MO) = APQ(I, MO) \ast PMK(I, J) \]

(3-2) 原材料購入量 = 総材料必要量 × 材料購入係数（月別）（数量基準）
PRM(\(J, MO\)) = TMR(\(J, 13\)) \ast PMC(\(J, MO\))

調整原材料購入量 = 総材料必要量 \times 新材料購入係数 (数量基準)

APRM(\(J, MO\)) = TMR(\(J, 13\)) \ast PMCN(\(J, MO\))

(3−3) 原材料在庫量 = 前月の原材料在庫量 + 前月の材料購入量 − 前月の総材料必要量 (数量基準)

\[RMI(\(J, MO\)) = RMI(\(J, LM\)) + PRM(\(J, LM\)) − TMR(\(J, LM\)) \]

\[LM = MO − 1 \]

三つの異った材料購入係数を区別する必要がある。

PMK(\(I, J\)) 製品単位当たりの材料必要量を表す。

PMC(\(J, MO\)) 初めに予想される年間総合計に対する月別材料必要量の割合を表す。

PMCN(\(J, MO\)) PMC(\(J, MO\)) が最小在庫水準を保証しない場合に、計算機が、自動的に、最小在庫水準を維持するために計算した新材料購入係数を表す。

(4) 労務費予算

(4−1) 月別標準作業時間 = 年間標準作業時間 \times 新生産係数 (数量基準)

\[SLH(I, K, MO) = SLH(I, K, 13) \ast PKN(I, MO) , MO = 1, \ldots, 12 \]

(4−2) 直接労務費 = 標準労務費 \times 標準作業時間 (貨幣基準)

\[DLC(I, K, MO) = SLC(K) \ast SLH(I, K, MO) , MO = 1, \ldots, 13 \]

(5) 工場間接費予算

(5−1) 部門別固定製造間接費 = 固定製造間接費 \times 部門別固定製造間接費率

\[DFF(K, L) = FPF(L) \ast FFR(K, L) \]

(5−2) 部門別変動製造間接費 = 変動製造間接費率 \times 部門別総直接労務費

\[DVF(K, L, MO) = VER(K, L) \ast TDLC(K, MO) \]

(5−3) 工場間接費 = 部門別変動製造間接費 + 部門別固定製造間接費の総合計 = サービス部門費配賦前の製造部門の製造間接費の総計 + サ
ビジネス部門の製造間接費の総計

$$\text{FOC}(L, MO) = \sum_{K=1}^{KK} (DVF(K, L, MO) + DFF(K, L, MO))$$

$$= \sum_{K=1}^{KP} \text{FOB}(K, L, MO) + \sum_{K=KP+1}^{KK} \text{FOS}(K, L, MO)$$

(5-4) サービス部門の製費配賦後の総工場間接費 = 配賦前の総工場間接費 + 配賦された工場間接費の総計

$$\text{TFOA}(K, MO) = \text{TFOB}(K, MO) + \sum_{K=1}^{KP} \text{FOP}(K, MO)$$

サービス部門費の配賦は、相互配賦法によって、未配賦額が 0.1% 以下になるまで行い、残りを均等に配分する。

(6) 営業経費予算

(6-1) 変動営業経費 = (売上高×営業経費係数) の総合計

$$\text{VOE}(M, MO) = \sum_{i=1}^{N} \text{SV}(I, MO) \times \text{OEK}(I, M)$$

(6-2) 総営業経費 = 総固定営業経費 + (営業経費係数×売上高) の総計

$$\text{TOE}(13) = \text{TFOE} + \sum_{i=1}^{N} \sum_{M=1}^{MM} \text{OEK}(I, M) \times \text{SV}(I, 13)$$

(7) 現金予算

(7-1) 受取勘定回収額 = (第1受取勘定係数×前月の総売上高) + (第2受取勘定係数×前々月の総売上高)

$$\text{ARC}(MO) = \text{AC}1 \times \text{TSV}(LM) + \text{AC}2 \times \text{TSV}(MBL)$$

(7-2) 現金預金 = (現金預金 + 総現金受入額 - 総現金払出額) 全て前月

$$\text{CHB}(MO) = \text{CHB}(LM) + \text{TCR}(LM) - \text{TCO}(LM)$$

(7-3) 短期有価証券利息の入金額 = 0

但し 1 月より 5 月、7 月より 11 月の間

$$\text{CRI}(MO) = 0 \text{ for } MO=1, \ldots, 5, 7, \ldots, 11$$

(7-4) 6 月 (12月) の短期有価証券利息入金額 = 1 月より 6 月まで (7 月より 12 月まで) の短期有価証券利息収入の総計
CRI (6) = \sum_{\text{MO}=1}^{6} SSI (\text{MO})

CRI (12) = \sum_{\text{MO}=7}^{12} SSI (\text{MO})

(7-5) 製品製造経費係数 = 配賦後の総工場間接費/総部門別（直接）労務費
PFK (K) = TFOA (K, 13)/TDLC (K, 13)

(7-6) 手許現金及び預金 \leq 最大現金保有許容額
CHB (MO) \leq \text{CASMAX}

手許現金及び預金 \leq 相對的許容最低限（前月の短期有価証券が存在する場合）

CHB (MO) \geq \text{CASMIN} [SS (LM) \geq 0]

\text{CASMAX} は絶対額を示すが、\text{CASMIN} は短期有価証券の保有額との関連で相対的に決定される。

(7-7) 現金による売上高 = 現金売上高係数 \times 総売上高
CS (MO) = CSC \times TSV (MO).

(7-8) 在庫製品（半製品）の製造経費 = 製品製造経費係数 \times 直接労務費
FOF (I, K, MO) = PFK (I, K) \times DLC (I, K, MO)

(7-9) 賃金支払額 = [総直接部門労務費 + (工場間接費の固定部門 \times 工場間接賃金支払係数)の総計 + [変動営業経費 + (固定営業経費/12)] の総計

PE (MO) = \sum_{K=1}^{K} TDLC (K, MO) + \sum_{L=1}^{L1} FPC (L, I) \times FOC (L, MO)

+ \sum_{M=1}^{M1} [VOE (M, MO) + FOE (M)/12]

L=1, \ldots, L1, M=1, \ldots, M1 は間接労務費項目。

(7-10) 支払勘定支出 = (調整材料購入必要量 \times 原材料単価) の総計 + (工場間接費支払係数1 \times 全部門の工場間接費) の総計 + (工場間接費係数2 \times 前月の全部部門の工場間接費) の総計 + (工場間接費係数3 \times 前々月の全部部門の工場間接費) の総計 + [変動営業経費 + (固定営業経費/12)] の総計

VPE (MO) = \sum_{J=1}^{J} APRM (J, LM) \times UCM (J, LM) + \sum_{L=12}^{L3} FPC (L, 1) \times
FOC(L, MO) + \sum_{L=L_2}^{L_3} FPC(L, 2) \ast FOC(L, LM) + \sum_{L=L_2}^{L_3} FPC(L, 3) \ast FOC(L, MBL) + \sum_{M=M_3}^{M_4} \{ VQE(M, MO) + [FOE(M)/12] \},

(8) 予定損益計算書

(8-1) 1963年現在の税引前利益に対する法人税[CT(13)]の基本的算定公式を示す。

\[
CT(13) = \begin{cases}
0.3 \ast PBT(13), & PBT(13) \leq 25,000 \\
0.3 \ast 25,000 + 0.52 \ast (PBT(13) - 25,000), & PBT(13) > 25,000
\end{cases}
\]

(8-2) 通常の長期負債利子 = 通常の長期負債利子率 \times (月初の総長期負債十月末の総長期負債)/2

\[
OLI(MO) = OIR(MO) \ast \{ TLL(MO) + [TL(NM)]/2 \}
\]

(8-3) 短期有価証券利子収入 = 短期有価証券利子率 \times (月初短期有価証券 + 月末短期有価証券) の 1/2

\[
SSI(MO) = SIR(MO) \ast \{ SS(MO) + SS(NM) \}/2
\]

(8-4) 月別売上製品原価 = (直接) 原材料月初在庫額 + 総購入額 - (直接) 原材料月末在庫額 + 総務務費 + 工場間接費 + 製品(半製品) 月初在庫総額 - 製品(半製品) 月末在庫総額

\[
CGS = (MO) = VMI(MO) + TPV(MO) - VMI(NM) + TLC(MO) + FOL(MO) + TFI(MO) - TFI(NM), \quad MO = 1, \ldots, 12
\]

\[
NM = MO + 1
\]

全予算期間にわたる公式

\[
CGS(13) = VMI(1) + TPV(13) - VMI(13) + TLC(13) + FOL(13) + TFI(1) - TFI(13)
\]

(8-5) 粗利益 = 総売上高 - 売上製品原価

\[
GP(MO) = TSV(MO) - CGS(MO)
\]

(8-6) 税引後利益 = 総売上高 - 売上製品原価 - 総営業経費 - 財務等諸経費 - 法人税
PAT(MO) = TSV(MO) - CGS(MO) - TOE(MO) - FME(MO) - CT(MO)

(8—7) 短期負債利子 = 短期負債利子率 × 短期負債

SLI(MO) = SLR(MO) × SL(MO)

(9) 予定貸借対照表

(9—1) 予算期首における製品（半製品）の総在庫額 = （旧製品単位原価 × 期首在庫量）の総計

TFI(1) = \sum_{i=1}^{N} PUCO_i(1) × BI(i, 1)

月末の製品（半製品）総額 = （製品単位原価 × 月末在庫量）の総計

TFI(NM) = \sum_{i=1}^{N} PUC(i, MO) × BI(i, NM) MO = 1, ..., 12,

NM = MO + 1

(9—2) 月割り配当予定額 = 配当予定額（年額）/ 12

DD(MO) = DD(13) / 12

(9—3) 総資産 = 総持分

TA(MO) = TE(MO)

(9—4) 総資産 = 総流動資産 + 総固定資産

TA(MO) = TCA(MO) + TFA(MO)

(9—5) 総持分 = 総短期負債 + 総長期負債 + 所有者持分

TE(MO) = TSL(MO) + TLL(MO) + OEQ(MO)

(9—6) 総流動資産 = 現金預金 + 短期有価証券 + 純受取勘定（貸倒引当金控除） + 原材料在庫額 + 期首製品（半製品）在庫総額 + 前払費用

TCA(MO) = CHB(MO) + SS(MO) + ARN(MO) + VMI(MO) + TFI(MO) + PPE(MO)

(9—7) 総固定資産 = 関係会社投資 + 純設備機械（減価償却引当金控除） + 土地 + 純建物及び備品（減価償却引当金控除）

TFA(MO) = PI(MO) + EMN(MO) + HL(MO) + BFN(MO)

(9—8) 総短期負債 = 支払勘定 + 短期借入金 + 未払費用
経営過程のアナロガス・モデル

\[TSL(MO) = VP(MO) + SL(MO) + AE(MO) \]

(9-9) 所有者持分＝株式資本＋払込込み剰余金＋留保利益

\[OEQ(MO) = SC(MO) + PIS(MO) + RE(MO) \]

(9-10) 総長期負債＝総長期負債期首残高＋長期負債変動量の総計

\[TLL(MO) = TLL(1) + \sum_{LM=1}^{MO-1} TLLX(LM) \quad MO = 2, \ldots, 13 \]

(9-11) 留保利益＝留保利益期首残高 + (税引後の利益増加額 - 予定配当額) の総計

\[RE(MO) = RE(1) + \sum_{LM=1}^{MO-1} [PAT(LM) - DD(LM)] \quad MO = 2, \ldots, 13 \]

以上の九つのSub-budgetsの編成手続は次のフロー・チャートに示すような順序で行われる。

フロー・チャート

1. 出発
2. データをプログラムに読みこむ
3. 販売予算を作成せよ
4. 製造予算-1を作成せよ | 製造予算-2を作成せよ
5. 原材料予算を作成せよ
6. 労務費予算を作成せよ
7. 工場間接費予算を作成せよ
8. 営業経費予算を作成せよ
9. 現金予算を作成せよ
10. 損益計算書を作成せよ
11. 資産対照表を作成せよ
12. 終了

第2番目の製造予算は、このプログラムでは、第3番目から第6番目の予算
が作成されなければ、製品単位原価が算定できないので、営業費予算の次に作成されることになる。

以上の順序で予算の編成が行われるが、予算の作成にあたって重要なのは、パラメーターおよび外生変数の決定である。このモデルで使用されているパラメーターおよび外生変数を次表で示そう。パラメーターについては、その推定部門も示す。

パラメーター

<table>
<thead>
<tr>
<th>パラメーター</th>
<th>推定部門</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1</td>
<td>会計部門、経理部門</td>
</tr>
<tr>
<td>AC2</td>
<td>"</td>
</tr>
<tr>
<td>CASMAX</td>
<td>"</td>
</tr>
<tr>
<td>CASMIN</td>
<td>"</td>
</tr>
<tr>
<td>CSC</td>
<td>"</td>
</tr>
<tr>
<td>FPC (L, M, S)</td>
<td>"</td>
</tr>
<tr>
<td>OEK (I, M)</td>
<td>原価計算部門</td>
</tr>
<tr>
<td>PK (I, MO)</td>
<td>製造部門、I.E.部門</td>
</tr>
<tr>
<td>PMC (J, MO)</td>
<td>購買部門</td>
</tr>
<tr>
<td>PMI (I)</td>
<td>O.R.部門（製品最小在庫量）</td>
</tr>
<tr>
<td>PMK (I, J)</td>
<td>製造部門、I.E.部門</td>
</tr>
<tr>
<td>RMMI (J)</td>
<td>O.R.部門（原材料最小在庫量）</td>
</tr>
<tr>
<td>SI（I）</td>
<td>販売部門、マーケット分析者</td>
</tr>
<tr>
<td>SK（MO）</td>
<td>市場調査コンサルタント</td>
</tr>
</tbody>
</table>

外 生 変 数

<table>
<thead>
<tr>
<th>AAR（1）</th>
<th>AEM（1）</th>
<th>ARX（MO）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABF（1）</td>
<td>AEMX（MO）</td>
<td>BF（1）</td>
</tr>
<tr>
<td>ABFX（MO）</td>
<td>AEX（MO）</td>
<td>BFX（MO）</td>
</tr>
<tr>
<td>AE（1）</td>
<td>AR（MO）</td>
<td>BI（I.1）</td>
</tr>
</tbody>
</table>

(注1) op. cit., pp. 12-13
(注2) op. cit., appendix 1, pp. 149-155
(注3) op. cit., chap. 4, pp. 25-26
経営過程のアナロガス・モデル

BI (I, 13) | PEX (MO) | SLH (I, K, 13)
CHB (1) | PI (I) | SLR (MO)
DD (13) | PIS (I) | SLX (MO)
DFF (K, L) | PISX (MO) | SP (I)
EM (1) | PPE (I) | SS (1)
EMN (1) | PRMD (J) | SSX (MO)
EMX (MO) | PSQ (I) | TLL (1)
FFR (K, L) | PUCO (I) | TLLX (MO)
FOE (M) | PMI (J, 1) | TSV
FFP (L) | SC (I) | TSVN
HL (1) | SCX (MO) | VFR (K, L)
FFP (MO) | SIR (MO) | VP (1)
OEQ (1) | SL (1) | UCM (J, MO)
OIR (MO) | SL'C (K) | UCMO (J)
PER (MO) | |

以上のような構造をもつ予算モデルからは、マネジメント・コントロール・モデルへの移行が考えられるが、Mattessich 自身は、このモデルの今後の展開方向として、次のような可能性があると指摘している。

（注1）

1. モデルの幅を拡大すること

予算の編成は、個別の活動、たとえば販売活動や資本支出等のためだけではなく、経営全体を包括する予算制度として設定される必要があるが、これでは、まだ、全体的な統制を有効に行うためにも必要である。有効な総合的統制は、予算の動機づけ機能を利用することによって行われるが、このために、販売、製造、投資等の分類より下位の個別部門あるいは責任単位の活動を予算化するような公式の設定が必要である。このように予算システムを拡大することによって、より多くの変数や等式の導入が必要になるが、現在のフォーランでは三局面以上のモデルを組むことは難しい。

2. モデルの厚みを増すこと

現在の予算モデルでは、在庫量や製品残高、および現金保有高に関する制約

（注1）op. cit., chap. 5, pp. 29～33
条件を導入しているが、より多くの制約条件を公式化して導入することが可能である。

制約条件にもとづくアダプティブ・コントロールのメカニズムをプログラム化することによって、電算機は、自動的な意志決定機構を内包することになるから、ルーティンの意志決定を電算機に委せることが可能になる。

3. 長期計画、特に投資および財務面を強調するモデルへの拡大

予算は本来、短期計画のための用具であるが、これを長期計画や資本予算編成のために利用するには、投資および財務活動に関するモデルを作成して、将来の数期間にわたるシミュレーションを可能にする必要がある。

従来の資本予算を、期間予算に組み入れることにより、経営の諸部門の活動と調整のとれた適切な投資・財務計画を設定することが可能になる。

4. 近代的な原価計算手法を導入してモデルの会計的側面を強化すること

予算は標準原価計算制度を導入することによって、直接費差異分析は勿論、間接費差異分析および製品組合せ差異分析まで可能になる。経営条件の変化に直ちに適応できるように組まれた予算では、実際に予想される標準を設定することが望ましく、これによって、内部統制を有効に行うこともできる。

5. 予算モデルに確率変数を導入すること

期間予算では、予測よりもコントロールに重点がおかれていているが、これを長期計画設定のためのシミュレーションに役立たせるために、決定理論などの成果を利用することが考えられる。

6. 予算モデルを O・R モデルによって強化すること

予算編成に O・R モデルを利用する方法としては、一つは、予算モデルの数学的性質や構成を明確にするための補完的用具として使用することであり、もう一つは、シミュレーション・システムの試行的、経験的方法を補完するため
に，モデルに結合して，予算によって調整される範囲内での最適解の計算に利用することである。

4 Mattessich モデルの検討

マテッシチの予算モデルは，現行の会計制度を前提にして，会計的予算編成のプロセスを示したものであり，このモデルにしたがって編成される予算は，短期的な総合予算として，経営管理のために使用することができる。

この予算に，日々の執行活動を管理するための用具としての経営統制機能を持たせることは，モデルを拡大して，それぞれの執行活動の達成目標を明示するような管理標準を組み込む必要がある。マテッシチは，これについて，標準原価計算の利用を考えている。

また，これらの管理標準が，有効に機能するためには，それらが各管理者の管理対象をなす管理可能領域と対応して設定されていなければならないが，マテッシチは，これを，責任センター別の予算を編成することによって解決しようとしている。

しかも，予算を用いて経営活動の統制を効果的に行っていくには，予算目標の達成に対する従業員の積極的な協力が要求される。

これには，マテッシチが指摘するような責任単位別の予算の編成だけでは不十分であり，その編成の過程において，予算の執行に責任を持つ管理者は勿論のこと，予算の執行に実際に携わる従業員をも含めて予算目標の決定を行うことが必要である。このような決定参加のメカニズムを，予算モデルを作成する場合には，何らかの形で考慮すべきである。それによってはじめて予算は動機づけ機能を保有して事前管理に役立つと同時に，また，予算と実績との差異分析に基づいては正措置を講ずる事後管理の段階においても，インセンティブ効果を持ちうるのである。

以上のように，予算編成の過程に決定参加のメカニズムを導入すると，予算はそれに関連をもつ管理者と従業員の共同目標としての性格を持つことになり，経営管理過程は，予算を媒介とした協同活動のプロセスとして認識されるもの
になる。

さて、次にマテシッチの予算モデルの経営計画過程における役立ちはあるが、これは主に短期的経営活動を対象とする期間損益予算の編成過程にあるといえる。その特質は、各部門の活動を企業全体の立場から調整して総合的な執行計画を樹立するという点に求められる。

マテシッチは、このような総合的計画設定の利点を、長期経営計画を樹立するさいに導入すべきであるとして、予算モデルを長期経営計画の設定にも役立つように拡大することを考えている。

長期経営計画の設定に予算モデルが利用できれば、設備投資計画や資本予算の設定が、単独でなく、経営全体との関連を考慮して決定することが可能になる。たとえば、設備投資決定のための代替案の選択や、資金調達計画の最適案の選択が、現金の流れの観点からだけでなく、企業全体の経営活動と関連をもった収支状態に結びついた効果として検討可能になるからである。

以上のように、長期経営計画過程に対しても役立つように予算モデルを拡大するには、より長期間にわたるインプット・データの予測が可能でなければならぬし、またマテシッチが指摘するような確率変数の導入も考慮する必要がある。さらに、マテシッチが意図しているように、予測のためのシミュレーション・モデルとしてもその有用性を増加させるためには、O.R.モデルを組み込んだり、より多くの制約条件を導入することが考えられる。このようなシミュレーション・モデルを作成することができれば、相当、長期間にわたる経営活動の過程の予測を行うことが可能になる。

さて、以上のように、予算モデルを計画モデルとして拡大するには、あるべき、統制モデルとして拡大するには、いずれの場合にも、われわれは、モデルをオペレーショナルにする意志決定の機能を無視することはできない。

マテシッチは、この点について、より多くの制約条件の導入と、フィードバックメカニズムのプログラム化によって、ルーティンの意志決定を自動化する方法を示唆している。

意志決定の自動化の可能性については、後述するように、インプット・デー
タの性格と関連づけて検討する必要があるが、ここでは、まず、経営管理過程における意志決定の機能について考えてみよう。

いまだもなく、経営活動を推進する主体は、経営活動に参加する個々人であり、具体的には、個々人の意志決定によって活動が進められているとみることができる。それ故、経営の過程は、個々人の意志決定の過程であるともいえる。このような経営過程に対する意志決定論的なアプローチは、バーナード以後のいわゆる組織学派の研究に顕著にみられるが、本稿では、主題にしたがって、予算モデルにおける意志決定の自動化の問題に限定して考察していく。

まず、経営計画過程における意志決定であるが、これはマテシッチ・モデルでは、経営がとりうる様々な代替案のうちで、最も適当なものとどれかを選択するための有力なデータを提供するということに重点がおかれている。これに対して、最適案を決定するという経営意志決定の段階までもモデルに組み入れようとすると、意志決定のための判定基準の導入が考えられる。

また、経営統制過程については、統制目標を決定するための判定基準の導入と、実績との差異分析を自動的に行うようなシステムを導入して、フィード・バック・コントロールを可能にするような方法が考えられる。

以上のように意志決定プロセスを予算モデルに組み込んでいくには、同時にインプット・データの改良も考えていかなければならぬ。

マテシッチのモデルで採用されているインプット・データは、パラメターと外生変数に分類されている。パラメターとしては、販売係数、生産係数、各種の費用係数、購入係数、および収入係数と支出係数という諸係数と製品や原材料の最小在庫水準および現金の許容額という制約条件が使用されている。

また、外生変数としては、各種の利子率、予定配当額および販売価格、原材料価格、固定費、減価償却費等が与えられている。これらのインプット・データを予測する過程は、モデルの有効性を決定する重要な要因になるが、マテシッチでは、これについて過去の経験的データの利用を述べているだけで、より詳細な検討は行っていない。
たとえば、外生変数のなかでも、販売価格や各種利子率のように多分に、外部的決定要因によって支配されるものと、予定配当率や各種の固定費、減価償却費のように経営政策との関連で内部的に決定される変数では、経営管理上、その性格が異なるのであるが、マテシッチにおいては、このような経営政策や経営管理の領域に対する配慮が欠けている。それ故、われわれが、予算モデルをより拡大して、経営意志決定のためのプロセスにも適用するには、上述の外生変数と意志決定変数を、経営管理の観点から明確に区別していく必要があるし、また、マテシッチが、ルーティンの意志決定を自動化するために、より多くの制約条件、たとえば、売上高や生産能力の最大可能値や資本調達市場や労働市場の制約等を導入して、モデルにおけるアダプティブ・コントロールのメカニズムを強化することを目指しているが、これについても経営意志決定の観点から検討を加えていく必要がある。

まず、決定モデルにおけるインプット・データの役割であるが、これは、もし、決定モデルが一定であるとすると、決定結果は、インプット・データに依存するから、このいみで、意志決定プロセスの前提的要素であるということができる。

これらの決定前提は、その予測可能性によって、決定前提が確実性をもって与えられるもの、あるいは、確率的に与えられるものと、確率がわからないものに分類することができる。このうち、前二者が意志決定モデルにとって重義の確定変数であり、後者が狭義の意志決定変数である。

マテシッチが指摘するような、意志決定の自動化は、前者の決定前提をもつ決定プロセスにおける方が、後者におけるよりも、より容易に行えることは明らかである。

意志決定の自動化が行われると、一定の決定前提からは同一の解答が導きだされることになるが、一般の企業のルーティン化した意志決定は、大部分このような形で遂行されているとみることができる。それは、ルーティンの活動

(注1) 重義の意志決定変数は、外生変数に対立するものである。これは、主体的に経営意志決定がなされるか否かの相対的程度に従って分類される。
経営過程のアナロガス・モデル

が、確実に、あるいは、確率的に予測できる決定前提を持ちうるからである。

ルーティンの意志決定を、上述のようにルーティンの活動に対応するものとして限定して考える場合には、マテシッチの指摘するようなアダプティブ・コンストロール・メカニズムによる機械的な意志決定が可能になるが、経営過程における意志決定の問題は、むしろ、決定前提が不確定な領域において起ってくる場合が多い。このような場合には、シミュレーション・モデルを利用して、その結果にもとづいて意志決定を行うことが考えられる。

さて、マテシッチは、予算モデルの拡大の方向として、マネジメント・コントロール・モデルへの移行を考えているのであるが、これまでの検討結果からして、マテシッチのモデルには、マネジメント・コントロール・モデルへの拡大のために必要な経営の組織的側面のモデル化が一貫的にしか行えないということがわかる。それは、この予算モデルが、現行の会計制度を前提とした会計のモデルとして編成されているという基本的な性格によるものである。

最後にわれわれは、マテシッチの予算モデルのもつ会計的性格について検討を加えよう。

先に示した予算モデルからわかるように、マテシッチのモデルは、期間損益計算制度を大枠として構成されている。

経営管理上、予算は利益計画の具体的表示として機能するものであるが、このような利益計画の裏づけが、マテシッチの予算モデルには見られない。マテシッチのモデルでは、計画利益額ではなく、予定配当額が、外生変数としてとり上げられており、期間損益の算定は、むしろ、配当や法人税を分配するための基準としていきをもっている。これは、今日の企業会計制度において、企業資本の合理的運用をはかることを目的として設定されており、これを資本剰余額の大小によって評価しようとしているからである。このような資本計算制度によっては、企業の資本価値の計算を行うことはできるが、ここで求めている経営価値の算定はできない。

経営価値の動きをとらえるには、前述したように、経営組織に参加する人々に対する誘因と組織参加者からえられる貢献が測定できなければならない。
のためには経営活動を測定しうる新しい計算制度の確立が必要になるが目下のところは、最も容易にデータの入手ができる会計資料等を利用せざるをえない。
このような観点から、予算モデルにおいては、資本計算制度の枠をこえた経営者の主体的創造的意志決定を反映する計画利益が中心に置かれなければならない。

5 総　結

本稿では、経営過程のアナロガス・モデルの作成を、予算モデルを手がかりにしてはじめるのであるが、マテジッチのモデルは、従来の会計的予算編成の手続を前提にして作成されているので、その枠組をそのまま利用することはできない。
そこでわれわれは、予算モデルを資本運動に則してではなく、経営過程、とくに経営の計画過程と統制過程に則して認識することを意図してその拡大を試みてきた。
これによって予算モデルは、経営計画過程においては、長期経営計画を編成するさいに経営者が行う意志決定に役立つデータを提供するシミュレーション・モデルとして拡大することが可能であり、また、経営統制過程においては、より多くの制約条件を導入することによって、ルーティンの意志決定の自動化と予算差異分析を行うように拡大することが可能である。
しかし、すでに述べたように、管理論的アプローチでは、経営過程をオペレーションにすると経営意志決定のメカニズムを、モデルに充分に組み込むことはできない。
経営過程のアナロガス・モデルは、経営の全体的、創造的意志決定のメカニズムをモデル化することによって完成されるが、このためには経営における各参加者の貢献を誘因との関係で測定しうる理論の提供が必要になる。
われわれは、これを経営過程に対する組織論的アプローチの研究を通じて検討していこうと思うが、これについては別稿にゆずる。