<table>
<thead>
<tr>
<th>Title</th>
<th>ヨウ素イオン選択性電極を用いる混合物中の微量の水銀(II)イオンの定量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Title</td>
<td>Micro-determination of mercury (II) ion in the mixture using iodide Ion-selective electrode</td>
</tr>
</tbody>
</table>
| Author | 内田, 美佐(Uchida, Misa)
秋葉, 恵(Akiba, Megumi)
和田, 智子(Wada, Satoko)
鹿島, 哲(Kashima, Tetsu) |
| Publisher | 共立薬科大学 |
| Publication year | 1977 |
| Jtitle | 共立薬科大学研究年報(The annual report of the Kyoritsu College of Pharmacy). No.22 (1977.), p.9-17 |
| Abstract | |
| Notes | 原報 |
| Genre | Technical Report |
Micro-determination of Mercury (II) Ion in the Mixture using Iodide Ion-selective Electrode

MISA UCHIDA, MEGUMI AKIBA, SATOKO WADA and TESTU KASHIMA
(Received September 26, 1977)

Mercury (II) ion in 0.1M nitric acid can be determined by the measurement of electromotive force between Orion iodide ion-selective electrode and Beckman Perma-Probe reference electrode with potassium nitrate salt bridge. The response of the electrode is linear over the concentration ranges from \(10^{-4}-3 \times 10^{-3} \text{ M}\) and Nernstian slope of 54mV per Hg (II) concentration decade at 25.0°C. (Table I, Fig.1) The mercury (II) ion response mechanism of this electrode is estimated with the measurement of e. m. f. of the mixture of Hg (II) and Ag (I).

The influence of the coexisting ions are represented in Table II. It may be said that \(10^{-5} \text{ M}\) mercury (II) ion can be determined even if \(10^{-3} \text{ M}\) of Li (I), Na (I), K (I), Mg (II), Ca (II), Sr (II), Ba (II), Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II), Cd (II), Al (III), Pb (II), SO\(_4^{2-}\), CH\(_3\)COO\(^-\) and (COO\(^-\))\(_2\) ions are coexisted. But Cl\(^-\), Br\(^-\) and CN\(^-\) ions slightly disturb the determination of Hg (II). (Table III, Fig.2 & Fig.3).

1. まえがき
近年、公害分析の立場から水銀イオン電極の必要性が高まっている。しかし、現在では水銀イオンに可逆的に再現性のある安定な応答性を示す電極は知られていない。一方、市販されているヨウ素イオン選択性電極が水銀 (II) イオンに応答し、電位差測定法で定量できることが知られている。そこで、ヨウ素イオン選択性電極を使って数 μg の水銀 (II) イオンを定量すること、および、共存する各種の金属イオンおよび陰イオンの影響について電位差測定法で検討し、各種の条件下で水銀 (II) イオンをできるだけ微量で正確に定量できる方法を検討したので報告する。

* 日本薬学会 第97年会（1977年4月）で発表
2. 実験
2.1. 試 喬
水銀 (II) イオン試料溶液：Hg (NO₃)₂・4H₂O の特級試薬で 10⁻² M の保存溶液を製造し、用時稀釈使用。水銀の含有は硫酸鉄 (III) アンモニウム指示薬を用い、10⁻² M のチオシアン酸アンモニウムで滴定して求めた。
リチウムイオン溶液：LiNO₃ の一級試薬で 10⁻² M の保存溶液を調製。
ナトリウムイオン溶液：NaNO₃ の特級試薬で 10⁻² M の保存溶液を調製。
カリウムイオン溶液：KNO₃ の特級試薬で 10⁻² M の保存溶液を調製。
マグネシウムイオン溶液：Mg (NO₃)₂・6H₂O の特級試薬で 10⁻² M の保存溶液を調製。
ストロンチウムイオン溶液：Sr (NO₃)₂ の特級試薬で 10⁻² M の保存溶液を調製。
バリウムイオン溶液：Ba (NO₃)₂ の特級試薬で 10⁻² M の保存溶液を調製。
クロム (III) イオン溶液：Cr (NO₃)₃・9H₂O の特級試薬で 10⁻² M の保存溶液を調製。
マンガン (II) イオン溶液：Mn(NO₃)₂・4H₂O の特級試薬で 10⁻² M の保存溶液を調製。
鉄 (III) イオン溶液：Fe (NO₃)₃・9H₂O の特級試薬で 10⁻² M の硝酸鉄性の保存溶液を調製。
コバルト (II) イオン溶液：Co(NO₃)₂・6H₂O の特級試薬で 10⁻² M の保存溶液を調製。
ニッケル (II) イオン溶液：Ni (NO₃)₂・6H₂O の特級試薬で 10⁻² M の保存溶液を調製。
銅イオン溶液：Cu (NO₃)₂・3H₂O の特級試薬で 10⁻² M の保存溶液を調製。
銀イオン溶液：AgNO₃ の特級試薬で 10⁻² M の保存溶液を調製。
亜鉛イオン溶液：Zn (NO₃)₂・6H₂O の特級試薬で 10⁻² M の保存溶液を調製。
カドミウムイオン溶液：Cd (NO₃)₂・4H₂O の特級試薬で 10⁻² M の保存溶液を調製。
水銀イオン溶液：HgNO₃・H₂O の特級試薬で 10⁻² M の保存溶液を調製。
アルミニウムイオン溶液：Al (NO₃)₃・9H₂O の特級試薬で 10⁻² M の保存溶液を調製。
銅イオン溶液：Pb (NO₃)₂ の特級試薬で 10⁻² M の保存溶液を調製。
硫酸イオン溶液：Na₂SO₄ の特級試薬で 10⁻² M の保存溶液を調製。
酢酸イオン溶液：CH₃COONa・3H₂O の特級試薬で 10⁻² M の保存溶液を調製。
ジュウ酸イオン溶液：Ca₂SO₄ の特級試薬で 10⁻² M の保存溶液を調製。
塩素イオン溶液：KCl の特級試薬で 10⁻² M の保存溶液を調製。
臭素イオン溶液：KBr の特級試薬で 10⁻² M の保存溶液を調製。
シアンイオン溶液：KCN の特級試薬で 10⁻² M の保存溶液を調製。

2.2. 装 置
ヨウ素イオン選択性電極：オリオン社製，94-53A型。
比較電極：ペックマン社製 Perma-Probe Solid-State 参照電極。
電位差計：オリオン社製ディジタル pH/mV イオンメーター 801A型。
電子恒温循環槽：小松 — ヤマト株式会社製クールニクス・サーモバス C T E - 2 型。
スターラー：エムエス機器製 アクロバットスターラー。
2.3. 実験方法
0.1 M 硝酸鉄性にした水銀イオン試料溶液 10⁻³ M 〜 10⁻⁸ M のそれぞれの濃度溶液に、ヨウ素イオン選択性電極と硝酸カリウム塩橋を使用した比較電極を挿入し、25.0 ± 0.1℃ の恒温槽に
浸した。アクロバットスターラーで試料溶液をゆっくり一定速度でかきまぜながら、恒温槽の温度を等しくしたのちその起電力をデジタル pH メーターで測定した。測定時間は10分間とし、この時間内で3分間1 mV 以内の変動にとどまった値をとった。水銀(II)イオン以外のイオンが共存する場合には、水銀(II)イオンの濃度を$10^{-5} M$とし、0.1 M硝酸酸性溶液で各種イオンの共存する溶液の起電力を測定した。また、電極の Ag (I)および Hg (I)に対する応答性を検討するため、Hg (I)と同様の方法と条件で、各イオン単独の場合と Hg (II)と等濃度混合した場合の起電力を測定した。

Table 1 Relationship between the concentration of Hg (II) and the electromotive force of iodide ion-selective electrode and Perma-Probe reference electrode (25.0°C)

<table>
<thead>
<tr>
<th>Hg (II)</th>
<th>E. M. F. (mV)</th>
<th>S. D.</th>
<th>mV/pC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{-3} M$</td>
<td>409.4</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>$3 \times 10^{-4} M$</td>
<td>385.5</td>
<td>1.25</td>
<td>47.2</td>
</tr>
<tr>
<td>$10^{-4} M$</td>
<td>362.2</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>$10^{-5} M$</td>
<td>310.9</td>
<td>1.85</td>
<td>51.3</td>
</tr>
<tr>
<td>$10^{-6} M$</td>
<td>255.6</td>
<td>1.91</td>
<td>55.3</td>
</tr>
<tr>
<td>$3 \times 10^{-7} M$</td>
<td>227.2</td>
<td>3.01</td>
<td>49.9</td>
</tr>
<tr>
<td>$10^{-7} M$</td>
<td>205.7</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td>$3 \times 10^{-8} M$</td>
<td>193.1</td>
<td>3.85</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 The electromotive force of iodide ion-selective electrode and Perma-Probe reference electrode in solution of Hg (II) (25.0°C)
2.4. 実験結果
水銀(II)イオンのみを含む試料では濃度範囲 $10^{-4} M \sim 3 \times 10^{-7} M$ で約54mV/pCの起電力変化を示し、$3 \times 10^{-8} M$ まで測定可能であった。この起電力変化は水銀イオンが2値であるにもかかわらず1値に近い値を示した。（Table I, Fig. 1）

ヨウ素イオン選択性電極の電極膜は AgI–Ag₂S の混晶と考えられ、Ag(I) および S²⁻は微量共存していても妨害をすることを知られているので、S²⁻以外のイオンについて検討した。

その成績をTable II, IIIおよびFig. 2で示した。それによると、Hg(II)濃度が$10^{-5} M$ のときは金属イオン Li(1), Na(1), K(1), Mg(II), Ca(II), Sr(II), Ba(II), Cr(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Al(III), Pb(II)および陰イオン硫酸イオン、硫酸イオン、シュウ酸イオン、金属イオンの100倍の濃度で共存していても Hg(II)の測定にはほとんど影響しなかったが、塩素イオンは10倍濃度、硫酸イオンおよび硫酸イオンは等濃度の共存で少し妨害を示し、また、Ag(I)が共存する場合には Hg(II)との合計量近くの起電力を示した。

<table>
<thead>
<tr>
<th>Table II</th>
<th>The electromotive force of iodide ion-selective electrode in the mixture of $10^{-5} M$ Hg(II) and $10^{-3} \sim 10^{-5} M$ coexisting ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coexisting ion</td>
<td>$10^{-5} M$ E.M.F. (mV)</td>
</tr>
<tr>
<td>Li (I)</td>
<td>312.1</td>
</tr>
<tr>
<td>Na (I)</td>
<td>309.8</td>
</tr>
<tr>
<td>K (I)</td>
<td>309.6</td>
</tr>
<tr>
<td>Mg (II)</td>
<td>313.7</td>
</tr>
<tr>
<td>Ca (II)</td>
<td>310.7</td>
</tr>
<tr>
<td>Sr (II)</td>
<td>310.5</td>
</tr>
<tr>
<td>Ba (II)</td>
<td>311.9</td>
</tr>
<tr>
<td>Cr (III)</td>
<td>310.3</td>
</tr>
<tr>
<td>Mn (II)</td>
<td>311.0</td>
</tr>
<tr>
<td>Fe (III)</td>
<td>311.0</td>
</tr>
<tr>
<td>Co (II)</td>
<td>311.8</td>
</tr>
<tr>
<td>Ni (II)</td>
<td>309.5</td>
</tr>
<tr>
<td>Cu (II)</td>
<td>309.8</td>
</tr>
<tr>
<td>Zn (II)</td>
<td>310.7</td>
</tr>
<tr>
<td>Cd (II)</td>
<td>311.5</td>
</tr>
<tr>
<td>Al (III)</td>
<td>307.7</td>
</tr>
<tr>
<td>Pb (II)</td>
<td>307.0</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>307.8</td>
</tr>
<tr>
<td>AcO⁻</td>
<td>311.8</td>
</tr>
<tr>
<td>C₂O₄²⁻</td>
<td>309.0</td>
</tr>
</tbody>
</table>

3) G.J. Moody, J.D.R. Thomas. 宗盛, 日色訳：イオン選択性電極 (1977) 共立出版。
Table III The electromotive force of iodide ion-selective electrode in the mixture of $10^{-5} \text{M} \text{Hg(II)}$ and $10^{-4} \sim 10^{-7} \text{M}$ coexisting ion

$10^{-5} \text{M} \text{Hg(II)}$ only : 310.9 mV

<table>
<thead>
<tr>
<th>Coexisting ion</th>
<th>10^{-4}M E.M.F. Deviation (mV)</th>
<th>10^{-5}M E.M.F. Deviation (mV)</th>
<th>10^{-6}M E.M.F. Deviation (mV)</th>
<th>10^{-7}M E.M.F. Deviation (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag(I)</td>
<td>324.5 + 13.6</td>
<td>312.5 + 0.6</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>286.7 - 25.8</td>
<td>311.3 + 0.4</td>
<td>310.6 - 0.3</td>
<td>---</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>296.7 - 14.2</td>
<td>305.8 - 5.1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CN$^-$</td>
<td>302.4 - 8.5</td>
<td>308.0 - 2.9</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Fig. 2 The electromotive force of iodide ion-selective electrode in the mixture of $10^{-5} \text{M} \text{Hg(II)}$ and $10^{-4} \sim 10^{-7} \text{M}$ coexisting ion

そこで、Ag(I)をHg(II)と等濃度共存させた場合とAg(I)単独の電位を測定し、Hg(II)もまたAg(I)と同様にして測定した。その結果をTable IV, VおよびFig. 3で示した。Ag(I)単独の場合には$10^{-3} \sim 10^{-6} \text{M}$の濃度範囲で電位と電力が比例し、電力変化は59〜51mV/pCで理論値に近い値が得られた。Hg(II)との等量混合の場合にも電力変化は理論
値に近い値（58〜52mV/pC）が得られ、その起電力値は2倍濃度に相当するHg（II）濃度の起電力値に近いものだった。また、Hg（I）単独の場合は10^{-4}M〜10^{-6}Mの濃度範囲で濃度と起電力が比例し、起電力変化は60〜52mV/pCで理論値に近い値が得られたが、10^{-3}Mと10^{-7}Mでは安定性が悪く測定が不可能であった。起電力の値が1/2濃度のHg（II）に相当する起電力に近い値を示し、等量混合の場合にも同様に1.5倍濃度に相当するHg（II）濃度の値に近いものだった。

Table IV The electromotive force of iodide ion-selective electrode in the mixture of Hg（II） and Ag（I） [1/1]

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Ag（I） only E.M.F. (mV)</th>
<th>Ag（I）: Hg（II） = 1:1 Calculated Concentration</th>
<th>Hg（II） only E.M.F. (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}M</td>
<td>419.6</td>
<td>434.8</td>
<td>409.4</td>
</tr>
<tr>
<td>10^{-4}M</td>
<td>363.3</td>
<td>382.7</td>
<td>362.2</td>
</tr>
<tr>
<td>10^{-5}M</td>
<td>304.8</td>
<td>324.6</td>
<td>310.9</td>
</tr>
<tr>
<td>10^{-6}M</td>
<td>254.4</td>
<td>267.5</td>
<td>255.6</td>
</tr>
<tr>
<td>10^{-7}M</td>
<td>239.4</td>
<td>242.1</td>
<td>205.7</td>
</tr>
</tbody>
</table>

Fig. 3 The electromotive force of iodide ion-selective electrode in the solution of Hg（II） or Ag（I） and the mixture

- 14 -
Table V The electromotive force of iodide ion-selective electrode in
the mixture of Hg (II) and Hg (I) [1/1]

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Hg (I) only</th>
<th>Hg (I): Hg (II) = 1:1</th>
<th>Hg (II) only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E.M.F. (mV)</td>
<td>Calculated</td>
<td>E.M.F. (mV)</td>
</tr>
<tr>
<td>$10^{-3} M$</td>
<td>351.7</td>
<td>365.6</td>
<td>409.4</td>
</tr>
<tr>
<td>$10^{-4} M$</td>
<td>292.1</td>
<td>322.6</td>
<td>362.2</td>
</tr>
<tr>
<td>$10^{-5} M$</td>
<td>239.7</td>
<td>264.6</td>
<td>255.6</td>
</tr>
<tr>
<td>$10^{-6} M$</td>
<td>219.2</td>
<td>219.2</td>
<td>205.7</td>
</tr>
</tbody>
</table>

3. 考察

ヨウ素イオン選択性電極を使った測定セルの電池式は次のよう

Ag, Agl(s) | 0.1 M I⁻ | Ag₂S - AgI(s) | 試料液 | 比較電極

(ヨウ素イオン選択性電極)

その電位は次式で与えられる。

$$E = E^° + 2.303 \frac{RT}{F} \log a_{Ag}$$

また、ヨウ化銀の溶解度積は、

$$K_{AgI} = a_{Ag} \times a_{I}$$

だから(1)式は、

$$E = E^° + 2.303 \frac{RT}{F} \log \frac{K_{AgI}}{a_{I}}$$

温度が一定（25.0 °C）であれば a_{I} も一定なので、

$$E = E^° - 0.5914 \log a_{I}$$

また

$$E = E^° + 0.5914 \log a_{Ag}$$

したがってAg⁺の活動度（pAg）が増すほどEの値は増す。ところが、Hg²⁺の活動度（pC）が

増すにつれてやはりEの値は増加するから、

Hg²⁺ + Agl → Hgl⁻ + Ag⁺

以上のHg²⁺の電極に対する作用は(6)式と考えられていることと一致する。

また、Hg²⁺にAg⁺を共存させると測定セルの電位の値は両方の活動度の和を大より示すこ

と(6)式の電極の反応機構を裏付けるものである。

共存するCl⁻ とBr⁻ が大きな影響を及ぼすことも

Ag⁺ + X⁻ → AgX(s)

(7)式の反応が進行して電位が低下する予想と実験事実は一致する。

したがって、やや間接的ではあるが(6)式により Hg²⁺ が活動度が1桁ちがうと1価の陽イオ

ン (Ag⁺) 相当の59mV の電位の低下を示すという反応機構は正しいものと考えられる。

−15−
Hg (II) 溶液は pH 3 以上（μ = 0.1）で水酸イオンと反応し、また、酸性が弱く pH 2 位では加水分解を受けて塩基性塩を沈殿するので、試料波の pH を強酸性（pH 2 以下）に保つ必要がある。そこで、すでに報告されている硝酸を用いた。また、試料波の硝酸濃度は Hg (II) の濃度が低くなるにつれて相対的に高く、呈電の応答性などが低下するので、できるだけ低い濃度であることが望ましく、種々検討したところまでの報告より低い 0.1Μが安定で再現性が良かったので、この濃度を使って測定することにした。

電位差測定法による Hg (II) の濃度の測定では求められた起電力の値そのものか問題なので、電極の膜面は常に一定の状態を保ち Hg (II) の応答性を同じにする必要がある。ところが、測定を重ねるにつれて電極の表面に黑色物質（難溶性のヨウ化水銀 (II) とされる）が付着し電極の応答性に変化が起きた。これを取り除くために電極を 10^-3 M KI 溶液で湿らせオリオン社製ポリッシュペーパー（94-82-01）で嘗してから、その電極で Hg (II) 濃度波の起電力を測定して正常な値を示すかどうかを確かめながら使用する必要があった。したがって、測定誤差を最小限にするためには試料波の濃度および pH の近い標準波と比較対照しながら測定する必要がある。

比較電極としてベックマン社製 Perma - Probe Solid - State 参照電極を用いて Hg (II) 試料溶液の起電力を測定すると、各濃度で起電力は測定時間に伴ない徐々に減少した。これは比較電極から漏出した塩素イオンの影響により起電力が低下したことが実験結果よりわかった。そこで硝酸カリウム飽和溶液の塩橋を比較電極に取りつけて測定したところ起電力の安定性が得られた。

発水側であるデシコートを使用しない場合、Hg (II) の測定可能な濃度範囲は 10^-3M〜3×10^-7 M である。低濃度では起電力変化が小さく、濃度と起電力は比例しなかった。この低濃度領域におけるはずはガラス容器による金属イオンの吸着および溶出などが考えられる。また、低濃度での電極の応答時間が長く安定性も悪かった。これは電極膜のイオン交換作用が速くなるためと考えられる。これらの影響をできるだけ小さくするために、測定に用いたガラス器具（ピーカー、メスコルペン、ビペット）の内表面および塩橋に用いたガラスフィルターをデシコート（ベックマン社製）で防水加工をしたところ、3×10^-8 M 濃度まで測定可能となり、低濃度での安定性も増した。

共存イオンが含まれると Table III および Fig. 2 に示すように陰イオンでは塩素イオン、炭素イオンおよびシアヌイオンが妨害し、この順に妨害作用が大きかった。これは相当する難溶性水銀 (II) 塩を形成するためと思われ、これらの水銀 (II) 塩の溶解度積は塩化物、炭化物、シアヌ化物の順に小さく、ヨウ素イオンは当然水銀 (II) イオンの測定の妨害になるので検討しなかった。

4. 結論

0.1Μの硝酸酸性溶液中で、ヨウ素イオン選択性電極と硝酸カリウムの塩橋を使った Perma - Probe 参照電極を組み合せ、Hg (II) 試料波の起電力を測定したところ、10^-4M〜3×10^-7M の濃度範囲で定量することができた。ヨウ素イオン選択性電極が Hg (II) の活動度が 1 栄ちが

4) Andres Ringbom. 田中、杉田貞：錯形成反応と分析化学における応用（1965）産業図書。
うとき1価のイオンに相当する約54mVの電位差を示す機構について、理論的および実験的に考察した。
金属イオン—Li(I), Na(I), K(I), Mg(II), Ca(II), Sr(II), Ba(II), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Al(III)およびPb(II)—と陰イオン—硫酸イオン、酢酸イオンおよびシュウ酸イオン—はHg(II)の100倍濃度で共存していても2％以内の精度でHg(II)を定量することができた。しかし、塩素イオンは10倍濃度、臭素イオンおよびシアニオンは等濃度の共存でHg(II)の定量の妨害となった。