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1  Introduction

/(t,y)をt=t0,y=yoに おいて解析的 な関数 とす る と、初期値問題

              dy_fdt(t, y)y(to)-y・

の解 〃(t,to,yo)はto,yoに 関 して解析的である。初期値をbyoだ け変動 させ れば、解 の変

分Syに 関する微分方程式

                day ofdt-ay(t,y)by
を得る。これはSyの 線形微分方程式であり、変分方程式とよばれている。

 変分方程式を微分体の言葉に翻訳 しよう。Kは 以下、常微分Dを もっ標数0の 微分体

とする。微分不定元YのK上 微分多項式全体からなるK一微分代数を

            K{Y}=K[Y,Yl,...], Y=DiY

で表 す。K上 代数的に既約なn階 代数 的微分多項式F∈K{Y}が 与 え られた とす る。方

程式F(y)=0のK上 一般解yと は、ある微分拡大R/Kに 属すF(y)=0を みたす要素

で、trans.deg K〈y>=nな るものである。 ただ しK〈y>はyに よって生成 されたK上 微

分拡大であ る。yの 変分方程式 とはK<y>上 定義 されたzに 関す る線形斉次方程式

         論)Dnz+∂aFYn-、(y/Dn-1z+…+鐸 ω之一・

をい う。EをDE=Oみ た す 不 定 元 とす れ ば、 変 分方 程 式 はFω+Ez)一.Fω)の ⊂に 関 す

る展 開 にお け るE項 の 係 数 であ る。

 R/Kのderivati0nと は、 Rか らそ れ 自身 へ のK上 線 形 変 換Xで あ って、 Leibniz's rule

            X(ab)=X(a)b-t-aXb(a,bER)

を み たす もの で あ る。derivations全 体 か らな るR一 加 群 をDer(R/K)と か く。 これ に はn

次元 コLie環の構 造 が はい る。 も しR/Kを 超 越 次 数nの 微 分 拡 大 な ら ば、 これ はn次 元

Lie環 とな る。 す な わ ちLie環 の積 は

[X,Y](a)=XoY(a)‐YoX(a) (aEL)
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によ って定 義 され る。Der(R/K)の 双 対 加 群 を Ω(R/κ)と 表 す。 外 微 分d:R→

Ω(R/K)が

           da(X)=X(a) (aEL,XEDer(R/K))

に よ って定 義 され る。 Ω(R/K)はdRに よ って生 成 され る。 dは 外 微 分 代 数 λ(R/∫()

=㊥0≦i≦.却 Ω(R/K)に 拡 張 され る。 す な わ ち、dは 加 群 準 同型 で 、ω ∈ 〈乞Ω(R/K),

θ∈〈3Ω(R/K)と す る とき

         d(wnB)=dwnB-f-(-1)iwnd8, dod(w)=0

をみたす。

 R/Kを 有 限 の 超 越 次 数 を もっ 微 分拡 大 とす る。Dを その 微 分 とす る と各

X∈Der(R/K)に 対 して[D,X]=D。X-XODはDer(R/K)の 元 とな る。 この こ とか

ら、Dか らDer(R/K)のLie環 準 同型GDがGDX=ロD,X](X∈Der(R/K))に よ っ て定

義 され る。 α∈Rに 対 して,CDa=Daと す る。 Ω(R/K)に お い て は £D(ω)(X)e

D・ ω(X)-wGDXと す る。 一般 にp-formω に対 して

 £Dω(X、,_,Xp)-D・ ω(X・,…,X,)+Σ ω(X・,…,X・-・,GDXZ,X・+・,…,X。)

                     i=1

とす る。formsω,θ に対 して

       GD(dw)=dGDw, GD(w n 8)=GD(w)nB+wnGD(8)

が 成立 す る。GDはautonomous systemの 場合 通 常 のLie微 分 に な る。 Lie微 分 と同様 の

関 係式 が 成 立 す る。(cf.[3D

 い まyをK上 代 数 的微 分 方 程 式F(〃)=0の 一 般 解 と しよ う。 この 式 に

d:K〈y>→ Ω(K〈y>/、K)を 作 用 させ れ ば

        舞(y)dDny+∂ 架1(y)dDn-1〃+・ 叶 募(y)姻

したがってdyに 関する方程式

       aF(y)O`'Yn(,CD)ndy+∂aFYn-、(y)(£D)n-・dy+-+aFaY(y)dy-・

を得る。K〈y>上の線形微分方程式

        舞 ωDπ β+∂aFYn-、ωD-1吻+…+aFaY(y)dy=・

                    2



をF=0の 変 分 方 程 式 と理 解 す る。

 R/κ が 一 般Lionville拡 大 で あ る とは、っ ぎの よ うな 条 件 を み たす 拡 大 列 が 存在 す る と

きにい う。

             K⊂Ro⊂R1⊂ … ⊂ 傷=R

(1)[Ro:K]<Ooで あ る。 各2(1<2≦n)に 対 して 、 Ri_1はRiの 中 で代 数 的 に閉 じて

い る。

(2)各2(1<i≦n)に 対 して、Ri-1上 超 越 的 な0≠t2∈Riが 存 在 しDち ∈島 一1ま た は

t21Dtti E Ri_1が 成 立 し、[RZ:Rz-1(tz)]〈 ○○で あ る。

 この ときn=trans.deg-R/Kで あ る こ とに注 意 しよ う。

 この 論 説 で はGDに 関 す る い くっ か の性 質 の説 明 と応 用 を紹 介 す る。 最 後 の 節 で は

Painleve I型 方 程 式 の 変 分 方 程 式 が 、一 般Liouville拡 大 の 中 に 解 を もた な い こ とを証 明

す る。

2  1nvariant differentials

Chapter 10 in Whittaker[4]の 内容 の一 部 を 微分 代 数 の こ とば で 言 い 換 えて み る。 た だ

し、 この こ とに よ って 、 考 え る関数 の範 囲が 縮小 さ れ る こ とに注 意 せ ね ばな らな い 。 た

とえ ば、 積 分 は代数 的 積 分 を 考 え る こ とに な る。

 S/Kを 微 分 拡 大 とす る。�Q.(s/K)に よ っ て Ω(S/K)が 生 成 す る外 積 代 数 とす る。 中間

微分 体Rに 対 して 凶(盆/K)は 凶(s/κ)の 部 分 代 数 に な る。LDは 両 者 の 内部 加群 準 同型

と して 作 用 す る。

 ω ∈.4(S/K)は £Dω=0の ときinvariant、 dwがinvariantで あ る とき、 relative

invariantで あ る とい う。 定 数 もinvari antで あ る と考 え る。 す な わ ち!∈SでD/=0な

らばGDf=0と な る 。

 ω ≠0,∈Rで 、 あ る元!≠0,∈Sで!ω をinvariantと す る とき、!を ω のmultiplier

とい う。g∈Sが ωの も うひ とっ のmultiplierな らば 、 f/gは 定 数 で あ る。 実 際f=tgと

お け ば

       0=GD(fw)=GD(tgw)=D(t)gw+tGD(gw)=D(t)gw

よ り、Dt=Oを 得 る。

 invariantsの 外 積 はinvariantで 、外 微 分 もinvariantで あ る。 実 際 ω,θ∈Ω(S/K)を
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invariantsと す れ ば

           £D(ω 〈θ)=∠ ⊃1)(ω)〈θ十 ω〈∠わθ・=0

そ して

                .CDdw=dGDw=0

 た とえばD/がK上 代 数 的 なf∈Sに 対 してdfはinvariantで あ る。 逆 に、 u∈sが

relative invariantで あ る とす る。 この ときdDu=GDdu=Oよ り、 Duは κ 止 代 数 的 で

あ る。

命 題1 S/Kは っ ぎ の よ うな 超 越 基 底g1,,..,qn pi...,pnを も っ と きHamilton拡 大 と

いう。

              aH                     aH

           Dg・r万, Dpi=-砺(1≦2≦n)

こ こでH∈Sで あ る。 この とき 、

                 ω一Σ 蜘
                   2=1

はrelative invariantで あ る 。 dwし た が っ て そ の 外 積dpl〈 …dpn〈dq1〈 … 〈dqnは

invariantで あ る 。

証 明 実 際

       GD・ 伽 一 乙DΣ 吻・〈dqz一 Σ(dDpi〈 吻・+dpi〈dDgi)
             i=1          i=1

である。右辺は

   Σ(dDg2〈dpi+dqi〈dDpの

   一 一i,j(a2H    a2H_   a2H_ _ a2H∂9ゴ∂=aq'pZゴ〈伽 ・+∂Pゴ∂=dppZゴ〈dpi-噛伽 吻ゴー ∂晦 吻・画)

   =0

とな る。

 逆 にS/Kは っ ぎ の よ う な 超 越 基 底q1,...,qn,p1...,pnを も っ と仮 定 し よ う。

               乙DΣ 吻・〈dqi=0
                 2=Z

α励 わゆc,♪4η ∈Sを

      GDdpZ‐ (aiゴ⑫ゴ+bz;dqゴ), GDd4i‐ (・幽+解gゴ)
          ゴニ1                 ゴ=1
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なるもの とする。 この とき

       Σ((α ・ゴ+dゴ∂吻ゴ〈dqi+h2ゴ 吻 くdqZ+・ 幽 く⑫ブ)-o
        i,j

よ り

             α乞ゴー-dゴ2,わiゴ=わ ゴ¢,Ciゴ=Cji

を得 る 。 この 関係 式 がSの 元Hに よ って実 現 で き るか ど うゆ は わ か らな い。 実 現 可 能 性

は偏微 分 方 程 式 の代 数 的 解 の存 在 に依 存 してい る。

 Jacobiの 結 果 を 次 の よ うに 解 釈 す る。

命題2ω1,_,Wnを Ω(R/K)のR上 基底 とす る。θ1,...,Bn-1を Ω(s/K)のinvariantsで

        ω1〈 … 〈Wn=α θ1〈 … 〈en_1〈 ωπ≠0 (α∈S)

な る もの とす る。f∈Sを ω1〈 … 〈Wnに 対 す るmultiplierと す る。 す な わ ち

               GD(!ω 、〈 … 〈ω。)=0

で あ る。 この とき 、 α!ωπ≡Om0d(θ1,...,en-1)で あ る。

証 明 実 際

        £D(α!θ、〈… 〈en‐、〈Wn)=£D(!ω 、〈 … 〈Wn)=0

よ って

             θ1〈 … 〈en-1〈 ∠わ(α/ωπ)=0

を得 る。

 X1,...,Xn∈Der(R/K)を[D,xis=oを み た す基 底 、 X1,...,Xnの 双 対 基 底 を

ω1,_,wnと す る。 この とき

               £D(ω、〈 … 〈Wn)0

が成 り立 っ 。GD(ω ∂(Xゴ)=D。 ω、(Xゴ)-cvz[D,Xゴ]=0で あ る か ら、 G」」GJi= を得 る。

 も しxl,..,,妬 をR/Kの 超 越 基 底 と し、α∈Rを

            ω1〈 … 〈ωバ ・α砒1〈 … 〈dxn

な る もの とす れ ば、 それ はdxl〈 … 〈dxnのmultiplierで あ る。
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3 変分方程式

R/Kを 有限超越 次数 ηを もっ微分拡大 とす る。Ω(R/K)はK上 基底 ω1,...,Wnを もつ と

す る。 この とき

             乙Dω・一Σ 嚇(1≦2≦n)
                 ゴ=1

が成 立 す る。 これ を簡 単 にベ ク トル 表記 に よ って £oω=ん,ω=`(ω1,,… ,ωπ)と 書 き 、

R/Kの 変 分 方程 式 とよ ぼ う。 、4=(α の は7?,×n行 列 であ る。 また 、R上 線形 微 分 方 程 式

             DZ=AZ, Z=孟(zl i...,zn)

もR/Kの 変 分 方 程 式 と よぼ う。 変 分 方程 式 は基 底 の 取 り方 に よ って変 わ る。 他 の 基 底

θ1,,.,,θηに対 す る変 分 方 程 式 を 乙Dθ=β θ、 そ して基 底 変 換 をw=Z「 θとす れ ば

               BeT『1/1T-T-1DT

を得 る。 実 際

           ノ47「θe∠ ⊃DωeGD(Te)=D(T)θ 十  ii

か らあ き らか。

 R/Kの 変 分 方 程 式 を

                  GDw=Aw

とす る。 Φ を変 分 方 程 式

                  DΦ=.AΦ

の基 本 解 とす る。 この とき 、周 知 の よ うに 11   0ー1、4で あ るか ら

           GD(Φ ーTW)-D(Φ ー1)ω+Φ 一1乙Dω=0

した が って、 Φ一1ωの 各 成 分 はinvariantで あ る。 また、

          £D(ω 、〈… 〈Wn)ニtrace鴻 ω、〈… 〈Wn

そ してDdetΦ 〔1=-trace.4 detΦ 一1で あ るか ら

             GD(detΦ-1ω1〈 … 〈Wn)=0

が 成 り立 っ 。 す な わ ちdetΦ-1は ω1〈 … 〈Wnのlast multiplierで あ る。

                    6



 Poincareの 結 果(cf. section 5 in Yoshida[5Dを 微 分 体 の こ と ば で 述 べ よ う。

η=Σu紬 ∈Ω(R/K)をinvariantsと す る。 この とき

   8=1

            ・一[nom,CDC=L Duii=1+書 )Wi

よ り

                D砺 一一Σ 鴛ゴαゴ2
                     j=1

を得 る。 した が っ てRの 微 分 拡 大 の元vl,...,2」nを 恥=Σ α励 な る もの とす れ ば

                           2=1

  2G21Ji=は 定 数 であ る。

 っ ぎ に Ω偉/K)は っ ぎ の 基 底 ω1,..,,Wn,θ1,...,enを も っ と仮 定 す る 。

   £Dω ・一 Σ(α ・ゴωゴ+わ ・ゴθゴ),.CD82=(・ijWj+4・ ゴθゴ)(α ・ゴ,わ・ゴ,・紬 ∈R)

       j=1                ゴ=1

                乙DΣ ω・〈ez-0
                  2=1

この とき

         Σ((azゴ+dゴ のωゴ〈θ池 ゴθゴ〈82+CijWi〈 ωゴ)-o
         i,j

よ り

              aiゴ=ーdゴ 乞, biゴ=わゴ乞, Cij=Cji

とな る。 η=Σ(ui92-viwi∈ Ω(R/K)がinvariantで あ る とす る。 この とき

      2=1

     0一 Σ(D(2Gi)θrD(ψ 画 ・c・ゴωゴー隅 ・θゴー噛 ゴωゴー噛 θゴ)
        づ,.ブ

より

        Dui= (αiゴuゴ+わ2ゴvゴ), Dv2= (・・ゴuゴ+輌)

を得 る。すなわちu2,u乞 は変分方程式の解である。
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4 Kepler方 程 式

 Keplerの 方程式 は

              z‐asinz=x, aEC"

で与え られ、数理物理で は じめて現れた超越方程式である といわれてい る。解 はっ ぎの

ようにFourier展 開される([4, p91」)。

             -2島 姻 曲
                  k=1

しか し・ 「有 限 的」 に表 示 さ れ る こ と1まな い ・y-・izお けば ・ ・inz一 讐 で あ る

から方程式は

              y・+2i-(x-z)y-1=・
                 a

に な る。 よ り一般 的 にLiouvilleは 方 程 式log y=!@,y)の 初 等 関数 解 にっ い て 考察 して

い る。 こ こでfはx,yに 関 して代 数 関 数 で 、∂!/∂y≠0と す る。 z=f(x,y),

E=C(即)と す れ ば 、y,zは そ れ ぞ れE(z),E(y)上 代数 的 で 、 Dy=Dzを 齪 す る と
                            y
き、yがE上 初等拡大 の要素 になるのはどのよ うな ときか、 とい うことが問題 とされ

る。Liouvilleはy, zがE上 代数 的になる とい う結果 を得た。 よって、 Keplerの 方程式

は初等関数解を もたない。 これ に関 してはresearch memo「 初等超越関数 にっい て」

(2006)を 参照 されたい。

 実 はKepler方 程式の解は もっと 「超越的」 である。以下 でそれを説明する。 まず体に

関す るっ ぎの命題 を示す。

補題1 F,を 標数oの 体 、F/F,を 体拡大 とする。α琶∈EはQ上 線形独立 である とする。

も し鴛,競(1≦Z≦n)∈Fが

             du+ dv2a2‐=0, dvi  -dF/E               2=1

を ΩF/Eに おい てみ たす な ら ば、u, vl,_,vnはE上 代 数 的 で あ る。

証 明 B=E(u,vl,... vn)と し、 AをEとBの 中間 体 で 、 trans.deg B/A=1が 存 在 す

る とす る。上 述 のdはdB/Aと 考 えて よい。 B/Aは1変 数 代数 関数 体 で あ る。 あ るyrがA

上超 越 的 で あ る と しよ う。 すB/Aの 素 点Pをvrの 極 とす る。対 数 微 分dvi/vZのPに お け る

留数 は整 数 で あ り、 仮 定 か らdvr/2Jrの それ は 負 の整 数 で あ る。 と こ ろで 補題 の仮 定 か ら

                ndviaiResP=0. v2                i=1

                   8



これ は α1,..。,anがQ上 線 形独 立 で あ る こ とに反 す る。 よ って、 v2は すべ てA上 代 数 的、

した が っ てuも そ うで あ る。 だ が 、 これ はAの 仮 定 に反 す る。 結 果 、Aの 非 存 在 が 示 さ

れ た。 す なわ ちu,vl,-.. vnはE上 代 数 的 で あ る。

 以 下Kは 標 数0の 微分 体、R/Kは 微 分 拡 大 とす る。

補 題2 R/Kは1変 数 代 数 関 数 体 で、vをK上rank 1の 離 散 的加 法 付 値 とす る。 その

素 元 をtと し、 〃(Dt)≧0を 仮 定 す る 。0≠y∈.Fがv(Dy/y)<0を み た す な らば

v(Dy/〃)=-1、 v(Dt)=0で あ る。

証 明 仮 定 に よ りy=utπ(n=v(y)≠0,v(の=0)と 書 くこ とが で き る。 よ って

              v(Dy/の=v(」D%/u十nDt/t)

にお い てv(Du/の=v(Du)≧0お よ び

              脚){_-1v(Dt)_>p v(Dt)〉:
に注意すれば、主張 が得 られ る。

 微分拡大R/Kが 任意定数 に代数的に依存するとは、ある微分拡大E/KでE,RはK

上 自由、かっ[ER:EO朋]<Ooな るときにい う。 ER=ECERな るときR/Kは 任意定

数 に有理的に依存 する とい う。 ここで、微分体Sに たい してcsはSの 定数体を示す。

命題3 R/Kは 任意定数 に代数 的に依存する拡大 である とす る。砺 ∈cKはQ上 線形

独立である とする。 もし、u, vz≠0(1≦2≦n)∈Rが

                Du+14 Dvza2 v2∈K
                  2=1

をみたす な らば、Du, Dv2/viはK上 代数 的である。

証明 微分拡大E/KでR,EはK上 自由、 m=[ER:EO朋]〈Ooな るものが存在す

る。Eは 代数閉体 と して よい。

              w=du+か 讐 ∈Ω一/E
                   i=1

とお く。い ま ω ≠0と しよ う。 この とき、0朋/CEの 超 越 基 底 砺(1≦2≦n)を とれ ば 、

これは 朋/Eの 超越基底 で、ω=Σc乞d軌,(cZEER)と 表 す ことができる。す る と

                i,=1

       砺ω一姻 謡)一 一 か)dwi
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で あ るか らDCi=0す な わ ちCi∈OERを 得 る。、これ よ り ω ∈GECER/Eと な るρ

Trace朋/ECERを とれ ば

    mw=dy+14 dzia2‐zi, y=Trace朋/E・ERω,ろ 一N・ ・m朋/E・ER(v2)
          Z=1

と書 け る。 〃疏 ∈ECERで あ る 。 そ して

       Dy+書 考 一咀一鵬 一(Du+シ ㍗)一・

ま た、

             d(mu-y)+外 響 壽)一・                   2=1

お よび 補 題1よ りmu-y,曙 厩 ∈すEを 得 る。

 あ るDzr/zrがEに 属 さ な い と しよ う。 y,ろ ∈ECERで あ った。 ゴを1,_,nか ら任 意

に と り、LをE(wl,...,ω ゴ_1,・ωゴ+1,_,wn)のERに お け る代 数 閉包 とす る。 ECER/Lは

1変 数 代 数 関数 体 で あ り、 任 意 定 数 に 有理 的 に依 存 す る(西 岡[2]で はFuchs拡 大 と称 し

て い る)。 したが って 任 意 の 素 点Pに 対 してvP(DtP)≧0が 成 立 す る。 た だ しvPはPに

属 す る付 値 、tpはvPの 素 因子 で あ る。 い ま、 あ るDzr/zrがLに 属 さな い と しよ う。 あ

る素 点PでvP(Dzr/zr)<0と な る。 命 題3よ り、 vP(DtP)=0で 、 vP(zr)≠0と な る。

したが って 、

             ResP(Dzrdtp,zr-vP(zr)≠0

である。ー一方

         ・=ResP Dy+シ 穿)dtP-n8=1aivP(zZ)

が成立す るが、 これはaiた ちのQ上 線形独立 であるこ とに反す る。結局 すべ ての2に 対

してDz2/ろ ∈Lを 得 る。 したが ってDz2/z盛 ∈Eと な り、 さ らにDy∈Eを 得 る。 話を

u,viに 戻せ ば、 Du, Dvi/vz∈E、 したが ってK上 代数的 とな り、命 題の証明を終 え る。

 Eか ら出発 して、任意定数 に代数的に依存 する微分拡大を有限回構 成する とき、 その

最終をEのPU(Painleve-Umemura)拡 大 とい う。

命 題4 R/KをCR=cKな るPU拡 大 とす る。 yZ,zi∈R(1≦2≦n)は

   DzZD
ye=.   之

盛

z2≠0 (1≦2≦n)
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を満足す るとする。各 跳が κ(zl,_,zn)上 代数 的で、各ziがK(yl,_,gの 上代数 的で

あるな らば、跳,z2(1≦2≦n)はK上 代数 的である。

証明 簡単 のためKは 代数 的閉である とす る。命題3よ り

                   Dz2Dyi= EK
                    ろ

を 得 る。yl,,..,〃mは κ 上 代 数 的独 立 、 他 のy2は そ れ らに代 数 的 従 属 で あ る とす る 。 z2

は κ(yl,-,協)上 代 数 的 で あ るか ら ΩR/Kに お い て

           dz2,zi一暑 噛,蜘(ら ∈R)
が成り立っ。GDを 作用させれば

                ΣD(cゴ)dye_・
                ゴ=1

そして吻 ∈OR=侮 ⊂κ を得る。鵬 Σ 吻防 とおけば

                   2=1

                  dzi=du
                  z2

補題1よ りz2∈Kを 得 る。 したがって各 防 もKに 属 する。

 さて、Kepler方 程 式に制 限 して述べれ ば

定理1 K=C@)と す るとき、方程式

              z‐asinz=x, aEC"

の解zは.κ 上の どの よ うなPσ 拡大 に も属 さない。

証明 yニeizと お けば、

              y・+2i-(x-z)y-1=・
                 a

になるのであ った。Dy/y=D(iz)で ある。 y, zがKのPU拡 大 に属 するな らば、命題4

によ り、y,zはK上 代数的 とな る。 さ らに、補題1に よ り

                Dy=D(iz)EC
                y

よってy,z∈C。 しか しこれは成 り立 たない。

 Kepler方 程式 の解 はK上 一一階代数 的微分方程式をみたす。 したが って、それはK上

decomposable extensionの 元であ るが、 PU拡 大に属 さない。一般 に、 K上PU拡 大 の

元yがK上 一階代数 的微分方程式をみたすな らば、K〈の はK上 任意定数 に代数 的 に依

存する ことがわか る。
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5 Nesterenkoの 問 題

Kを 標数0の 常 微 分 体 とす る。x∈K,-Dx=1を 仮 定 し、 cKは 代 数 的 閉 であ る とす る。

超 越 数 の 研究 で著 名 な ロ シ ア の数 学 者Nesterenkoは 次 の 問題 を考 え た。!∈Kのn回 不

定 積 分 をfnと す る と き、!,!1,,..は い っK上 代 数 的従 属 に な る か?っ ぎ は そ の ひ とっ の

回答 で あ る。

定 理2 R/Kを 微 分 拡 大 、CR=CKお よ びx∈K, Dx=1を 仮 定 す る。 α∈K,α ≠0と

す る。 この とき、 つ ぎの1),2)は 同値 で あ る。

1)Dny=α の 解y∈RでDiy(0≦2<n)がK上 代 数 的 に従 属 す る もの が あ る。

2)u,v∈Kお よび 自然数 ηでDv=au, Dn-12G=(-1)n-1を み た す もの が存 在 す る。

証 明 1)を 仮 定 す る。nを 最 小 に と り、 DZy(0≦2<n)はK上 代 数 的 に従 属 す るが 、

DZy(0<乞 くn)は そ うで ない とす る。Ω(R/K)に おい て、

              aZdDiy=0(ai E R, ao=1)
             乞・=0

がΩ(R/K)に おいて成立する。乙Dを 作用 して

              Σ(Dai+ai-1)dDiy=0
              2=1

仮 定 か らDai+ai-z=0(1≦2≦n-1)で あ り、 が αF(-1ソ を得 る。 cR=cKで あ る

か ら 砺 ∈Kで ある。 そ して

             dΣ α・碗 一Σ α冨珈 一〇
              ゼ瓢0       2:0

よりt=Σ α乞珈 ∈RはK上 代数的であ る。微分 して

    i=O

          Dオ ー Σ(Dai+ai-・)D2y+α 。一・α一 α_・α
             τ=0

を 得 る 。u=an-1はDn-lu-(-1)n-1を み た す 。 tが み た すK上 既 約 方 程 式 を

              tm十bltmー1十 … 十bm=0

と す る 。 微 分 し て

      (Db1-1-mau)t'n-1-}一(Db2-}一(m‐1)au)tT-,,,-2+… 一}-Dbr,,,=0

                   ユ2



を得 る。 よ ってv=-bl/mはDv=auを み たす。

 逆 に、2)を 仮 定 す る。 す な わ ち、u,v∈Kで

             Dv=au, Dn-1u=(-1)n-1

な る もの が存 在 す る とす る。anー 、=u,砺=‐Dai+1に よ っ てai∈K(0≦2<n-1)を

定 義 す る。 この とき

               v-Σ α・恥 ∈cK
                 盛=0

が 成 り立 っ 。 した が っ てy,...,Dnー1ッ はK上 代 数 的 に従 属 す る。

 た と えば 、K=C(勾 とす る と、 任 意 の α∈Kに 対 して 、 方程 式 系

             Df2=ゐ-1, fo=a (0≦Z)

の解/1,f2,...はK上 代 数 的 に従 属 す る。 実 際 、 αの 分母 をuと お け ば αu∈C同 で 、 そ

の積 分vがK内 に存 在 す る。

 関連 してっ ぎを細介 しよ う。

Ostrowskiの 定理 R/KをCR=CKな る微分拡大、 KはRの 中で代数 的に閉 じてい る

と仮定す る。義 ∈R(1≦2≦n)はDfZ∈Kを み た し、 K上 代数 的に従属 である とす る。

この とき、 す べ て が0と は 限 らな い あ るai∈cK(1≦2≦n)が 存 在 し、 aZfz∈Kが

                                i=1

成立す る。
一証明 
ΩR/-Kに おい て、 自明 でない 関係式

                aZdf2=0(ai E R)
               2=1

が成立 する。上述 と同様 に してai∈OR=OK⊂Kで あるこ とがわか る。 よって

              dΣ α議一Σ α灘 一〇
               i=1      i=1

したがって aZfz∈Kを 得 る・

     'L=Z
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6 可解性

K⊂R⊂Sを 微 分 拡 大 列 とす る。trans.deg S/K<+○ ○で 、 σR,(JSは 代数 閉体 とす る。

ω1,...,Wmを Ω(R/K)の 基 底 、 そ れ に加 えて θ1,...,Bnを Ω(S/K)の 基 底 とす る。 変 分 方

程 式 は

    £Dω 、一 Σ αηωゴ,.cDe;一 Σ わゴんωん+Σ ・ブ・θた(azゴ ∈ 五,6ゴ ん,Cブた∈ ル1)

        7=1             h=1       た=1

となる。これらを簡単に

              GD¥B/_¥BC/¥B/

と記凱 … 一 本解Φから…(AO
B C)Ψの基本解Ψで (鋼)

の形で求められる。

 変分方程式の基本解によって生成される微分拡大を延長といい、R1と 書 くことにす

る。K⊂R⊂Sを 微分拡大列とすれば、 Rの どの延長 もSの ある延長に埋め込むことが

出来る。ここで微分基底や基本解のとり方によってR1が 異なることがあることに注意し

よう。

 もし、 あるR1/Rが 一般Liouville拡 大 に含 まれれば、他のR1/Rに ついて もそ うであ

る。実際 ΩR/Kの2っ の基 底を ω1,_,ω.お よび η1,_,η.と し、 それ らがみたす線型方

程式を

               Dcv=Are, Dry=Bra

とす る。 ある変換行列Tに よって η=Tω とできるか ら、

                 DT十TA=BT

が成 り立っ。い ま、Φ,Ψを !1二 凶Φ,DΨ=BΨ の基本解 とすれば、

                 DTΦ=BZ「 Φ

とな る。 した が って 、 あ る定 数 行列rに よ って Ψ=TΦrと 書 くこ とが 出来 る。 故 に

R〈Φ,r>=R〈 Ψ,r>と な る。 Φ がRの 一 般Liouville拡 大Lに 含 まれ るな らば 、 Ψ はRの

一般Lionville拡 大L〈r>に 含 ま れ る。

命 題5 微 分 拡大R/Kは っ ぎ の 中 間微 分 拡 大{RZ}0≦2≦nを もつ と仮 定 す る 。

     K=Ro C RI C...CRn=R,  trans.deg Rv/Ri_1=1(1<i<n)
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この ときR1/Rは 一般Liouville拡 大 に含 まれる。

証明 n=1の 場合 を示せ ば十分 である。 この とき、ΩR/Kの 基底 ωは1階 線形微分方程

式 をみたす。 したが ってR1/Rは 一般Liouville拡 大 に含 まれ る。

 とくに、っぎが成 り立 っ。

定理3 R/Kを 一般Liouville拡 大 とする と、その延長R1/Kは 一般Liouville拡 大 であ

る。 しか も、 それ は代数方程式 を解 くことと、積分 によって達成される。

証明 n=trans deg R/Kに 関する帰納法で証明す る。 R/Kは 一一般Liouville拡 大 である

か らっ ぎの拡大列が存在す る。

K⊂Ro⊂Rl⊂ … ⊂Rn・=R

(1)[Ro:K]<○ ○で あ る 。 各2(1<i≦n)に 対 して、 凡-1は 瓦 の 中 で 代数 的 に 閉 じて

い る。

(2)各i(1≦ ②≦n)に 対 して 、Ri-1上 超 越 的 な0≠ ち ∈RZが 存 在 しDti∈ 凡 一1ま た は

tZlDta∈ 凡-1が 成立 し、[Ri:凡 一1(ti))<OCで あ る。

 E=Rn-1,-F=Rn,t=tnと お く。 E1/Kが 一般Lionville拡 大 で あ る とき、 F1/Kも ま

為 そ うで あ る こ とを示 せ ば よ い。 まずDt=u∈-Eと す る。 dtは

               GDdt e(加 ∈ Ω(E/K)

をみ た す。-E/Kの 変 分 方 程 式 を これ に加 え て、F/Kの 変 分 方 程 式 が 得 られ る 。 よ って 、

あ るv∈Elに よ っ てFl=EIF(z), Dz=vと して よい 。 よ ってF1/Kは 一 般Lionville

拡 大 で あ る。

 つ ぎ にDt=tu, u∈Eの 場 合 を考 え る。 dtは

            GDdt=udt+tdu, dv, E SZ(E/K)

を み たす。 上 記 と同様 に、 あ るv∈E1に よ ってF1=E1.F(z), Dz=uz+tvを 得 る。 と

ころ で、Dt=toで あ った か ら、 z=twと お け ばDw=vを 得 、 F1/E1、Fは 、 した が っ

てF1/Kは 一般Liouville拡 大 とな る。

微 分 拡 大 の列

                 KCLCR
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においてR/Kが 一般Li。uville拡 大 な らば、 R/Lも そ うである。 これ は定義か らあき

らか。

 した が っ て、 微 分 拡 大R/KはK上 一一般Liouville拡 大 に含 まれ るな らば 、 R1はK上

一 般 コLiouville拡 大 に含 まれ る
。

7 Painleve I型 方 程 式

Kepler方 程式の解 はC(x)上1階 代数 的微分方程式をみ た し、 C(x)のPU拡 大 に属 さな

い とい うことをわれわれはすでに確 かめた。2階 の場合には、Painleve I型 方程式がある

([2]を参照)。 これを検 証す ることが この節のテーマである。

 論文K.Nishioka,"コLinear differential equation attached to Painleve first equation",

Funkcialaj Ekvaci0j,38(1995),277ー282の 間違 った証明を訂 正す る。

 Kを 標数0の 微分体 とする。α∈KはDα ≠0な るもの とする。 方程 式

                D2y=6y2十cx

をPainleve I型 微分方程式 とい う。微分方程式

           2 2D y=ay+by+・(α,b,・ ∈κ,α ≠0)

の解の研究 は簡単 な変換 によって α=6,わ=0の 場合 に帰着 できることに注意 しよ う。

 y,y'を 不定元 とし、微分代 K[y,列 を

              Dy=ガ, Dガe6y2十 α

によって定義する。上記 のPainleve I型 微分方程式の変分方程式

                 五)2z・=コ12yz

から、p=Dz/zと す る ことによってRiccati方 程式

                Dp=12y-p

を得 る。 そ こでuを 新た な不定元 として、微分代数1Φ,ッ,〃 りを

                Du=12y-u

によって定義す る。以下 しば らく命題 の証明 に必要 な道具 の説明を行 う。
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 ベキ積 吻 ゴ〃'鳶∈K[u,y,y']の 重 さを

              w(u2yゴガ鳶)eZ十2ゴ-卜3ん

によって定義す る。Kの 非零元の重さは0と す る。非零 の微分 多項式F∈Kロu,y,列 に

対 して、その重 さを

       w(F)一 坦ax{i+2j+訓 ん ・≠0}, F一 Σ ん ・uWκ
                           ijk

によって定義す る。た とえば

                 7ey'2-4y3

は重さ6の 微分多項式であ る。Fh=0も 認める ことに して

              F一 Σ 瑠,p-w(F)
                 ん=0

というように κ[u,y,y']の 元 を同重多項式Fhに 分解する ことができる。 Fhは0で なけれ

ば重 さhの 単項式 の和 である。

 も しD.F≠0な らば

               w(DF)=w(F)十1

が成 り立っ。 これはFが ベキ積の ときに調べれば よろ しい。

 微分DはK[u,y,〃 りにおいて

        D=X十Y十Z (X,Y, Z∈Der(K[u,y,yノ]/cK))

と分解 され る。 ここで

       Xe(12y-u2)∂/∂u十2/∂/∂y十6y2∂/∂y', Zeα ∂/∂3〆

であ り、YはDに よる係数 微分である。 Vhに よって重 さhの べ キ積 が生成す るK上 ベ

ク トル空間を表 せば

           XVん_1⊂Vh, y琉 ⊂Vh, ZVh+3⊂Vh

が成立する。 た とえば、上記 の ッに対 してXッ=yッ=0,Z-y=2y'で ある。

 しば ら くXに っい て調べ る。L=K(の とする。 この ときXL={0}で あ る。 LはD

に関するKの 微分拡大で はない ことに注意。 また、R=K(y,〃')と す る。 これはDに 関

す るKの 微分拡大で ある。
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補題3 ノ∈RがXf=a+b/y'2(α,b∈L)を みたす とす る。 この ときb -3僻 であ り、

!は っ ぎの ように表 され る。

              f=g‐2ay/y' (gEL)

証明 /=g+h/y',g,h∈L(y)と 表せ ば

              X!=9副+by‐6y2h/y'2

を得 る。仮定 よ りX!∈L(y)で あるか ら、〃'2=4y3+ッ ∈L(y)に 注意 して、 gy=0,

g∈Lと な る。hに 関 しては

               y'2(by-α)==6y2h十b

hの 分 母 の 既約 因子 の一 っ を κと し、hに お け る κの指 数 を 一rと す れ ば 、 byに お け る指

数 は 一r-1と な る。 よ っ て んは既 約 多項 式y'2_4y3+ッ の 定 数 倍 で 、 r=1で な け れ ば

な らない 。h=(4ys+の-1H(H∈L[y))と お こ う。 す る と

      _12y2(42/3十 戸γ)-1H十Hy一 α(4Z13-1ー7)=6y2(4ys十 戸γ)-1H十b

これ は成 立 しない 。 よ ってh∈L[y]で あ る。n=degy h>1な らば 、 係数 を 比較 して

4n=6、 これ は成 り立 た な い 。 h=cy+d(c, d∈L)と す れ ば 、

            (c一 α)(4y3十 つ・)e6y2(cy十d)十b

よ り、d=0,c=-2α,b=-3α ツを 得 る。

 t,s∈K[u,y,y']を っ ぎ に よ っ て定 義 す る。

               t=r㏄2/-62/2,  s=;レ't

ただ ち に

         Xt=-ut, Yt-0, Zt=au, Xs-1=1/y'2

を得 る。

 と くにX!∈Lな らば!∈Lで ある。

補題4 !∈R(u)がXf=0を みたすな らば/∈Lで ある。

証明 !¢Lを 仮定す る。補題3よ り、Rの 定数体 はLで あるか ら、/はR上 超越的 であ

る。 したがって!,sはR上 代数 的に従属する。 この場合、 R上 代数的なあるgで
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Xg=1/〃'2を みたす ものがあ る。 Traceを とるこ とによってg∈Rと 考 えてよい。 しか

し、 これは補題3に 矛盾す る。

補題5 !∈R(の がXf∈Lを み たすな らばf∈Lで ある。

証明   ・としよ う。 この とき、!,5はR上 代数 的に従属す る。Ostrowskiの 定理(§5

参照)に よって、 あるb∈Lが 存在 してg=/+bs-1∈Rが 成立 する。 よって

                Xg=Xf+b/yi2

補題3よ りXf=わ=0を 得 る。

補題6 !∈R(u)がXf=ay+(by+c)/y,2(α, b, c∈L)を みたすな らばb=3a-yで ある。

証明 /∈Rの 場合 、あるg∈Lお よびh∈L(y)を 用いてf=9+h/y'と 表 す ことがで

きる。以前 と同様

            (4y3十'y)(hy‐ay)=6hy2十by十c

を得 る。hは 多 項 式 で あ る こ とが 分 か る。 hのyに 関す る次数 を 考 え れ ばdegy h≦2を 得

る。h,_hoy2+hly+1L2(hi∈L)と お けば

    4(2ho一 α)=6ho, 4h1=6h1, ん2==0, ッ(2ho一 α)=b, っ・ん1=c

よ ってb=3僻 を得 る。/¢Rの 場合 。 あ るe∈Lが 存 在 し、 κ=!+es-1∈Rと な り

           Xκ 一Xf+・/〆 一 α〃+(by+c+・W2

を得 る。 よ ってb=3a-yと な る。

定 理4 F∈K[  'u,y,y]＼κ がDFを 割 り切 る こ とは な い。

証 明 FがDFを 割 り切 る と仮 定 す る。 す な わ ち

             DF-AF(A∈.K[u,四'ユ)

とす る。Fの 同重 多 項 式 へ の 分 解 を

                 F一 Σ 死
                    ん=0

とす る。DF≠0の 場 合 、 w(DF)≦w(F)+1で あ るか ら、 w(A)≦1を 得 る。 DF=O

の場 合 、 、4=0と 考 え る。 どち らに して も

           A=‐mu十a, m=deguF, aEK
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と書 く こ とが 出 来 る。 これ よ り

(*)  X凡+YFh、+1+ZFh+4=(-mu)凡+aFh+、

を得 る。 た だ しFh=O(ん<00rん>p)と した。以 下 で02】 で行 わ れ て い る よ うにFhを 求

め てい こ う。

 h=pの 場 合 、

                XFp=-m財1㌃

tを 用 い れ ば 、 これ はX(Fp/tm)=0と 書 き換 え られ る。 よ ってFp=Ctm(c∈L)を 得 る。

い まはc∈K[y,y']で あ る か ら、 c=c0≠(co∈K)そ してFP=Cp'yktm,κ ≧0と な る。 す

る とp=6κ+4m≧4で あ る。 co=1と して 議論 を進 め る。

 h=p-1の 場合 。

              XFp_1=-9122GFp_1+'CL.Fp

これ は

              X(Fpー1/Fp)=α ∈K⊂L

とな る か ら補 題3よ り α=0そ して 瑞 一1=0を 得 る。

 h=p-2,p-3の 場 合 。

          -XFP_2=-muFpー2, X1㌃ 一3=-m冠 瑞 一3

よ りX(Fp-2/Fp)=X(Fp-3/Fp)=0を 得 、 p≧4よ りFp-2=Fp-3=0を 得 る。

 h=p-4の 場 合 。(*)は っ ぎ の よ うに な る。

              XFp-4+ZFp=-muFP_4

と ころ で

        ZFp/Fp=2ん α〃'/ツ十mau/t e X(2κ α魯1/・γ十ma/t)

で あ るか ら、

           X(瑞 ー4/Fp)十X(2κ αy/ツ 十mα/t)=0

したが って 、補 題4よ り

          Fp-4=一(21bα 〃/ツ十ma/t)Fp十b (b∈L)

p=4と す る とFo∈K,κ=0,m=1,b∈Kそ して.F・=君 一α+bと な る が、 D-F=-uF

に代 入 す れ ば 、Dα=0を 導 き、 仮 定 に反 す る。 よ ってp>4で あ る 。
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最後 にh=p-5の 場合を考 える。 この場合(*)は っぎになる。

          XFpー5-」D(α)(2κ ツ/ツ十m/t)」F∋e-muFp_5

書 き換 え て

           X(F'p-5/殉 一D(α)(2椥/ッ+my'・-1)

f-Fp-5/Fp-D(α)mys-1と お くと、

             xf・=D(α)(2醜1/・ γ-my/y/2)

補 題6よ り 一mDα=6納-1Dcx、 故 にDα=0、 これ は矛 盾 。

 定 理4か らっ ぎの 結 果 が で る。

命題6 yをK上Painleve I型 方程式の解 とする。 もし、〃がKの あるPU拡 大に属 す

るならば、yはK上 代数 的である。

証明 yが κ の任意定数 に代数 的に依存す る拡大体Rに 属 する場合 を考 えれば十分 であ

る。 この ときある微分拡大E/Kで 、E,Rは-κ 上free、[ER:ECER]<○ ○となる ものが

存在する。0朋 のCE上 代数的基底をul,_,unと す る。 yがL=E(uz,.。.,un-1)上 代

数的である ことを示 そ う。実際 も しそ うでなければyはL上1階 代数 的微分方程式 をみ

たす。それを

          F(y,Dy)=0(0≠F∈L[Y, Y'1, Y'=DY)

とする。ただ しD2Y=6Y2+α とする。 FはY-ノ に関する次数 を最小 に と り、既約であ

るとする。

         DF=FD十Y,FY十(6Y2十 α)FY' (Y'=DY)

をFで 割 れ ば 、 あ る非 負 整 数 κと1∈L[}り,.4,B∈ 乙[ス γり が あ り

           1んDF=AF十B, degY, B<degY, F"

とな る。 ここで1はFに お けるY'の 最高ベキの係数 である。yを 代入すれ ば

B(y,Dy)=0で あるか ら、仮定 によ りβ=0と なる。 Fは 既約 で もあるか ら、 それ は

DFを 割 り切 る。定理4よ り、 F=0を 得 る。 これは矛盾。 yはL上 代数 的である ことが

わか った。 同様 に して、yはE(u1,..,,u∂(0≦2≦n)上 代数的 である ことを知 る。 とく

に、それ はE上 代数 的。 ところで、E, RはK上freeで あったか ら、 yがK上 代数的 で

あ ることを得 る。
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命題7 yをK上Painleve I型 方程式 の一般解 とする。 この とき、 yの 変分 は κ〈y>上一

殿Liouville拡 大 に属 する ことはない。

証 明 yの 変分zは

                 D2z=12yz

を満 足 す る。 も し、z≠0がR=K〈y>上 一 般Liouville拡 大 に 属 す る な らば 、

Dw=12ywでt=w-iDwがR上 代 数 的 な る ものが 存 在 す る([2])。 した が って既 約 な

ーF∈K[y,y',u], Du=12y-u2でF(ッ,ッ',の=0な る もの が あ る。 上 と同 様 の 議論 に よ っ

てFがDFを 割 り切 る こ とを 知 る。 定理4に よ って これ は不 可能 。
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